
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations - UTB/UTPA

8-2009

Asynchronous designs on FPGA with soft error tolerance for Asynchronous designs on FPGA with soft error tolerance for

security algorithms security algorithms

Deepya Reddy Nalubolu
University of Texas-Pan American

Follow this and additional works at: https://scholarworks.utrgv.edu/leg_etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Nalubolu, Deepya Reddy, "Asynchronous designs on FPGA with soft error tolerance for security
algorithms" (2009). Theses and Dissertations - UTB/UTPA. 1034.
https://scholarworks.utrgv.edu/leg_etd/1034

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations - UTB/UTPA by an authorized administrator of ScholarWorks @ UTRGV. For
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/leg_etd
https://scholarworks.utrgv.edu/leg_etd?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F1034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F1034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/leg_etd/1034?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F1034&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

ASYNCHRONOUS DESIGNS ON FPGA WITH

SOFT ERROR TOLERANCE FOR

SECURITY ALGORITHMS

A Thesis

by

DEEPYA REDDY NALUBOLU

Submitted to the Graduate School of the
University of Texas-Pan American

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2009

Major Subject: Electrical Engineering

ASYNCHRONOUS DESIGNS ON FPGA WITH

SOFT ERROR TOLERANCE FOR

SECURITY ALGORITHMS

A Thesis
by

DEEPYA REDDY NALUBOLU

Approved as to style and content by:

Dr.Weidong Kuanj!
Chair of Committee

r)Afa£^v&> ^ u q , fr Dr. Hasina Huq'
Committee Member

Dr. Sanjeev Kumar
Committee Member

August 2009

ABSTRACT

Nalubolu, Deepya Reddy., Asynchronous Designs on FPGA with Soft Error Tolerance

for Security Algorithms. Master of Science (MS), August, 2009, 140 pp., references, 52

titles.

Asynchronous methodologies, such as Null Convention Logic (NCL), have tremendous

potential in implementing digital logic. It is essential to design complex asynchronous

circuits using commercial Electronic Design Automation (EDA) tools. The main focus of

this thesis is to design NCL circuits using VHDL and implementing them on FPGAs. The

major contributions of this thesis include:

1) Developing a methodology of designing NCL circuits with VHDL and applying it

successfully to all practical designs in this thesis.

2) As an example, the NCL circuit for DES (Data Encryption Standard) algorithm has

been designed and simulated using VHDL and the implementation issues on various

FPGAs (Xilinx and Altera) have been investigated. Modification of the design has been

done to minimize the amount of logic used.

3) An effective soft error tolerant scheme for asynchronous circuits on FPGAs is

proposed, and successfully verified through software simulation and hardware

implementation by introducing it into a DES round.

This thesis provides a starting point for further investigation of NCL circuits, in terms of

VHDL modeling, FPGA implementations, and soft error tolerance.

IV

DEDICATION

I am extremely overwhelmed to dedicate this thesis to my only four valuables. My

mother, Sowjanya Nalubolu, my father, VenuGopal Reddy Nalubolu, my brother Vinay

Reddy Nalubolu and my friend Vijay Ashwanth, who have been with me through thick

and thin. I am made out of their discipline and commitment.

My parents always taught me the importance of education in one's life without

whom I would have never anticipated for higher education abroad. Their kind guidance

has helped me choose the right path in life. My brother and my friend were always

encouraging and helped a lot in successfully finishing my thesis.

V

ACKNOWLEDGMENTS

The support for the project is a grant from the Department of Defense (DOD). I

would like to thank the DOD for believing in the potential of students not only from

highly reputed schools but also in schools for minority students. Without the backing up

of the DOD, the ideas might not have come into existence. The Department of Electrical

Engineering at UTPA would always be indebted to Government and private

organizations for supporting its students. I would also like to thank Dr.Kuang, the grant

principle investigator (PI) and thesis committee Chair. He is a kind and wonderful teacher

who has given enough freedom to think and successfully implement things. Last but not

the least I would thank the UTPA for giving me an excellent opportunity to study here

without which I would not have met wonderful teachers and friends. I also thank the

almighty for this being his will. I would like to convey my special thanks to Dr.Scott

smith, Associate Professor, Department of Electrical Engineering, University of Arkansas

for providing the basic material, the NCL library, based on which the thesis is constructed

upon.

vi

TABLE OF CONTENTS

Page

ABSTRACT iii

DEDICATION iv

ACKNOWLEDGEMENT v

TABLE OF CONTENTS vi

LIST OF TABLES x

LIST OF FIGURES xi

CHAPTER I. INTRODUCTION 1

1.1 Data Encryption Standard Algorithm 2

1.2 Implementation of DES on FPGA 5

1.3 Asynchronous Design Methodology 7

1.4 Soft Errors and Digital Circuits 8

1.5 Thesis Objectives 10

CHAPTER II. BACKGROUND WORK ON

NULL CONVENTION LOGIC 12

2.1 Completion Criteria 13

2.2 Threshold Gates with Hysteresis 15

2.3 NCL Pipeline 16

2.3.1 NCL Register 18

2.3.2 Completion Detection Circuitry 19

vii

2.3.3 NCL Combinational Circuit 20

2.4 NCL Circuits Using CMOS Transistors 21

CHAPTER III. NCL CIRCUIT DESIGN WITH VHDL 24

3.1FPGA 24

3.2 Design Flow used in the Thesis 26

3.3 NCL Circuits in VHDL 28

3.3.1 Data Type Called dualraillogic 28

3.3.2 Threshold Gates with Hysteresis in VHDL 29

3.3.3 NCL Dual-rail Registers & Completion Detection Circuits in VHDL 30

3.3.4 Constructing Computational Blocks 32

3.4 Simulation of a Simple NCL Pipeline 33

CHAPTER IV. ASYNCHRONOUS DES ALGORITHM USING NCL 38

4.1 Initial Register 39

4.2 Initial Round 40

4.3NCLRegistersl-15 41

4.4Roundsl-14 42

4.5 Round 15 43

4.6 NCL Register 17 44

4.7 Final Round and Final Register 44

4.8 NCL DES Design on FPGAs 44

4.8.1 Xilinx Device 45

4.8.2 Altera Devices 45

4.9 Improvements in Asynchronous DES Design 47

viii

4.9.1 Design Modification to Utilize Internal RAM Elements 47

4.9.2 Resource Utilization with RAM elements 49

4.9.3 Resource Comparison Between Synchronous and Asynchronous Designs..50

CHAPTER V. SOFT ERROR AND NCL CIRCUITS 52

5.1 SEUsinNCL 52

5.1.1 SEUS in Semiconductor Circuits 53

5.1.2 Generation and Propagation of Soft Errors in NCL 54

5.2 Study of NCL Pipeline for an SEU 55

5.3 Tackling Soft Errors Using NCL Methodology 57

5.3.1 Soft Error Mitigation and Correction 57

5.3.2 Soft Error Tolerant Schemes in NCL 59

CHAPTER VI. SOFT ERROR TOLERANT DESIGN USING FPGA 61

6.1 Introduction 61

6.2 Soft Error Tolerant Design 62

6.2.1 Circuit for Soft Error Tolerance 62

6.2.2 Case Study: NCL Full-adder as Computational Block 65

6.2.3 Generating Inputs and Strike 68

6.2.4 Simulation Results 72

6.3 Experiments on FPGA Device 78

6.3.1 Experimental Set up 79

6.3.2 FPGA Board 80

6.3.3 Results 81

CHAPTER VII. SOFT ERROR TOLERANT ASYNCHRONOUS DES DESIGN ...86

ix

7.1 Asynchronous DES with Soft Error Tolerance 86

7.2 Results Obtained 88

CHAPTER VIII. CONCLUSION AND FUTURE WORK 92

REFERENCES 94

APPENDIX A. DES ALGORITHM AND DESIGN UNITS IN VHDL 98

APPENDIX B. NCL LIBRARY 106

APPENDIX C. VHDL FILES USED FOR THE THESIS 116

BIOGRAPHICAL SKETCH 140

X

LIST OF TABLES

Table Page

2.1: Dual-rail Encoding 13

2.2: Twenty-Seven Fundamental NCL Gates and their Boolean Functions 16

4.1: Devices and Companies 44

4.2: Virtex5 Resources 45

4.3: Resources used by DES Algorithm (dual-rail logic) on Xilinx Device 45

4.4: Altera Device Resources 46

4.5: Resources used by DES Algorithm (dual-rail logic) on Altera Device 46

4.6: Resources used by DES Algorithm with ROM on Altera Devices 50

4.7: FPGA Resources used by Different DES Designs 51

6.1: Truth Table ofa 1-bit Full Adder with Different States 66

xi

LIST OF FIGURES

Figure page

1.1: Step by step procedure of DES 3

1.2: Metaphor of the bucket brigade a) synchronous b) asynchronous 7

2.1: Weak Conditions for NCL Completeness of Input 14

2.2: Different threshold gates 15

2.3: Basic NCL pipeline structure 17

2.4: 1-bit NCL register 18

2.5: n-bit completion detection circuitry 20

2.6: NCL implementation of a) Inverter b) Exor gate c) Full-adder 21

2.7: General Structure of a Static Gate 22

2.8: Go to NULL and hold DATA transistor blocks 22

2.9: Static th23 gate 23

3.1: Basic resources of an FPGA 25

3.2: FPGA design flow 25

3.3: Design flow 27

3.4: dualjraillogic data-type 29

3.5: Behavioral description of th22 in VHDL 29

3.6: 1-bit NCL register in VHDL.. 31

3.7: Creating n-bit register from 1-bit register 31

xii

3.8: VHDL code for a) Exor gate b) Full-adder 32

3.9: NCL pipeline with exor gate 33

3.10: VHDL code for the NCL pipeline with exor gate 34

3.11: a) initreg.vhd b) exordl.vhd c) finalreg.vhd 35

3.12: Quartus II software window 36

3.13: Simulation results of exor.vhd 37

4.1: DES pipeline in NCL dual-rail logic 39

4.2: Initial Register 39

4.3: Initial round in the DES pipeline 40

4.4: S-box inputs and outputs 41

4.5: The inside view of NCL register 1 -15 42

4.6: Internal structure of roundsl-14 43

4.7: NCL register 17 43

4.8: Asynchronous DES round with S-boxes as RAM elements 47

4.9: S-box as ROM 48

5.1: Mechanism of soft errors in semiconductor circuits 53

5.2: SEU generation in th23 gate 55

5.3: Different outputs during different strike timings 57

6.1: Soft error tolerant design 62

6.2: Three scenarios to be tested for a full-adder 67

6.3: 1-bit dual-rail full-adder with strike 69

6.4: Modified full-adder incorporating strike 70

6.5: VHDL code for inducing a particle strike 70

xiii

6.6: Inputs and strike generator 71

6.7: Simulation waveform of inputs & strike generator 72

6.8: Simulation results without a strike 73

6.9: Simulation results during a strike at third clock cycle 73

6.10: Simulation results when strike is placed at the first clock cycle 74

6.11: Simulation results when strike is placed at the second clock cycle 74

6.12: Simulation results when strike is placed at the third clock cycle 75

6.13: Simulation results when strike is placed at the fourth clock cycle 76

6.14: Simulation results when strike is placed at the fifth clock cycle 76

6.15: Simulation results when strike is placed at the sixth clock cycle 77

6.16: Experimental set up 78

6.17: Laboratory experimental set up 79

6.18: The DE2 board 80

6.19: Actual results when strike is placed at the first clock cycle 82

6.20: Actual results when strike is placed at the second clock cycle 83

6.21: Actual results when strike is placed at the third clock cycle 83

6.22: Actual results when strike is placed at the fourth clock cycle 84

6.23: Actual results when strike is placed at the fifth clock cycle 84

6.24: Actual results when strike is placed at the sixth clock cycle 85

7.1: Asynchronous DES with embedded soft error tolerant circuit 87

7.2: Simulation result for strike at first clock cycle 88

7.3: Actual result for strike at first clock cycle 89

7.4: Simulation result for strike at second clock cycle 89

XIV

7.5: Actual result for strike at second clock cycle 89

7.6: Simulation result for strike at third clock cycle 91

7.7: Actual result for strike at third clock cycle 91

1

CHAPTER I

INTRODUCTION

Data Encryption Standard (DES) algorithm, a most widely used algorithm in the

world is a cipher (a method for encrypting information) which was selected as an official

Federal Information Processing Standard (FIPS) for the United States in 1976[1]. DES

provided the basics for understanding block ciphers and their cryptanalysis. DES

algorithm operates on a 64 bit plaintext using 56 bit key (actually 64 bit key, every 8th bit

of the key is not used) thereby generating a 64 bit ciphertext which is the encrypted data.

A Field Programmable Gate Array (FPGA) is a semiconductor device that can be

programmed or configured any number of times using a schematic design or a source

code in HDL (hardware description language) that describe the user's hardware design

[2]. FPGAs can be configured with dense logic and have very high logic capacity.

Cryptographic algorithms like DES could be made to accommodate into the logic cells

and the memory units of the FPGA since it also provides the advantage of updating and

reprogramming any number of times in the future.

Asynchronous circuits [3] are digital circuits which operate without a clock unlike

synchronous circuits whose operation is solely dependent on a clock signal.

Asynchronous circuits use handshaking protocols to communicate between modules or

2

parts of the circuits for the operations to be done in sequence. As these circuits have

additional handshaking protocols other than logic, the entire circuit design will be

undoubtedly large compared to their synchronous counterparts. Hence, the challenge to

optimize these designs on the FPGA logic is inevitable.

Soft errors, also called transient faults or single-event upsets (SEUs) are caused

due to electrical noise or external radiation rather than design or manufacturing defects.

As CMOS device sizes decrease, they are more easily affected by the low energy

particles resulting from collisions between cosmic rays and particles in the atmosphere,

potentially leading to a much higher rate of soft errors [4].

1.1 Data Encryption Standard Algorithm

DES is a block cipher - meaning it operates on plaintext blocks of a given size

(64-bits) and returns ciphertext blocks of the same size. DES algorithm has been the

foundation for many of the future cryptographic algorithms. Since its creation, DES was

considered as a basic cryptographic algorithm by the academia and has been researched

to crack the algorithm, create similar algorithms which are robust. The algorithm is

believed to be practically secure in the form of Triple DES (TDEA) [1].

DES algorithm takes plain text as a block of 64-bits and generates a cipher using a

64-bit key. In general, cryptography is used to protect data while it is being

communicated between two points or while it is stored in a medium vulnerable to

physical theft. Communication security provides protection to data by enciphering it at

the transmitting point and deciphering it at the receiving point. Enciphering is the process

of generating a cipher (encrypted data) using the data and the key while deciphering is

just the opposite which is getting the original data using the cipher and the key. This

thesis focuses only on enciphering procedure since deciphering is just the opposite.

File security provides protection to data by enciphering it when it is recorded on a

stored medium and deciphering it when it is read back from the stored medium. In the

first case, the key must be available at the transmitter and receiver simultaneously during

communication. In the second, case the key must be maintained and accessible for the

duration of the storage period. Figure 1 shown below pictorially explains the step by step

procedure of DES.

("INITIAL PERMUTATION")

O

£ . > ,

Y.
{—

P«EOUTPUTJl*!(S,=Li5(+)*(1l5. K i i i l)6~ R 15

(WVSRSE INITIAl PfRNp

outpur

Figure 1.1 Step by step procedure of DES [5]

Here is a brief description of DES. The detailed description along with all the

permutation and expansion tables, s-boxes and shift tables are presented in appendix A

4

and an example is illustrated for better understanding the algorithm. As mentioned

previously DES algorithm operates on 64-bit plain text using 64-bit key to generate a 64-

bit cipher. The 64-bit key is used to generate 16 sub-keys which are used at each step.

Firstly an initial permutation PC-1 is done on the 64-bits which simultaneously eliminate

every 8th bit of the key. Then this 56-bit permuted key is divided into two 28-bits, the left

half denoted as Co and the right half as Do. Ci, Di, C2, D2 Ci6, Di6 are

generated from previous Q, Dj based on a left shift table (refer to Appendix A). For

example, Q , Di are generated by left shifting Co and Do respectively using the number of

left shifts mentioned in the left shift table. Then each pair is concatenated and permuted

using a permutation table PC-2, each generating a single sub-key Ki, K2 Ki6

respectively.

The 64-bit data is applied with an initial permutation IP and the result is divided

into two 32-bits, the left half as Lo and the right half as Ro. These Lo and Ro serve as the

initial data from which further halves (Li, Ri Li6, Ri6) are generated. The final cipher

is generated from flipping and permuting Li6 and Ri6. The two equations which are used

to generate Li and Rj are Lj = R,.\ and Rj=Lj.i + f (RM, Ki) which means next L is the

present R and next R is obtained from present R and K. For example Li has the value of

Ro and Ri is obtained from Ro and Ki, which is the first sub-key, after a series of steps

mentioned below.

After as initial permutation, the 64-bit data is divided into 32-bits each as Lo and

Ro. Now, Li = Ro and in order to obtain Ri, Ro which is 32-bit is expanded using an

expansion table (refer to Appendix A) to 48-bits. The resulting 48-bits is exored with Ki

generating a 48-bit output which is divided into 8 group of 6-bits viz., Bi, B2....B6. Each

5

6-bit value is mapped to 8, respective S-boxes Si Sg generating a 4-bit value. The

mapping is done by considering the first and the sixth bit of say Bi, and the 2-bits are

collectively considered to be row number and the remaining four bits from 2n bit to 4l

bit are collectively considered as column number. By using the row and the column

numbers, a 4-bit value is taken from the S-box, Si for Bi in this case. So, combining all

the 8, 4-bit outputs of 8, single S-boxes, we get a 32 bit output. This 32-bit output is

subjected to permutation by a table P and then exored with Ki and is denoted as f R\ is

obtained from f and Lo by exoring both the 32-bits.

The above procedure represents one round of calculations. The entire DES

algorithm has 16 such rounds using the two important equations mentioned above,

starting from Lo, Ro until the generation of Li6, Ri6- Li6 which represents the left 32-bits

and Ri6 which represents the right 32-bits are flipped and subjected to final permutation

IP"1 and the resulting output is the cipher text. As we know the entire procedure of DES,

let's move on to investigate how DES is implemented on hardware.

1.2 Implementations of DES on FPGA

Since the creation of DES there have been many implementations of the

algorithm. The most common implementation is the software implementation. Software

implementation provides a great flexibility but it is slow for those applications where

execution time is a crucial factor. Another implementation of DES is the ASIC

(Application Specific Integrated Circuit) implementation. Execution speed is a major

advantage of this method. ASICs have higher cost of implementation since they have to

follow expensive and time-consuming fabrication process. Reconfigurable logic like the

FPGA has the dual advantage of the software implementation and the ASIC

6

implementation. FPGAs are faster and have high flexibility and could be reconfigured or

reprogrammed any number of times. They have the advantage to be programmed with

different designs or modifications of the same design hence reducing the time and cost of

implementing a design.

There are different synchronous DES designs which have been implemented on

FPGAs [6-8]. In some of the designs, 16 sub-keys are pre-computed and multiplexers are

used to select each sub-key. In comparison with the lookup table approach to implement

the S-boxes, the direct implementation of Boolean functions increased the speed of

processing, saved on the number of gates and was more suitable for FPGA architectures

[6]. A design using pipelining approach and ROM elements present in the FPGA could

achieve lGbps. DES with 16 pipelines gave the maximum speed but occupies more area

in the FPGA [7]. The overall security of the design was improved by using different keys

every clock cycle [8]. The fastest synchronous DES implementation on FPGA runs a data

rate of 10.7 Gbps, utilizes Jbits on a FPGA. Jbits provides a Java-based Application

Programming Interface (API) for the run-time creation and modification of the

configuration bit-stream. This design is not a single-chip implementation of the full DES

algorithm since the key schedule is computed in software. Also, it can only accommodate

one key per data transfer session [9].

Here are some of the conclusions made when a DES design was implemented on

a FPGA. S-Boxes should be implemented in ROM elements for maximum performance.

Bigger chip results in a slower design. A migration from speed grades -4 to - 3 , -3 to -2

and -2 to -1 result in up to 20% higher performance. The Xilinx device is faster than the

7

Altera device even if the former is bigger than the later and had a slower speed grade (-4)

than the second which had the faster speed grade (-1) [7].

1.3 Asynchronous Design Methodology

Logic design methods can be broadly classified into two categories, namely

synchronous and asynchronous methodologies. Synchronous method is the commonly

used method where the data is available to all the components of the design at the rising

edge or at the falling edge of the clock. The clock signal is the dictator for the entire

circuit's operation. In the asynchronous methodology there is mutual understanding

between the neighboring units of the design. Sutherland [10] used a metaphor of the

bucket brigade to explain the difference between the two methodologies.

€ (A^A^A
| r- »• v r-

lock i VJ CJ L.

* hid
b)

^

i

vfi

\fl

Figure 1.2 Metaphor of the bucket brigade a) Synchronous b) Asynchronous

Asynchronous circuits have several potential advantages over their synchronous

counterparts. Clock skew is a matter of concern in synchronous logic but doesn't affect

asynchronous logic since the methodology doesn't use a clock at all. Asynchronous

circuits have average case performance unlike synchronous circuits whose clock is set

according to worst case delay due to which asynchronous designs are faster than the

8

synchronous designs. Another advantage of asynchronous designs is that these have high

energy efficiencies. Asynchronous circuits eliminate glitches and have transitions on the

computation path where and when involved in the current computation thereby

decreasing energy consumption. These designs also have robust external input handling

capability since there is no clock which determines the inputs at a particular time. Hence,

asynchronous circuits can accommodate inputs effectively. Asynchronous circuits have

better noise and EM properties when used in mixed-signal circuits.

Asynchronous circuits can even utilize a synchronous wrapper, such that the end

user does not know that the internal circuitry is actually asynchronous in nature.

International Technology Roadmap for Semiconductors (ITRS) envisions a likely shift

from synchronous to asynchronous design styles in order to increase circuit robustness,

decrease power, and alleviate many clock-related issues. ITRS also states that

asynchronous circuits will account for 19% of chip area within the next 5 years, and 30%

of chip area within the next 10 years [11].

1.4 Soft Errors and Digital Circuits

Soft errors are random nonrecurring single bit errors in memory devices,

including SRAM, DRAM, registers, and latches. Alpha particles from decaying uranium

and thorium impurities in integrated circuit interconnect and packaging is a major source

of soft errors at sea level and the neutron flux from cosmic rays is the major cause at

higher altitudes [12]. The intensity of these soft errors depends on the energy of the

incoming particle, location of the device, the geometry of the impact, the location of the

strike, and the design of the logic circuit.

9

For applications in medical electronic devices this soft error mechanism may be

extremely important. Neutrons are produced during high energy cancer radiation therapy

using photon beam energies above 10 MV. These neutrons are moderated as they are

scattered from the equipment and walls in the treatment room resulting in a thermal

neutron flux that is about 40x106 higher than the normal environmental neutron flux. This

high thermal neutron flux will generally result in a very high rate of soft errors and

consequent circuit upset [13-14].

The incoming particle must be strong enough to induce a charge that can change

the voltage value. The minimum charge required to change the logic level is called

critical charge denoted as Qcrjt. As device sizes are scaling down, the devices are prone to

soft errors for lesser Qcrjt.

The location of the device also influences the number of particle strikes and their

effects. For example, the effect of soft error is worse in places father to equator compared

to places on the equator and worse in mountain tops rather than at sea level due to the

density of cosmic rays.

Both synchronous and asynchronous circuits are affected by soft errors. In the

case of synchronous circuits, if a soft error occurs during a clock tick, a wrong output is

generated. Asynchronous circuits with dual-rail inputs and outputs have better advantages

over synchronous circuits to detect and correct soft errors. This thesis focuses only on the

soft errors generated in asynchronous combinational logic. Soft error rate (SER) is the

rate at which a device or system encounters or is predicted to encounter soft errors. It is

typically expressed as either number of failures-in-time (FIT), or mean-time-between-

failures (MTBF). The unit adopted for quantifying failures in time is called FIT,

10

equivalent to 1 error per billion hours of device operation. MTBF is usually given in

years of device operation. To put it in perspective, 1 year MTBF is equal to

approximately 114,077 FIT [15].

Soft errors were first discovered in memory elements like DRAMs in 1970s.

Since then DRAMs were the focus for soft errors also because it occupies most of the

susceptible surface area. DRAMs of 256 Kb with 1980s technology had flips of five to

six bits from a single alpha particle [15]. The present day devices must have many more

flips for the same alpha particle. Error-correcting codes [16] are used to deal with soft

errors in memory elements. Due to the continuous scaling down of the device sizes

attention has been shifted from memories to combinational logic circuits [17]. Soft error

detection and correction in combinational logic is an ongoing research topic since

efficient soft error tolerant designs are not available. Logic soft errors are very significant

contributors to system-level silent data corruption for designs manufactured in advanced

technologies (90nm, 65nm, onwards) and targeted for enterprise computing and

communications applications [18]. The model described by P. Sivakumar, to compute the

SERs for existing and future microprocessor-style designs predicted that the SER per

chip of logic circuits will increase nine orders of magnitude from 1992 to 2011 and at that

point will be comparable to the SER per chip of unprotected memory elements [4].

1.5 Thesis objectives

This thesis concentrates purely on asynchronous methodology. The asynchronous

methodology used here is Null-Convention Logic (NCL) and is explained in detail in

Chapter II. The thesis also includes FPGA designs and usage of different FPGAs. The

11

topic of soft error detection and correction is also discussed. The major objectives of the

thesis are:

1) Designing an asynchronous model of DES algorithm using NCL dual-rail logic

and simulating the design and addressing different issues in synthesizing the

asynchronous DES design on different FPGAs.

2) Improving the asynchronous DES design to optimally utilize the resources on the

FPGA chip.

3) Designing an NCL dual-rail logic circuit which can efficiently detect and correct

the occurrence of soft errors in asynchronous circuits.

4) Synthesizing the above mentioned circuit on FPGA and testing the circuit using

hardware components.

5) Adding the soft error tolerant circuit to one of the asynchronous DES rounds and

testing its operation.

12

CHAPTER II

BACKGROUND WORK ON NULL CONVENTION LOGIC

Asynchronous circuits can be grouped into two main categories: bounded-delay

and delay-insensitive (DI) models. Bounded-delay models assume that delays in both

gates and wires are bounded which leads to extensive timing analysis of worse-case

behavior to ensure correct circuit operation. Delay-insensitive circuits assume delays in

both logic elements and interconnects to be unbounded, although they assume that wire

forks within basic components, such as a full adder, are isochronic, meaning that the wire

delays within a component are much less than the logic element delays within the

component, which is a valid assumption in the future nanometer technologies. Wire

connecting components do not have to adhere to the isochronic fork assumption which

enables them to operate in the presence of indefinite arrival times for the reception of

inputs.

NCL [19] is a delay-insensitive asynchronous paradigm, which means that NCL

circuits will operate correctly regardless of the delay of components and wires. NCL

circuits utilize dual-rail or quad-rail logic to achieve delay-insensitivity. Throughout the

thesis, the designs make use of dual-rail logic. This chapter explains the basics of NCL

such as the components used to construct NCL circuits, criteria that each and every

component of the NCL dual-rail signals must possess and transistor level construction of

the basic components of NCL circuits.

13

2.1 Completion Criteria

NCL uses two completeness criteria to achieve its delay-insensitive behavior:

symbolic completeness of expression and completeness of input. A symbolically

complete expression is defined as an expression that only depends on relationships of the

symbols presented in the expression. Dual-rail signals with three logic states (NULL,

DATAO, and DATA1) are used to achieve symbolic completeness of expression. A dual-

rail signal D consists of two wires, D° and D1. The value of a dual-rail signal is

represented by a value from the set {DATAO, DATA1, NULL}, shown in Table 2.1. The

DATAO state (D°=l(high), D'=0(low)) corresponds to a Boolean logic 0. The DATAl

state (D°-0(low), D1=l(high)) corresponds to a Boolean logic 1. Null state (D°=0(low),

D1=0(low)) corresponds to non- data state. The state where D°=l(high) and D1=l(high) is

forbidden.

Table 2.1 Dual-rail encoding

Logic Value

DATAl
DATAO
NULL
Invalid

Encoding
D°
0
1
0
1

D l

1
0
0
1

The second criterion, completeness of input, states that for an NCL combinational

circuit, 1) the output may not transition from NULL to a complete set of DATA until the

input values are completely DATA and 2) the output may not transition from DATA to a

complete set of NULL values until the input values are completely NULL. The criterion,

equivalent to Seitz's "weak condition" [20], is illustrated in figure 2.1. This criterion is a

necessary condition for speed-independence. The orderings labeled in figure 2.1 are

explained below.

14

(1) Some inputs become DATA before some outputs become DATA.

(2) All inputs become DATA before all outputs become DATA.

(3) All outputs become DATA before some inputs become NULL.

(4) Some inputs become NULL before some outputs become NULL.

(5) All inputs become NULL before all outputs become NULL.

(6) All outputs become NULL before some inputs become DATA.

In
pu

ts
 d

ef
in

ed

de
fin

ed

O
ut

pu
ts

i

All
DATA

All

i

Null r~

i

All
DATA

All
Null

i

4

r

\ (3)/

(2)\ j \

i\ \ ' (4)\ \
• \ \ i \ \<5)

/ \
(6)/ \ (1)

/ '

iJ m

4
j

j

j (6)

i
i

i

Figure 2.1 Weak conditions for NCL completeness of input.

An output is said to be input-complete with respect to a particular input if the

output value (DATA) is not available until the input value (DATA) is available. And this

input is a complete input of this particular output. A combinational circuit is input-

complete if and only if each input at least has one output that is input-complete with

respect to it.

15

2.2 Threshold Gates with Hysteresis

NCL uses a special type of gates, namely threshold gates with hysteresis [21]

[22]. A general name of a fundamental threshold gate is described as thmnWnin2....nw,

where 'th' means that the gate is a threshold gate, m is the threshold, n is the number of

inputs, W means that the following number 'nf, 'n2', ... 'nw' are weights of the first ' W

inputs and the weights of other inputs are one by default. Some of the threshold gates are

shown in figure 2.2. In some threshold gates there could be variation for set, reset or

inverted output. In that case letter 'd', 'n', or 'b ' can be attached to the name of the

threshold gate. For example, th22n is a tli22 gate with a control input 'reset' so that the

output is initialized to low as long as 'reset' signal is active. Similarly,'d' is used to

initialize the output to high and 'b' indicates that the gate generates an inverted output.

Figure 2.2 Different threshold gates

The threshold behavior of the threshold gate requires that the output become 1 if

at least m of n inputs have become 1. The hysteresis behavior requires that the output

only changes after a sufficiently complete set of input values have been established. In

the case of a transition from a 0 to 1, the output remains at 0 until atleast m of the n inputs

become 1. In the case of a transition from 1 to 0, the output remains at 1 until all n inputs

become 0. The hysteresis within each NCL gate ensures that all inputs must transition to

NULL before a combinational circuit's output will transition to NULL, making the

circuit input-complete with respect to NULL, assuming that the circuit is input-complete

with respect to DATA. These gates are the basic components upon which all the other

essential components of an NCL pipeline (discussed in 2.3) are built.

There are 27 fundamental threshold gates in the NCL design library, as shown in

Table 2.2, which constitute the set of all functions consisting of four or fewer variables.

Table 2.2 Twenty seven fundamental NCL gates and their Boolean functions

±i
NCL gate

th i2

th i2

thu
th-B

th«
th23\V2

&33W2

t h p

tll24

thj4

tll44

thi4W2

th34W2
t!l44W2

tkj4W3

t!l44\V3

th-24W22

th34\V22

tll44\V22

th;,4\V22

tll34W32

&54W32

th44Mi322

tll54\V322

thjcorO

tlljndO

til24eomp

Boolean Function
A + B

AB
A + B + C

AB + AC +BC
ABC

A + BC
AB + AC

A + B + C + D
AB + AC + AD + BC + BD + CD

ABC + ABD + ACD + BCD
ABCD

A + BC + BD + CD
AB + AC + AD + BCD
ABC + ABD + ACD

A + BCD
AB + AC + AD

A + B + CD
AB + AC + AD+BC+BD

AB + ACD + BCD
ABC + ABD
A + BC + BD
AB + ACD

AB + AC + AD +BC
AB + AC + BCD

AB + CD
AB + BC + AD

AC + BC+AD+BD
:

2.3 NCL Pipeline

The framework for NCL systems consists of delay-insensitive combinational

logic sandwiched between delay-insensitive registers. This combination of NCL registers

along with completion detection circuitry and combinational logic is called NCL pipeline

[23]. So, the basic components of any NCL circuit or system are NCL registers,

17

completion detection circuitry and NCL combinational logic like exor, full-adder, etc.

Figure 2.3 provides the pictorial representation of an NCL pipeline.

Figure 2.3 Basic NCL pipeline structure

DATA and NULL pairs pass through each of the components in the NCL pipeline

consecutively. The presence of NULL is used as time reference in NCL circuits. The

input request for each register comes from the completion detection circuit of the next

register. Assume that all the circuits are in a NULL state and that the input request signals

of the current register (Kjc) and the next register (Kjn) are requesting a DATA wavefront

and the previous register is presenting a complete DATA set to its combinational circuit.

As the wavefront propagates through the previous combinational circuit to the current

register, the current register passes the data since its control line is requesting DATA.

When a complete data set is recognized by the current detection circuitry, it transitions its

control line (KjP) to the previous register to request NULL indicating that the current

register has received and stored the data wavefront and the previous register can pass a

NULL wavefront. The requested NULL wavefront from the previous register can arrive

at the current register but, as long as its (current register's) control line (KjC) is requesting

DATA, the NULL wavefront will be blocked and the current register will maintain

presentation the set of DATA values to the current combinational circuit. The control line

for the current register will remain requesting DATA until the DATA wavefront has

18

propagated through the current circuit and has been received by the next register. When

the next register receives and stores the DATA wavefront, the DATA set no longer needs

to be maintained by the current register. The next completion detection circuit detects the

complete DATA set and transitions it's acknowledge line(Kjc) to request NULL

indicating that it has received the DATA wavefront and the current register can allow a

NULL wavefront. This is the entire operation of the whole NCL pipeline.

2.3.1 NCL Register

NCL systems contain at least two delay-insensitive registers, one at the input and

the other at the output. Two adjacent register stages interact through their request and

acknowledge signals; Ki and Ko, respectively, to prevent the current DATA wavefront

from overwriting the previous DATA wavefront, by ensuring that the two DATA

wavefronts are always separated by a NULL wavefront.

d.railO

d. rail 1

reset |

reset 1

Ko

q.reilO

(1 2) 0 -

Ki

q.rai l l

Figure 2.4 1-bit NCL register

Figure 2.4 shows a 1-bit NCL register. An n-bit register is realized through

cascaded arrangements of n, 1-bit dual-rail registers. Each 1-bit NCL register used

throughout the thesis comprises of two tli22n gates that pass a DATA value at the input

only when Ki (request signal) is logic 1 and pass NULL only when Ki is logic 0. The

19

register also contains a th^b gate which has two inputs one of which is connected to the

output of one of the two th22n gates and the other input is connected to the output of other

th22n gate. The output of thi2b is denoted as Ko, the acknowledge signal of the 1-bit

register. Ko becomes logic 0 when the register receives complete DATA and has logic 1

when the register receives NULL. The acknowledge signals of each 1-bit register in an n-

bit register are combined in the completion detection circuitry to produce the request

signal to the previous register stage. The request signal Ki of the current register is from

the output of the completion detection circuitry of the next register. Since both the tli22

gates in the 1 -bit register are reset to NULL (th22n), the register outputs zeros when the

reset signal or input is high. However, either register could be instead reset to a DATA

value by replacing exactly one of the tli22n gates with a tli22d gate. But for the applications

in this thesis only th22n gates are used.

2.3.2 Completion Detection Circuitry

Completion detection circuitry consists of set of gates which determine the

complete arrival of DATA or NULL at the registers. As mentioned in the previous

section, all the Kos of each 1-bit register goes through the completion detection circuitry

and produces the request signal for the previous register. Figure 2.5 is an example of an

n-bit completion detection circuit.

Since the maximum input threshold gate is the thw gate, the number of logic

levels in the completion component for an n-bit register is given by log4n. For example,

suppose a 64-bit register. The completion detection circuitry has log464=3 levels. In the

first level the circuit has 16, th^ gates, in the second level the circuit has 4, tri44 gates and

the third level has 1, tli44 gate.

20

M") 7 - 1
Ko[n-l)
Ko(n-2!
Ko(n-3)

4 > -

Koin-SS / V _ _

Ko[n-«! V. /
K*(n-7) ^ " - J

V
4 s

-J
= (

"̂"A
^

K.0(B) — - - 1 / '

Ko[5) X J I Ko[5)

Ko(3)
Kof2)

^ \ ,

4 > — /

Figure 2.5 n-bit completion detection circuitry

Here is another example which clarifies the process of constructing the

completion detection circuitry in a better way. Consider a 44-bit NCL register. The

completion detection circuitry of this 44-bit register has three logic levels and is

constructed using 11, tli44 gates in the first logic level, 2, th44 gates and 1, UI33 gate in the

second logic level and 1, UI33 gate in the third logic level.

2.3.3 NCL Combinational Circuit

The functionality of NCL combinational circuits are similar to Boolean

combinational logic circuits except that NCL circuits are made from the 27 threshold

gates mentioned in table 2.2. All the NCL combinational circuits must maintain two vital

properties viz., input-completeness and observability.

Input-completeness requires that all outputs of a combinational circuit may not

transition from NULL to DATA until all inputs have transitioned from NULL to DATA,

and that all outputs of a combinational circuit may not transition from DATA to NULL

until all inputs have transitioned from DATA to NULL.

21

Observability requires that no orphans may propagate through a gate. An orphan

is defined as a wire that transitions during the current DATA wavefront, but is not used in

the determination of the output. Orphans are caused by wire forks and can be neglected

through the isochronic fork assumption (i.e. gate delays are much longer than wire delays

within a component), as long as they are not allowed to cross a gate boundary. This

observability condition, also referred to as indicatability or stability, ensures that every

gate transition is observable at the output; which means that every gate that transitions is

necessary to transition at least one of the outputs.

Figure 2.6 shows some of the NCL combinational circuits a) inverter, b) exor and

c) full-adder using threshold gates. Exor is used in the thesis while constructing DES

algorithm using dual-rail logic and full-adder is taken as an example for combinational

circuit to demonstrate the working of soft-error detection and correction circuitry.

Figure 2.6 NCL implementation of a) Inverter b) Exor gate c) Full-adder [24]

2.4 NCL Circuits using CMOS Transistors

An efficient method is to design the threshold gates with hysteresis using CMOS

technology at transistor level. There are three different ways of realizing a threshold gate

using transistors. These are static, semi-static and dynamic. Static gates are the stable

transistor level threshold gates while semi-static and dynamic can reduce the amount of

22

area occupied by them. The three designs differ in their structure. The general structure of

a static threshold gate is shown in figure 2.7. This thesis doesn't use the transistor level

designs of the threshold gates but makes use of their behavioral description using VHDL.

This section is basically for understanding the concepts of threshold gates at transistor

level.

Go to
NULL

Go to
DATA

T

T

i

Hold
NULL

HOW
DATA

' — Z

Figure 2.7 General structure of a static gate

The Go to NULL and Hold DATA blocks are complementary to each other and

have the universal forms shown in figure 2.8. Go to NULL block is only ON when all N

inputs are 0 and Hold DATA block is ON if one or more of the inputs are 1. Because of

the series chain in the Go to NULL block, speed considerations will limit these structures

to a maximum number of inputs, typically less than six. The structures of Go to DATA

and Hold NULL are complementary to each other and depends on the particular threshold

gate.

A 1 H OEK AN 3
a) Go to NULL b) Hold DATA

Figure 2.8 Go to NULL and Hold DATA transistor blocks

23

Figure 2.9 is a schematic of a transistor realized static th23 gate. This gate has

three inputs and the output is asserted only if atleast two of the inputs are asserted. Node

S shown in the figure is called the sensitive node.

v e l d !
I

c -HI [j>3

^ ^ ^ ^ ^

c H C , P 6

NODES

<hfr-

^b-

HQil
^

± I
nh\

f i d I

Figure 2.9 Static th23 gate

All the components in the NCL circuit design are made up of these threshold

gates which could be realized using CMOS transistors. So each component, be it an NCL

register, completion detection circuitry or combinational logic, is a collection of these

threshold gates.

24

CHAPTER III

NCL CIRCUIT DESIGN WITH VHDL

An FPGA is a semiconductor device that can be programmed or configured any

number of times using a schematic design or a source code in HDL (hardware description

language) that describes the user's hardware design. The NCL circuit designs using HDLs

could be used on these existing CAD tools for synchronous circuits [25]. In order for the

FPGA to be programmed with NCL circuits, the VHDL (VHSIC (Very High Speed

Integrated Circuit) Hardware Description Language) description of these circuits is

necessary. The first part of this chapter gives details about FPGA. The design flow used

in construction of these NCL circuits until they are programmed on the reconfigurable

logic is explained in the next section followed by the internal details of each essential unit

used for constructing NCL circuits. The fourth section details an example of a simple

NCL circuit and its simulation using the software.

3.1 FPGA

The basic resources present in an FPGA are CLBs (configurable logic blocks

which contain combinational logic and register resources), IOBs (input/output blocks and

are the interface between FPGA and outside world), Pis (programmable

interconnections), RAM blocks and other resources like three-state buffers, global clock

buffers, boundary scan logic, dedicated multipliers, digital clock managers, etc. Figure

3.1 shows the basic resources present inside an FPGA.

25

Block SelectRAM™

Dedicated
multipliers

IDD
•DD
IDD
IDD
IDD
IDD
••» BUD
IDD
IDD
IDD

DDDD
DDDD
DDDD
DDDD
DDDD
DDDD
•ODD
SDDD
[DDDD
DDDD
nnnn
iODDD

hC3l!DDDD
IDDInaDDD
IDD DDDD
IDDIIIDDDD

DD DD
DD DO
DD OD
nn ED
DD DD
DO. ED
•Q DD
DD ED
DD ED
nn nn
nn nn
DD ED
DD DD
DD ED
DD DD
DD DD

DDDDfl
DDDD
DDDD
DDDO
DDDD
DDDD
DDEiun
DDDD
DDDD
DDDD
DDDD
DDDD
DDDD
DDDD
HEED DDDDO

EDI
par
:•• 3D!
DDI
DDI
U U l
DDI
ma 3D!
DDI
D2*
:DI
nn"
•a i UDDI

Clock Management

I/O Blocks (lOBs)

Programmable
Interconnect

Configurable
Logic Blocks
(CLBs)

(OCMs, BUFGMUXes)

Figure 3.1 Basic resources of an FPGA [26]

The basic design steps to configure an FPGA are shown in figure 3.2. These are

the design entry, design synthesis, design implementation, and device programming.

Design verification, which includes both functional verification and timing verification,

takes places at different points during the design flow.

Design
Entry

1 ,"
Qosliifl

Synthesis

1

Design
\rrp\ew.anttilisn

Mi in * Device t
Programming |

._

H B&e'n
ArtfS&lfinn

D'sssign Vejili&Sil

9 mulafisri

|

m FuncSSortal
SmufeKnn

m 'Static T im fit?
Anai'ysis

,. I'lfMtfg
SimutoEisn

" " I -—
1 _ in-Circu'iS VertfiG-nlisn

an

Figure 3.2 FPGA design flow [27]

Design entry is the first and foremost step in the design process to configure an

FPGA. This step involves the creation of design files using schematic editor or HDL

26

(Hardware Description Language) and is referred to as RTL (Register Transfer Level). In

RTL design, a circuit's behavior is defined in terms of the flow of signals (or transfer of

data) between hardware registers, and the logical operations performed on those signals.

Automatically creating lower level of logic abstraction from higher level of logic

abstraction is what design synthesis is all about. In this design process an RTL

description is usually converted to a gate-level description of the circuit by a logic

synthesis tool. The next step is the design implementation. This step comprises of three

steps; translation, mapping and place and routing. Merging multiple design files into a

single netlist is called translation. Mapping is nothing but assigning a logic element to a

physical element. Mapping logic onto the specific locations in the target FPGA chip,

connecting the components and extracting timing data into reports is place and route. The

design is verified at different levels in this process. Checking the syntax, functional

simulation and timing simulation are some of the verification procedures. Once all the

above steps are successfully performed there is the much awaited final step called

programming or configuring the device. This involves creating a file that the FPGA can

understand, for example, a .bit file in the case of Xilinx FPGAs or .sof file in for Altera

FPGAs and downloading the file to the FPGA.

3.2 Design Flow used in the Thesis

Figure 3.3 illustrates the design flow used in the thesis starting from how the

concept of dual-rail logic has been introduced into the design construction all the way

through programming the FPGA with the constructed design. In order to configure the

FPGA with NCL circuits, the design entry step must be performed using a HDL. VHDL

27

(VHSIC (Very High Speed Integrated Circuits) hardware description language) is the

language used throughout the thesis.

Design Entry Using VHDL

NCL pipeline
(Registers &
Computation

a I blocks)

ntd_sigr«als

nc!_com portents

rscl gates

Analysis & Synthesis

Design Implementation

Design Verification
functional & timing

simulation

Programming & Configuration In-circuit verification

Figure 3.3 Design flow

The design entry step deals with the construction of NCL pipeline which includes

NCL dual-rail registers and the NCL dual-rail computational blocks present between

them. The way the NCL dual-rails circuits are constructed is clearly described in section

3.3. Once the circuits are designed, these circuits are undergone compilation using

Quartus II software which include analysis & synthesis and design implementation. Now,

the circuit needs to be verified. So, both functional simulation (no delays included) and

timing simulation are performed on the circuit. Once the verification is done, the

synthesized design needs to be programmed on an FPGA. Assign I/O pins of the FPGA

to the inputs and outputs of the generated design and we are set to program the FPGA

with this design. The "program device" option in the Quartus II leads to a window where

28

*.sof file is selected to be programmed on the Altera's Cyclone II FPGA present on the

DE2 development and education board. Once the built circuit is configured on a FPGA,

verification is done by providing inputs generated by components on board and outputs

are extracted from the expansion headers of the board and viewed on a logic analyzer.

3.3 NCL Circuits in VHDL

In order to design NCL circuits in VHDL, several components need to be coded

first. These components include creating a used defined data-type called the

"dualraillogic", creating generic n-bit NCL dual-rail registers and completion detection

circuitry and threshold gates with hysteresis, etc., which are supposed to be building

blocks of NCL circuits and aid in constructing any kind of NCL pipeline architecture.

This section explains how these individual units are coded and how they are used in

constructing NCL pipeline architectures.

3.3.1 Data Type called dual_rail_logic

VHDL doesn't contain a predefined data-type for the dual-rail logic signals. So,

first a user-defined data-type called "dualraillogic" has been defined which comprises

of two std_logic type signals: RailO and Raill. The data-type also has its vector definition

as dual_rail_logic_vector. The user-defined data type is defined in a package called

"nclsignals" and this package is placed in the work directory and will be accessed by all

the further components using dual-rail logic signals. For instance, if a NCL dual-rail full-

adder circuit is to be created, then the inputs, X, Y, and Ci to this computational block are

dualraillogic signals which has two stdlogic signals each as (X.RailO , X.Raill) ,

(Y.RailO, Y.Raill) and (Ci.RailO, Ci.Raill). In the VHDL file used to describe the

behavioral model of full-adder circuit, the "nclsignals" package need to be mentioned as

29

"use.work.ncl_signals.all" and X,Y and Ci needs to be declared as dua lrai l logic instead

of stdlogic or bit, etc. Figure 3.4 gives the code which creates a user-defined data-type

called the "dualraillogic".

Library IEEE;
use IEEE.std logic 1164.all;

package ncl signals is

type dual rail logic is
record

RAIL1 : std logic;
RAILO : std logic;

end record;

type dual rail logic vector is array (NATURAL range <>)

end ncl signals;

of dual rail logic;

Figure 3.4 dualraillogic data-type

3.3.2 Threshold Gates with Hysteresis in VHDL

The behavioral models of the required threshold gates with hysteresis are written

using VHDL in a file called "nclgates" (refer to Appendix B for all the other threshold

gates). A tli22 gate is defined in VHDL and is shown in figure 3.5 as an example.

library ieee;
use ieee.std logic 1164.alJ

entity th22xO is
port(a: in std logic;

b: in std logic; •
z: out std logic)

end th22xO;

architecture archth22xO of
begin

th22xO: process(a, ta)
begin

if (a= '1' and b= '1'
z <= '1';

elsif (a= '0' and b=
z <= '0';

end if;
end process;

end archth22x0;

r

;

th22xO

) then

is

'0') then

Figure 3.5 Behavioral description of th22 in VHDL

http://use.work.ncl_signals.all

30

The inputs to these threshold gates are individual dual-rail signals which could be

either RailO or Raill according to the designed circuit and hence are stdlogic signals.

For example, the 1-bit dual-rail register in figure 2.4 has one input as Ki signal and the

other input (d.railO for the top tli22 and d.raill for the bottom thu), one of the rails o f d'

which is a dual-rail signal. The "nclgates" file is also needs to be added to the project

that is being constructed so that the components built in the current project can access

these threshold gates.

3.3.3 NCL Dual-Rail Registers & Completion Detection Circuits in VHDL

NCL dual-rail registers and completion detection circuits are described in a

VHDL file called "nclcomponents". "nclcomponents" file consists of design units like

generic n-bit NCL dual-rail register and n-bit completion detection circuitry along with

their internal components defined in it. The design units present in the "nclcomponents"

file make use of the "nclsignals" package and threshold gates with hysteresis defined in

the "nclgates" file. All these files including "nclsignals" are presented in Appendix B

for reference.

A single bit NCL register has two th22n gates and a th^b gate as explained in

section 2.3.1. So the behavioral description of a single bit register in VHDL should

contain the instances of the two gates as shown in figure 3.6. These instances are

accessed from the "nclgates" file and since the inputs are dualraiMogic signals, the

"nclsignals" package declaration needs to be done. An n-bit NCL register is generated

by iteratively generating the same instance of 1-bit NCL register the input data length

times as shown in figure 3.7.

31

e n t i t y n c l r e g i s t e r Dl i s
g e n e r i c (i n i t i a l _ y a l u e : i
p o r t (D : i n d u a l _ r a i l l o g

k i : i n s t d l o g i c ;
r s t : i n s t d l o g i c ;
Q: o u t d u a l r a i l l o g
k o : o u t s t d l o g i c) ;

end n c l r e g i s t e r D l ;

n t e g e r := -4)
i c ;

i c ;

a r c h i t e c t u r e a r c h of n c l r e g i s t e r d l i s
s i g n a l Qbuf: d u a l r a i l l o g i c ;

component th22nxO
p o r t (a , b , r s t : IN s t d

z : OUT s t d l o g i c) ;
end c o m p o n e n t ;

component t h 2 2dx0
p o r t (a , b , r s t : IN s t d

z : OUT s t d l o g i c) ;
end c o m p o n e n t ;

l o g i c ;

l o g i c ;

component t h l 2 b x 0
p o r t (a , b : IN s t d l o g i c ;

z b : OUT s t d l o g i c) ;
end c o m p o n e n t ;

b e g i n
Rs tN: i f i n i t i a l v a l u e

RO: t h 2 2 n x 0 p o r t

R l : t h 2 2 n x 0 p o r t
end g e n e r a t e ;

R s t l : i f i n i t i a l v a l u e
RO: t h 2 2 n x 0 p o r t

R l : t h 2 2 d x 0 p o r t
e n d g e n e r a t e ;

R s t O : i f i n i t i a l v a l u e
RO: t h 2 2 d x 0 p o r t
R l : t h 2 2 n x 0 p o r t

end g e n e r a t e ;

Q <= Qbuf;

= - 4 g e n e r a t e
m a p (D . r a i l O , k i ,

m a p (D . r a i l l ,

= 1 g e n e r a t e
m a p (D . r a i l O ,

m a p (D . r a i l l ,

= 0 g e n e r a t e
m a p (D . r a i l O ,
m a p (D . r a i l l ,

k i ,

k i .

k i ,

k i ,
k i ,

COHP: t h l 2 b x 0 p o r t m a p (Q b u f . r a i l O , Qbuf
e n d ;

1=DATA1,

r s t , Qbuf

r s t , Qbuf

r s t , Qbuf

r s t , Qbuf

r s t , Qbuf
r s t , Qbuf

r a i l l , ko]

D=DATA0,

r a i l O) ;

r a i l l) ;

r a i l O) ;

r a i l l) ;

r a i l O) ;
r a i l l) ;

'

-4=NULL

Figure 3.6 1-bit NCL register in VHDL

gen reg: foe i in 0 to D' length-1 generate
REGi: ncl r e g i s t e r Dl

generic map(in i t i a l value)
port map(D(i), k i (i) , r s t , Q(i) ,

end genera te ;
k o (i)) ;

Figure 3.7 Creating n-bit register from 1-bit register

32

The only gates used for any completion detection circuitry are tli22, tli33, tli44.

Based on the number of input signals, the number of logic levels must be calculated using

log4n. This component basically checks if all the inputs are Os during DATA and Is

during NULL. The code used first calculates the number of logic levels. Then it checks if

the number of inputs are multiples of four. If yes then the signals are assigned to th44 in

sets of four. If there are any leftovers from the multiples of four, it checks if they are two

or three. If the leftovers are three then, the code assigns them to #133 or if the leftovers are

two then, tli22 will be assigned to the signals. The same process repeats for each logic

level. For the code of the completion detection circuitry refer to Appendix B.

3.3.4 Constructing Computational Blocks

e n t i t y exor i s
por t (x : in <3ual_rail_.l.ogie;

y : in dual r a i l l og i c ;
z ; out dua l^ ra i l ^ iog ic i ;

end exot;

a r c h i t e c t u r e Behavioral ot exotr i s
s ignal ul ,u2 : s t d_ log i c ;
component th22x0

por t (a: in s td_ log ic ;
hi in stA_logi.c;
z: out std_lo<jic) ;

end component;
component th23w2xG ±3

por t (a: in s t d ^ l o g i c ; — weight 2
Us: in s t d_ log i c ;
c : in s t d ^ l o g i c ;
z: out 3 td^ logic) ;

end component;
begin
gl : th22x0 poet imp (y . r « i U , x . r a U i , u l j ;
g2 : th22xO port map (y.raiJLQ,*. t a i l i f u 2) ;
g3 : th23u2xO port map l u l , y • r a i I O , x . r a i l O
g4 : th23w2xO poet map lu2,y-^aii l».x.caiJ,0
end Behavioral;

a)

z . r a i l O] ;

e n t i t y ful ladder i s
pott { a ; in dua l^ ra i l ^ log i c^vec to r U ca 3) ;

3 ; out duai_ra: . i_logic_vect&r(1 to 2J

end full-adder;

a r c h i t e c t u r e behaviora l of fu l ladder i s
s ignal frO,el : 3 td_ log ic ;
component th23x0 i s

poxt{ a: in s t d ^ l o g i c ;
b : in fltd^ltogic;
c: in s t d _ l o g i c
z: out 3td_Jicgic) ;

end component;
component thS'S'wSxO is

p o r t j a : in a t d ^ l a g i c ; - - weight Z
b : In Std^lctgic;
c: in 9 td~Iogic ;
d: in s t d ^ l o g i c ;
z: out s t d ^ l o g i c J ;

end component;
begin
gl : th23xO port nap£a(1) . r a i lG ,a (2) . r a i l O , a 43}.ral lQ,cO);
g2 : t'h23x0 por t map (a (1) . i r a i l l , a (2) . r a i l l , a (3) . * a i l l , e l) ,*
g3 : th34wjjt0 po r t map {cl, a (If . r a i l O , a (2) - l a i lQ , a (3) . trailO, s{2) .raxlO) ;
g4 : t'h3"3w2.xO por t nap (cG, a (l J . r a i l l , a (2> . r a l l l , a(3J . r a i l l , 3 $ 2) . r a i l l) ;
s | l] . raiIO<»cO;»Ul . r a i l K ^ e l ;
end behav iora l ;

b>

Figure 3.8 VHDL code for a) Exor gate b) Full-adder

One of the essential parts of an NCL pipeline is the computational block. A

computational block is a combinational logic which performs some operations on the

inputs generating outputs and is sandwiched between two NCL dual-rail registers. This

thesis makes use of only two combinational circuits; the exor gate and the full-adder.

33

These computational blocks are constructed using the threshold gates with hysteresis and

dualraillogic signals. The schematics of the NCL dual-rail exor gate and full-adder are

provided in figure 2.6 and the VHDL behavioral descriptions are provided in the below

figure 3.8.

3.4 Simulation of a Simple NCL Pipeline

This section explains in detail the procedure how a simple NCL pipeline is

created and simulated using Quartus II software. The pipeline considered has two NCL

dual-rail register with an NCL dual-rail exor gate as the computational unit between them

as shown in figure 3.9.

x.railO

x.raill

v.railO

V.raill

—•

r *

Hid

register

K2

reel

register

z.railO

z.raill

Figure 3.9 NCL pipeline with exor gate

The very first step is to create a 'New Project' using 'New Project Wizard' in

Quartus II [28] (Quartus II tutorial provides all the information on how to compile the

designs and program an FPGA). Select a 'New' from the 'file' menu and select 'VHDL

file'. In the file write the following code shown in figure 3.10 and save it as 'exor.vhd'. In

similar way add the other VHDL files; 'initreg.vhd', 'fmalreg.vhd' and 'exordl.vhd'

required for the 'exor.vhd' file and these files are presented in figure 3.11. 'initreg.vhd'

has two components 'nclregisterD' which is a generic n-bit register present in

34

'nclcomponents' file mentioned earlier and 'th22x0' is tli22 threshold gate which is acting

as the completion detection unit for this register. The behavioral description of this gate is

present in 'ncl_gates' file, 'finalreg.vhd' has one component which is 1-bit NCL register

called nclcomponentD 1 and is also described in 'ncl_components' file.

library ieee;
use ieee.std
use work.ncl

logic_1164.all;
signals.all;

entity exor is
port (x :

y =
rst
z :

end exor;

architecture

in dual rail logic;
in dual rail logic;
: in std logic;
out dual rail logic);

behavioral of exor is
signal m, n: dual rail logic vector
signal zo: dual rail logic;
signal kl,k2:
component ini

port (D :
ki
rst
Q :
ko

end component

std logic;
treg is

(1 to

in dual rail logic vector
: in std logic;
: in std logic;

2);

(1 to 2);

out dual rail logic_vector(1 to 2);
: out std logic);
e

component finalreg is
port (D :

ki
rst
Q :
ko

end component

in dual rail logic;
: in std logic;
: in std logic;
out dual rail logic;
: out std logic);
r

component exor_dl
port(ax :

bx :
ex :

end component
begin
m(l)<=x; m(2)

in dual rail logic;
in dual rail logic-
out dual rail logic)
;

<=y;
regl : initreg port map(m,k2,rst,n
cb : exor dl port map(n(l) ,n(2) , zo
reg2 : finalreg port map(zo,k2,rst
end behaviora 1;

,ki);
;

rz,k2) ;

Figure 3.10 VHDL code for the NCL pipeline with exor gate

35

Library IEEE;
Use IEEE.std_logic_1164.all;
Use work.ncl_signals.all;

entity initreg is
port (D : in dual_rail_logic_vector(1 to 2);

ki : in std_logic;
rst : in std_logic;
Q : out dual_rail_logic_vector(1 to 2);
ko : out std_logic);

end initreg;

architecture behavioral of initreg is
signal ao : std_logic_vector(1 to 2);
component ncl_register_D
generic (width: integer; initial_value: integer);— 1=DATA1,0=DATA0,-4=NULL
port(D: in dual rail_logic vector(width-1 downto 0);

ki: in std_logic;
rst: in std_logic;

Q: out dual_rail_logic_vector(width-1 downto 0);
ko : out std_logic_vector(width-1 downto 0));

end component;
component th22x0

port(a: in std_logic;
b: in std_logic;
z: out std_logic);

end component;
begin
regi : ncl_register_D generic map(width=>2,initial_value=>-4)

port map(D,ki,rst,Q,ao);
cdi : th22xO port map(ao(2) ,ao|l) ,ko);
end behavioral;

Figure 3.11a) initreg.vhd

lifcrarj ieea;
•us* ieee.sia_iegie_li .64.ail ;
use eotfc.nei, s i gna l s . a i l ;

ent i ty estorjSIL .is
pert(a* : la dual_rail_laflie;

tut i la dual ca l l legits;
ex :. out eSital_ra.il_liEB.lcJs

end esfor til;

architecture Beaavtoeo! of e3i©c_dl 13
sigeal ul,u2 t s td loj ic j
easnponeni thzzico

poti(a; la, aid logic;
b: la std_Iogie;
a; cut sts2_l.6g.ie |i;

end coBponemt;
eoapeaeat tlifllsffixD 13

poire (a: .in sid_JLegie; — weight
to: in std logic;
e: ia s td j legie ;
2,; ©tit stea_l<ogie f;

end eettponent;
begltt
gl : caJZxO port :»ap(l>x.iralll(aic.ralll
a;2 : tftZZxO port map (bK.if a l io ,** , teal 11
tfi i t,B)2So2xt> port Bapj<Jl.,:bn..raiHDl,aj:..
g4 : 6621 w2nO port ntapju2.,.bs!,raill,,ax.
end Behavioral;

b) escf_dl.vhd

2

/ u l i ;
,u2},;
r a l i o , est
tailO.CK

railO] :
r a i l l] ;

Libra.tr/ IEEE;
Ose IEEE.sta_logle_n64.all;
ose irarK.iscl signals.-all;

ent i ty liisa.lceg ia
part i] D : in duai j ra i l logic;

ki : in 3t«l_i.ogie;
est : iii ac5_logic;
0 : out dhi»i_reiil. logic:
kD : out attS logic};

.end filial teg';

wrchiMeswe beluwtocalL at ii.iwj.treg is
cottjicmeiit nEljregisterJ&l

generic j i n i t i a l value: integer);—l=,IHTAl,,Ol=DjiTIO,-4aIJDLL
po«E(Bt in dwa_eai.i_io.gte:

hi ; in. 9td_logic;
r s t ; in. atdl .Bogie:
<£•; ota, dual r a i l logic;
teo: qui; std_iegie, | ;

end. eawnsnerK;
begin
regi : itri_Feglatet_DIi generic map)initial v a i w w - ^

poiti :ma;i»(B, isi,sat,Q,:to);
et>a, behavt'oesl;

c) tmslreg..vhd

Figure 3.11b) exordl.vhd c) finalreg.vhd

http://ieee.sia_iegie_li.64.ail
http://eSital_ra.il_liEB.lcJs
http://sts2_l.6g.ie
http://Libra.tr/
http://ii.iwj.treg
http://dwa_eai.i_io.gte

36

finalreg.vhd doesn't have a separate completion detection unit because it is just a

1-bit register. The output signal from thnbxoacts as the completion detection signal. Since

the internal component definitions are present in 'ncl_components' and 'nclgates' these

files need to be added to the project by selecting 'add/remove files in project' in the

'project' menu. Since all these components are dual-rail logic, 'ncl_signals' files must also

be added to the project. Once all the required files are present in the project folder, the

project needs to be compiled by clicking on the 'compile design' option on the Quartus II

software. Check for any syntax error or for any other errors during synthesis and

implementation such as I/Os not sufficient for the design or design is too large to fit on to

the device, etc.

Figure 3.12 Quartus II Software Window

37

Once the above procedure is done generate a new 'vector waveform file' in order

to provide simulation inputs. Add the input and output signals to the 'vector waveform

file' and provide appropriate input signals as shown in figure 3.12.

Since the circuit used has dual-rail components, first reset or 'rst' as named in the

design need to be asserted. Then the other inputs must be provided as consecutive DATA

and NULL pairs. As inputs are provided in the 'vector waveform file' the design needs to

be verified or simulated for these inputs. The functional simulation results after

simulation is shown in figure 3.13.

a 3 S d f e l ^ c ; ^ w 3 M ^ .• " , . : \ ; • . , — ' • . . ,

Simulation mode: Functional

ife
A

—*
• • ,
a,9:

™™™"'"™

Master Time Bar: 1 13.0 ns

r£>0

r i > i

t£J>2

rx>3

Q£>4

•S>5

•2>6

Name

rst

x.RAILO

X . R A I U

jr.RAILO

ji.RAILI

z.RAILO

Z.RAIL1

Value
13.0

HO

X

X

X

X

X

X

iidPointe,: i
D ps

13.0 ns
J

n
i _

i_

6.24 ns Interval: [-6.76 ns

20.0 ns 40.0 ns

i i
i
i

i I

Start: [

60.0 ns

' "Endf" '

80 0 ns

I I

I i
: : i i i i

I I I

Figure 3.13 Simulation results of exor.vhd

38

CHAPTER IV

ASYNCHRONOUS DATA ENCRYPTION STANDARD ALGORITHM USING NCL

The symmetric property of DES algorithm provides an added advantage to

implement DES using NCL dual-rail logic. It creates a scope for the pipelined

architecture shown in figure 4.1 where the whole algorithm has 17 combinational logics

embedded between NCL registers. The first round has plaintext and key as inputs and LI,

Rl and CI, Dl as the outputs. The next round till 15 such rounds have the same

combinational logic which takes L„-i, Rn-i and Cn-i,Dn.i as inputs and generates Ln, Rnand

Cn>Dnas outputs. The 16th round takes L15, R15 and CD15 as inputs and gives out L16

and R16 as outputs which are then permuted in the 17th round to generate the ciphertext

output. Altogether, the number of registers present in the asynchronous DES pipeline is

eighteen; initial register, NCL registers 1-15, register 16 and final register and the number

of combinational logic circuits that are embedded between these eighteen registers are

seventeen combinational circuits also called rounds in this case and they are, initial

round, rounds 1-14, round 15 and final round. Also, each NCL register has its own

completion detection circuitry along with it. The structure of the completion detection

circuitry varies as the NCL register structure varies. The details of each component of the

DES pipeline are mentioned in the following sections.

39

pt

Key

ncl

register

Figure 4.1 DES pipeline in NCL dual-rail logic

4.1 Initial Register

DtllJ.rsilO I"

p t (l) . ra i l l !

• |
i i

pt(64).raill !

reset |

key(l).raiH) |
teev(2i.r3ill !

i i
i i

key(64l.raill •

64-bit
NCL reg

i i

64-bit
NCL reg

'
i

! ptfl).r=ilO

i p t f l j . r= i l l

i <

i «

! pt(«4).raill

key|l).railD
ksvl'l J. rai l !

1
i

key|'S4).raill

Figure 4.2 Initial Register

The starting stage of the DES pipeline in NCL dual-rail logic is the initial register.

This register has plaintext of 64 bits and key of 64 bit dual-rail signals as inputs. Along

with these it also has reset signal and Ki signal inputs similar to all the other registers.

This initial register is different from the other registers in that it doesn't have a Ko signal

since there is no register prior to it. This register will output all zeros when reset signal is

logic 1. It allows the plaintext and key values to pass through it when Ki is logic 1. If Ki

is logic 0 then the initial register will stop any flow of DATA and will be ready to pass

40

NULL through it. This register is the only register in the entire DES pipeline that doesn't

have a completion detection circuitry. This circuitry has been eliminated to save logic on

the FPGA. The structure of initial register is presented in figure 4.2.

4.2 Initial Round

DES pipeline in NCL dual-rail logic starts with an initial register, followed by an

initial round. The operations that are performed on the outputs of the initial register are

described in figure 4.3.

Pt
•

Key

rtcl

register

Pt

IP

* •

Key

p a
CO

X

E ->a> B1-M -
^ t ; r ~

PC2

Shifter

S boxes —* P

f

— ^

LI

•

R l

CI

Dl

ncl

register

LI

Rl

CI

Dl

Figure 4.3 Initial round in the DES pipeline

As soon as the plaintext denoted as pt in figure 4.3 enters the initial round, an

initial permutation IP is performed on it and is divided into LO and RO. The key also

undergoes permutation PCI and is divided into CO and DO. Shifter is basically used to

left shift the bits in CO and DO which become CI and Dl for the next stage and are used

to form subkey in the present round. The output of the shifter is concatenated and another

permutation PC2 is applied on it. The function E expands RO from 32 bits to 48 bits as

mentioned in the DES algorithm. The outputs of E and PC2 are exored bit by bit using

the exor gate designed for NCL dual-rail logic. This is the only dual-rail combinational

logic circuit used in the DES algorithm. All the permutations, expansions and left shifts

are basically wiring and don't involve any logic function or operation. The output of the

41

exor gate goes through S-boxes which are constructed using if-else statements addressing

all the possible combination of inputs. Eight S-boxes are written in VHDL and the

structure of these is shown in figure 4.4 which addresses six-bits of inputs each producing

four-bit outputs. The outputs of the S-boxes are combined and then a final permutation P

is performed on the bits. The LO output of IP is then exored with the P output and is fed

to the next register as Rl input. The RO output of the IP becomes the LI input to the next

stage.

Bill)

Bl|2)

1

Bl(6)

B2fl)

l
l

B2(S!

BBIli

i
l

BSI'6)

51
if Bl = 003000

s l (3) . l , s l (4) = 0
• IsifBl = 000001

J l (U "

S2

i

i

S3

s l (l)

1

si (4)

s2|l)
1

J

521,4)

s8(l)
I

s8(4)

Figure 4.4 S-box inputs and outputs

4.3 NCL Registers 1-15

The outputs of the initial round are LI, Rl, CI, and Dl which are fed to the next

register which takes these signals as inputs. As mentioned earlier the whole DES pipeline

consists of fourteen such rounds other than initial round which has the same structure and

does similar operations. Due to this reason, the registers governing the rounds on both

sides need to be similar, accepting same number of input signals and outputs the same. So

NCL registers 1-15 allows Ln, Rn, Cn and Dn (LI, Rl, CI, Dl L15, R15, C15,

D15) to pass through them. The completion detection circuits for all these registers have

four internal circuits which take the Ko signals of each term like Ln, Rn, Cn and Dn. The

42

four outputs of the four completion detection circuits are fed to a th44 gate, the output of

which is the Ko signals (acknowledge signal) for the entire register. The whole structure

of the NCL register along with the completion detection circuits is depicted in figure 4.5.

Inf l) 1

Ln[2) 1

ln[32l !

reset t

M l ! !
1 1
1 1

Rri|32) 1

<M1> I

i i

Cn(JS) ;

On(l) i
i ,

Dn|'2S) !

4 Ko !

r >

*

»

• » •

32-bit
NCL reg

3 2-bit
NCL reg

28-bit
NCL reg

28-bit
NCL reg

1

| i

— 1
S t h „
2 th*.
l t h . i

1 Ln(32i

i Rnil!
i i
> 1

Sth,4

2th44

l t h i ,

. Cnll)

i I

! Cnl32)

" 1
7th„
l t t i „ , l th33
I t h - i

! Dndj

' l

! Dn(32)
- 1

7th.,
l t h« , 1 th33
l t h „

T
M |

Figure 4.5 The inside view of NCL register 1-15

4.4 Rounds 1-14

Asynchronous DES pipeline has fourteen similar rounds which differ only by two

functions to initial round. While the initial round has pt, key as inputs and had to permute

its inputs, rounds 1-14 has L„-i, Rn-i, Cn.i and Dn_i as inputs and the rounds don't require

the initial permutation IP for pt and PCI for key and is shown in figure 4.6. All the other

functions are similar to initial round. Among these fourteen rounds, some of the rounds

require a single bit left shift for the C„-i and Dn.i inputs to form C„ and on while some

43

rounds require two bit left shifts. The number of shifts depends on the left shift table as

mentioned in Appendix A.

Ln-2 fc

R n - 1 ^

Cn-1 ^

0*1+

register

L n - l

Rn 1 ' E » I T I B 1 - B 8 »
*U> *

Cn-1

: Shifter

t
PC2

S boxes ^ P

Ln . .

._ . . H ^ - } . •*

Cn .

^ D n - 2 ' l J Dn *

rsd

register

Ln fc

C n i-

Figure 4.6 Internal structure of rounds 1-14

4.5 Round 15

Round 15 is in no way different to rounds 1-14 with respect to operations

performed. But the difference is that round 15 has a slightly different output structure;

while rounds 1-14 has L„-i, R„-i, Cn-i and Dn_i as inputs and L„, Rn, Cn and D„as outputs,

round 15 has Ln-l, Rn-1, Cn-1 and Dn-1 as inputs but Ln and R„ alone as the outputs.

The round need not send C„ and Dn to the next round as it doesn't need them. Because of

this reason the register next to this round has a slightly different structure and is

mentioned in the next section.

Lnfl)

l"[2>

Lnf32)

reset

Rnll)

Rni32)

« K°

r »

32-bit
NCI reg

32-bit
NCL reg

c

-- 1
S t h „
2 t h „
1 th : ;

- - 1
Bth, ,
2 t r t „
l t h . i

u
o
T

' Lnfl)
| 1
; i

1 Lnf2)

! Rnlll

! Rn(l)

! Ki

Figure 4.7 NCL register 17

44

4.6 NCL Register 17

As mentioned in the previous section, this register has Ln and Rn as inputs along

with reset and Ki. So the structure of this register looks like the one in figure 4.7.

4.7 Final Round and Final Register

The final round takes the Rn input into Ln and Ln into Rn and permutes the

combined result. This round doesn't involve any circuits and is entirely wiring. The

output of this round is the cipher text. This output is fed to the final register. Hence, the

completion detection block of the final register consists of sixteen tri44 gates in the first

logic level , four tli44 gates in the second logic level and one th44 gate in the third logic

level.

4.8 NCL DES Design on FPGAs

The results are in regard with implementation of the whole DES algorithm

designed using NCL dual-rail logic, on FPGAs manufactured from different companies

and on different FPGAs manufactured from the same company. Here four different

FPGAs are selected from two different companies and the details are shown in table 4.1.

Table 4.1 Devices and companies

Device Family

Virtex 5

Cyclone II

Cyclone II

Cyclone III

Device Name

XC5VLX50T-3FF1136
EP2C35F672C6

EP2C70F672C6

EP3C25F324C6

Company

Xilinx

Altera

Altera

Altera

The whole DES algorithm was designed using NCL logic and was coded in

VHDL language. The code was run using ISE 9.1i for Xilinx devices and Quartus II Web

Edition (v8.1) for Altera devices. The design was simulated and then synthesized and

tried to fit on different devices.

45

4.8.1 Xilinx Device

The Xilinx device used for comparison is Virtex 5 XC5VLX50T-3FF1136. Each

configurable logic block (CLB) of virtex 5 has four slices. Each slice has four LUTs

(look-up tables) and four registers. The results obtained for Xilinx Virtex 5 device are as

follows. Table 4.2 shows some of the internal details of the above mentioned device.

Table 4.2 Virtex5 resources

CLBs
7200

Block RAM
2160 Kb

Embedded Multipliers
48(25x18)

PLIs
6

I/O pins
480

The synthesis report shown in table 4.3 gives the details of the resources occupied

by the whole algorithm on the FPGA.

Table 4.3 Resources used by DES algorithm (dual-rail logic) on Xilinx device

Resources

No. of slice registers
No. of slice LUTs
No. of bonded lOBs

Used by the design.

10899
30839
369

Available in the
device
28800
28800
480

Percentage utilization

37%
107%
76%

The percentage of the resources occupied in the Virtex5 device exceeds 100,

which means that the design requires logic resources more than what the device currently

have. The design was large for the device to be fit into.

4.8.2 Altera Devices

Three different Altera devices with different number of resources were considered

and then compared with respect to the DES algorithm. Each LE (logic element) in the

Altera devices contains a four input LUT, a programmable register and interconnects.

Table 4.4 shows all the resources available in different Altera devices considered.

46

Table 4.4: Altera Device Resources

Resources
Logic elements
Block RAM(Kb)
Embedded Multipliers
PLLs
I/O pins

EP2C35F672C6
33216

483
3 5 (1 8 x 1 8)

4
475

EP2C70F672C6
68416
1152

150 (18 x 18)
4

422

EP3C25F324C6
24624

594

6 6 (1 8 x 1 8)
4

215

Among the three devices, EP2C70F672C6 has more number of logic elements. It

also has sufficient number of I/O pins. Table 4.5 gives the detailed report on the

resources available in the devices and the resources used by the design in respective

FPGAs.

Table 4.5: Resources used by DES algorithm (dual-rail logic) on Altera devices

Resource Utilization

Used by the design
Available in the device
Percentage utilization

EP2C35
LEs

56817
33216
171%

F672C6
I/Os
385
475
81%

EP2C70
LEs

56816
68416
83%

F672C6
I/Os
385
422
91%

EP3C25
LEs

56817
24624
230%

F324C6
I/Os
385
216

178%

Out of all the devices, Altera's EP2C70F672C6 was able to fit the entire

asynchronous DES algorithm. It occupied 83% of its available logic elements and 91% of

its available I/O pins. All the other devices need to be accommodated with more

resources for the DES algorithm in NCL logic to be fit into. The Xilinx Virtex 5 would

require atleast 1039 more slice LUTs for the asynchronous DES algorithm to be

implemented on the FPGA although it has enough number of I/O pins. Among the three

Altera devices, the Cyclone II devices have enough I/O pins since the design only

requires 385 pins. The Cyclone II EP2C35F672C6 still requires 23659 logic elements and

Cyclone III EP3C25F324C6 requires 32221 logic elements to accommodate the whole

algorithm.

47

4.9 Improvements in Asynchronous DES Design

The asynchronous DES design using NCL dual-rail logic requires a lot of logic

resources. Usually, asynchronous circuits occupy more logic resources compared to their

synchronous counterparts as asynchronous circuits have additional circuits for

handshaking protocols. Out of the four devices mentioned in the previous section, only

one device could accommodate the entire design.

Asynchronous DES design consists of NCL registers, completion detection

circuitry and combinational logic also called rounds in the entire design. Out of all the

components, the S-boxes present in the rounds of the design consume most of the logic

resources as it doesn't involve any logic but would require more logic elements to realize

the functionality during mapping the design on FPGAs. Implementing S-boxes using

RAM elements embedded in the FPGA is the efficient method to save a large amount of

logic resources [7].

4.9.1 Design Modification to Utilize Internal RAM Elements

L n - l .

Rn-1

Cn-1 _

Dn-1

ncl

register

Ln-l

Rn-1 "" E

= • Shifter
Dn-1

/ T S B1...B8

vy * T
PC2

+

• * •

NCL
reg

i

NCL
reg

!l SI M
1
1

T
i S8

i

NCL
reg

NCL
reg

- * •

P ' j
~^t:

Ln ,

) »

Cn -

Dn '

register

L n •

Rn

Cn

Figure 4.8 Asynchronous DES round with S-boxes as RAM elements

In order to reduce the amount of logic resources used by the design in the FPGA,

the DES algorithm using NCL dual-rail logic need to be modified so as to utilize RAM

elements. All the eight S-boxes need to be implemented using RAM elements. The

48

components operate using a clock signal. So the design needs to have a signal which can

act as a clock signal to the RAM elements. After the inclusion of S-boxes as RAM

elements, a single DES round would look like what is shown in figure 4.8.

The set of eight s-boxes along with two governing NCL registers for each S-box

are added to the original asynchronous DES round. Only the S-boxes are realized using

RAM elements. The rest of the design is realized using logic elements. So logic elements

used to realize the S-boxes were replaced with RAM elements. The internal details of a

single S-box is shown in figure 4.9.

I k .

bfHrai l l
>

biSS.raill
; •

r*

ncl

register

^̂ _,

blllrailO

blSj.raMQ

bflj.raill

"
CD

biSJ.raill

Kl

w

m

S iralO

< L

S rail!

'

elk

*

i

sfl3.rai!0
w

. ! . « ' . „ : i n

sll j .rsi l l
w

s|4J.raill

Clk Gen <
K2

-••

ncl

register

. h ' l ra i l f l
- i . - ^

s[l).r s i l l

•

s|4!t.r.3ill|

1 r
CD

Figure 4.9 S-box as ROM.

As mentioned earlier each S-box is governed by two NCL dual-rail registers

which will allow and stop the flow of data (DATA and NULL). In the design, two RAM

elements are used; one for raill data and the other for railO data. The HDL used for the

design is VHDL and Altera device is considered and ROM elements are generated using

the Quartus II software. The RAM elements internal to FPGA are customized as ROM

elements.

49

The design has two ROMs as two S-boxes; S-box raill and S-box railO which

need a clock for their operation. The NCL registers with their completion detection

circuits play a major role in the design. The six bit dual-rail data enters the entry side

NCL register goes through the S-boxes splitting into raill signals and railO signals. The

clock generator generates clock signal to the S-boxes according to Kl and K2 signals

produced by entry side NCL register and exit side NCL register respectively. S-boxes

realized as ROM elements generates output at the rising edge of the clock and this output

goes through the exit side NCL register.

When reset is high, both the NCL registers output zeros. The completion detection

circuits generate Kl and K2 as 1. The clock generator output is a 0. DATA enters the

entry side register, Kl becomes 0, and the present value of K2 is 1 which would generate

1 as the clock signal. During this rising edge of the clock signal, ROM elements output

the corresponding output values for the inputs. Now, the output signals pass through the

exit side register thereby making K2 value to 0. When Kl is 0 and K2 is 0, the clock

generator output will be a 0. When NULL enters the input register, Kl becomes a 1 and

K2 value is still 0 and the output of the clock generator will be a 1. NULL enters ROM

elements and generates NULL outputs. The output signals go through output register

making K2 as 1 and hence generating 0 as the clock generators output. The clock

generator circuit functions as an exor gate.

4.9.2 Resource Utilization with RAM Elements

The entire asynchronous DES algorithm including S-boxes as ROM elements is

synthesized over some Altera FPGAs and the resource usage results are shown in Table

4.6.

50

Table 4.6 Resources used by DES algorithm with ROM on Altera devices

Resource Utilization

Used by the design
Available in the device
Percentage utilization
P ercent ag e impro vem ent

EP2C35F672C6
LEs

40928
33216
123%
48%

I/Os
385
475
81%

-

EP2C70
LEs

40927
68416
60%
23%

F672C6
I/Os
385
422
91%

-

EP3C25
LEs

40928
24624
166%
64%

F324C6
I/Os
385
216

178%
-

Table 4.6 gives the results of comparison between Altera FPGAs with

asynchronous DES algorithm with and without ROM. The percentage improvement row

shows the percentage comparison between the two designs. Again, Altera's

EP2C70F672C6 is the only device which was able to contain the entire algorithm design.

With the use of ROM, the device could save 23% of its logic elements. While the DES

without ROM has only 17% of its logic resources left after the design, DES with ROM

has 40% of its resources left which is a considerable improvement. Similarly comparing

the two designs on EP2C35F672C6, the DES without ROM occupied 171% of the

resources while the DES with ROM occupied only 123% which means there is an

improvement of 48% in the logic element utilization. The device EP3C25F324C6 has an

improvement of 64% which means another design with double the capacity to

asynchronous DES algorithm could be accommodated.

4.9.3 Resource Comparison between Synchronous and Asynchronous Designs

Some of the implementations of synchronous DES algorithms on FPGAs have

been cited in section 1.2. In this section the resource utilization comparison is made

between synchronous and asynchronous circuits.

Due to the presence of additional circuitry for handshaking protocols such as the

NCL registers and completion detection circuitry, asynchronous circuits are undoubtedly

huge compared to their synchronous counterparts. Table 4.7 gives the resources utilized

51

by different synchronous DES designs on FPGAs as well as the resources used by

asynchronous design created in the thesis. The resources utilized in Xilinx and Altera

devices shows that asynchronous designs are 6-10 times bigger than the synchronous

designs. So, these (asynchronous) circuits need to be designed such that they occupy the

FPGA resources optimally just like the modification of the asynchronous DES algorithm

incorporating RAM elements for the S-boxes. No asynchronous DES design has been

implemented on FPGAs till date. The simulation results from this thesis provide a basic

idea to design asynchronous DES with NCL dual-rail logic as well as the amount of logic

elements required in the FPGAs for the design and will definitely be useful for

implementation on FPGAs with asynchronous logic elements as mentioned by Smith [29-

31] and others [32-33].

Table 4.7 FPGA resources used by different DES designs

Design by
Wong et.al [6]

Kaps & Paar [34]
McLooney, McCanny [8]

Patterson [9]
Standaert et.al [35]

Xilinx [36]
Asynchronous DES(thesis)

Arich et.al [7]
Asynchronous DES(thesis)

Asynchronous DES RAM(thesis)

Device Used
XC4020E

XC4028EX
XCV1000
XCV150

Virtex II Pro
XC2V1000

XC5VLX50T
EP1K100FC484-3
EP2C70F672C6
EP2C70F672C6

Resources Used
438 CLB slices
741 CLB slices

6446 CLB slices
1584 CLB slices
250 CLB slices

5036 LUTs
30839 LUTs

5991 LEs
56816 LEs
40927LEs

Data Rate(Mbps)
26.7

402.7
3808
10752
1036
15100

*

1054.24
*

*

* The asynchronous DES designed for the thesis generates DATA output for approximately every 360-
380ns depending on the input values and the propagation path chosen by the inputs(to be studied in detail).

52

CHAPTERV

SOFT ERROR AND NCL CIRCUITS

While most of the researchers investigate the soft error issues in traditional

synchronous circuits, little attention has been paid to asynchronous circuits. In fact, quasi

delay insensitive (QDI) asynchronous circuits have a strong potential for soft error

tolerance. The combination of handshaking protocol and dual-rail encoding in QDI

circuits provide the circuits with a potential capability to detect and correct the soft

errors. Besides single event upsets, particle strikes may cause other malfunctions on a

chip: charges induced by particle strikes may slowly accumulate in the substrate of a

chip. Those long term dose effects usually cause parameter shifts, in particular threshold

voltages, which affect the timing of the system. QDI circuits are very robust to timing

variations.

5.1 SEUs in Null Convention Logic

The analysis and estimation of the soft error rate have been extensively studied

based on the three maskings which are logical masking, electrical masking and latching

window masking [4] [3 7] [3 8]. This section explains the mechanism of soft errors in

semiconductor circuits, how the generation and propagation affects the circuits and what

kind of soft errors propagate through the NCL pipelines.

53

5.1.1 SEUs in Semiconductor Circuits

When a neutron particle strikes a CMOS transistor it generates a very high carrier

concentration of electron-hole pairs [39] as it loses its energy in silicon with a rate, called

stopping power (dE/dx) or linear energy transfer (LET). These electron-hole pairs are

subject to drift, diffusion, and recombination. The ratio of the collected to the generated

charge is called the collection efficiency. A higher voltage and a larger electric field in

the depletion region result in a faster charge collection, creating a larger current transient

at that node. An SEU, occurs when enough charge is collected in such a short time to

reverse or flip the data of a gate output, memory cell, register, latch, or flip-flop. The

transient current due to a particle strike can be modeled as [40]

I » - ^ - « P (- ?) CD

where Q is the amount of collected charge, and T is a process technology-dependent time

constant. Figure 5.1 shows the mechanism of soft errors in semiconductors circuits along

with a transient current plotted for Q=60/C and T=20/?s.

Figure 5.1 Mechanism of soft errors in semiconductor circuits.

Whether the current is injected into or removed from the node depends on the

type of victim drain. For example, a current is injected into the node if a particle hit

54

occurs at a p-type drain, therefore momentarily increasing the node voltage. If the logic

value of the node is 0 and the current is injected to the node, a 0-1-0 SEU may occur.

Similarly, a 1-0-1 SEU may be generated if an n-type drain is hit.

5.1.2 Generation and Propagation of Soft Errors in NCL

The hysteresis behavior of Threshold Gates and the fact that their input data is

encoded using dual-rail encoding makes asynchronous systems more susceptible to soft

errors. The specific type of soft error depends on the input pattern, present output, and the

location of the particle strike.

Theoretically, there are four types of soft errors that could be generated at the

output of a threshold gate. Let us consider a tli23 gate in figure 2.9 to demonstrate these

errors.

1) Positive glitch (PG): 0-1-0. The positive glitch could be generated when the input

pattern of the tli23 gate is ABC=000 and a strike occurs into any of nl, n3 or n6 n-type

drains (removed current), as show in figure 5.2a.

2) Negative glitch (NG): 1-0-1. The negative glitch could be generated when ABC=011

while the output is 1 and a strike occurs into any of p3 or p9 p-type drains (injected

current), as shown in figure 5.2b.

3) Positive fault transition (PFT): 0-1. The positive fault transition could be generated

when ABC=001 while the output is 0 and a strike occurs into any of nl, n3, or n6 n-type

drains (removed current), as shown in figure 5.2c.

4) Negative fault transition (NFT): 1-0. The negative fault transition could be generated

when ABC=001 while the output is 1 and a strike occurs into any of p3 or p9 p-type

drains (injected current), as shown in figure 5.2d.

55

t i l , ; S

krt
a) Positive glitch

th,=; S
i 2 > — i

b) Negative glitch

thst

o f K
0 { 2 ^

i — V /

s th»

y"" I
\

c) Positive fault transition

o — y " \

1—Vj
d) Negative fault transition

Figure 5.2 SEU generation in tli23 gate.

Fortunately, only two types of SEUs are to be considered for NCL systems,

Positive Glitch (PG) and Positive Fault Transition (PFT), because these are the only two

possible SEUs that could flip the state of the node and propagate to the circuit output

causing a soft error (malfunction). As for both Negative Glitch (NG) and Negative Fault

Transition (NFT) they would only speed up the arrival of NULL if the strike happens

after DATA arrival or they might not have any effect if the strike happens before DATA

arrival as tested in [41]. The most sensitive node in a threshold gate for both PG and PFT

is node S (in figure 2.9), where a soft error could cause either PG or PFT when a particle

strikes any n-type drains of the NMOS transistors connected to node S.

5.2 Study of NCL Pipeline for an SEU

Unlike traditional synchronous circuits, there is no global clock in NCL circuits.

The delivery of the computation results from one stage to the next stage is implemented

by the handshaking scheme. Due to the hysteresis, a generated glitch SEU (0-1-0 or 1-0-

1) will be either filtered or transformed into a fault transition (0-1 or 1-0) immediately by

the following gate, and then the resulting fault transition (0-1 or 1-0) conditionally

56

propagates through the next gates. Therefore only fault transitions (0-1 or 1-0) may arrive

at the output of computational block. SEUs on computational blocks have only been

focused on throughout the thesis.

Due to the handshaking protocols used in the NCL methodology, all the possible

circumstances during which the computational block is affected by the soft error must be

studied in detail. A particle strike could affect the computational block any time during

the 'request data'. The three possible strike timings that can generate a soft error are

described below.

1) Before computation completion: This is the time during which the input register is

requesting DATA and partial or complete DATA has already arrived at the input of the

computational block until before the correct computation of outputs are done. A strike at

this time could generate an error at the output of an input threshold gate leading to its

propagation to the next gate and thereby generating a valid faulty output. If this soft error

is not detected, it could pass on to the next stages. This situation is illustrated in figure

5.3b in terms of output signals.

2) Exactly during computation completion: A strike can happen on any of the internal

components of the computational block when the input register is requesting data leading

to a (1,1) output which is invalid in dual-rail logic as shown in figure 5.3c. The

propagation of this invalid output to the next stage may cause a lot of computational

errors at that stage.

3) After computation completion: The possibility of a strike after the computation of

correct outputs cannot be ruled out. The next stage can even take this incorrect data if it is

still requesting DATA. This incorrect output is shown in figure 5.3d.

57

a) Example of Correct outputs:

RailO

b) Case 1: Valid faulty output before correct output:

RailO1

Raill _ |

c) Case 2: Invalid faulty output:

RailO

Raill

d) Case 3: Invalid faulty output after valid correct output:

RailO

R a i l l

Figure 5.3 Different outputs during different strike timings

Any dual-rail NCL circuit designed to detect, eliminate and correct the soft errors

must address the three different scenarios mentioned above and must be able to

recompute the correct output.

5.3 Tackling Soft Errors using NCL Methodology

This section describes different methods by which soft errors can be handled so as

to avoid them from disturbing the circuit's performance. The second part of this section

focuses on different methods and circuits used for soft error hardening, detecting and

correcting as well.

5.3.1 Soft Error Mitigation and Correction

Two ways in general, by which a designer can tackle soft errors are soft error

mitigation and soft error correction. Soft error mitigation is a method in which a designer

can attempt to minimize the rate of soft errors by judicious device design, choosing the

58

right semiconductor, package and substrate materials, and the right device geometry.

Often, however, this is limited by the need to reduce device size and voltage, to increase

operating speed and to reduce power dissipation. One technique that can be used to

reduce the soft error rate in digital circuits is called radiation hardening. This involves

increasing the capacitance at selected circuit nodes in order to increase its effective Qcrit

value. This reduces the range of particle energies to which the logic value of the node can

be upset. Radiation hardening is often accomplished by increasing the size of transistors

which share a drain/source region at the node.

Soft error correction is a method where a designer chooses to accept that soft

errors will occur, and design systems with appropriate error detection and correction to

recover gracefully.

Typically, a semiconductor memory design might use forward error correction,

incorporating redundant data into each word to create an error correcting code.

Alternatively, roll-back error correction can be used, detecting the soft error with an

error-detecting code such as parity, and rewriting correct data from another source. This

technique is often used for write-through cache memories.

Soft errors in logic circuits are sometimes detected and corrected using the

techniques of fault tolerant design. These often include the use of redundant circuitry or

computation of data, and typically come at the cost of circuit area, decreased

performance, and/or higher power consumption.

The concept of triple modular redundancy (TMR) can be employed to ensure very

high soft-error reliability in logic circuits. In this technique, three identical copies of a

circuit compute on the same data in parallel and outputs are fed into majority voting

59

logic, returning the value that occurred in at least two of three cases. In this way, the

failure of one circuit due to soft error is discarded assuming the other two circuits

operated correctly. In practice, however, few designers can afford the greater than 200%

circuit area and power overhead required, so it is usually only selectively applied.

Another common concept to correct soft errors in logic circuits is temporal

(or time) redundancy, in which one circuit operates on the same data multiple times and

compares subsequent evaluations for consistency. This approach, however, often incurs

performance overhead, area overhead (if copies of latches are used to store data), and

power overhead, though is considerably more area-efficient than modular redundancy.

5.3.2 Soft Error Tolerant Schemes in NCL

Several attempts have been made in the past to tackle soft errors in NCL circuits.

Some of the methods involve soft error hardening by carefully designing the threshold

gates and some of them are designs to detect and correct the occurence of a strike and are

discussed below.

Monnet et.al proposed a metric, sensitive time to evaluate the sensitivity of

asynchronous circuits to transient faults [42-43]. Jang et.al proposed several SEU-tolerant

QDI circuit designs which cause the circuits to become three times larger and twice

slower [44]. Peng et.al developed an efficient concurrent failure detection method for

pipelined asynchronous circuits so that the asynchronous circuits halt in the presence of

failure by single stuck at faults or single event upsets [45].

Casto, [46] proposed some techniques for preventing soft errors which include the

use of Schmitt trigger in threshold gates, feedback transistor sizing and modification of

NCL pipeline structures to prevent electrical and latch-window masking. An additional

60

self-feedback NCL register is inserted before the actual NCL register in the pipeline. This

will reduce the amount of time during which a computational block's output will be

affected due to soft error by blocking any incorrect outputs generated due to strike once

the correct outputs pass through it. The occurence of outputs as described in figure 6.3d

can be completely eliminated using this method.

Kuang, et.al [47] concluded that increasing the feedback PMOS transistor size in

the threshold gate can improve the robustness to particle strike and both single and

double Schmitt triggers significantly increase the Qmax without static soft error. Kuang,

et.al [48] also proposed a modified NCL circuit which includes a self- feedback register

that could eliminate most of the SEUs in the computational blocks. In another publication

[49], they proposed a soft error detection and correction circuitry for any combinational

logic.

Waleed, [41] proved that semi-static gates(in terms of transistors) could be used

to construct soft error hardened asynchronous circuits and also proposed a circuit design

that can detect, eliminate and correct the soft error.

61

CHAPTER VI

SOFT ERROR TOLERANT DESIGN USING FPGA

The previous designs that addressed the problem of soft errors are simulated using

CADENCE software and are not tested in practical. This section explains in detail the

design for soft error tolerance which has been synthesized using FPGA logic. FPGA

provided the scope for testing and to demonstrate the design readily since it is

reconfigurable logic device. Behavioral model designs are created and mapped onto the

FPGA logic and tested for its functionality.

This chapter describes in detail the soft error tolerant circuit, the basic

components involved in the design, inducing a strike into the designed circuit, testing the

circuit using FPGA and analyzing the simulation and actual results.

6.1 Introduction

Unlike the existing designs that have their threshold gates designed using a set of

NMOS and PMOS transistors generating the simulation results, the design in this thesis is

designed to be made to work on FPGA to extract the actual outputs from the device. The

soft error tolerant design using FPGA is designed in order to demonstrate the

functionality of soft error tolerant designs. An idea need to be sought to imitate a particle

strike and to induce the strike on to the computational block and to analyze the behavior

of the circuit under the influence of these particle strikes. In the thesis the particle strike

62

is mimicked on the circuit using the software and the circuits behavior is studied. The

details of how a particle strike is created and assumed are mentioned in sections 6.2.2 and

6.2.3.

6.2 Soft Error Tolerant Design

An efficient soft error tolerant design needs to combat the effect of particle strikes

on the computational block. Hence, a design is created in this thesis which is efficient in

dealing with soft errors due to particle strikes on the computational block. This section

details a generic soft error tolerant design, a case study of a full-adder used as the

computational block, how the inputs and strike are generated, how to induce the strike on

to the computational block, simulation results of the designed circuit, and finally

experimenting the circuit on the FPGA.

6.2.1 Circuit for Soft Error Tolerance

Figure 6.1 shown below is the NCL pipeline architecture used for soft error

detection, elimination and correction assuming no strike on the NCL registers. The entire

design is first coded using VHDL as software components in the same manner as

mentioned in section 3.4 and later tested using FPGA and other hardware components.

ai.railO,

si. rail 1 ,̂1

bi.railO .

bi.rai l l .

li.rsilO

li.raiia ,

initial

register

TFH

a
|—| •' f Comptatiortal

I block

I
SE detect

strike

CD Kl -Dx> Kle.

KRi

self
feedback
register

T KB

CD
K2o.

final

register

ao.railO

^

za.railO

Iso-raill

CD

K2
K.3

Figure 6.1 Soft error tolerant design

63

The circuit shown in figure 6.1 has separate components each for detecting the

occurence of a soft error, for stopping the error flowing to the next stage and for

correcting the faulty output due to the soft error, ensuring correct outputs. Apart from the

NCL pipeline which consists of two registers with completion detection circuits that

govern the inputs and outputs plus the computational block, it has a set of and gates

between the initial register and the computational block, an inverter connected to the

initial register's completion detection output, a soft error detection unit and few more and

gates providing the control signals to the self-feedback inserted register and the final

register.

Initially, the circuit needs to be reset. When 'reset' signal is applied, the NCL

registers outputs all zeros. These zeros pass through the completion detection circuits

giving T as the output indicating that the registers are ready to accept DATA. These

zeros (NULL) pass through the and gates and the computational block and prepares then

for the next incoming DATA. Now the 'Kl' signal mentioned in figure 7.1 is logic 1

which goes through the inverter giving logic 0 for 'Klo' signal. This 'Klo' signal plays a

crucial role in determining whether DATA can pass through the self-feedback register or

not. The 'Klo' signal holding logic 0 goes to the input of the first and gate at the input of

the self-feedback register, which is already having 'KRo' signal as it's another input.

'KRo' signal is the output of the completion detection circuit of the self-feedback register.

When 'reset' signal is applied to the self-feedback register, 'KRo' holds logic 1, waiting

for the DATA as done by the completion detection outputs of the other two registers in

the pipeline. So, at the first and gate, 'KRo' is ' 1 ' and 'Klo' is '0' making the output signal

'Ka' hold logic 0. On the other hand, the SE detect unit which is nothing but a tli22b gate

64

had (0, 0) pass through it giving a logic 1 value to the 'se' signal. This 'se' signal along

with the 'Ka' is fed to the inputs of the second and gate, 'se' is ' 1 ' and 'Ka' is '0', making

'KRi' input of the self-feedback register hold a logic 0 meaning the register is not ready to

accept DATA. And finally the and gate at the final register accepts DATA only when 'se'

is T and 'K3' is ' 1 ' . 'K3' is the output of the completion detection circuit of the following

NCL register. For convenience, 'K3' is taken as 'K2' in the thesis since there is no next

stage. 'K2' is the output of completion detection circuit of the final register. 'K2o' which

is the output of the and gate at the input of the final register hold a logic 1 since 'se' is ' 1 '

and 'K2' is also '1 ' . 'se' also acts as the other input to the set of and gates present between

the initial register and the computational unit.

Now, DATA enters the inputs. Since 'se' is '1 ' , the exact DATA flows through the

and gates and to the computational block. When complete DATA enters the inputs of the

initial register, 'Kl ' becomes a '0' making 'Klo' logic 1. As 'KRo' is already '1 ' , the first

and gate at the self-feedback register opens. When there is no strike, 'se' holds a '1 ' value.

With 'Ka' also ' 1 ' the second and gate will also be open making 'KRi' a T allowing the

correct DATA to pass through the self-feedback register. If there is a particle strike 'se'

acquires logic 0 turning off the 'KRi' and 'K2o' signals at the self-feedback and the final

registers respectively, stopping the flow of the invalid DATA (1, 1). When 'se' is '0', the

outputs of the set of and gates at the input of the computational block assumes all zeros

which is NULL resetting the computational block. As NULL value pass through the

computational unit making it ready for the same input values again, 'se' becomes a '1 ' .

But 'KRi' is still '0'. So the self-feedback register allows NULL to pass through it making

'KRo' take '1 ' . Now 'KRi' become '1 ' ready for recomputed correct DATA. Here we have

65

to make sure that the DATA is still present at the input for recomputation. Once the

correct DATA pass through the self-feedback register to the final register, it locks up

further changes in the DATA values due to any further strikes.

Summarizing all the facts from the operation of the circuit, the importance of each

component is described blow.

1) SE detect unit helps in detecting the particle strike by analyzing the outputs of the

computational unit. Its gives a '0' output only when it detects invalid data (1, 1) on any of

its dual rails.

2) Set of and gates are used to pass DATA and NULL through them as usually. When

SE detect finds an error and sends a '0' to it these and gates reset the computational block.

3) The self-feedback register allows DATA to pass through it only when 'Ki' indicates

complete DATA arrival. This register don't allow DATA in three different situations;

when there is no complete DATA arrival at the input, when SE detect indicates a particle

strike and after the passage of correct DATA through the register. These three situations

are governed by the two and gates at the input of the register.

4) The and gate at the input of the final register allows DATA only when there is no

strike and the next stage is ready to accept DATA.

6.2.2 Case Study: NCL Full-adder as Computational Block

The full-adder circuit is a dual-rail NCL circuit which has three dual-rail inputs

and two dual-rail outputs. Since the full-adder has three inputs, the initial register

mentioned in the above figure 6.1 is a 3-bit NCL dual-rail register and since the full-

adder has two dual-rail outputs, the final register is a 2-bit dual-rail NCL register. The

pictorial description of 1-bit NCL register with reset is shown in figure 2.4 and the

66

VHDL description of 1-bit and n-bit NCL dual-rail registers are done in figures 3.6 and

3.7 respectively.

The completion detection circuitry at the initial register has three inputs and hence

is a tli33 threshold gate and the completion detection circuitry at the final register is a th22

threshold gate as it has only two inputs. An n-bit completion detection block is

represented in figure 2.5.

A 1-bit NCL full-adder functions just as the conventional synchronous 1-bit full-

adder with the exception of having dual-rails for each I/O bit. The schematic of the NCL

full-adder is shown in figure 2.6c and the VHDL description of it is shown in figure 3.8b.

A sample truth table of the dual-rail 1-bit NCL full-adder is shown in table 6.1. When any

of the inputs (Ci, X, or Y) is still Null value (0, 0), the output is not complete, either S or

Co will still be Null. When any of the inputs is invalid value (1,1) and all other inputs are

Data, the resulted output will be incorrect (either S or Co).

Table 6.1 Truth Table of a 1-bit full adder with different states

CaseNo
1
2
3
4

CiO
0
0
1
I

Ci!
0
0
0
1

xo
0
1
1
1

Xi
0
0
0
0

Y0
0
0
0
0

Y!
0'
1
I
1

SO
0
0
0
1

SI
0
0
1
1

CoO
0
0
1
1

Col
0
0
0
1

State
NULL

Incomplete DATA
Complete DATA
Invalid DATA

The three different situations that are to be tested to prove that the circuit works as

desired in tolerating soft errors are already mentioned in section 5.3. These are, a soft

error happening before computation, a soft error happening exactly during output

computation and a soft error happening after the output computation. These three

scenarios are depicted using the timing of the inputs for the full-adder circuit in figure

6.2.

67

YBa i l l

YRailf)

XPaill

XRa.itn

c ; P nil 1

Tl T2 T3
1 1

r iRa i in

K2 J

Figure 6.2 Three scenarios to be tested for a full-adder

The figure above is in particular to the full-adder circuit taken to be the

computational block in this case. The full-adder has three inputs, each dual-rail and a

particular pattern of inputs is selected as an example to clearly explain the threats of this

circuit to a particle strike and how they are tackled. 'Tl ' in the figure is the time during

which case 1 in figure 5.3 happens. The inputs are not complete. Due to the input

completeness nature of the NCL full-adder, some or all of the outputs will not be

complete. This means either S or Co will still be a (0, 0). Carefully looking at the number

of inputs during 'Tl', it indicates that already two inputs are available and waiting for the

third input. At this time a strike on Ci.RailO can cause incorrect DATA computation

which is Co.Raill=l instead of correct DATA being Co.RailO=l and Co.Raill=0. In the

absence of soft error detection circuit, this wrong DATA output caused by the strike

could pass through the final register to the next stage. Or a (1, 1) is generated on Co dual-

rails when Ci.RailO comes into the full-adder.

The second criterion 'T2' represents a strike happening exactly during the

computation representing case 2 in figure 5.3. This time is after the arrival of complete

68

inputs and during the propagation of the inputs through the full-adder's internal

components. In this case the output of the threshold gate is supposed to output a '0' but

apparently becomes a T due to the particle strike at the same time when its other dual-

rail signal is also a ' 1 ' . This condition may arise when the strike modified dual-rail signal

(e.g., Co.Raill=l) and its other dual-rail signal (e.g., Co.RailO=l) coming from another

threshold gate happens to propagate to the outputs at the same time. If this is not avoided,

the (1, 1) which is an invalid DATA, propagates to the next stages.

The third case is represented by 'T3' which is when the correct output is

calculated and a strike happens after the calculated output pass through the register,

generating invalid (1, 1) at the outputs as shown in case 3 of figure 5.3. This situation

must be avoided which otherwise would lead to the propagation of (1, 1) right after the

correct DATA output in time.

6.2.3 Generating Inputs and Strike

Alpha particles and neutrons are the actual ones which affect the digital circuitry

in practical. Due to the non-availability of neutron or alpha particle generator, a particle

strike is mimicked using the software. This method also provides the flexibility to test the

circuit during different particle strike timings.

Full-adder is the combinational circuit used for testing. The internal components

of this full-adder consist of four threshold gates as shown in figure 6.3. As these

threshold gates are actually behavioral models, a strike can only be applied at the inputs

unlike the transistor built circuits where a strike can be applied to the most sensitive node

(node S in figure 2.9) inside a threshold gate. The assumption here is that the strike

applied at one of the input rails is equivalent to strike happening anywhere on the internal

69

circuit of that particular threshold gate present in the FPGA as long as it causes a fault

propagation. This assumption is valid because the outputs are the ones which are tested

for any faults.

Figure 6.3 1-bit dual-rail full-adder with strike

The above figure suggests that all the three inputs, Ci, X and Y have equal

priority due to symmetry. So, a strike on Ci has equal effects when compared to strike on

X as well as Y. In this case study a particle strike is made on Ci.Raill input of the full-

adder.

The full-adder circuit is designed in such a way that it accepts the strike on to the

Ci.Raill input whenever the strike signal is 'logic 1' assuming a strike happened.

Otherwise the full-adder takes the Ci.Raill input from the initial register. The modified

VHDL code for a full-adder accepting a particle strike is shown in figure 6.4.The

behavioral model of the strike that is being induced on to the input rail of the full-adder is

shown in figure 6.5.

70

Library IEEE;
use IEEE.STD_LOGIC_l164.ALL;
use work.ncl_signals.all;

entity fulladder is
port (a : in dual_rail_logic_vector(1 to 3);

strk : in std_logic;
s : out dual_rail_logic_vector(1 to 2)

);
end fulladder;

architecture beh of fulladder is
signal c0,cl,cstrk : std_logic;
component strike is

port(data : in std_logic;
i : in std_logic;
ipulse : out std_logic);

end component;
component th23xO is

port(a: in std_logic;
b: in std_logic;
c: in std_logic;
z: out std_logic);

end component;
component th3 4w2x0 is

port(a: in std_logic; — Height 2
b: in std_logic;
c: in std_logic;
d: in std_logic;
z: out std_logic);

end component;
begin
gO : strike port map(a(l).raill,strk,cstrk) ;
gl : th23xO port map(a(l).rail0,a(2).rail0,a(3) .railO,cO);
g2 : th23xO port map(cstrk,a(2).raill,a(3).raill,cl);
s(l).railO<=cO;s(l).raill<-cl;
g3 : th34ra2x0 port map (cl, a (1) .railO, a(2) .rail0,a (3) .rail0,s (2) . railO) ;
g4 : th34w2x0 port map (c0,cstrk,a(2) .raill,a(3) .raill,s (2) .raill) ;
end beh;

Figure 6.4 Modified full-adder incorporating strike

entity strike is
port (data :

i :
ipulse

end strike;

in std logic;
in std logic;
: out std_logic);

architecture beh of strike is
begin

process(data,i
begin

if i = ' 1
ipulse

else
ipulse

end if;
end process;

end beh;

then
<= i;

<= data;

Figure 6.5 VHDL code for inducing a particle strike

The inputs and the particle strike have been generated from internal components

present on the FPGA board. In order to test the circuit, a clock signal of 50MHz present

http://work.ncl_signals.all

71

on the FPGA kit has been utilized. The clock output from the oscillator is connected to

one of the pins of the FPGA. This has been taken as an advantage to generate the inputs

to the full-adder with delay between each of them. The same clock has also been utilized

to generate strikes at different timings. Figure 6.6 shows the special code used to generate

the inputs and the strike.

entity signal genl is
poet(clock : in std_logic;

Di : out dual rail logic vector(l to 3);
strk : out std logic

end signal_genl;

architecture behavior of signal genl is
begin
incrementer: process is

variable count value: natural:=0;
begin

wait until clock = 'l1;
count value := (count_value+l)

Di(3) .railO<='0' ;Di(2) .railK-'O1 ;

case count value is
when 1 to 8 =>

Di(3).raill <='1'
when others =>

Di(3).raill <='0'
end case;
case count_value is

when 3 to 10 =>
Di(2).railO <='1'

when others =>
Di(2).railO <=' 01

end case;
case count_value is

when S to 12 =>
Di(l) .railO <=' 1'

when others =>
Di(l) .railO <=' 0'

end case;
case count_value is

when 3 =>
strk <='l1;
when others =>
strk <=ID';

end case;

end process incrementer;

end behavior;

mod 16;
Di(l).raill<='0';

;

;

;

;

;

;

Figure 6.6 Inputs and strike generator

The code in figure 6.6 uses the 50MHz clock which has 20 ns time period to

generate the three different inputs with delay. The basic idea is to count the number of

clock pulses and making each input start at different clock pulse thereby creating a delay

72

between them. A strike is also generated in a similar fashion. The minimum width a

strike can have using the code is 10 ns. A strike is made to appear at different times and

at each possible time and the simulation and actual outputs are obtained.

The above code in figure 6.6 generates the input signals and strike as shown by

the simulated results in figure 6.7.

^MnibiSteffi \f/&^Mkmm

Simulation mode: Timing

k
A

M
n
— •

- »

Master Time Bar: 5S.123ns «;• Pointer: 202.89 ns Interval: 14677 ns Start; End:

i i>0

•3>1

•2>2

<S>3

S>4

•a>7

Name Value
56.12

clock ! H1

Di|1|.RAIL0 [HC

DilHRAIL.1 | HC

Di[2]RAIL0 | H 1

Di[2].RAIL1 S HC

Di[3].RAIL0 ! H C

Di[3].RAIL1 H1

strk j H1

Dps 80.0 ns 160.0 ns 240.0 ns 320,0 ns 400.0 ns 480,0 ns 560.0 ns 640.0 ns 720,0 ns 800.0 ns

56.123 ns

ims

J -

LTLririnjTrinrmmjWinmjmm^
I I i i i

i i i i.

i i. i i
n n n

Figure 6.7 Simulation waveform of inputs and strike generator

6.2.4 Simulation Results

Simulation results are obtained from the whole soft error tolerant circuit with full-

adder as the computational block, for both cases i.e., without a strike and with a strike.

Along with the end outputs which are from the final register, the outputs from the full-

adder are also viewed to notice how the outputs from the full-adder are filtered by the

additional circuitry that deals with soft error. In the following figures, Qi signals are the

outputs from the full-adder and Qo signals are the outputs from the final register. Qi(l)

represents Co and Qi(2) represents S directly from the full-adder. Similarly, Qo(l)

represents Co and Qo(2) represents S from the final register. Figure 6.8 represents the

outputs of the circuit with full-adder when there is no strike. When there is no strike, the

73

circuit operates normally and doesn't need to reset the computational block and

recompute the outputs. Due to this the outputs appear, for example, in this case at 101.75

ns.

jainnltaltajD ttttsfccme
Simulation mode: Timing

k
A

«C

ft
A
• • - »

- »
OO,

on-

Master Time Bar: 101.75ns «; >. Pointer: j 17.56ns

£/>0

E>1

• i>2

•E>3

•E>4

ffi>5

•S/6

•ffi/7

•a/8

<&9

Name

elk

rst

Qo[1].RAIL0

Qo(1].RAIL1

Qo(2].RAIL0

Qo[2].RAIL1

Qi|1].RAIL0

Valu
101.

X

I
I

I
X

X

I

Qi|1|.RAIL1 ! H

Qi|2].RAIL0 ! H

Qi[2].RAIL1 j H

0 ps 40.0 ns

1

Interval: -84.19 ns

80.0 ns 120.0 ns

101.75 ns
. J

r

f

Start:]

1G0.0ns

. . „

'End:

200.0 ns 240.0 ns

„ ^ _ ^ _ -

J

Figure 6.8 Simulation results without a strike.

mmf&MftSSfo&gSmBE

• Simulation mode: Timing
i

i

:fe

jttt
M

, • - *

I

an,

Master Time Bar: | 109.731ns <', > | Pointer:

CL>0

ar^>1
ffi>2

•&>3

<Z>4

<a>5
<E>6

•£>7

<&8

•£>9

Name
Valu
109.

elk H

rst : H

Qo[1].RAIL0 H

Qo[1].RAIL1 H

Qo[2].RAIL0: H

Qo(2].RAIL1: H

Qi[1].RAIL0 ' H

Qi[1].RAIL1 I H

Qi[2].RAIL0 H

Qi[2].RAIL1 H

Dps 40(

1

2.09 ns Interval: -107.64 ns Start: End:

ns 80.0 ns 120.0 ns 160.0 ns 200.0 ns 240.0 ns
1 1 1 1 1

109.731ns

nr
1 •!

1 1
nr

- j — - j - p i _ p - p ^ -

Figure 6.9 Simulation results during a strike at third clock cycle.

Figure 6.9 represents the outputs of the circuit when there is a strike happening at

the third clock cycle. In this case, the output appears at a later time compared to the case

without a strike. The time between 101.75 ns and 109.731 ns is the time during which the

74

circuit detects a (1, 1) on the output rails, resets the circuit and recomputes the outputs for

the same inputs and hence the delay.

lansatlEfiiigD WswsOenas
Simulation mode: Timing

fe
A

M
A

• • • - *

- •

• D /

"a-

*1

Master Time Bar 340.0 ns < • ! Pointer: 767.47 ns Interval: 427.47 ns Start: End:

2 > 0

r r / 1

<E>2

<£>3

ig/t.

<E>5

•S>6

S > 7

<E/8

<S>$

Name

elk

rst

Qo[1].RAIL0

Qo[1l.RAIL1

Qo[2|.RAIL0

Qo[2].RAII_1

Qi[1].RAIL0

Qi[1].RAIL1

Qi[2].RAIL0

Qi[2].RAIL1

V a i
340.

H

X
X

X
X

X
X

X
I

X

Ops 160.0 ns 320.0 ns 480.0 ns 640.0 ns 800.0 ns

340.0 ns

i
i i

. i i
n i

i i

n ii i

i i i

. . . I • .1 . : l :
III 1 : II :
1 I I :

m r^
• w . : i ' ; • ^ I I • •

Figure 6.10 Simulation results when strike is placed at the first clock cycle

.fflHHMfeGD SfflawaUnMSB

Simulation mode: Timing

k
A
56

<K
• I - I

M
A

••••*

an/

Master Time Bai:' 340

2 > 0

CL>1

<a>2

Q / 3

S ^ 4

C / 5

&S

S > 7

a>8
>S>9

Name

elk

rst

Qo[1).RAIL0

Qo[1].RAIL1

Qo[2].RAIL0

Qo[2].RAIL1

Qi[1].RAIL0

Qi[1].RAIL1

Qi[2l.RAIL0

Qi[2|.RAIL1

0 ns « • j Pointer: Inte

VaL
340.

H

x
x

x
x

x
x

x
x

x

rval: Start: End:

Ops 160.0 ns 320.0 ns 480.0 ns 640.0 ns 800.0 ns i i t i i
340.0 ns

JinmrulMrmruinnr
i i i

i i
II i

m. :
II 1

juuuiruinjunnjiRnnjinnjmnnnnnR
i I . I

i i i
in i II

1 1 1 ' 1 :
r n i r—i.

II 1 II : ! .

Figure 6.11 Simulation results when strike is placed at the second clock cycle

Figure 6.10 shows that the Col signal became a T due to the strike long before

all the inputs arrive at the full-adder, but has not been passed through the final register.

When the circuit detects the (1, 1) visible as glitches in the Qi, it resets the circuit due to

75

which all the outputs of the full-adder becomes zeros. This final correct output has been

delivered to the final register.

The above two conditions come under the first scenario represented as 'Tl' in

figure 6.2 where only one input, Y.Raill is present and due to the strike the Co.Raill

becomes a T . Later when X.RailO is asserted, S.RailO becomes a ' 1 ' which are incorrect

outputs generated due to strike. Now, when the third input appears, the signals which

should be actually asserted according to the full-adder circuit, that is Co.RailO and

S.Raill becomes ' 1 ' showing the little glitches on the waveform editor.

atBHllifiBsxB OeraiteoasB
Simulation mode: Timing

k
A

M
• * »

! - >
l
DQ.

\ii

Master Time Bar: 340.0 ns < ' • ! Pointer Interval:1 Start: End:

£>0

i l > 1

e>2
<a>3

CE^4

S/5

<2>6

<S/7

«S>8

•E>9

Name
Vak.
340.

elk I H

ist j H

Qo[1].RAIL0! H

Qo[1].RAIL1| H

Qo[2].RAIL0i H

Qo[2].RAIL1: H

Qi[1].RAIL0 < H

Qi[1].RAIL1 i H

Qi[2].RAIL0 | H

Qi[2].RAIL1 ' H

Ops 1E0.0ns 320.0 ns 480.0 ns 640.0 ns 800.0 ns

340.0 ns
1

njiMJirLTulnjinjutJWU J ^ ^
i

i i

i i
II i

i — i

n II i

i i i

i i i
i i II

i—i m
rn rn:'

II i II

Figure 6.12 Simulation results when strike is placed at the third clock cycle

Figure 6.12 is the result of a strike appearing at the third clock cycle. The second

input to the full-adder also starts at the third clock cycle. So by the time the strike makes

Co.Raill take a T , X.RailO is already ' 1 ' and hence the waveforms shows a lesser time

difference between Co.Raill becoming T and S.RailO becoming a T . The simulation

result clearly explains the occurence of strike at the same time of the second input. The

76

little delay between Co.Raill and S.RailO is due to the propagation delay of the U134W2

gate which is taking both Co.Raill and X.RailO to generate S.RailO as T .

The figure 6.13 shown below is almost a similar situation to the previous figure

when there are two inputs present and a strike is appearing. This still falls under 'TT

scenario of incomplete DATA and pre-computation.

anrnkiaaj] W®«steBtne

| Simulation mode: Timing

i *

196

A
• • • - »

jffic'

Master Time Bar: 340.0 ns ' • Pointer: 789.2 ns Interval: 449.2 ns Stait End:

[L>0

J > 1

t£>2

•2>3

•£>4

S ^ 5

a<6
a/7
<a>8

Q>9

Name

elk

rst

Qo[1).RAIL0

Qo[1].RAIL1

Qo[2].RAIL0

Qo[2].RAIL1

Vali,
340.

H

X

I
X

I

X

Qi[1].RAIL0 ! H

Qi[1]RAIL1 I H

Qi[2].RAIL0 I H

Qi[2].RAIL1 j H

Qps 1G0.0ns 320.0 ns 480.0 ns 640.0 ns 800.0 ns

340.0 ns
A

rmrmrmjuTMJirmnJWJirmju^^
1 ! . . . ; 1 1

1 1
II 1 .

n
n

II i

i i i ,

: 1 1 1
III . 1 II

n n
n n;

II 1 III : . .

Figure 6.13 Simulation results when strike is placed at the fourth clock cycle

strnnMitEG) WsMiimm

Simulation mode: Timing

*
A

M

«
•••+

-+

Master Time Bar:! 340.0 ns < •] Pointer: Interval: Start:) End:

T > 0

BL>1

ffi>2

>S?3

< » 4

<a>5

•S>6

•a>7

S > 8

•2>9

Name
V a t
340.

elk H

rst H

Qo[1].RAIL0 H

Qo[1].RAIL1 H

Qo[2].RAIL0 H

Qo[2].RAIL1 H

Qi[1].RAIL0 H

Qi[1].RAIL1 H

Qi[2].RAIL0 H

Qi[2].RAIL1 H

Dps 1G0.0ns 320.0 ns 480.0 ns 640.0 ns 800.0 ns

340.0 ns
A

ruuinjuianrmnnnnnnr
i i i

i i
II i i
n
n
in i

mfirmnrmrmrmr^inmruinnnjirui
1 1 | l ;

1 •

: 1 1 . ! l i
1 1 1 1 1

n ' n : .
n n :
i II i I II

Figure 6.14 Simulation results when strike is placed at the fifth clock cycle

77

Figure 6.14 is a situation where all of the inputs are present and a strike happens.

This comes under 'T2' scenario. Here all the outputs become 'F almost at the same

timing. By the time the strike happens, Co.RailO is already 'F generated due to the

complete inputs and this is still propagating through th34W2 threshold gate having S.Raill

as the output. Due to the strike on Ci.Raill, Co.Raill becomes a 'F and the SE detect

detects (1, 1) and resets the circuit due to which Qi(l).RailO goes to a zero in figure 6.14.

In the mean time the other threshold gates outputs the strike effected signals and then gets

reset and now, all the outputs become NULL. As the DATA is still available at the

inputs, recalculation is done generating the correct output which passes through the final

register.

|aiHHiMKffl VZ/sfstMiMsm

Simulation mode: Timing

V
A

®,
i

ft
—»
->
an,
"J?l

Master Time Bar: 340.0 ns *'>\ Pointer Interval: Start: End:

U>0

X>1
<£/2

<5/3

•S>4

<£/5

^L/S

S>7

<X>8

CL>9

Name
VaL
340.

elk H

rst H

Qo[1].RAIL0

Qo[1].RAIL1

Qo[2].RAIL0

Qo[2].RAIL1

Qi[1].RAIL0

Qi[1].RAIL1

Qi[2].RAIL0

X

X

X

X

X

X

X

Qi[2].RAIL1 | H

Dps 160.0 ns 320.0 ns 480.0 ns 640.0 ns 800.0 ns

340.0 ns
J

mrumnmnfljijuwij
i

i i i i

i II i
M I i
n
n

i II i

jiMJinjuinMJijmrinnrLnMnnnnjij^
M I . i M I

i II i i II
I N i i n
n : n
n n i II i i II

Figure 6.15 Simulation results when strike is placed at the sixth clock cycle

Figure 6.15 is the third scenario where the correct inputs are calculated and they

pass through the self-feedback register and then a strike happens. During this case as the

correct outputs have crossed the inserted register, it blocks from any further changes in

the outputs and the register will be ready to accept NULL. But when a strike happens, as

78

the DATA is still present at the inputs, a (1, 1) appears on the outputs due to which

resetting the circuit takes place internally. This is the reason why the output DATA is

normal for sometime but becomes a NULL after sometime and gets back to the correct

DATA again as shown in the figure above.

6.3 Experiments on FPGA Device

Now that we have the design on hand along with a provision for particle strike, it

needs to be modeled practically to test its behavior. An FPGA provides the scope of

creating the design onto its logic and be made available for testing. The design needs to

be tested using hardware components, practically giving inputs and extracting the

outputs. Once the design is simulated to check its behavior, the design is mapped on to a

FPGA device for testing. The design flow is already mentioned in figure 3.3.

Logic Analyzer

Probs
Cable

Computer

/ \

USB Cable

FPGA Board i

Figure 6.16 Experimental set up

The soft error tolerant design is first simulated and the simulation results are

extracted and are presented in section 6.2.4. Then the design is synthesized, mapped and

place and route procedure is done to put the design on the FPGA logic. Then pin

assignment is done on the FPGA kit to provide inputs and to check the actual outputs.

Some of the internal components of the FPGA were used to generate the high speed input

signals and the procedure is described in section 6.2.3. The output pins of the FPGA are

79

connected to a logic analyzer and the outputs are viewed on the display and are provided

in section 6.3.3. The experimental set up is shown in figure 6.16.

6.3.1 Experimental Set Up

This section explains about the equipments used for the project and the

experimental set up. The entire experimental set up at the laboratory is shown in figure

6.17, consists of a PC (personal computer) with USB cable connected to the CPU, FPGA

board whose expansion connectors are connected to probe cable of the logic analyzer.

Figure 6.17 Laboratory experimental set up

A PC is a desktop computer used to download the Quartus II software, to write

the essential code and simulating the code using the software. Most part of the project is

performed on the PC starting from design entry, analysis, implementation, verification

and till pin assignment using pin planner present in Quartus II. Altera's DE2 with

80

Cyclone II FPGA and Quartus II 8.1 Web Edition, the supporting software has been used

for the thesis. The device manual is presented in [50]. Once the pin assignments are done,

the FPGA device is connected to the PC via a download cable. USB 2.0 (type A to type

B) cable is used for the device. The configuration file is sent from the PC to the FPGA

via the USB cable. The inputs to the circuit present inside the FPGA are provided using

one of the switches and the clock of 50MHz present on DE2 board. The outputs are

extracted from the FPGA through expansion headers present on DE2 board on to a logic

analyzer. HP 1663C Logic Analyzer is used in the experimental set up to view the

outputs of the design present in the FPGA.

6.3.2 FPGA Board

UiB USB USB etr-C'jnel
Blaster DOWDG Host Mic Lir.e Line Video VGAViceo lO/IOOM

Pert Port Port in in On! In Port Port RS-232Pcrt
9V DC Power

Supply Connector

27-ltWt Oscillator

24-bit Audio Codec

Power ON/OFF Switch

USB Host'Slwe Contitfler

TV Decoder (NTSC'PAt.)

Altera USB Blaster Controller Oi pse!

Alters EPCS16 Configurators Device

3UN.PR0G Switch (or JTAG.'AS Modes

lbULliOMcauJe

7-Sesment Displays

18 Rod LEDs

18 Toggle Switches

i i t t l l 11 t
PS/2 Keyboard/Mouse Port

VGA 10-61DAC

Ethernet 10/13QM Controller

Expansion HoaSorZ (JP2)

Expansion Header 1 (JP1)

Altera Cyclone It f PGA

SD Card Slot

S Green tEDs

IrOA Transceiver

SMA External Cock

4 Debojn:eri Pushbutton Switches

50-WHz Oscillator 8-MBSDRAV 512-K9SRAM 4-N<8 Pash Memoiv

Figure 6.18 The DE2 board [50]

As mentioned earlier Altera's DE2 Development and Educational Board is used

for the thesis. It has a wide variety of features and resources. But only few of them have

81

been used in the thesis. Figure 6.18 taken from DE2 user manual shows all the resources

present on board.

The resources used in the above figure are the Altera Cyclone II FPGA, 50 MHz

oscillator, one of the 18 toggle switches, Expansion Header JP2, USB Blaster Port, 9V

DC Power supply connector and Power ON/OFF Switch. 50MHz clock is connected to

PINN2 of the FPGA. 'rst' signal in the circuit which is the reset signal to the entire NCL

dual-rail circuits is connected to PINN25 of the FPGA which is connected to the switch

SWO of the 18 toggle switches on board. PINJC25, PIN_K26, PIN_M22 and PIN_M23

are the FPGA pins connected to IOB0, I O B 1 , IOB2 and I O B 3 expansion header pins

on JP2(GPIO_l). These pins are connected to Qo(l).RailO (CoO), Qo(l).Raill (Col),

Qo(2).RailO (SO) and Qo(2).Raill (SI) signals of the internal circuit, that are the outputs

from the final register in the soft error tolerant design pipeline. Similarly, PINM19,

PIN_M20, PIN_N20 and PIN_M21 are the FPGA pins connected to IO_B4, IO_B5,

IOB6 and I O B 7 expansion header pins on JP2(GPIO_l). These pins are connected to

Qi(l).RailO (CoO), Qi(l).Raill (Col), Qi(2).RailO (SO) and Qi(2).Raill (SI) signals of the

internal circuit, that are the outputs from the full-adder in the soft error tolerant design

pipeline.

6.3.3 Results

The actual outputs are from the FPGA using hardware components that generate

the inputs and extract the outputs to the logic analyzer. The below are the images from

the logic analyzer for strikes during different timings which resemble the simulation

outputs. These actual outputs from the FPGA are very much similar to the simulation

results except that the glitches present in the simulation waveform are not visible for the

82

actual waveform. The reason behind this could be the low resolution of the logic analyzer

which could not properly capture the small glitches.

The first signal mentioned as Lab 10 represents Qo(l).RailO, Labll as

Qo(l).Raill, Labl2 as Qo(2).RailO, Labl3 as Qo(2).Raill, Labl4 as Qi(l).RaiK), Labl5

as Qi(l).Raill, Labl6 as Qi(2).RailO and Labl7 is for Qi(2).Raill. Qo is the output from

the final register and Qi is the output of the full-adder. Q(l) represents Co which is carry

and Q(2) represents S which is sum of the full-adder.

(Analyzer ¥

(Accumulate
1 0ff

[100! ns J
OBI 6

Labi 1

Labi 2

Labi 3

Labi 4

Labi 5

Labi 6

Labi 7

Haveform (ifiCHINE 1] (Acq

Delay
0 s

. Control] Jfcance ') (

Current Sample Period - 4.000 ns
Next Sample Period = 4.000 ns

(larkers
Off

'

Acquis!tion Time
30 Jul 2009 I6>14'38

— i — » —

Rum]

n
t

Figure 6.19 Actual results when strike is placed at the first clock cycle

83

(Analyzer)(Waveform MACHINE 1)(flcq.

r

Accumulate
Off

(sec/0lv
| 100 ns i

Labi 0

Labi t:

Labi 2

Labi 3

Labi 4

Labi 5

Labi 6

Labi 7

)

(Delay

0 s,

Control] (cancel) (

Current Sample Period • 4.000 r*s
Next Sample Period = 4,000 n$

\
liiarkers

Off

1

Run)

Acquisition Time
30 Jul 2009 16«>7»40

1

J
J

n
t

r

Figure 6.20 Actual results when strike is placed at the second clock cycle

| Analyzer)(Waveform MACHINE 1)(ftcq. Control) (cancel) (Run)

(Accumulate
Off

(sec/'Div
100 nis

Labi 0

Labi 1

Labi 2

Labi 3

Labi 4

Labi 5

Labi 6

Labi 7

'

Delay

0 s,

Current Sample Period * 4,000 ns
Next'Sample Period = 4.000 ns

r Markers
Off

Acquis!tion Time
30 Jul 2009 16'20!20

i

I

:t:

Figure 6.21 Actual results when strike is placed at the third clock cycle

84

C finalyzer](Haveform MACHINE 1

Accumulate
Off

(sec/Div
[100 ns _

Labi 0

Labi l

Labi 2

Labi 3

Labi 4

Labi 5

Labi 6

Labi 7

•

Del ay

0 SJ

j (flcq. Control) (Cancel J (

Current Sample Period = 4.000 ns
Next Sample Period » 4.000 ns

/
Markers

Of!

Acquisition Time
30 Jul 2009 16=22:44

Run]

.

1
1

Figure 6.22 Actual results when strike is placed at the fourth clock cycle

^ Analyzer]^ Have form MACHINE 1](flcq. Control] (cancel) (Run \

{ Accumulate
[Off

(sec/Div
[100 ns J

Labi 0

Labi 1

Labi 2

Labi 3

Labi 4

Labi 5

Labi 6

Labi 7

/

Delay
0 $,

Current Sample Period = 4.000 ns
Next Sample Period = 4.000 ns

/ >
Markers

Off

Acquisition Time
30 Jul 2009 16'34*02

i

1
"T"

1
'

!

1

1_
1
1

Figure 6.23 Actual results when strike is placed at the fifth clock cycle

85

[Analyzer)(Haveform MACHINE 1

/
Accumulate

Off
i sec/Div
1 100 rts

Labi 0

Labi t

Labi 2

Labi 3

Labi 4

Labi 5

Labi 6

Labi 7

V

}

Delay
0 s;

U _

(Acq. Control] (cancel) |

Current Sample Period = 4.000 ns
Next Sample Period » 4.000 ns

Markers
Off

Run

1 Acquisition Time
30 Jul 2009 16=36=34

1 ! 1

|~

[
J

1 1 i
J _
1

1 ! 1

II

n

i : i
„ \ ,.n..r ,...._

Figure 6.24 Actual results when strike is placed at the sixth clock cycle

86

CHAPTER VII

SOFT ERROR TOLERANT ASYNCHRONOUS DES DESIGN

In the thesis two asynchronous NCL designs are devised. One is the asynchronous

NCL dual-rail logic DES algorithm and the other design is the soft error tolerant circuit

for any NCL dual-rail circuit. This chapter explains how to implement the two circuits

together on an FPGA.

7.1 Asynchronous DES with Soft Error Tolerance

The 17 stage pipelined asynchronous DES algorithm is added with the soft error

detection and correction circuitry in one of the exor gates following the P box in figure

4.6 and the simulation and actual results are obtained from the FPGA. Altera's

EP2C35F672C6 which is a cyclone II FPGA, is the device used. Since this device cannot

accommodate the whole asynchronous DES design with dual-rail logic, only a single

round is used. The modified asynchronous DES design with RAM elements as S-boxes

has been used to test the soft error tolerant design's efficiency which successfully

produced desired results representing the robustness of the soft error tolerant design.

A clock oscillator of 50MHz on board the FPGA has been used to generate inputs

and strike in the similar manner as generated for testing the soft error tolerant design with

full-adder as the computational block. The strike has been induced on to the exor gate at

different timings and the results are collected. Figure 7.1 is the entire circuit implemented

on the FPGA to show the working of soft error tolerant design on asynchronous DES.

87

Figure 7.1 Asynchronous DES with embedded soft error tolerant circuit

The Xor gate following P permutation block has 32 exor gates as shown in the

above figure. Soft error tolerant circuit is applied to only the first exor gate. The inputs to

'Round' are provided by the clock. To simplify the input generation all the inputs are

given at a time instead of generating them with different delays between them due to the

large number of inputs. The strike is given at different clock cycles of the 50MHz clock.

88

7.2 Results Obtained

In this section the result obtained from circuit shown in figure 7.1 are analyzed.

The circuit worked as desired by detecting, correcting and eliminating the soft error.

:r..:Li3 .rj,i ! . .v't'.«^:r.^

Simulation mode: Timing

k
A

M
n

••••*

-¥

• D ,

Master Time Bar:! 13.6ns < •Pointer:! 1.56ns Interval: -12.04ns Start: E

DL>0

DL>1

S>2

>S>3

• 2 / 4

•M/5

Name

elk

rst

xorse.RAILO

xorse.RAILI

fromxr.RAILO

fromxr.RAILI

Vali
13.

X

X

X

X

X

X

Ops 80.0 ns 160.0 ns 240.0 ns 320.0 ns

13. ins
J

3"m_ruT^JirmLrmjnLJTrLjrLJi^JUiJi
i 1 1

1 1

: i ' :

Figure 7.2 Simulation result for strike at first clock cycle.

'xorse' signal which is Rn(l) is the output obtained from the final ncl-register of

the 'round' while 'fromxr' signal is directly from the exorl gate in figure 7.1. Figure 7.2 is

the case when the inputs to the exor gate are still propagating when the strike happened

and reaches the exor gate when there is no strike due to which there is no effect of soft

error reflected in the waveform.

Figure 7.3 is the actual results obtained with similar condition in figure 7.2. Here,

strike happens exactly during computation generating a (1,1) because of which the

outputs of the exorl gate are reset to zeros and then the output appears at the final register

of the 'round'. In figure 7.3, the first two signals LablO and Labll are xorse.RailO and

xorse.Raill respectively while Lab 12 and Lab 13 are fromxr.RailO and fromxr.Raill

respectively.

89

[Analyzer i r

/
Accumulate

Off

j s e c / D i v 1
[too ns J

Labi 0

Labi I

Labi 2

Labi 3

Labi 4

Labi 5

Labi 6

Labi 7

Waveform MACHINE 1) (A c q . Cont ro l] (c a n c e l) (

*

Delay
0 K

Current Sample Period = 4.000 ns
Neist Sample Period = 4.000 ns

(Markers
1 Off

A c q u i s i t i o n Time
17 Aug 2009 00=40'03

J

i 1
r

Run)

f

Figure 7.3 Actual results for strike at first clock cycle.

mm&Mm'S/smBmm
Simulation mode: Timing

k
A

M

A
••••*

-+

Master Time Bar:; 340.

a>o
E>1

S>2

a>3
•a>4

<a>5

Name

elk

(St

xorseRAILO

xorse.RAM

fromxr.RAILO

Iromxr.RAILI

Ons

Vali
340

X

X

X
 I

X

X

< > J Pointer: 322.53 ns Interval:; -17.47 ns Start: Enc

Ops 80.0 ns 160.0 ns 240,0 ns 320.0 ns 4

340.0 ns
J

i i

1 II : :|

. n ,

_ru^

Figure 7.4 Simulation result for strike at second clock cycle.

This result is similar to figure 7.3 where a strike happened exactly during

computation causing (1,1) and settling to good outputs after resetting circuital,1) is

stopped from passing through the final register.

90

(Analyzer)(Waveform MACHINE 1)(Acq. Cont

| Accumulate
1 Off

i sec/Div
[100 ns

Lab! 0

Labi 1

Labi 2

Labi 3

Labi 4

Labi 5

Labi 6

Labi 7

•

Delay
0 S

rolj [Cancel] (

Current Sample Period = 4.000 ns
Next Sample Period ° 4.000 ns

Markers
Off

Run J

Acquisition Time
16 Aug 2009 01:23>58

i

n

~

s
n

Figure 7.5 Actual result for strike at second clock cycle.

Here, the correct data passed through the self-feedback register in the soft error

tolerant circuit and then a strike happened due to which (1,1) is generated, which is the

case of a strike happening after computation completion unlike the simulation result.

After this output go through the final register of the 'Round' followed by all the other

signals of the DES round (Ln, Rn(except the first signal), Cn and Dn), the final register

will stay in accepting NULL state since all the DATA passed through it. Now NULL is

generated at the first signal of Rn(output of exorl) due to circuit reset by the soft error

tolerant circuit. As the final register is in accepting NULL state it accepts the NULL

signal at Rn(l), while all the other signalsRn(2...32) are still data because there is no

NULL at the inputs of the 'Round'. This is the reason why recomputed DATA is not

present at the Rn(l) output at the final register.

Figure 7.6 and 7.7 are the results when the strike happens during third clock

cycle. This is already the case of strike happening after computation completion allowing

good DATA to pass through the register and blocking any further changes.

91

-:ih; nfftSlfti;." • •'&?<?. :a?r;r 2 . .

Simulation mode: Timing

k
A

«~
M

—»
D Q ,

n

Master Time Bar: > 13.6 ns

ss>o
B>>1

« > 2

S>3

fi>4

1 *5

Name

elk

rst

xorseRAILO

xorse.RAILI

fromxr.RAILO

fromxr.RAILI

Vali
13.

X

X

X

X

X

X

<ii •!Pointer: 4.67ns Interval:] -8.93ns Start:

Dps 80.0ns 160.0ns 240.0ns 320.0ns

13.6 ns
1

1
. 1 - 1 :

1 II 1
m

Figure 7.6 Simulation result for strike at third clock cycle.

(Analyzerj(Waveform MACHINE I] (acq. Control) (cancel) (Run)

f Accumulate

1 ° " J
I sec/D
[100

Current Sample Period « 4.000 ns
Went Sample Period • 4.000 ns

sec/Div
100 ns

Delay
0

Markers
Off

Acquisition Time
17 Aug 2009 01 ;06'27

Labi o

Labi I

Labi 2

Labi

Labi

Labi

Labi

Labi

J l J l

Figure 7.7 Actual result for strike at third clock cycle.

The reason behind the differences in the simulated results and actual results is due

to the more propagation delay of simulated signals compared to actual signals in the

FPGA due to which figure 7.2 has no effect on the waveforms while figure 7.3 has effect

of soft error on the waveforms. Similarly in figure 7.4 the outputs appear at the final

register only after resetting and recomputation of the soft error tolerant circuit while

correct DATA already passed through the register in figure 7.5.

92

CHAPTER VIII

CONCLUSION AND FUTURE WORK

The present day digital era calls for cryptography as an inevitable concept in the

day to day life whether it is storing data or transferring data. These cryptographic

algorithms need a very high range of accuracy. The problem of soft errors cannot be

overlooked upon. So circuits which could be able to tolerate these soft errors are as

important for applications like security algorithms as these security algorithms are for

digital data. Asynchronous dual-rail NCL methodology is a technique which is getting its

popularity for various reasons. This methodology could be taken for advantage in

creating the soft error tolerant models. So the application on which the soft error tolerant

design needs to be implemented should also be an asynchronous design. In this thesis a

basic yet powerful security algorithm has been considered. The NCL design of the DES

algorithm is implemented on different FPGAs to figure out what kind of FPGA is suitable

for such huge designs and to determine the amount of logic and hardware resources

needed for the device. Apart from the implementation of the algorithm, some design

techniques are used to save the amount of resources utilized by the design on an FPGA.

The second part of the thesis focuses on creating a soft error tolerant design that

could be used for these kinds of security algorithms making them 100% accurate. A

design which can tolerate the soft errors is simulated as well as practically implemented

on the FPGA extracting the outputs in real-time with satisfactory results. This soft error

93

tolerant design is added to one exor gate in the DES round and the results are discussed.

The designs created in the thesis would help to do some future work on the

asynchronous circuits. The asynchronous DES design in the thesis could be implemented

on an FPGA and the performance parameters such as speed, power consumption, etc

could be measured.

The soft error tolerant design could be embedded in the asynchronous DES

algorithm [51] generated in the thesis and this collective design should be exposed to a

natural particle strike environment [52] [43] and the design performance could be

measured.

Another task that needs to be performed is to actually create the soft error tolerant

design at the transistor level. And this circuit could be verified in practical.

Also, the generation and propagation of soft errors on FPGAs need to be studied

and a technique to combat those could be devised.

94

REFERENCES

[1] Data Encryption Standard - Wikipedia
http://en.wikipedia.org/wiki/Data Encryption Standard

[2] Field-Programmable Gate Array - Wikipedia
http://en.wikipedia.org/wiki/Field-programmable gate array

[3] S.Hauck, "Asynchronous Design Methodologies: An Overview,"proceedings IEEE,
Vol. 83, pp 69-93, Jan 1995.

[4] P. Shivakumar, et al., "Modeling the Impact of Device and Pipeline Scaling on the
Soft Error Rate of Processor Elements," in Proc. Int. Conf. Dependable Syst. Netw., 2002.

[5] U.S. Department of Commerce/National Institute of Standards and Technology, "Data
Encryption Standard (DES)," Federal Information Processing Standards Publication,
Reaffirmed 25, October 1999.

[6] K. Wong, M. Wark and E. Dawson, "A Single-Chip FPGA Implementation of the
Data Encryption Standard (DES) Algorithm," IEEE, Global Telecommunications
Conference, Nov 1998.

[7] T.Arich and M.Eleuldj, "Hardware Implementations of the Data Encryption
Standard," IEEE Microelectronics, the Nth International Conference, Dec 2002.

[8] M.McLoone and J.V.McCanny, "High-performance FPGA Implementation of DES
using a Novel Method for Implementing the Key Schedule," IEE Proc. -Circuits Devices
Syst., Vol. 150, No. 5, Oct 2003.

[9] C.Patterson, Xilinx Inc, "High Performance DES Encryption in Virtex FPGAs using
Jbits," IEEE Symposium on FP Custom Computing Machines, California, April 2000.

[10] I.E.Sutherland and J.Ebergen, "Computers without Clocks", Scientific American PP.
62-69, Aug 2002.

[11] International Technology Roadmap for Semiconductors (ITRS)
http://www.itrs.net/Links/2005ITRS/Design2005.pdf

http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Field-programmable
http://www.itrs.net/Links/2005ITRS/Design2005.pdf

95

[12] N.Weste, D.Harris, "CMOS VLSI Design: A Circuits and Systems Perspective," 3ra

Edition. Addison Wesly. 2005.

[13] J.Wilkinson, et.al. "Cancer Radiotherapy Equipment as a cause of Soft Errors in
Electronic Equipment," IEEE Trans Device and Material Reliability, Vol 5, No 3, PP-
449-51, Apr 2005.

[14] L.Franco, et.al. "SEUs on Commercial SRAM, Induces by Low Energy Neutron
Produced at a Clinical Linac Facility," RADECSproceedings, Sept 2005.

[15] Soft Error - Wikipedia
http://en.wikipedia.org/wiki/Soft error#Soft error rate

[16] C.L.Chen and M.Y.Hsiao, "Error-Correcting Codes for Semiconductor Memory
Applications: A State-of-the art Review," IBM J. Res. Develop., Vol. 28, 1984.

[17] M.Zhang and N.R.Shanbhag, "Soft-Error-Rate-Analysis (SERA) Methodology,"
IEEE Trans, on CAD oflCs and Systems, Vol. 25, no. 10, pp 2140-2155, Oct 2006.

[18] S.Mitra, et.al. "Logic Soft Errors: A Major Barrier to Robust Platform Design,"
IEEE Int. Test Conf, 2005.

[19] K.M.Fant and S.A.Brandt "NULL Convention Logic: A Complete and Consistent
Logic for Asynchronous Digital Circuit Synthesis," Int. conf. Application Specific
Systems, Architectures, Processors, 1996, pp 261-273.

[20] C.L.Seitz, "System Timing," in Introduction to VLSI Systems: Addison-Wesley,
1980, pp. 218-262.

[21] G.E.Sobelman and K.Fant, "CMOS Circuit Design of Threshold Gates with
Hysteresis," Proceedings of the International Symposium on Circuits and Systems, pp 61-
64, 1998.

[22] W.Kuang et.al., "Performance Analysis and Optimization of NCL Self-timed Rings,"
IEE Proceedings Circuits, Device and Systems, Vol. 150, no. 3, June 2003.

[23] S.C.Smith et.al, "Delay-Insensitive Gate -Level Pipelining," Elsevier's Integration,
the VLSIJournal, Vol. 30/2, ppl03-131, Oct 2001.

[24] J.S.Yuan and Weidong Kuang, "Teaching Asynchronous Design in Digital
Integrated Circuit," IEEE Trans on Education, Vol. 47, No 3, Aug 2003.

[25] Michiel Ligthart, et.al., "Asynchronous Design using Commercial HDL Synthesis
Tools," IEEE Intl. Symposium on Advanced Research in Asynchronous Circuits and
Systems, April 2000, pp 114-125.

http://en.wikipedia.org/wiki/Soft

96

[26] FPGA Basics
http://www.cse.cuhk.edu.hk/~ceg5Q10/tuto/basic-fpga-arch-xilinx.ppt

[27] Xilinx - FPGA Design Flow Overview
http://www.xilinx.com/itp/xilinx8/help/iseguide/html/ise fpga design flow overview.ht
m

[28] Altera Quartus II Design Entry & Synthesis
http://www.altera.com/products/software/quartus-ii/subscription-edition/design-entry-
synthesis/qts-des-ent-syn.html

[29] S.C.Smith, "Design of an FPGA Logic Element for Implementing Asynchronous
Null Convention Logic Circuits," IEEE Transaction on VLSI system, vol.15, no. 6, June
2007.

[30] S.Smith et.al, "Design and Implementation of FPGA Configuration Logic Block
Using Asynchronous Semi-Static NCL Circuits," IEEE Region 5 Conference, April 2008.

[31] S.Smith, "Design and Implementation of FPGA Configuration Logic Block Using
Asynchronous Static NCL," IEEE Region 5 Conference, April 2008.

[32] K.Meekins, et.al, "Delay Insensitive NCL Reconfigurable Logic," IEEE Aerospace
Conference proceedings, Vol. 4, 2002.

[33] D.Fang et.al, "A High Performance Asynchronous FPGA: test results," IEEE
Symposium on Field-programmable Custom Computing Machines, pp 271-272, April
2005.

[34] J.P.Kaps and C.Paar, "Fast DES Implementation for FPGAs and its Application to a
Universal Key-Search Machine", proc. 5th Annual workshop on Selected Areas in
Cryptography, Aug 1998, pp 234-247.

[35] F.X.Standaert, G.Rouvroy, J.J.Quisquater, "FPGA Implementations of the DES and
Triple-DES Masked Against Power Analysis Attacks", IEEE Intl. Conference on Field
Programmable Logic and Applications, Aug 2006, pp 1-4.

[36] High Speed DES and Triple DES Encryptor/Decryptor.
http://www.xilinx.com/support/documentation/application notes/xapp270.pdf

[37] Y.S.Dhillon, et.al, " Analysis and Optimization of Nanometer CMOS Circuits for
Soft-Error Tolerance," IEEE Trans. VLSI System, Vol. 14, no.5, pp 514-524, May 2 006. J

[38] T.Rejimon and S.Bhanja, "A Timing-A ware Probabilistic Model for Single-Event
Upset Analysis," IEEE Trans. VLSI Systems, Vol. 14, Oct 2006.

http://www.cse.cuhk.edu.hk/~ceg5Q10/tuto/basic-fpga-arch-xilinx.ppt
http://www.xilinx.com/itp/xilinx8/help/iseguide/html/ise
http://www.altera.com/products/software/quartus-ii/subscription-edition/design-entry-
http://www.xilinx.com/support/documentation/application

97

[39] R.C.Baumann, "Radiation-Induced Soft Errors in Advanced Semiconductor
Technologies," IEEE Trans. Device and Material Reliability, Vol. 5, no. 3, pp 305-316,
Sept 2005.

[40] P.Hazucha, et.al, "Impact of CMOS Technology Scaling on the Atmospheric
Neutron Soft Error Rate," IEEE Trans, on Nuclear Science, Vol.47, no. 6, Dec 2000.

[41] W.M.Ebrahim, "Asynchronous Circuit for Soft Error Tolerance," Master's Thesis -
The University of Texas-Pan American, Dec 2008.

[42] Y.Monnet, et.al., "Asynchronous Circuits Transient Faults Sensitivity Evaluation,"
DAC 2005, pp 863-868, June 2005.

[43] Y.Monnet et.al, "Asynchronous Circuits Sensitivity to Fault Injection ," Proc. 10th

IEEE Intl. On-Line Testing Symp. ppl21-126, 2004.

[44] W.Jang et.al., "SEU-Tolerant QDI Circuits," Proceedings of the 11th Intl. Symp. on
Asynchronous Circuits and Systems, (ASYNC '05).

[45] S.Peng and Rajit Manohar, "Efficient Failure Detection in Pipelined Asynchronous
Circuits," Proc. of the 2Cf IEEE Intl. Symposium on Defect and Fault Tolerance in VLSI
Systems, 2005.

[46] I.M. Casto, "Self-Correction Structures and Robust Gate Design for Soft Error in
Asynchronous Systems," Master's Thesis - The University of Texas-Pan American, Aug
2007.

[47] Weidong Kuang, et.al. "Soft Error Hardening for Asynchronous Circuits," 22nd IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems, pp273-281,
Sept 2007.

[48] Weidong Kuang, et.al. "Design Asynchronous Circuits for Soft Error Tolerance,"
IEEE International Conference on Integrated Circuit Design and Technology, May 2007.

[49] Weidong Kuang, et.al. "Design of Asynchronous Circuits for High Soft Error
Tolerance in Deep Sub micrometer CMOS Circuits," IEEE Trans on VLSI Systems, 2009.

[50] Altera DE2 User Manual
ftp://ftp.altera.com/up/pub/Webdocs/DE2 UserManual.pdf

[51] T.Beyrouthy et.al, "A Novel Asynchronous e-FPGA Architecture for Security
Applications," IEEE Intl. Conf. on Field Programmable Technology, pp 369-372, Dec
2007.

[52] V.Pouget, et.al, "Dynamic Testing of an SRAM based FPGA by Time Resolved
Laser Fault Injection", IEEE Symposium on On-Line Testing, July 2008, pp 295-301.

ftp://ftp.altera.com/up/pub/Webdocs/DE2

98

APPENDIX A

99

APPENDIX A

DES Algorithm and Design Units in VHDL

Reference: http://www.orlingrabbe.com/des.htm
DES is a block cipAcr—meaning it operates on plaintext blocks of a given size (64-bits) and returns
ciphertext blocks of the same size. Thus DES results in a permutation among the 2A64 (read this as: "2 to
the 64th power") possible arrangements of 64 bits, each of which may be either 0 or 1. Each block of 64
bits is divided into two blocks of 32 bits each, a left half block L and a right half R. (This division is only
used in certain operations.)
Example: Let M be the plain text message M = 0123456789ABCDEF, where M is in hexadecimal (base
16) format. Rewriting M in binary format, we get the 64-bit block of text:
M = 0000 0001 0010 0011 0100 0101 01100111 1000 1001 1010 1011 1100 1101 1110 1111
L = 0000 0001 0010 00110100 0101 0110 0111
R = 1000 1001 1010 1011 1100 1101 1110 1111
The first bit of M is "0". The last bit is "1" . We read from left to right.
DES operates on the 64-bit blocks using key sizes of 56- bits. The keys are actually stored as being 64 bits
long, but every 8th bit in the key is not used (i.e. bits numbered 8, 16, 24, 32, 40, 48, 56, and 64). However,
we will nevertheless number the bits from 1 to 64, going left to right, in the following calculations. But, as
you will see, the eight bits just mentioned get eliminated when we create subkeys.
Example: Let K be the hexadecimal key K = 133457799BBCDFF1. This gives us as the binary key
(setting 1 = 0001, 3 = 0011, etc., and grouping together every eight bits, of which the last one in each group
will be unused):
K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001
The DES algorithm uses the following steps:

Step 1: Create 16 subkeys, each of which is 48-bits long.
The 64-bit key is permuted according to the following table, PC-1. Since the first entry in the table is "57",
this means that the 57th bit of the original key K becomes the first bit of the permuted key K+. The 49th bit
of the original key becomes the second bit of the permuted key. The 4th bit of the original key is the last bit
of the permuted key. Note only 56 bits of the original key appear in the permuted key.

PC-1
57
1

10
19
63
7

14
21

49
58
2

11
55
62
6

13

41
50
59
3

47
54
61
5

33
42
51
60
39
46
53
28

25
34
43
52
31
38
45
20

17
26
35
44
23
30
37
12

9
18
27
36
15
22
29
4

Example: From the original 64-bit key
K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001
we get the 56-bit permutation
K+= 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111
Next, split this key into left and right halves, C0 and D0, where each half has 28 bits.
Example: From the permuted key K+, we get
C0= 11110000110011 0010101 0101111
A> = 0101010 1011001 1001111 0001111

http://www.orlingrabbe.com/des.htm

100

With C0 and D0 defined, we now create sixteen blocks C„ and Dn, l<=n<=16. Each pair of blocks C„ and
D„ is formed from the previous pair C„., and D„.t, respectively, for n = 1,2, ..., 16, using the following
schedule of "left shifts" of the previous block. To do a left shift, move each bit one place to the left, except
for the first bit, which is cycled to the end of the block.

Iteration Number of
Number Left Shifts

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1
1
2
2
2
2
2
2
1
2
2
2
2
2
2
1

This means, for example, C3 and D3 are obtained from C2 and Z)2, respectively, by two left shifts, and C,6

and D,6 are obtained from C15 and D/j, respectively, by one left shift. In all cases, by a single left shift is
meant a rotation of the bits one place to the left, so that after one left shift the bits in the 28 positions are the
bits that were previously in positions 2, 3,..., 28, 1.
Example: From original pair pair Cg and D0 we obtain:
C« =1111000011001100101010101111
D0=0101010101100110011110001111
C,= 1110000110011001010101011111
D,= 1010101011001100111100011110
C2= 1100001100110010101010111111
D2= 0101010110011001111000111101
C, = 00001100110010101010111 111 11
D3= 0101011001100111100011110101
0 = 0011001100101010101111111100
A, = 0101100110011110001111010101
C5=1100110010101010111111110000
D,=0110011001111000111101010101
C6= 0011001010101011111111000011

D6= 1001100111100011110101010101
C7= 1100101010101111111100001100
Z>7=0110011110001111010101010110
Cs=0010101010111111110000110011
Ds= 1001111000111101010101011001
C„=0101010101111111100001100110
D9= 0011110001111010101010110011
Cj0=0101010111111110000110011001
D,B= 1111000111101010101011001100
C„ = 010101111 111 1000011001100101
Dn= 1100011110101010101100110011
C12=0101111111100001100110010101
Z),2 = 0001111010101010110011001111

101

C13= 0111111110000110011001010101
D13=0111101010101011001100111100
C14 = 1111111000011001100101010101
Dl4 = 1110101010101100110011110001
C /5 =1111100001100110010101010111
Z>/5=1010101010110011001111000111
C16=1111000011001100101010101111
Dl6 = 0101010101100110011110001 111
We now form the keys #„, for K=w<=16, by applying the following permutation table to each of the
concatenated pairs C„D„. Each pair has 56 bits, but PC-2 only uses 48 of these.

PC-2
14
3

23
16
41
30
44
46

17
28
19
7

52
40
49
42

11
15
12
27
31
51
39
50

24
6
4

20
37
45
56
36

1
21
26
13
47
33
34
29

5
10
8
2

55
48
53
32

Therefore, the first bit of #„ is the 14th bit of C„D„, the second bit the 17th, and so on, ending with the 48th
bit of #„ being the 32th bit of C„D„.
Example: For the first key we have QD, = 1110000 1100110 0101010 1011111 1010101 0110011
00111100011110
which, after we apply the permutation PC-2, becomes
, = 000110 110000 001011 101111 111111000111000001 110010
For the other keys we have
K2 = 011110 011010 111011 011001 110110 111100 100111 100101
, = 010101 011111 110010 001010 010000 101100 111110011001
, = 011100 101010 110111 010110 110110 110011 010100011101
#5=011111 001110 110000 000111 111010 110101001110 101000
#5=011000 111010010100 111110010100 000111 101100 101111
#7=111011001000010010 110111 111101 100001 100010 111100
, = 111101 111000 101000 111010 110000010011 101111 111011
9 = 111000 001101 101111 101011 111011 011110 011110 000001
#w=101100011111 001101000111 101110 100100011001001111
i ; = 001000 010101 111111010011 110111 101101001110000110
i 2 = 011101 010111 000111 110101 100101 000110011111 101001
„ = 100101 111100 010111010001 111110 101011 101001000001
#,4 = 010111 110100 001110 110111 111100 101110011100 111010
, 5 = 101111 111001 000110001101 001111 010011 111100 001010
#,,(=110010 110011 110110 001011000011 100001011111 110101
So much for the subkeys. Now we look at the message itself.

Step 2: Encode each 64-bit block of data.
There is an initial permutation IP of the 64 bits of the message data M. This rearranges the bits according
to the following table, where the entries in the table show the new arrangement of the bits from their initial
order. The 58th bit of M becomes the first bit of IP. The 50th bit of M becomes the second bit of IP. The
7th bit of M is the last bit of IP.

58
60
62
64
57
59
61
63

50
52
54
56
49
51
53
55

42
44
46
48
41
43
45
47

IP
34
36
38
40
33
35
37
39

26
28
30
32
25
27
29
31

18
20
22
24
17
19
21
23

10
12
14
16
9

11
13
15

2
4
6
8
1
3
5
7

102

Example: Applying the initial permutation to the block of text M, given previously, we get
M = 0000 0001 00100011 01000101 01100111 1000 1001 1010 1011 1100 1101 1110 1111
IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1111 0000 1010 1010
Here the 58th bit of M is "1" , which becomes the first bit of IP. The 50th bit of M is "1" , which becomes
the second bit of IP. The 7th bit of M is "0", which becomes the last bit of IP.
Next divide the permuted block IP into a left half L0 of 32 bits, and a right half R0 of 32 bits.
Example: From IP, we get L0 and R„
L0= 1100 1100 0000 0000 1100 1100 1111 1111
R0 = 1111 0000 1010 1010 1111 0000 1010 1010
We now proceed through 16 iterations, for 1<=«<=16, using a function/ which operates on two blocks~a
data block of 32 bits and a key K„ of 48 bits~to produce a block of 32 bits. Let + denote XOR addition,
(bit-by-bit addition modulo 2). Then for n going from 1 to 16 we calculate
L„ = R„-i
Rn - L„.i +J[Rn./,K„)
This results in a final block, for « = 16, of L16R16. That is, in each iteration, we take the right 32 bits of the
previous result and make them the left 32 bits of the current step. For the right 32 bits in the current step,
we XOR the left 32 bits of the previous step with the calculation/.
Example: For n = 1, we have
A"7 = 000110 110000 001011 101111 111111 000111 000001 110010
Lj=R„= 1111 0000 1010 1010 1111 0000 1010 1010
R,=L,+J[R,*,)
It remains to explain how the function/works. To calculate/ we first expand each block R„_i from 32 bits
to 48 bits. This is done by using a selection table that repeats some of the bits in R„.,. We'll call the use of
this selection table the function E. Thus E(K„_/) has a 32 bit input block, and a 48 bit output block.
Let E be such that the 48 bits of its output, written as 8 blocks of 6 bits each, are obtained by selecting the
bits in its inputs in order according to the following table:

E BIT-SELECTION TABLE
32
4
8

12
16
20
24
28

1
5
9

13
17
21
25
29

2
6

10
14
18
22
26
30

3
7

11
15
19
23
27
31

4
8

12
16
20
24
28
32

5
9

13
17
21
25
29
1

Thus the first three bits of E(/?„_,) are the bits in positions 32, 1 and 2 of R„_i while the last 2 bits ofE(R„.,)
are the bits in positions 32 and 1.
Example: We calculate TL(R0) from R0 as follows:
R0= 1111 0000 1010 1010 1111 0000 1010 1010
E(J?fl) = 011110 100001 010101 010101 011110 100001 010101 010101
(Note that each block of 4 original bits has been expanded to a block of 6 output bits.)
Next in the/calculation, we XOR the output E(R„_/) with the key K„:

Kn + Wn-,)-
Example: For Kt, E(R»), we have
, = 000110 110000 001011 101111 111111000111000001 110010
E(/?«,) = 011110 100001 010101 010101 011110 100001 010101 010101
A"/+E(JR0) = 011000 010001 011110 111010 100001 100110 010100 100111.
We have not yet finished calculating the function/. To this point we have expanded /?„_/ from 32 bits to 48
bits, using the selection table, and XORed the result with the key K„ . We now have 48 bits, or eight groups
of six bits. We now do something strange with each group of six bits: we use them as addresses in tables
called "S boxes". Each group of six bits will give us an address in a different S box. Located at that address
will be a 4 bit number. This 4 bit number will replace the original 6 bits. The net result is that the eight
groups of 6 bits are transformed into eight groups of 4 bits (the 4-bit outputs from the S boxes) for 32 bits
total.
Write the previous result, which is 48 bits, in the form:

Kn + E(R„.,) =B1B2B3B4BSB6B7B8,

103

where each B-, is a group of six bits. We now calculate
S1(B1)S2(B2)S3(B3)S4(B4)S,(Bs)S6(B6)S7(B7)Slt(Bll)

where 5,/Bj) refers to the output of the t-th S box.
To repeat, each of the functions 57, S2,..., S8, takes a 6-bit block as input and yields a 4-bit block as output.
The table to determine 5; is shown and explained below:

SI

Column Number
Row
No.

0
1
2
3

0

14
0
4

15

1

4
15
1

12

2

13
7

14
8

3

1
4
8
2

4

2
14
13
4

5

15
2
6
9

6

11
13
2
1

7

8
1

11
7

8

3
10
15
5

9

10
6

12
11

10

6
12
9
3

11

12
11
7

14

12

5
9
3

10

13

9
5

10
0

14

0
3
5
6

15

7
8
0

13

If Si is the function defined in this table and B is a block of 6 bits, then S}(B) is determined as follows: The
first and last bits of B represent in base 2 a number in the decimal range 0 to 3 (or binary 00 to 11). Let that
number be i. The middle 4 bits of B represent in base 2 a number in the decimal range 0 to 15 (binary 0000
to 1111). Let that number be / . Look up in the table the number in the i-th row and/'-th column. It is a
number in the range 0 to 15 and is uniquely represented by a 4 bit block. That block is the output St(B) of
S, for the input B. For example, for input block B = 011011 the first bit is "0" and the last bit "1" giving 01
as the row. This is row 1. The middle four bits are "1101". This is the binary equivalent of decimal 13, so
the column is column number 13. In row 1, column 13 appears 5. This determines the output; 5 is binary
0101, so that the output is 0101. Hence 5/(011011) = 0101.
The tables defining the functions S1,...,S8 are the following:

SI
14
0
4

15

15
3
0

13

10
13
13
1

7
13
10
3

2
14
4

4
15
1

12

1
13
14
8

0
7
6

10

13
8
6

15

12
11
2

13
7

14
8

8
4
7

10

9
0
4

13

14
11
9
0

4
2
1

1
4
8
2

14
7

11
1

14
9
9
0

3
5
0
6

1
12
11

2
14
13
4

6
15
10
3

6
3
8
6

0
6

12
10

7
4

10

15
2
6
9

11
2
4

15

3
4

15
9

6
15
11
1

10
7

13

11
13
2
1

3
8

13
4

15
6
3
8

9
0
7

13

11
13
7

8
1

11
7

S2

4
14
1
2

S3
5

10
0
7

S4
10
3

13
8

S5
6
1
8

3
10
15
5

9
12
5

11

1
2

11
4

1
4

15
9

8
5

15

10
6

12
11

7
0
8
6

13
8
1

15

2
7
1
4

5
0
9

6
12
9
3

2
1

12
7

12
5
2

14

8
2
3
5

3
15
12

12
11
7

14

13
10
6

12

7
14
12
3

5
12
14
11

15
10
5

5
9
3

10

12
6
9
0

11
12
5

11

11
1
5

12

13
3
6

9
5

10
0

0
9
3
5

4
11
10
5

12
10
2
7

0
9
3

0
3
5
6

5
11
2

14

2
15
14
2

4
14
8
2

14
8
0

7
8
0

13

10
5

15
9

8
1
7

12

15
9
4

14

9
6

14

11 8 12 7 1 14 2 13 6 15 0 9 10

104

12
10
9
4

4
13
1
6

13
1
7
2

1
15
14
3

11
0
4

11

2
15
11
1

10
4

15
2

2
11
11
13

8
13
4

14

15
2
5

12

14
7

13
8

4
8
1
7

9
7
2
9

15
4

12
1

6
10
9
4

2
12
8
5

0
9
3
4

15
3

12
10

6
9

12
15

8
1
7

10

11
7

14
8

S6
8
5
3

10

S7
13
10
14
7

S8
1
4
2

13

0
6
7

11

3
14
10
9

10
12
0

15

13
1
0

14

12
3

15
5

9
5
6

12

3
13
4
1

9
5
6
0

3
6

10
9

4
14
10
7

7
12
8

15

14
11
13
0

14
0
1
6

5
2
0

14

5
0

15
3

7
11
13
0

10
15
5
2

0
14
3
5

5
3

11
8

6
8
9
3

12
9
5
6

11
8
6

13

1
6
2

12

7
2
8

11
Example: For the first round, we obtain as the output of the eight S boxes:
K, + E(R0) = 011000 010001 011110 111010 100001 100110 010100 100111.
SI(Bl)S2(B2)S3(B3)S4(B4)Ss(B5)S6(B6)S7(B7)S8(B8) = 0101 1100 1000 0010 1011 0101 1001 0111
The final stage in the calculation of/ is to do a permutation P of the S-box output to obtain the final value
of/:

f=P(S1(Bl)S2(B2)...S8(Bs))
The permutation P is defined in the following table. P yields a 32-bit output from a 32-bit input by
permuting the bits of the input block.

ie
29
I
5
2

32
19
22

7
12
15
18
8

27
13
11

20
28
23
31
24
3

30
4

21
17
26
10
14
9
6

25
Example: From the output of the eight S boxes:

S,(B1)S2(B2)S3(B3)S4(B4)SS(BS)S6(B^S7(B7)SS(BS) = 0101 1100 1000 0010 1011 0101 1001 0111
we get

/=00100011 0100 1010 1010 1001 1011 1011
R,= L„ +/{R„ ,K,)
= 1100 1100 0000 0000 1100 1100 1111 1111
+ 0010 00110100 1010 1010 1001 1011 1011
= 1110 m i oioo loioonooioi 01000100
In the next round, we will have L2 = Ri, which is the block we just calculated, and then we must calculate
R2 =L, +f(Ri, K^, and so on for 16 rounds. At the end of the sixteenth round we have the blocks Ll6 and
R16. We then reverse the order of the two blocks into the 64-bit block

and apply a final permutation IP"1 as defined by the following table:
IP"1

40
39
38
37
36
35

8
7
6
5
4
3

48
47
46
45
44
43

16
15
14
13
12
11

56
55
54
53
52
51

24
23
22
21
20
19

64
63
62
61
60
59

32
31
30
29
28
27

34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

That is, the output of the algorithm has bit 40 of the preoutput block as its first bit, bit 8 as its second bit,
and so on, until bit 25 of the preoutput block is the last bit of the output.
Example: If we process all 16 blocks using the method defined previously, we get, on the 16th round,
Ln = 0100 0011 0100 0010 0011 0010 0011 0100
R16 = 0000 10100100 1100 1101 1001 10010101
We reverse the order of these two blocks and apply the final permutation to
R16L16 = 00001010 01001100 11011001 10010101 01000011 010000100011001000110100
IF1 = 10000101 11101000 00010011 01010100 00001111 00001010 10110100 00000101
which in hexadecimal format is
85E813540F0AB405.
This is the encrypted form of M = 0123456789ABCDEF: namely, C = 85E813540F0AB405.
Decryption is simply the inverse of encryption, following the same steps as above, but reversing the order
in which the subkeys are applied.

106

APPENDIX B

107

APPENDIX B

NCLsignals.vhd
NCL Library

Library IEEE;
use IEEE.std_logic_1164.all;

package ncl_signals is

type dual_rail_logic is
record

RAIL1 : std_logiC;
RAILO : std_logic;

end record;

type dual_rail_logic_vector is array (NATURAL range <>) of dual_rail_logic;

end ncl_signals;

NCLgates.vhd

invxO

library ieee;
use ieee.std_logic_1164.all;

entity invxO is
port(i: in std_logic;

zb: out std_logic);
end invxO;

architecture archinvxO of invxO is
begin

invxO: process(i)
begin

if i = '0' then
zb <= '1';

elsif i = '1' then
zb <= ' 0' ;

else
zb <= not i;

end if;
end process;

end archinvxO;

-- thl2bx0

library ieee;
use ieee.std_logic_1164.all;

entity thl2bx0 is
port(a: in std_logic;

b: in std_logic;
zb: out std_logic);

end th!2bx0;

architecture archthl2bx0 of thl2bx0 is
begin

thl2bx0: process(a, b)
begin

if a = '0' and b = '0' then
zb <= •!';

elsif a = '1' or b = '1' then
zb <= '0';

-- else
--zb <= a nor b;

end if;
end process;

end archthl2bx0;

th22dx0

library ieee;
use ieee.std_logic_1164.all;

entity th22dx0 is
port(a: in std_logic;

b: in std_logic;
rst: in std_logic;
z: out std_logic);

end th22dx0;

architecture archth22dx0 of th22dx0 is
begin

th22dx0: process(a, b, rst)
begin

if rst = '1' then -- reset
z <= ' 1' ;

elsif (a= '1' and b= '1') then
z <= ' 1' ;

elsif (a= '0' and b= '0') then
z <= ' 0' ;

end if;
end process;

end archth22dx0;

th22nx0

library ieee;
use ieee.std_logic_1164.all;

entity th22nx0 is
port(a: in std_logic;

b: in std_logic,-
rst: in std_logic;
z: out std_logic);

end th22nx0;

architecture archth22nx0 of th22nx0 is
begin

th22nx0: process(a, b, rst)
begin

if rst = '1' then -- reset
z <= '0';

elsif (a= '1' and b= '1') then
z <= '1';

elsif (a= '0' and b= '0') then
z <= '0';

end i f;
end process ,-

end archth22nx0,-

109

-- th22x0

library ieee;
use ieee.std_logic_1164.all;

entity th22x0 is
port(a: in std_logic;

b: in std_logic;
z: out std_logic);

end th22x0;

architecture archth22x0 of th22x0 is
begin

th22x0: process(a, b)
begin

if (a= •1' and b= •1') then
z <= '1';

elsif (a= '0' and b= '0') then
z <= '0' ;

end if;
end process;

end archth22x0;

-- th23x0

library ieee;
use ieee.std_logic_1164.all;

entity th2 3x0 is
port(a: in std_logic;

b: in std_logic;
c: in std_logic;
z: out std_logic);

end th23x0;

architecture archth23x0 of th23x0 is
begin

th23x0: process(a, b, c)
begin

if (a= '0' and b= '0' and c= '0') then
z <= '0';

elsif (a= '1' and b= '1') or (b= '1' and c= '1') or (c= '1' and a= '1') then
z <= •1';

end if;
end process;

end archth23x0;

-- th23w2x0

library ieee;
use ieee.std_logic_1164.all;

entity th23w2x0 is
port(a: in std_logic; -- weight 2

b: in std_logic;
c: in std_logic;
z: out std_logic) ,-

end th23w2x0;

architecture archth23w2x0 of th23w2x0 is
begin

th23w2x0: process(a, b, c)
begin

if (a= '0' and b= '0' and c= '0') then
z <= '0';

elsif (a= '!' or (b= •1' and c= '!')) then

Z <= '1' ;
end if; -- else NULL

end process;
end archth23w2x0;

-- th3 3x0

library ieee;
use ieee.std_logic_1164.all;

entity th33x0 is
port(a: in std_logic;

b: in std_logic;
c: in std_logic;
z: out std_logic);

end th33x0;

architecture archth33x0 of th33x0 is
begin

th33x0: process(a, b, c)
begin

if (a= '1' and b= '1' and c= '1') then
z <= '1';

elsif (a= '0' and b= '0' and c= '0') then
z <= '0' ;

end if; -- else NULL
end process;

end archth33x0;

--th34w2x0

library ieee;
use ieee.std_logic_1164.all;

entity th34w2x0 is
port(a: in std_logic; -- weight 2

b: in std_logic;
c: in std_logic;
d: in std_logic;
z: out std_logic);

end th34w2x0;

architecture archth34w2x0 of th34w2x0 is
begin

th34w2x0: process(a, b, c, d)
begin

if (a= '0' and b= '0' and c= '0' and d = '0') then
z <= '0';

elsif (a = '1' and b = '1')
or (a = '1' and c = '1')
or (a = '1' and d = '1')
or (b = '1' and c = '1' and d = '1') then

z <= •1';

end if; -- else NULL
end process;

end archth34w2x0;

-- th44x0

library ieee;
use ieee.std_logic_1164.all;

entity th44x0 is
port(a

b
c
d

in std_logic;
in std_logic;
in std_logic;
in std_logic;

z: out std_logic);
end th44x0;

architecture archth44x0 of th44x0 is
begin

th44x0: process(a, b, c, d)
begin

if (a= •1' and b= '1' and c= '1' and d= '1') then
z <= '1';

elsif (a= '0' and b= '0' and c= '0' and d= '0') then
z <= '0';

end if; -- else NULL
end process;

end archth44x0;

NCLcomponents. vhd
-- Package used for Completion Component

Library IEEE;
use IEEE.std_logic_1164.all;

package tree_funcs is

function log_u(L: integer; R: integer) return integer; -- ceiling of Log base R of 1
function level_number(width, level, base: integer) return integer; -- bits to be combined
on level of tree of width using base input gates

end tree_funcs,-

package body tree_funcs is

function log_u(L: integer; R: integer) return integer is
variable temp: integer := 1;
variable level: integer := 0;
begin

if L = 1 then
return 0;

end i f;

while temp < L loop
temp := temp * R;
level := level + 1;

end loop;
return level;

end;

function level_number(width, level, base: integer) return integer is
variable num: integer := width;
begin

if level /= 0 then
for i in 1 to level loop

if (log_u((num / base) + (num rem base), base) + i) = log_u(width, base)
then

num := (num / base) + (num rem base);
else

num := (num / base) + 1;
end i f;

end loop;
end if;
return num;

end;

end tree_funcs;

-- Generic Completion Component

library ieee;
use ieee.std_logic_1164.all;
use work.tree funcs.all;

entity comp is
generic (width : integer) ;
port(a: IN std_logic_vector(width-1 downto 0) ;

ko: OUT std_logic);
end comp;

architecture arch of comp is

type completion is array (log_u (width, 4) downto 0, width-1 downto 0) of std_logic,-
signal comp_array: completion;

component th22x0
port(a: in std_logic;

b: in std_logic;
z: out std_logic);

end component;

component th33x0
port(a: in std_logic;

b: in std_logic;
c: in std_logic;
z: out std_logic);

end component;

component th44x0
port(a: in std_logic;

in std_logic;
in std_logic;
in std_logic;
out std_logic),

end component;

begin
RENAME: for i in 0 to width-1 generate

comp_array (0, i) <= a(i);
end generate;

STRUCTURE: for k in 0 to log_u(width, 4)-l generate
begin
NOT_LAST: if level_number(width, k, 4) > 4 generate
begin
PRINCIPLE: for j in 0 to (level_number(width, k, 4) / 4)-l generate
G4: th44x0
port map(comp_array(k, j*4), comp_array(k, j*4+l), comp_array(k, j*4+2), comp_array(k,
j*4+3), comp_array(k+1, j)) ;
end generate;

LEFT_OVER_GATE: if log_u((level_number(width, k, 4) / 4) + (level_number(width, k, 4) rem
4), 4) + k + 1/= log_u(width, 4) generate
begin
NEED22: if (level_number(width, k, 4) rem 4) = 2 generate
G2: th22x0
port map(comp_array(k, level_number(width, k, 4)-2), comp_array(k, level_number(width, k,
4)-l), comp_array(k+1, (level_number(width, k, 4) / 4)));
end generate

NEED33: if (level_number(width, k, 4) rem 4) = 3 generate
G3: th33x0
port map(comp_array(k, level_number(width, k, 4)-3), comp_array(k, level_number(width, k,
4)-2), comp_array(k, level_number(width, k, 4)-l), comp_array(k+1, (level_number(width,
k, 4) / 4)))
end generate
end generate

LEFT_OVER_SIGNALS: if (log_u((level_number(width, k, 4) / 4) + (level_number(width, k, 4)
rem 4), 4) + k + 1 = log_u(width, 4)) and ((level_number(width, k, 4) rem 4) /= 0)
generate
begin

RENAME_SIGNALS: for h in 0 to (level_number(width, k, 4) rem 4)-l generate

113

comp_array (k+1, (level_number(width, k, 4) / 4)+h) <= comp_array (k, level__number (width,
k, 4)-l-h);
end generate;
end generate;
end generate;

LAST22: if level_number(width, k, 4) = 2 generate
G2F: th22xO
port map(comp_array (k, 0), comp_array (k, 1), ko) ,-
end generate;

LAST33: if level_number(width, k, 4) = 3 generate
G3F: th3 3x0
port map(comp_array(k, 0), comp_array(k, 1), comp_array(k, 2), ko) ;
end generate;

LAST44: if level_number(width, k, 4) = 4 generate
G4F: th44x0
port map(comp_array(k, 0), comp_array(k, 1), comp_array(k, 2), comp_array(k, 3), ko) ;
end generate;
end generate;

end arch;

-- 1-bit Dual-Rail Register

use work.ncl_signals.all;
library ieee;
use ieee.std_logic_1164.all;

entity ncl_register_Dl is
generic(initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL
port(D: in dual_rail_logic;

ki: in std_logic;
rst: in std_logic;
Q: out dual_rail_logic;
ko: out std_logic);

end ncl_register_Dl;

architecture arch of ncl_register_Dl is
signal Qbuf: dual_rail_logic;

component th22nx0
port (a, b, rst: IN std_logic;

z: OUT std_logic);
end component;

component th22dx0
port (a, b, rst: IN std_logic;

z: OUT std_logic);
end component;

component thl2bx0
port (a, b: IN std_logic;

zb: OUT std_logic);
end component;

begin
RstN: if initial_value = -4 generate

R0: th22nx0
port map(D.railO, ki, rst, Qbuf . railO) ,•

Rl: th22nx0
port map(D.raill, ki, rst, Qbuf.raill);

end generate;

Rstl: if initial_value = 1 generate
R0: th22nx0

port map(D.railO, ki, rst, Qbuf.railO);

Rl: th22dx0

port map(D.raill, ki, rst, Qbuf.raill);
end generate;

114

RstO: if initial_value = 0 generate
RO: th22dx0

port map(D.railO, ki, rst, Qbuf.railO);

Rl: th22nx0
port map(D.raill, ki, rst, Qbuf.raill);

end generate;

Q <= Qbuf;

COMP: thl2bx0
port map(Qbuf.railO, Qbuf.raill, ko) ;

end;

-- Generic Length Dual-Rail Register

use work.ncl_signals.all;
library ieee;
use ieee.std_logic_1164.all;

entity ncl_register_D is
generic(width: integer;

initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL
port(D: in dual_rail_logic_vector(width-1 downto 0);

ki: in std_logic;
rst: in std_logic;
Q: out dual_rail_logic_vector(width-1 downto 0);
ko: out std_logic_vector(width-1 downto 0));

end ncl_register_D;

architecture gen of ncl_register_D is
component ncl_register_Dl

generic(initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL
port(D: in dual_rail_logic;

ki: in std_logic;
rst: in std_logic;
Q: out dual_rail_logic;
ko: out std_logic);

end component;

begin
gen_reg: for i in 0 to D'length-1 generate

REGi: ncl_register_Dl
generic map(initial_value)
port map(D(i), ki, rst, Q(i), ko(i));

end generate;
end;

-- 1-bit initreg without comp det

use work.ncl_signals.all;
library ieee;
use ieee.std_logic_1164.all;

entity ncl_register_Dll is
generic(initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL
port(D: in dual_rail_logic;

ki: in std_logic,-
rst: in std_logic;
Q: out dual_rail_logic);

end ncl_register_Dll;

architecture arch of ncl_register_Dll is

component th22nx0
port (a, b, rst: IN std_logic;

z: OUT std_logic);

end component;

component th22dx0
port (a, b, rst: IN std_logic;

z: OUT std_logic);
end component;

begin
RstN: if initial_value = -4 generate

RO: th22nx0
port map(D.railO, ki, rst, Q.railO);

Rl: th22nx0
port map(D.raill, ki, rst, Q.raill);

end generate;

Rstl: if initial_value = 1 generate
RO: th22nx0

port map(D.railO, ki, rst, Q.railO);

Rl: th22dx0
port map(D.raill, ki, rst, Q.raill);

end generate;

RstO: if initial_value = 0 generate
RO: th22dx0

port map(D.railO, ki, rst, Q.railO);

Rl: th22nx0
port map(D.raill, ki, rst, Q.raill);

end generate;

end;

-- Generic Length initial register

use work.ncl_signals.all;
library ieee;
use i e e e . s td_ logic_HS4 . a l l ;

entity ncl_reg_Dinit is
generic(width: integer;

initial_value: integer); -- 1=DATA1, 0=DATA0, -4=NULL
port(D: in dual_rail_logic_vector(width-1 downto 0);

ki: in std_logic;
rst: in std_logic;
Q: out dual_rail_logic_vector (width-1 downto 0)) ,•

end ncl_reg_Dinit;

architecture gen of ncl_reg_Dinit is
component ncl_register_Dll

generic(initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL
port(D: in dual_rail_logic;

ki: in std_logic;
rst: in std_logic;
Q: out dual_rail_logic);

end component;

begin
gen_reg: for i in 0 to D'length-1 generate

REGi: ncl_register_Dll
generic map(initial_value)
port map(D(i), ki, rst, Q(i));

end generate;
end;

116

APPENDIX C

APPENDIX C

VHDL Files Used for the Thesis

Asynchronous DES Algorithm:
desl.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.ncl_signals.all;

entity desl is
Port (pt :

key
ct :
rst

end desl;

in dual_rail_logic_vector (1 to 64);
in dual_rail_logic_vector (1 to 64),
out dual_rail_logic_vector (1 to 64)
: in STD LOGIC);

architecture Behavioral of desl is
signal pti,keyi,keycpto,cti : dual_rail_logic_vector(1 to 64);
signal LI,L2,L3,L4,L5,L6,L7,L8,L9,L10,Lll,L12,L13,L14,L15,L16,

Lli,L2i,L3i,L4i,L5i,L6i,L7i,L8i,L9i,L10i,Llli,L12i,L13i,
L14i , L15i,L16i,Rl,R2,R3,R4,R5,R6,R7,R8,R9,RIO,Rll,R12,
R13,R14,R15,R16,Rli,R2i,R3i,R4i,R5i,R6i,R7i,R8i,R9i,R10i,
Rlli,R12i,R13i,R14i,R15i,R16i : dual_rail_logic_vector(1 to 32);

signal CI,C2,C3,C4,C5,C6,C7,C8,C9,CIO,Cll,C12,C13,C14,C15,C16,
Cli,C2i,C3i,C4i,C5i,C6i,C7i,C8i,C9i,C10i,Clli,C12i,C13i,
C14i,C15i,C16i,Dl,D2,D3,D4,D5,D6,D7,D8,D9,D10,Dll,D12,D13,
D14,D15,D16,Dli,D2 i,D3 i,D4 i,D5i,D6i,D7i,D8i,D9i,DIOi,Dili,
D12i,D13i,D14i,D15i,D16i : dual_rail_logic_vector(1 to 28);

signal kl, k2,k3,k4,k5,k6,k7,k8,k9,klO,kll,kl2,kl3,kl4,kl5,kl6,kl7 : std_logic;
component initreg

port (DTI : in dual_rail_logic_vector(1 to 64);
in dual_rail_logic_vector(1 to 64);

: in std_logic;
in std_logic;
out dual_rail_logic_vector(1 to 64);
out dual_rail_logic_vector(1 to 64));

DT2
rst
ki
Ql
Q2

end component;
component regandcompdetltolS is

Port (DTI
DT2
DT3
DT4
rst
ki :
Ql
Q2
Q3
Q4

in dual_rail_logic_vector(1 to 32)
in dual_rail_logic_vector(1 to 32)
in dual_rail_logic_vector(1 to 28)
in dual_rail_logic_vector(1 to 28)
in STD_LOGIC;

in STD_LOGIC;
out dual_rail_logic_vector(1 to 32)
out dual_rail_logic_vector(1 to 32)
out dual_rail_logic_vector(1 to 28)
out dual_rail_logic_vector(1 to 28)
out std_logic); ko

end component;
component regcompdet

port (DTI : in dual_rail_logic_vector(1 to 32);
DT2 : in dual_rail_logic_vector(1 to 32);
rst : in std_logic;
ki : in std_logic;

118

Ql : out dual_rail_logic_vector(1 to 32);
Q2 : out dual_rail_logic_vector(1 to 32);
ko : out std_logic);

end component;
component finalregandcompdet

port (D : in dual_rail_logic_vector(1 to 64);
rst : in std_logic,-
ki : in std_logic;
Q : out dual_rail_logic_vector(1 to 64);
ko : out std_logic);

end component;
component initround

port (pt : in dual_rail_logic_vector(1 to 64);
key : in dual_rail_logic_vector(1 to 64);
L : out dual_rail_logic_vector(1 to 32);
R : out dual_rail_logic_vector(1 to 32) ;
C : out dual_rail_logic_vector(1 to 28) ;
D : out dual_rail_logic_vector(1 to 28));

end component;
component roundltol4sl

port (Li : in dual_rail_logic_vector(1 to 32);
Ri : in dual_rail_logic_vector(1 to 32);
Ci : in dual_rail_logic_vector(1 to 28);
Di : in dual_rail_logic_vector(1 to 28);
Lo : out dual_rail_logic_vector(1 to 32)
Ro : out dual_rail_logic_vector(1 to 32)
Co : out dual_rail_logic_vector(1 to 28)
Do : out dual_rail_logic_vector(1 to 28)

end component;
component roundltol4s2

port (Li : in dual_rail_logic_vector(1 to 32);
in dual_rail_logic_vector(1 to 32);
in dual_rail_logic_vector(1 to 28);
in dual_rail_logic_vector(1 to 28);
out dual_rail_logic_vector(1 to 32)
out dual_rail_logic_vector(1 to 32)
out dual_rail_logic_vector(1 to 28)
out dual_rail_logic_vector(1 to 28

Ri
Ci
Di
Lo
Ro
Co
Do

end component;
component round

port (Li :
Ri
Ci
Di
Lo
Ro

end component;
component finalround

port (L16 : in dual_rail_logic_vector(1 to 32);
R16 : in dual_rail_logic_vector(1 to 32
ct : out dual_rail_logic_vector(1 to 64

end component;

));

in dual_rail_logic_vector(1 to 32);
in dual_rail_logic_vector(1 to 32)
in dual_rail_logic_vector(1 to 28)
in dual_rail_logic_vector(1 to 28)
out dual_rail_logic_vector(1 to 32
out dual_rail_logic_vector(1 to 32

begin

pti <= pt; keyi <= key;
regO : initreg port map(pti,keyi,rst,kl,pto,keyo);
roundO : initround port map (pto, keyo, Lli,Rli,Cli, Dli) ,-
regl : regandcompdetltolS port map(Lli,Rli,Cli,Dli,rst,
roundl : roundltol4sl port map(L1,R1,C1,D1,L2i,R2i,C2i,
reg2 : regandcompdetltolS port map(L2i,R2i,C2i,D2i,rst,
round2 : roundltol4s2 port map(L2,R2,C2,D2,L3i,R3i,C3i,
reg3 : regandcompdetltolS port map(L3i,R3i,C3i,D3i,rst,
round3 : roundltol4s2 port map(L3,R3,C3,D3,L4i,R4i,C4i,
reg4 : regandcompdetltolS port map(L4i,R4i,C4i,D4i,rst,
round4 : roundltol4s2 port map(L4,R4,C4,D4,L5i,R5i,C5i,
reg5 : regandcompdetltolS port map(L5i,R5i,C5i,D5i,rst,
round5 : roundltol4s2 port map(L5,R5,C5,D5,L6i,R6i,C6i,
reg6 : regandcompdetltolS port map(L6i,R6i,C6i,D6i,rst,
round6 : roundltol4s2 port map(L6,R6,C6,D6,L7i,R7i,C7i,
reg7 : regandcompdetltolS port map(L7i,R7i,C7i,D7i,rst,

k2,Ll,Rl,Cl,Dl,kl)
D2i) ;
k3,L2,R2,C2,D2,k2)
D3i) ;
k4 , L3 , R3 , C3 , D3 , k3)
D4i) ;
k5 , L4 , R4 , C4 , D4 , k4)
D5i) ;
k6,L5,R5,C5,D5,k5)
D6i) ;
k7,L6,R6,C6,D6,k6)
D7i) ;
k8,L7,R7,C7,D7,k7)

119

round7 : roundltol4s2 port map(L7,R7,C7,D7,L8i,R8i,C8i,D8i);
reg8 : regandcompdetltolS port map(L8i,R8i,C8i,D8i,rst,k8,L8,R8,C8,D8,k8);
round8 : roundltol4sl port map(L8,R8,C8.D8,L9i,R9i, C9i, D9i) ;
reg9 : regandcompdetltolS port map(L9i,R9i,C9i,D9i,rst,klO,L9,R9,C9,D9,k9);
round9 : roundltol4s2 port map(L9.R9,C9,D9,L10i,R10i,ClOi,DIOi);
reglO : regandcompdetltolS port map(L10i,R10i,C10i,D10i, rst,kll,L10,R10,C10,D10,klO)
roundlO : roundltol4s2 port map(L10,RIO,CIO,D10,Llli,Rlli,Clli,Dili);
regll : regandcompdetltol5 port map(Llli,Rlli,Clli,Dili,rst,kl2,L11,R11,Cll,Dll,kll)
roundll : roundltol4s2 port map(Lll,Rll,C11,D11,L12i,R12i, C12i, D12i) ;
regl2 : regandcompdetltolS port map(L12i,R12i,C12i,D12i, rst,kl3,L12.R12,C12,D12,kl2)
roundl2 : roundltol4s2 port map(L12,R12,C12,D12,L13i,R13i,C13i,D13i);
regl3 : regandcompdetltolS port map(L13i,R13i,C13i,D13i,rst,kl4,L13,R13,C13,D13,kl3)
roundl3 : roundltol4s2 port map(L13,R13,C13,D13,L14i,R14i,C14i,D14i);
regl4 : regandcompdetltolS port map(L14i,R14i,C14i,D14i,rst,kl5,L14,R14,C14,D14,kl4)
roundl4 : roundltol4s2 port map(L14,R14,C14,D14,L15i,R15i,C15i,D15i);
regl5 : regandcompdetltolS port map(L15i,R15i,C15i,D15i,rst,kl6,L15,R15,C15,D15,kl5)
roundlS : round port map(L15,R15,C15,D15,L16i,R16i);
regl6 : regcompdet port map(L16i,R16i,rst,kl7,L16,R16,kl6);
roundl6 : finalround port map(R16,L16,cti) ;
regl7 : f inalregandcorapdet port map(cti,rst,kl7,ct,kl7);

end Behavioral ;

initreg.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.ncl_signals.all;

entity initreg is
Port (DTI

DT2
rst
ki
Ql
Q2

end initreg;

in dual_rail_logic_vector(1 to 64)
in dual_rail_logic_vector(1 to 54)
in STD_LOGIC ;

in STD_LOGIC;
out dual_rail_logic_vector(1 to 64);
out dual_rail_logic_vector(1 to 64)),

architecture Behavioral of initreg is

component ncl_reg_Dinit
generic(width: integer;

initial_value: integer); -- 1=DATA1, 0=DATA0, -4=NULL
port(D: in dual_rail_logic_vector(width-1 downto 0);

ki: in std_logic;
rst: in std_logic;
Q: out dual_rail_logic_vector(width-1 downto 0));

end component;

begin
regl : ncl_reg_Dinit

generic map(width => 64,initial_value => -4)
port map(DTl,ki,rst,Ql) ,•

reg2 : ncl_reg_Dinit
generic map(width => 64,initial_value => -4)
port map(DT2,ki,rst,Q2);

end Behavioral;

regandcompdet 1 to 15. vhd
library IEEE;
use IEEE.STD_L0GIC_1164.ALL;
use IEEE. STD_LOGIC_ARITH. ALL;
use IEEE . STD_LOGIC_UNSIGNED . ALL ;
use work.ncl_signals.all;

entity regandcompdetltolS is
Port (DTI : in dual_rail_logic_vector(1 to 32);

DT2 : in dual_rail_logic_vector(1 to 32)
DT3 : in dual_rail_logic_vector(1 to 28)
DT4 : in dual_rail_logic_vector(1 to 28)
rst : in STD_LOGIC;
ki : in STD_LOGIC;

Ql : out dual_rail_logic_vector(1 to 32)
Q2 : out dual_rail_logic_vector(1 to 32)
Q3 : out dual_rail_logic_vector(1 to 28)
Q4 : out dual_rail_logic_vector(1 to 28)
ko : out std_logic) ,-

end regandcompdetltolS;

architecture Behavioral of regandcompdetltolS is
signal kol,ko2 : std_logic_vector(31 downto 0) ;
signal ko3,ko4 : std_logic_vector(27 downto 0) ;
signal aol,ao2,ao3,ao4 : std_logic;
component ncl_register_D

generic(width : integer;initial_value: integer);
port(D: in dual_rail_logic_vector(width-1 downto 0);

ki: in std_logic;
rst: in std_logic;
Q: out dual_rail_logic_vector(width-1 downto 0) ,
ko : out std_logic_vector(width-1 downto 0));

end component;
component comp

generic(width : integer);
portta: IN std_logic_vector(width-1 downto 0);

ko: OUT std_logic);
end component;
component th44x0

port(a: in std_logic;
b: in std_logic;
c: in std_logic;
d: in std_logic;

z: out std_logic);
end component;
begin
regl : ncl_register_D

generic map(width => 3 2,initial_value => -4)
port map(DTl,ki,rst,Ql,kol);

cdl : comp
generic map(width => 32)
port map(kol, aol) ,•

reg2 : nclregisterD
generic map(width => 32,initial_value => -4)
port map(DT2,ki,rst,Q2,ko2);

cd2 : comp
generic map(width => 32)
port map (ko2, ao2) ,-

reg3 : ncl_register_D
generic map(width => 2 8,initial_value => -4)
port map(DT3,ki,rst,Q3,ko3);

cd3 : comp
generic map(width => 28)
port map(ko3,ao3);

reg4 : ncl_register_D
generic map(width => 28,initial_value => -4)
port map(DT4,ki,rst,Q4,ko4);

cd4 : comp
generic mapfwidth => 28)
port map(ko4,ao4);

g4 : th44x0 port map(aol,ao2,ao3,ao4,ko) ;
end Behavioral;

regcompdet.vhd
library IEEE;
use IEEE.STD_L0GIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE . STD_LOGIC_UNSIGNED . ALL ;
use work.ncl_signals.all;

121

entity regcompdet is
port (DTI : in dual_rail_logic_vector(1 to 32);

DT2 : in dual_rail_logic_vector(1 to 32)
rst : in std_logic;

in std_logic,-
out dual_rail_logic_vector(1 to 32)
out dual_rail_logic_vector(1 to 32)
out std_logic);

ki
Ql
Q2
ko

end regcompdet;

architecture Behavioral of regcompdet is
signal kol,ko2 : std_logic_vector(31 downto 0) ;
signal aol,ao2 : std_logic;
component ncl_register_D

generic(width : integer;initial_value: integer);
port(D: in dual_rail_logic_vector(width-1 downto 0);

ki: in std_logic;
rst: in std_logic;
Q: out dual_rail_logic_vector(width-1 downto 0) ;
ko : out std_logic_vector(width-1 downto 0)) ;

end component;
component comp

generic(width : integer);
port(a: IN std_logic_vector(width-1 downto 0);

ko: OUT std_logic);
end component;
component th2 2x0

port(a: in stdlogic;
b: in std_logic;
z: out std_logic);

end component;

begin
regl : ncl_register_D

generic map(width => 32,initial_value => -4)
port map(DTl,ki,rst,Ql,kol);

cdl : comp
generic map(width => 32)
port map(kol,aol);

reg2 : ncl_register_D
generic map(width => 32,initial_value => -4)
port map(DT2,ki,rst,Q2,ko2);

cd2 : comp
generic map(width => 32)
port map(ko2,ao2);

g3 : th22x0 port map(aol, ao2,ko) ,-
end Behavioral;

finalregandcompdet.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.ncl_signals.all;

entity finalregandcompdet is
port (D : in dual_rail_logic_vector(1 to 64);

rst : in std_logic;
ki : in std_logic;
Q : out dual_rail_logic_vector(1 to 64);
ko : out std_logic) ,-

end finalregandcompdet;

architecture Behavioral of finalregandcompdet is
signal kol : std_logic_vector(63 downto 0);
component ncl_register_D

generic(width : integer;initial_value: integer);
port(D: in dual_rail_logic_vector(width-1 downto 0);

ki: in std_logic;

122

rst: in std_logic,-
Q: out dual_rail_logic_vector(width-1 downto 0);
ko : out std_logic_vector (width-1 downto 0)) ,-

end component;
component comp

generic(width : integer);
port(a: IN std_logic_vector(width-1 downto 0) ;

ko: OUT std_logic) ,-
end component;
begin
regl : ncl_register_D

generic map(width => 64,initial_value => -4)
port map(D,ki,rst,Q,kol);

cdl : comp
generic map(width => 54)
port map(kol,ko);

end Behavioral;

initround.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE . STD_LOGIC_ARITH . ALL ;
use IEEE. STD_LOGIC_UNSIGNED. ALL;
use work.ncl_signals.all;

entity initround is
Port (pt : in dual_rail_logic_vector(1 to 64);

key : in dual_rail_logic_vector(1 to 64);
L : out dual_rail_logic_vector(1 to 32) ;
R : out dual_rail_logic_vector(1 to 32);

out dual_rail_logic_vector(1 to 28);
out dual_rail_logic_vector(1 to 28));

C
D

end initround

architecture Behavioral of initround is
signal L0,R0,f,Ro : dual_rail_logic_vector(1 to 32);
signal CO,DO,CI,Dl : dual_rail_logic_vector(1 to 28);
signal ao,bo : dual_rail_logic_vector(1 to 48);
signal el,e2,e3,e4,e5,e6,e7,e8 : dual_rail_logic_vector (1 to 6) ,-
signal yl,y2,y3 , y4,y5,y6,y7,y8 : dual_rail_logic_vector(1 to 4) ;
component ip

port(pt : in dual_rail_logic_vector(1 to 64);
L0 : out dual_rail_logic_vector(1 to 32);
R0 : out dual_rail_logic_vector (1 to 32)),-

end component;
component pel

port(key : in dual_rail_logic_vector(1 to 64);
CO : out dual_rail_logic_vector(1 to 28);
DO : out dual_rail_logic_vector(1 to 28));

end component;
component shifterl

port (CO : in dual_rail_logic_vector(1 to 28);
DO : in dual_rail_logic_vector(1 to 28);
CI : out dual_rail_logic_vector(1 to 28);
Dl : out dual_rail_logic_vector(1 to 28));

end component;
component expl

port (R0 : in dual_rail_logic_vector(1 to 32);
bo : out dual_rail_logic_vector(1 to 48));

end component;
component pc2

port(CI : in dual_rail_logic_vector(1 to 28);
Dl : in dual_rail_logic_vector(1 to 28);
ao : out dual_rail_logic_vector(1 to 48));

end component;
component xordll

port (ao : in dual_rail_logic_vector(1 to 48);
bo : in dual_rail_logic_vector(1 to 48) ;
el,e2,e3,e4,e5,e6,e7,e8 : out dual_rail_logic_vector(1 to 6)),

end component;

123

in dual_rail_logic_vector(1 to 6);
: out dual_rail_logic_vector(1 to 4))

component s1
port (b : in dual_rail_logic_vector(1 to 6);

s : out dual_rail_logic_vector(1 to 4)
end component;
component s2

port (b :
s

end component;
component S3

port (b : in dual_rail_logic_vector (1 to 6) ,•
s : out dual_rail_logic_vector(1 to 4))

end component;
component s4

in dual_rail_logic_vector(1 to 6);
out dual_rail_logic_vector(1 to 4))

port (b
s

end component;
component s5

port (b :
S :

end component;
component s6

port (b :
s

end component;
component s7

port (b
s

end component;
component s8

port (b :
s :

end component;
component fp

port (yl,y2,y3,y4,y5,y6,y7,y8 : in dual_rail_logic_vector(1 to 4)
f : out dual_rail_logic_vector(1 to 32));

end component;
component xordl2

port (ao : in dual_rail_logic_vector(1 to 32);
bo : in dual_rail_logic_vector(1 to 32);
z : out dual_rail_logic_vector(1 to 32));

end component;

in dual_rail_logic_vector(1 to 6);
out dual_rail_logic_vector(1 to 4))

in dual_rail_logic_vector(1 to 6);
out dual_rail_logic_vector(1 to 4)),

in dual_rail_logic_vector(1 to 6);
out dual_rail_logic_vector(1 to 4);

in dual_rail_logic_vector(1 to 6);
out dual_rail_logic_vector(1 to 4))

begin
compl .-
L <= RO,
COmp2 :
COmp3 :
C <= CI,
comp4
compS
comp6
comp7
comp8
comp9
coraplO
compll
compl2
compl3
compl4
compl5
complS

ip port map(pt,L0,RO);

pel port map (key, CO,DO) ,-
shifterl port map(CO,DO,CI,Dl);
r D <= Dl;
expl port map(R0,bo);
pc2 port map(Cl,Dl,ao);
xordll port map(ao,bo,el,e2,e3,e4 , e5, e6, e7, e8) ,
si port map(el,yl);
s2 port map(e2,y2);
s3 port map(e3,y3);
s4 port map(e4,y4)
s5 port map(e5,y5)
s6 port map(eS,y6)
s7 port map(e7,y7)
s8 port map(e8,y8)
fp port map(yl,y2,y3,y4
xordl2 port map(f,L0,R)

y5, y6, y7, y8, f) ;

end Behavioral;

ip.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE . STD_LOGIC_ARITH . ALL ;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.ncl_signals.all;

entity ip is
port(pt : in dual_rail_logic_vector(1 to 64);

LO : out dual_rail_logic_vector(1 to 32) ;
RO : out dual_rail_logic_vector(1 to 32));

end ip;

architecture Behavioral of ip is

begin
L0(l)<=pt(58) ;L0 (2) <=pt (50) ; LO (3) <=pt (42) ; LO (4) <=pt (34) ; LO (5) <=pt (26) ;
L0(6)<=pt(18);L0(7)<=pt (10);LO(8)<=pt(2);LO(9)<=pt(60);L0(10)<=pt(52);
L0(ll)<=pt(44) ;L0(12)<=pt(36) ;L0(13)<=pt(28) ;L0(14)<=pt(20) ;
L0(15)<=pt(12);L0(16)<=pt(4);L0(17)<=pt(62);L0(18)<=pt(54);
L0(19)<=pt(46) ;L0(20)<=pt(38) ; L0 (21) <=pt (30) ;L0 (22) <=pt (22) ;
L0(23)<=pt(14) ;L0(24)<=pt(6) ; L0 (25) <=pt (64) ;L0 (26) <=pt (56) ;
L0(27)<=pt(48) ;L0(28)<=pt(40) ; L0 (29) <=pt (32) ; L0 (30) <=pt (24) ;
L0(31)<=pt(16) ;L0(32)<=pt(8) ;
R0(l)<=pt(57) ;R0(2)<=pt (4 9) ;R0 (3) <=pt (41) ;R0 (4) <=pt (33) ;R0 (5) <=pt (25) ;
R0(6)<=pt(17) ;R0(7)<=pt (9) ;R0 (8) <=pt (1) ;R0 (9) <=pt (59) ;R0 (10) <=pt (51) ;
R0(ll)<=pt(43);R0(12)<=pt(35);R0(13)<=pt(27);R0(14)<=pt(19);
R0(15)<=pt(ll);R0(16)<=pt(3);R0(17)<=pt(61);R0(18)<=pt(53);
R0(19)<=pt(45) ;R0(20)<=pt(37) ;R0 (21) <=pt (29) ;R0 (22) <=pt (21) ;
R0(23)<=pt(13);R0(24)<=pt(5);R0(25)<=pt(63);R0(26)<=pt(55);
R0(27)<=pt(47) ;R0 (28)<=pt(39) ;R0 (29) <=pt (31) ;R0 (30) <=pt (23) ;
R0(31)<=pt{15) ;R0(32)<=pt(7) ;
end Behavioral;

PCl.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.ncl_signals.all;

entity pel is
port(key : in dual_rail_logic_vector(1 to 64);

CO : out dual_rail_logic_vector(1 to 28) ;
DO : out dual_rail_logic_vector(1 to 28));

end pel;

architecture Behavioral of pel is
signal XX : dual_rail_logic_vector(1 to 56);
begin

XX(l)<=key(57) ;XX (2) <=key (4 9) ;XX (3) <=key (41) ;XX (4) <=key (33) ;
XX(5)<=key (25) ;XX(6)<=key (17) ;XX(7)<=key (9) ;XX(8)<=key (1) ;
XX(9)<=key(58) ;XX(10)<=key(50) ;XX(11)<=key(42) ;XX(12)<=key(34) ;
XX(13)<=key(26) ;XX(14)<=key(18) ;XX(15)<=key(10) ;XX(16)<=key(2) ;
XX(17)<=key(59) ;XX(18)<=key(51) ;XX(19)<=key(43) ;XX(20)<=key(3 5) ;
XX(21)<=key(27) ;XX(22)<=key(19) ;XX(23)<=key(11) ;XX(24)<=key(3) ;
XX(25)<=key (60) ;XX(26)<=key (52) ;XX(27)<=key (44) ;XX(28)<=key (36) ;
XX(29)<=key(63) ;XX (30) <=key (55) ;XX(31) <=key (47) ;XX (32) <=key (3 9) ;
XX(33)<=key(31) ;XX(34)<=key(23) ;XX(35)<=key(15) ;XX(36)<=key(7) ;
XX(37)<=key(62) ;XX (3 8) <=key (54) ;XX(3 9) <=key (46) ;XX (40) <=key (38) ;
XX(41)<=key(30) ;XX (42) <=key (22) ;XX(43)<=key(14) ,-XX (44) <=key (6) ;
XX(45)<=key(61) ;XX (46) <=key (53) ;XX(47) <=key (45) ;XX (48) <=key (37) ;
XX(49)<=key(29) ;XX (50) <=key (21) ;XX(51) <=key (13) ;XX (52) <=key (5) ;
XX(53)<=key(28) ;XX(54)<=key(20) ;XX(55)<=key(12) ;XX(56)<=key(4) ;
C0<=XX(1 t o 2 8) ; D0<=XX(29 t o 5 6) ;

end B e h a v i o r a l ;

shifter l.vhd
library IEEE;
use IEEE . STD_LOGIC_1164 . ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.ncl_signals.all;

entity shifterl is

port (CO : in dual_rail_logic_vector(1 to 28);
DO : in dual_rail_logic_vector(l to 28);
CI : out dual_rail_logic_vector(1 to 28);
Dl : out dual_rail_logic_vector(1 to 28))

end shifterl;

architecture Behavioral of shifterl is

begin
C1(1)<=C0(2) ;C1(2
C1(6)<=C0(7) ;C1(7
C1(11)<=C0(12);C1
C1(15)<=C0(16) ;C1
C1(19)<=C0(20) ;C1
C1(23)<=C0(24) ;C1
C1(27)<=C0(28) ;C1
D1(1)<=D0(2) ;D1(2
D1(6)<=D0(7);D1(7
D1(11)<=D0(12);D1
D1(15)<=D0(16);D1
D1(19)<=D0(20) ;D1
D1(23)<=D0(24);D1
D1(27)<=D0(28) ;D1
end Behavioral;

) < = C 0 (3) ; C 1 (3) <
) < = C 0 (8) ; C 1 (8) <
(1 2) <
(1 6) <
(2 0) <
(2 4) <
(2 8) <

= C 0 (1 3)
= C 0 (1 7)
= C 0 (2 1)
= C 0 (2 5)
= C 0 (1) ;

; C 1
; C 1
; C 1
; C 1

) < = D 0 (3) ; D 1 (3) <
) < = D 0 (8) ; D 1 (8) <
(1 2) <
(1 6) <
(2 0) <
(2 4) <
(2 8) <

= D 0 (1 3)
= D 0 (1 7)
= D 0 (2 1)
= D 0 (2 5)
= D 0 (1) ;

;D1
;D1
;D1
; D 1

=C0(4) ;C1(4)<=C0(5) ;C1 (5) <=C0 (6) ;
=C0(9);C1(9)<=CO(10);C1(10)<=C0(11)
(13)<=C0(14);C1(14)<=C0(15)
(17)<=C0(18);C1(18)<=C0(19),
(21)<=C0(22) ;C1(22)<=C0(23)
(25) <=C0 (26) ;C1 (26) <=C0 (27)

=D0(4) ;D1(4)<= DO (5) ;D1 (5) <=D0 (6) ;
=D0(9);D1(9)<=D0(10);D1(10)<=D0(11)
(13)<=D0(14) ;D1(14)<=D0(15)
(17)<=D0(18);D1(18)<=D0(19)
(21)<=D0(22) ;D1(22)<=D0(23)
(25)<=D0(26) ;D1(26)<=D0(27)

expl.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE . STD_LOGIC_UNSIGNED . ALL ;
use work.ncl_signals .all,-

entity expl is
port (R0 : in dual_rail_logic_vector(1 to 32);

bo : out dual_rail_logic_vector(1 to 48));
end expl;

architecture Behavioral of expl is

begin
bo(l) <=R0 (32) ;bo(2) <=R0 (1) ;bo(3) <=R0 (2) ;bo(4) <=R0 (3) ;bo(5) <=R0 (4) ;
bo(6)<=R0(5) ;bo(7)<=R0(4) ;bo(8) <=R0 (5) ;bo (9) <=R0 (6) ;bo (10) <=R0 (7) ;
bo(ll)<=R0(8);bo(12)<=R0(9);bo(13)<=R0(8);bo(14)<=R0(9);bo(15)<=R0(10)
bo(16)<=R0(11);bo(17)<=R0(12);bo(18)<=R0(13);bo(19)<=R0(12)
bo(20)<=R0(13);bo(21)<=R0(14);bo(22)<=R0(15);bo(23)<=R0(16)
bo(24) <=R0 (17) ;bo(25) <=R0 (16) ;bo(26) <=R0 (17) ;bo(27) <=R0 (18)
bo(28) <=R0 (19) ;bo(29) <=R0 (20) ;bo(30) <=R0 (21) ;bo(31) <=R0 (20)
bo(32) <=R0 (21) ;bo(33) <=R0 (22) ;bo(34) <=R0 (23) ;bo(35) <=R0 (24)
bo(3 6)<=R0(25) ;bo(37)<=R0(24) ;bo (38) <=R0 (25) ;bo (39) <=R0 (26)
bo(40) <=R0 (27) ;bo(41) <=R0 (28) ;bo(42) <=R0 (29) ;bo(43) <=R0 (28)
bo(44) <=R0 (29) ;bo(45) <=R0 (30) ;bo(46) <=R0 (31) ;bo(47) <=R0 (32)
bo(48)<=R0(l) ;
end Behavioral;

pc2.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE . STD_LOGIC_ARITH . ALL ;
use IEEE. STD_LOGIC_UNSIGNED.ALL;
use work.ncl_signals.all;

entity pc2 is
port(CI

Dl
ao

end pc2 ,•

in dual_rail_logic_vector(1 to 28);
in dual_rail_logic_vector(1 to 28);
out dual_rail_logic_vector (1 to 48) ',

architecture Behavioral of pc2 is
signal YY : dual_rail_logic_vector(1 to 56)

126

begin
YY(1 to 28) <= Cl(l to 28); YY(29 to 56) <= Dl(l to 28);

ao(l)<=YY(14) ;ao(2)<=YY(17) ,-ao (3) <=YY(11) ;ao (4) <=YY(24) ,-ao (5) <=YY(1) ,-
ao(6)<=YY(5) ,-ao (7) <=YY(3) ;ao (8) <=YY(28) ,-ao (9) <=YY(15) ;ao(10) <=YY (6) ;
ao(ll)<=YY(21) ;ao(12)<=YY(10) ;ao(13) <=YY(23) ;ao(14) <=YY(19) ;
ao(15) <=YY(12) ;ao(16) <=YY(4) ;ao(17) <=YY(26) ;ao(18) <=YY(8) ;
ao(19)<=YY(16) ;ao(20) <=YY(7) ;ao (21) <=YY(27) ;ao (22) <=YY (20) ;
ao(23)<=YY(13) ,-ao (24) <=YY(2) ,-ao (25) <=YY (41) ;ao (26) <=YY (52) ;
ao(27)<=YY(31) ,-ao (28) <=YY(37) ,-ao (29) <=YY(47) ,-ao (3 0) <=YY(55) ;
ao(31)<=YY(3 0) ;ao (32) <=YY(40) ;ao(33) <=YY(51) ,-ao (34) <=YY (45) ;
ao(35)<=YY(33) ;ao (36) <=YY(48) ,-ao (37) <=YY(44) ,-ao (3 8) <=YY(49) ;
ao(3 9)<=YY(3 9) ,-ao (40) <=YY(56) ,-ao (41) <=YY(34) ,-ao (42) <=YY(53) ;
ao(43)<=YY(46) ,-ao (44) <=YY(42) ,-ao (45) <=YY (50) ;ao (46) <=YY(3 6) ;
ao(47) <=YY(29) ,-ao (48) <=YY(32) ;
end Behavioral;

xordll.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE. STD_LOGIC_UNSIGNED. ALL;
use work.ncl_signals.all;

entity xordll is
port(ao : in dual_rail_logic_vector(1 to 48);

bo : in dual_rail_logic_vector(1 to 48);
el,e2,e3,e4, e5,e6,e7,e8 : out dual_rail_logic_vector (1 to 6)) ,-

end xordl1;

architecture Behavioral of xordll is
signal e : dual_rail_logic_vector(1 to 48);
component exor

port(x : in dual_rail_logic;
y : in dual_rail_logic;
z : out dual_rail_logic);

end component;
begin

gl : for i in 1 to 4 8 generate
hi : exor port map (ao(i) ,bo(i) , e (i)) ,-
end generate;

el(l to 6)<=e(l to 6);e2(l to 6)<=e(7 to 12);
e3(l to 6)<=e(13 to 18);e4(l to 6)<=e(19 to 24);
e5(l to 6)<=e(25 to 30);e6(l to 6)<=e(31 to 36);
e7(l to 6)<=e(37 to 42);e8(l to 6)<=e(43 to 48);

end Behavioral;

sl.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE. STD_LOGIC_UNSIGNED.ALL;
use work.ncl_signals.all;

e n t i t y s i i s
p o r t (b : i n d u a l _ r a i l _ l o g i c _ v e c t o r (1 t o 6) ;

s : o u t d u a l _ r a i l _ l o g i c _ v e c t o r (1 t o 4)) ;
end s i ;

a r c h i t e c t u r e B e h a v i o r a l of s i i s
b e g i n

p r o c e s s (b)
b e g i n

if b (l) . r a i l 0 = ' 0 ' and b (l) . r a i l l = ' 0 ' and b (2) . r a i l 0 = ' 0 ' and b (2) . r a i l l = ' 0 ' and
b (3) . r a i l 0 = ' 0 ' and b (3) . r a i l l = ' 0 ' and b (4) . r a i l 0 = ' 0 ' and b (4) . r a i l l = ' 0 ' and
b (5) . r a i l 0 = ' 0 ' and b (S) . r a i l l = ' 0 ' and b (6) . r a i l 0 = ' 0 ' and b (6) . r a i l l = ' 0 ' then -- for nu l l values

s d l . r a i l O <= • 0 • ,-s (2) . ral lO <= ' 0 ' ; s (3) . railO <= • 0 • ; s (4) . rai lO <= ' 0 ' ;
s(l).raill <= •0•;s(2).raill c= '0';s(3).raill <= '0•;s(4).raill <= '0';

127

elsif b(l).raill='0' and b(l).railO='1' and b(6).raill='0' and b(6).railO='1' then-- 00"

if b(2).raill='0' and b(3).raill='0' and b(4).raill='0• and b(5).raill='0' and --"0000"
b(2).rail0='l' and b(3).rail0=•1' and b(4).rail0='1• and b(5).rail0=•l' then

s(l).raill <= • 1 • ;s (2) . raill <= • 1' ,-s (3) . raill <= • 1 • ;s (4) . raill <= ' 0 • ,-
sdl.railO <= • 0 ' ,-s (2) . railO <= ' 0 • ;s (3) . railO <= • 0 • ;s (4) .railO <= ' 1 • ,-

elsif b(2).raill='0' and b(3).raill='0' and b(4).raill='0' and b(5).raill='1' and--"0001"
b(2).railO='l' and b(3).railO='1' and b(4).railO='1• and b(5).railO=•0' then

s(l).raill <= '0' ;s(2) .raill <= ' 1' ,-s (3) . raill <= ' 0 ' ;s (4) .raill <= ' 0 ';
sdl.railO <= '1' ;s(2) .railO <= '0 ' ;s (3) . railO <= ' 1 • ,-s (4) .railO <= '1';

elsif b(2).raill='0' and b(3).raill="0• and b(4).raill=•1• and b(5).raill='0" and--"0010"
b(2).railO='l' and b(3).rail0=•1• and b(4).railO='0• and b(5).railO='1• then

s(l).raill <= •l';s(2).raill <= '1';s(3).raill <= '0';s(4).raill <= • 1' ,-
sdl.railO <= '0';s (2) .railO <:= ' 0 ' ,-s (3) . railO <= ' 1' ;s (4) . railO <= ' 0 • ;

elsif b(2).raill='0' and b(3).raill='0' and b(4).raill=•1' and b(5).raill='1• and--"0011"
b(2).railO='l' and b(3).rail0='1' and b(4).railO='0' and b(5).railO='0• then

s(l).raill <= '0' ;s(2) .raill <= '0 ' ,-s (3) . raill <= ' 0 • ;s (4) . raill <= • 1' ,-
sdl.railO <= • 1' ;s (2) .railO <= ' 1' ,-s (3) . railO <= • 1' ,-s (4) . railO <= • 0 ' ;

elsif b(2).raill='0' and b(3).raill='1' and b(4).raill='0' and b(5).raill=•0' and--"0100"
b(2).railO='l' and b(3).railO='0' and b(4).railO='1' and b(5).rail0='1' then

s(l).raill <= '0';s (2) .raill <= '0 ' ,-s (3) .raill <= ' 1' ,-s (4) . raill <= ' 0 • ;
sdl.railO <= '1';s(2) .railO <= ' 1' ;s (3) .railO <= ' 0 ' ;s (4) . railO <= ' 1' ,-

elsif b(2).raill='0' and b<3).raill='1' and b(4).raill='0• and b(5).raill='1• and--"0101"
b(2).railO='l' and b(3).railO='0• and b(4).railO='1• and b(5).rail0='0• then

sdl.raill <= '1' ;s(2) .raill <= • 1' ;s (3) . raill <= • 1' ;s (4) . raill <= ' 1' ;
sdl.railO <= '0',-s (2) .railO <= ' 0 ' ,-s (3) . railO <= '0 • ,-s (4) . railO <= • 0 • ,-

elsif b(2).raill='0' and b(3).raill='1' and b(4).raill='1' and b(5).raill='0' and--"0110"
b(2).railO='l' and b(3).railO='0• and b(4).rail0=•0' and b(5).railO='1' then

s(l).raill <= '1' ,-s<2) .raill <= '0 ' ,-s (3) .raill <= ' 1' ,-s (4) .raill <= '1';
sdl.railO <= '0';s(2) .railO <= "1' ,-s (3) .railO <= ' 0 ' ; s (4) . railO <= '0';

elsif b(2).raill='0' and b(3).raill='1' and b(4).raill-'1' and b(5).raill='1' and --"0111"
b(2).railO='l' and b(3).railO='0' and b(4).railO=•0• and b(5),railO=•0' then

s(l).raill <= '1' ,-s (2) .raill <= ' 0 ' ;s (3) .raill <= ' 0 ' ; s (4) .raill <= '0';
sdl.railO <= '0',-s (2) .railO <= • 1' ;s (3) .railO <= '1' ,-s (4) .railO <= "1' ,-

elsif b(2) .raill=d' and b (31 . raill= • 0 • and b (4) . raill= ' 0 ' and b (5) . raill= • 0 • and--"1000"
b(2).railO='0' and b(3).rail0='1' and b(4).railO=•1' and b(5).railO='1 • then

sdl.raill <= '0';s(2) .raill <= ' 0 • ; s (3) .raill <= d ' ,-s (4) . raill <= ' 1' ,-
sdl.railO <= ' 1 • ,-s (2) .railO <= ' 1 • ,-s (3) .railO <= ' 0 ' ,-s (4) . railO <= ' 0 ' ;

elsif b(2) .raill=d' and b (3) . raill= • 0 ' and b (4) .raill= ' 0 ' and b (S) .raill= • 1' and--"1001"
b(2).railO='0' and b(3).railO='1' and b(4).railO='1' and b(5).railO='0' then

s d) . raill <= '1';s(2) .raill <= • 0 • ; s (3) . raill <= ' 1' ,-s (4) .raill <= '0';
sdl.railO <= '0',-s(2) .railO <= '1 • ,-s (3) .railO <= ' 0 • ,-s (4) . railO <= • 1" ,-

elsif b(2) .raill=d' and b (3) . raill= ' 0 • and b (4) .raill= '1 • and b (5) .raill= ' 0 • and--"1010»
b(2).rail0='0' and b(3).railO='1' and b(4).railO=•0• and b(5).railO="1• then

sd).raill <= '0';s(2) .raill <= '1' ;s (3) . raill <= • 1' ; s (4) . raill <= '0';
sdl.railO <= '1',-s(2) .railO <= ' 0 ' ,-s (3) .railO <= • 0 • ,-s (4) . railO <= "l';

elsif b(2) .raill=d' and b (3) . raill= ' 0 • and b (4) . raill= ' 1 • and b (5) . raill= ' 1' and--"1011"
b(2).railO='0• and b (3) .railO='1' and b(4).railO='0' and b(S) .railO='0' then

s(l).raill <= '1' ,-s(2) .raill <= '1' ,-s (3) .raill <= ' 0 ' ; s (4) . raill <= '0',-
sdl.railO <= ' 0 ' ,-s (2) . railO <= • 0 ' ;s (3) .railO <= ' 1' ; s (4) . railO < = ' 1' ,-

elsif b(2) .raill=d' and b (3) . raill= ' 1' and b (4) .raill= ' 0 ' and b (5) . raill= "1 • and--"1101"
b(2) .railO='0' and b (3) .railO='0• and b(4).rail0='1' and b(5).railO=•0' then

sd).raill <= '1',-s(2) .raill •:= ' 0 ' ,-s (3) . raill <= '0 ' ,-s (4) .raill <= ' 1' ,-
sdl.railO <= '0',-s(2) .railO <= "1 • ,-s (3) . railO <= ' 1' ; s (4) . railO <= ' 0 ' ;

elsif b(2).raill='l' and b(3).raill='1' and b(4),raill=•1' and b(5).raill='0' and--"1110"
b(2).railO='0' and b(3).railO='0• and b(4).railO='0' and b(5).railO="1• then

sd).raill <= '0' ,-s(2) .raill <= ' 0 • ; s (3) . raill <= ' 0 ' ,-s (4) .raill <= • 0 ' ;
sdl.railO <= 'I1 ;s(2) .railO <= ' 1 • ,-s (3) . railO <= '1 • ,-s (4) .railO <= ' 1' ;

elsif b(2).raill='l' and b(3).raill=•1' and b(4).raill='1' and b(5).raill='1' and--"llll"
b(2).railO='0' and b(3).railO='0• and b(4).railO='0• and b(5).railO='0' then

s(l).raill <= '0';s(2).raill <= '1';s(3).raill <= '1';s(4).raill <= •1';
sdl.railO c= '1',-s(2) .railO <= ' 0 ' ,-s (3) .railO <= ' 0 • ,-s (4) . railO <= '0';

elsif b(2).raill='l' and b(3).raill="1' and b(4).raill=•0• and b(5).raill= ' 0 ' and--"1100"
b(2).rail0='0' and b(3).railO='0• and b(4).railO='1• and b(5).railO='1' then

sd).raill <= '0';s(2) .raill <= '1' ,-s (3) . raill <= • 0 ' ,- s (4) .raill <= '1' ;
sdl.railO <= '1' ,-s(2) .railO <= ' 0 • ; s (3) .railO <= ' 1' ; s (4) .railO <= '0';

end if;

elsif b(l).raill='0' and b(1).railO=•1' and b(6).raill='1• and b(6).railO='0' then --"01"

if b(2).raill='0• and b(3).raill='0' and b(4).raill='0• and b(5).raill='0' and--"0000"
b(2) .rail0=d' and b(3) .railO=d • and b (4) . railO= '1 • and b (5) . railO= ' 1' then

sd).raill <= '0' ,-s(2) .raill <= ' 0 ' ,-s (3) .raill <= • 0 ' ; s (4) .raill <= ' 0 • ;
sdl.railO <= '1' ,-s(2) .railO <= '1 • ; s (3) .railO <= ' 1' ,-s (4) .railO <= '1';

elsif b(2).raill='0' and b(3).raill=•0' and b(4).raill='0' and b(5).raill=•1' and--"0001"
b(2).railO='l' and b(3).railO='1 * and b(4) .railO='1' and b(5).railO='0' then

s(l).raill <= '1' ,-s(2) .raill <= ' 1' ;s (3) .raill <= '1 • ,-s (4) .raill <= '1' ;
sdl.railO <= ' 0 ' ,-s (2) . railO <= • 0 ' ,-s (3) .railO <= ' 0 '; s (4) . railO <= ' 0 ' ,•

elsif b(2).raill-'O1 and b(3).raill='0' and b(4).raill='1' and b(5).raill='0' and--"0010"
b(2) .railO='l' and b (3) .railO='1' and b(4).railO=•0' and b(5).railO=•1• then

s(l).raill <= '0' ,-s(2) .raill <= ' 1' ,-s (3) . raill <= '1' ,-s (4) .raill <= "l";

128

sdl.railO <= ' 1' ; s (2) . railO <= ' 0 ' ;s (3) . railO <= • 0 ' ,-s (4) . railo <= 'O1;
elsif b(2).raill='0' and b(3).raill='O' and b(4),raill='1• and b(5).raill='1• and--"0011"

b(2).railO='1' and b(3).railO='1' and b(4).railO='0' and b(5).railO=•0' then
s(l).raill <= '0';s(2) .raill <= •1';s(3).raill <= •0';s (4) .raill <= '0';

s(l).railO <= '1';s(2).railO <= '0';s(3).railO <= •1•;s(4).railO <= '1';
elsif b(2).raill='0' and b(3).raill='1• and b(4).raill=•0' and b(5).raill='0' and--"0100"

b(2).railO='l' and b(3).railO='0• and b(4).railO='1' and b(5).railO='1• then
s(l).raill <= '1';s(2).raill <= ' 1';s (3) .raill <= '1';s(4).raill <= '0';

s(l).railO <= '0';s(2).railO <= •0•;s(3).railO <= '0';s(4).railO <= '1';
elsif b(2).raill='0' and b(3).raill='1• and b(4).raill='0' and b(5).raill='1• and--"0101"

b(2).railO='l' and b(3).rail0='0• and b(4).railO='1' and b(5).railO=•0' then
s(l).raill <= '0',-s(2) .raill <= ' 0 • ; s (3) . raill <= • 1' ; s (4) . raill <= ' 0 ' ;

s(l).railO <= '1';s(2) .railO <= • 1' ,-s (3) . railO <= • 0 • ;s (4) .railO <= '1';
elsif b(2).raill='0' and b(3).raill=•1' and b(4).raill=•1' and b(5).raill=•0' and--"0110"

b(2).rail0='l' and b(3).railO='0' and b(4).railO=•0• and b(5).railO=•1' then
s(l). raill <= '1' ;s (2) .raill <= ' 1' ,-s (3) . raill <= ' 0 •; s (4) . raill <= ' 1' ;

sdl.railO <= ' 0 ' ; s (2) . railO <= • 0 • ,-s (3) . railO <= • 1' ;s (4) .railO <= • 0 • ;
elsif b(2).raill='0' and b(3).raill='1' and b(4).raill='1• and b(5).raill=•1• and--"0111"

b(2).railO='l' and b(3).railO='0' and b(4).railO=•0• and b(5).railO='0' then
s(l).raill <= '0' ;s(2) .raill <= •0•;s(3).raill <= '0';s(4) .raill c= '1';

s(l).railO c= 'I1;s(2).railO <= '1';s<3).railO <= •1';s(4).railO <= '0';
elsif b(2) .raill='l' and b(3),raill='0' and b(4).raill='0• and b(S).raill= ' 0" and--"1000"

b(2).railO='0' and b(3).railO='1' and b(4).railO='1• and b(5).railo="1' then
s(l).raill <= '1';s(2).raill <= •0';s(3).raill <= '1';s(4).raill <= '0';

sdl.railO <= '0' ;s(2) .railO <= ' 1' ;s (3) . railO <= ' 0 • ;s (4) . railO <= ' 1' ;
elsif b(2).raill='l' and b(3).raill='0' and b(4).raill='0' and b(S).raill='1' and--"1001"

b(2).railO='0' and b(3).railO='l• and b(4).railO=•1' and b(5).railO=•0• then
s(l).raill <= '0' ,-s(2) .raill <= ' 1' ;s (3) .raill <= • 1' ,-s (4) .raill <= ' 0 • ;

sdl.railO •;= • 1' ,-s (2) .railO < = • 0 ' ; s (3) . railO <= ' 0 • ; s (4) . railO <= ' 1' ,-
elsif b(2).raill='l' and b(3).raill='0• and b(4).raill=•1' and b(5).raill=•0' and--"1010"

b(2).railO='0' and b(3).railO=•1• and b(4).railO-'0' and b(5).railO='1• then
s(l).raill <= '1' ,-s(2) .raill <= '1';s(3).raill <= ' 0 ' ,-s (4) . raill <= '0';

sdl.railO <= '0' ,-s (2) .railO <= • 0 ' ; s (3) .railO <= ' 1' ; s (4) . railO <= • 1' ;
elsif b(2).raill='l' and b(3).raill='0' and b(4).raill='1' and b(5).raill=•1' and--"1011"

b(2).rail0='0' and b(3).railO='1• and b(4).railO='0' and b(5).railO='0• then
s(l).raill <= '1' ;s(2) .raill <= •O ' ,-s (3) .raill <= • 1' ;s (4) . raill <= '1';

s(l).railO <= '0',-s (2) .railO <= ' 1' ;s (3) .railO <= '0 '; s (4) . railO <= • 0 ' ;
elsif b(2).raill='l' and b(3) .raill='1• and b(4).raill='0' and b(5) .raill=•1' and--"1101"

b(2).railO='0' and b(3).rail0=•0' and b(4).railO='1' and b(5).railO='0• then
s(l).raill <= '0' ;s(2) .raill <= ' 1' ,-s (3) . raill <= * 0 • ;s (4) .raill <= • 1' ;

sdl.railO <= '1';s (2) .railO <= ' 0 ' ;s (3) .railO <= ' 1' ; s (4) .railO <= • 0 ' ;
elsif b(2).raill='l' and b(3).raill='1' and b(4).raill='1' and b(5).raill=•0' and--"1110"

b(2).railO='0' and b(3).railO='0• and b(4).railO='0' and b(5).railO='1• then
s(l). raill <= '0' ,-s(2) .raill <= ' 0 ' ;s (3) .raill <= '1 • ,-s (4) .raill <= ' 1' ;

sdl.railO < = •1';s(2) .railO <= ' 1 • ;s (3) . railO <= • 0 ' ;s (4) . railO <= ' 0 ' ;
elsif b(2).raill='l' and b(3).raill=•1' and b(4).raill="1' and b(5).raill='1> and--"llll"

b(2).railO='0' and b(3).railO='0' and b(4).railO=•0' and b(5),railO='0• then
s(l).raill <= '1';s(2).raill <= •0•;s(3) .raill <= •0';s (4) .raill <= '0';

sdl.railO <= '0';s(2) .railO <= ' 1 • ;s (3) . railO <= • 1 • ,-s (4) .railO <= '1';
elsif b(2).raill='l' and b(3).raill='1' and b(4).raill=•0• and b(5).raill='0' and--"1100"

b(2).railO='0' and b(3).railO='0' and b(4).railO=•1' and b(5).railO=•1' then
s(l).raill <= '1' ,-s(2) .raill <= ' 0 ' ;s (3) .raill <= ' 0 ' ; s (4) . raill <= ' 1' ;

sdl.railO <= '0 ' ;s(2) .railO <= ' 1" ;s (3) . railO <= • 1 • ;s (4) .railO <= '0';
end i f;

elsif b(l).raill='l' and b(l).railO='0' and b(6).raill='0' and b(6).railO='1' then --"10"

if b(2).raill='0' and b(3).raill='0' and b(4).raill='0' and b(5),raill='0' and--"0000"
b(2).railO='l' and b(3).railO='1' and b(4).railO='1' and b(5).rail0='1' then

s(l).raill <= '0' ;s(2) .raill <= • 1' ; s (3) . raill <= • 0 ' ,-s (4) .raill <= '0';
sdl.railO <= '1';s(2) .railO <= • 0 ' ;s (3) . railO <= ' 1' ,-s (4) . railO <= ' 1' ;

elsif b(2).raill='0' and b(3).raill='0' and b(4).raill='0' and b(5).raill=•1• and--"0001"
b(2).rail0='l' and b(3).railO='1• and b(4).railO='1 * and b(5).railO='0' then

s(l). raill <= '0' ,-s(2) .raill <= ' 0 ' ;s (3) .raill <= ' 0 • ;s (4) . raill <= ' 1 • ;
sdl.railO <= '1' ,-s(2) .railO <= ' 1 •; s (3) .railO <= ' 1' ; s (4) . railO •;= '0';

elsif b(2).raill='0' and b(3).raill=•0• and b(4).raill=•1' and b(5).raill='0' and--"0010"
b(2).railO='l' and b(3).railO='1• and b(4).railO='0' and b(5).railO='1' then

s(l).raill <= '1' ;s(2) .raill <= ' 1" ;s (3) .raill <= ' 1' ,-s (4) . raill <= ' 0 ' ,•
sdl.railO <= '0',-s(2) .railO <= '0 ' ; s (3) .railO <= ' 0 ' ,-s (4) .railO <= '1';

elsif b(2),raill='0' and b(3).raill='0' and b(4).raill='1' and b(5).raill='1' and--"0011"
b(2).railO='l' and b(3).railO='1' and b(4).railO=•0' and b(5).rail0='0' then

s(l).raill <= •l';s(2) .raill •== ' 0 • ;s (3) . raill c= ' 0 •; s (4) . raill <= ' 0 ' ;
sID.railO <= • 0 ' ;s 12) . railO <= ' 1' ;s (3) . railO •:= ' 1' ,-s (4) .railO <= '1';

elsif b(2).raill='0' and b(3).raill='1' and b(4).raill='0• and b(5).raill='0' and--"0100"
b(2) .railO=d' and b (3) .railO= '0 ' and b(4) .railO= • 1' and b (5) .railO= • 1' then

s(l).raill <= '1';s(2) .raill <= ' 1' ,-s (3) . raill <= • 0 ' ,-s (4) . raill <= ' 1' ;
sID.railO <= ' 0 ' ,-s (2) . railO <= ' 0 ' ,-s (3) .railO <= ' 1' ,-s (4) . railO <= '0';

elsif b(2).raill='0' and b(3) .raill="1 * and b(4).raill=•0• and b(5).raill='1' and--"0101"
b(2).railO='l' and b(3).rail0='0' and b(4).railO='1' and b(5).railO=•0' then

s(l).raill <= '0' ;s(2) .raill <= '1',-s (3) .raill <= • 1' ; s (4) . raill <= ' 0 ' ;
sdl.railO <= '!';s(2) .railO <= ' 0 • ,-s (3) .railO <= ' 0 ' ,-s (4) .railO <= '1';

elsif b(2).raill='0' and b(3),raill=•1• and b(4).raill='1' and b(5).raill='0' and--"0110"
b(2).railO='l' and b(3).railO='0' and b(4).rail0=•0• and b(5).rail0='1' then

sd).raill <= * 0';s(2).raill <= '0';s(3).raill <= '1•;s(4) .raill <= '0';
sdl.railO <= '1';s(2).railO <= '1';s(3).railO <= •0';s(4).railO <= •1•;

elsif b(2).raill='0' and b(3).raill='1' and b(4).raill='1' and b(5)-raill='1' and--"0111"
b(2).railO='l' and b(3).railO='0' and b(4),rail0='0' and b(5).railO='0' then

s(l).raill <= '1';s(2).raill <= •0•;s(3).raill <= '1';s(4).raill <= ' 1' ,-
sdl.railO <= '0',-s (2) .railO <= ' 1 • ;s (3) . railO <= ' 0 • ;s (4) . railO <= '0';

elsif b(2).raill='l' and b(3).raill='0• and b<4).raill=•0• and b(5).raill='0' and--"1000"
b(2).railO='0' and b(3).railO='1• and b(4).railO='1' and b(5).railO='1' then

s(l).raill <= '1';s(2).raill <= '1';s(3).raill <= '1•;s(4).raill <= '1';
s(l).railO <= •0•;s(2).railO <= '0•;s(3).railO < = '0';s(4).railO <= '0';

elsif b(2).raill='l' and b(3).raill='0' and b(4).raill=•0• and b(5).raill=•1• and--"1001"
b(2).railO='0' and b(3).railO='1• and b(4).railO='1' and b(5).railO=•0• then

s(l).raill <= 'l';s(2).raill <= '1';s (3) .raill <= '0';s(4).raill <= '0';
sdl.railO <= '0',-s(2) .railO <= ' 0 • ,-s (3) . railO <= ' 1' ; s (4) . railO <= ' 1' ;

elsif b(2).raill='l' and b(3).raill='0' and b(4).raill='1' and b(5).raill='0• and--"1010"
b(2).railO='0' and b(3).railO='l• and b(4).railO='0' and b(5).railO=•1• then

s(l).raill <= •l';a(2).raill <= '0';s(3).raill <= '0•;s(4).raill <= '1•;
s(l).railO <= '0 ' ;s (2) . railO <= • 1'; s (3) . railO <= ' 1' ,-s (4) . railO <= ' 0 ' ;

elsif b(2).raill='l' and b(3).raill='0' and b(4).raill='1' and b(5).raill=•1• and--"1011"
b(2).railO='0' and b(3).railO=•1• and b(4).railO='0' and b(5).railO=•0' then

s(l).raill <= '0';s(2) .raill <= ' 1' ;s (3) . raill <= • 1' ;s (4) .raill <:= ' 1' ,-
sdl.railO <= '1' ;s(2) .railO <= ' 0 '; s (3) . railO <= '0 • ,-s (4) . railO <= '0';

elsif b(2).raill='l' and b(3).raill='1' and b(4).raill='0' and b(5).raill='1' and--"1101"
b(2).railO='0' and b(3).railO='0' and b(4).rail0='1' and b(5).railO='0' then

s(l).raill <= '1';s(2) .raill <= '0 ' ,-s (3) .raill <= ' 1' ; s (4) . raill <= ' 0 ' ;
sdl.railO <= '0',-s(2) .railO <= "1' ,-s (3) .railO <= • 0 ' ;s (4) .railO <= "l";

elsif b(2).raill='l' and b(3).raill='1' and b(4),raill='1• and b(5).raill='0' and--"1110"
b(2).railO='0' and b(3).railO='0' and b(4).rail0='0• and b(5).railO='1' then

s(l).raill <= '0',-s (2) .raill <= ' 1' ,-s (3) .raill <= ' 0 ' ; s (4) . raill <= '1';
sdl.railO <= '1' ,-s(2) .railO <= ' 0 • ,-s (3) .railO <= "1' ,-s (4) .railO <= ' 0 ' ;

elsif b(2).raill='l' and b(3).raill='1' and b(4).raill="1• and b(5).raill='1' and--"llll"
b(2).railO='0' and b(3).railO='0' and b(4).railO='0' and b(5).railO='0' then

s(l).raill <= '0';s(2) .raill <= • 0 '; s (3) .raill <= • 0 ' ; s (4) . raill <= ' 0 • ,-
sdl.railO <= ' 1' ,-s (2) . railO <= '1 • ,-s (3) . railO <= ' 1 • ,-s (4) . railO <= ' 1' ;

elsif b(2).raill='l' and b (3) .raill=•1' and b(4).raill='0' and b(5).raill='0• and--"1100"
b(2).rail0='0' and b(3).railO='0' and b(4).railO='1' and b(5).railO='1' then

s(l).raill <= •0';s(2) .raill <= ' 0 ' ; s (3) .raill <= • 1' ,-s (4) .raill c= ' 1' ,-
sdl.railO <= "l" ,-s (2) .railO <= • 1 • ,-s (3) . railO <= ' 0 ' ,-s (4) . railO <= ' 0 ' ;

end if;

if b(l).raill='l' and b (1).railO=•0• and b (6) . raill=•1' and b(6).railO='0' then --"11"

if b(2).raill='0' and b(3).raill='0' and b(4).raill=•0' and b(5).raill=•0• and--"0000"
b(2) .rail0=d' and b (3) .railO= • 1' and b (4) . railO= ' 1' and b (5) .railO= ' 1 • then

s(l).raill <= '1',-s (2) .raill <= ' 1' ; s (3) . raill <= '1 • ,-s (4) . raill <= '1';
sdl.railO <= ' 0 • ,-s (2) . railO <= ' 0 ' ,- s (3) . railO <= ' 0 ' ; s (4) . railO <= ' 0 • ,-

elsif b(2) .raill=,0' and b (3) .raill='0' and b(4) .raill=•0• and b(5) .raill="1• and--"0001"
b(2).railO='l' and b(3).rail0='1• and b(4).railO="1' and b(5).railO=•0• then

s(l).raill <= •l,;s(2) .raill <= ' 1'; s (3) . raill <= ' 0 • ,-s (4) . raill <= " 0 ' ;
s(l).railO <= '0',-s(2) .railO <= ' 0 ' ;s (3) . railO <= ' 1' ,- s (4) . railO <= ' 1 • ;

elsif b(2) .raill='0' and b (3) .raill='0' and b(4) .raill='1' and b(5) .raill='0• and--"0010"
b(2).railO='l' and b(3).rail0='1' and b(4).railO='0' and b(5).railO="1• then

s(l).raill <= "l1 ,-s (2) .raill <= • 0 • ;s (3) . raill <= ' 0 '; s (4) . raill <= ' 0 ' ;
sdl.railO •;= • 0 • ,-s (2) . railO <= ' 1 > ;s (3) . railO <= ' 1' ; s (4) . railO <= ' 1' ;

elsif b(2).raill=,0' and b(3).raill='0' and b(4).raill='1' and b(5).raill='1' and--"0011"
b(2).railO='l' and b(3).railO='1' and b(4).rail0='0' and b(5).railO='0' then

s(l).raill <= '0';s(2) .raill <= ' 0 ' ; s (3) .raill <= ' 1' ;s (4) .raill <= ' 0 ' ,-
sdl.railO <= "l" ,-s (2) .railO <= • 1' ,-s (3) .railO <= ' 0 • ,-s (4) . railO <= 'l';

elsif b(2).raill='0' and b(3).raill=•1' and b(4).raill='0' and b(5).raill='0' and--"0100"
b(2).railO='l' and b(3).railO='0• and b(4).rail0='1• and b(5).railO=•1' then

sd).raill <= '0';s(2) .raill <= • 1 • ,-s (3) .raill <= ' 0 ' ; s (4) .raill <= ' 0 • ,-
sdl.railO <= '1';s (2) .railO <= ' 0 • ,-s (3) .railO <= '1' ,-s (4) . railO <= 'l';

elsif b(2).raill='0' and b(3).raill='1' and b(4).raill='0' and b(5).raill=•1• and--"0101"
b(2).railO='l' and b(3).railO='0' and b(4).railO='1' and b(5).railO='0' then

sd).raill <= '1' ;s(2) .raill <= ' 0 • ,-s (3) . raill <= ' 0 ' ;s (4) .raill <= ' 1' ,-
s(l).railO <= • 0 ' ,-s (2) .railO <= '1 • ,- s (3) . railO <= ' 1' ,-s (4) . railO <= ' 0 • ,-

elsif b(2) .raill='0' and b (3) .raill='1' and b(4).raill='1• and b(5) .raill='0• and--"0110"
b(2).rail0='l' and b(3).railO='0' and b(4).railO='0' and b(5).railO='1• then

s(l).raill <= •0,;s(2) .raill <= ' 0 ' ;s (3) . raill <= ' 0 • ,-s (4) . raill •:= • 1';
sdl.railO <= '1' ;s(2) .railO <= ' 1' ,-s (3) . railO <= ' 1' ; s (4) . railO <= • 0 ' ;

elsif b(2).raill='0' and b (3) .raill='1• and b(4) .raill="1• and b(5) .raill='1' and--"0111"
b(2).railO='l' and b(3).rail0=•0' and b(4).railO=•0' and b(5).railO='0' then

s(l).raill e= '0';s(2) .raill <= ' 1' ,-s (3) . raill <= ' 1'; s (4) . raill <= '1' ;
sdl.railO e= '1';s(2) .railO <= ' 0 ' ,-s (3) . railO <= • 0 ' ;s (4) .railO <= ' 0 • ,-

elsif b(2).raill='l' and b(3).raill=•0• and b(4).raill='0' and b(5).raill='0• and--"1000"
b(2) .railO='0' and b (3) .railO='1' and b(4) .railO='1' and b(5).railO='1' then

sd).raill <= '0' ,-s (2) .raill <= ' 1' ,-s (3) .raill <= • 0 ' ; s (4) .raill <= ' 1 • ,-
sdl.railO <= '1' ,-s(2) .railO <= • 0 • ,-s (3) .railO <= ' 1 • ,-s (4) . railO <= ' 0 ' ;

elsif b(2).raill='l' and b(3).raill='0' and b(4).raill='0' and b(5).raill=•1• and--"1001"

b(2).railO='0' and b(3).railO='1' and b(4).railO='1' and b(5).railO='0• then
sdl.raill <= '1';s(2).raill <= ' 0 ' ; s (3) . raill <= • 1' ; s (4) .raill <= '1';

s(l).railO <= '0';s(2).railO <= '1';s(3).railO <= '0';s(4).railO <= '0•;
elsif b(2).raill='l' and b(3).raill='0• and b(4).raill=•1' and b(5).raill='0' and--"1010"

b(2).railO='0' and b(3).railO='1' and b(4).railO='0' and b(5).railO=•1' then
sdl.raill <= '0';s(2) .raill <= • 0 '; s (3) . raill <= • 1' ; s (4) . raill <= ' 1 • ;

sdl.railO <= '1';s(2).railO <= > 1' ,-s (3) . railO <= ' 0 ' ,-s (4) . railO <= ' 0' ;
elsif b(2).raill='l' and b(3).raill='0• and b(4).raill=•1• and b(5).raill=•1' and--"1011"

b(2).railO='0' and b(3),railO='1' and b(4).railO='0• and b(5).railO='0' then
s(l).raill <= •l,;s(2).raill <= •1';s(3).raill <= •1';s(4).raill <= '0';

sdl.railO <= '0',-s (2) .railO <= ' 0 • ;s (3) . railO <= ' 0 ' ;s (4) .railO <= ' 1 • ;
elsif b(2).raill='l' and b(3).raill='1• and b(4).raill='0• and b(5).raill='1' and--"1101"

b(2).railO='0' and b (3) .railO=•0' and b(4) .railO='1• and b(5).railO='0• then
sdl.raill <= '0';s(2) .raill <= '0 ' ,-s (3) .raill <= ' 0 • ;s (4) . raill <= • 0 ' ,-

sdl.railO <= '1' ;s(2) .railO <= ' 1' ;s (3) .railO <= ' 1' ,-s (4) . railO <= '1';
elsif b(2).raill='l' and b(3).raill=•1• and b(4).raill='1' and b(5).raill='0' and--"1110"

b(2).railO='0' and b(3).railO='0' and b(4),rail0=•0' and b(5).railO='1• then
sdl.raill <= '0';s(2) .raill <= • 1 •; s (3) .raill <= • 1' ,-s (4) .raill <= '0';

sdl.railO <= ' 1' ;s (2) .railO <= • 0 ' ,-s (3) . railO <= ' 0 ' ;s (4) . railO <= '1';
elsif b(2).raill='l' and b(3).raill='1' and b(4).raill='1' and b(5).raill='1' and--"llll"

b(2).railO='0' and b(3).railO='0' and b(4).railO='0' and b(5).railO='0' then
sdl.raill <= '1';s(2) .raill <= • 1 •; s (3) . raill <= • 0 ' ; s (4) . raill <= '1';

sdl.railO <= '0';s(2) .railO <= ' 0 ' ,-s (3) . railO <= ' 1' ; s (4) . railO <= ' 0 • ;
elsif b(2).raill='l' and b(3).raill='l' and b(4).raill=•0• and b(5).raill=•0' and--"1100"

b(2).railO='0' and b (3) .railO='0' and b(4).railO='1' and b(5).rail0='1' then
sdl.raill <= '1',-s (2) .raill <= ' 0 • ; s (3) . raill <= ' 1' ,-s (4) . raill <= '0';
sdl.railO <= '0';s (2) .railO <= ' 1 • ,-s (3) . railO <= '0 ' ;s (4) .railO <= ' 1 • ;

end i f ;

end if;

end process;
end Behavioral;

fp.vhd
library IEEE;
use IEEE.STD_L0GIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE. STD_LOGIC_UNSIGNED. ALL;
use work.ncl_signals.all;

entity fp is
port (yl,y2,y3,y4,y5,y6,y7,y8 : in dual_rail_logic_vector(1 to 4) ;

f : out dual_rail_logic_vector(1 to 32));
end fp;

architecture Behavioral of fp is
signal ww : dual_rail_logic_vector(1 to 32);
begin

ww(l to 4)<=yl(l to 4) ;ww(5 to 8)<=y2(l to 4);ww(9 to 12)<=y3(l to 4) ;
ww(13 to 16)<=y4(l to 4);ww(17 to 20)<=y5(l to 4) ;
ww(21 to 24)<=y6(l to 4);ww(25 to 28)<=y7(l to 4) ;
ww(29 to 32)<=y8(l to 4) ;

f (l)<=ww(16) ;f (2) <=ww(7) ; f (3) <=ww (20) ; f (4) <=ww (21) ; f (5) <=ww (29) ;
f(6)<=ww(12);f(7)<=ww(28);f(8)<=ww(17);f(9)<=ww(l);f(10)<=ww(15);
f(ll)<=ww(23);f(12)<=ww(2S);f(13)<=ww(5);f(14)<=ww(18);f(15)<=ww(31);
f (16)<=ww(10) ;f (17)<=ww(2) ;f (18)<=ww(8) ; f (19) <=ww (24) ; f (20) <=ww (14) ;
f (21)<=ww(32) ;f (22)<=ww(27) ; f (23) <=ww (3) ; f (24) <=ww (9) ; f (25) <=ww (19) ;
f (26)<=ww(13) ;f (27)<=ww(30) ; f (28) <=ww (6) ; f (2 9) <=ww (22) ; f (3 0) <=ww (11) ;
f (31)<=ww(4) ;f (32)<=ww(25) ;
end Behavioral;

xordl2.vhd
library IEEE;
use IEEE . STD_LOGIC_1164 . ALL;
use IEEE . STD_LOGIC_ARITH . ALL ;
use IEEE . STD_LOGIC_UNSIGNED . ALL ;
use work.ncl_signals.all;

entity xordl2 is
port(ao : in dual_rail_logic_vector(1 to 32);

bo : in dual_rail_logic_vector(1 to 32);

131

z : out dual_rail_logic_vector(1 to 32));
end xordl2;

architecture Behavioral of xordl2 is
component exor

port(x : in dual_rail_logic;
y : in dual_rail_logic;
z : out dual_rail_logic);

end component;
begin

g2 : for i in 1 to 32 generate
h2 : exor port map(ao (i) ,bo(i) , z (i)) ;
end generate;

end Behavioral;

round 1 to 14sl.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE . STD_LOGIC_ARITH . ALL ;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.ncl_signals.all;

entity roundltol4sl is
port (Li : in dual_rail_logic_vector(1 to 32);

Ri : in dual_rail_logic_vector(1 to 32) ;
Ci : in dual_rail_logic_vector(1 to 28);
Di : in dual_rail_logic_vector(1 to 28);
Lo t out dual_rail_logic_vector(1 to 32)
Ro : out dual_rail_logic_vector(1 to 32)
Co : out dual_rail_logic_vector(1 to 28)
Do : out dual_rail_logic_vector(1 to 28));

end roundltol4sl;

architecture Behavioral of roundltol4sl is
signal L,R,f : dual_rail_logic_vector(1 to 32);
signal C,D : dual_rail_logic_vector(1 to 28);
signal ao,bo : dual_rail_logic_vector(1 to 48);
signal el,e2,e3,e4,e5,e6,e7,e8 : dual_rail_logic_vector(1 to 6);
signal yl,y2,y3,y4,y5,y6,y7,y8 : dual_rail_logic_vector(1 to 4);
component shifterl

port (CO : in dual_rail_logic_vector(1 to 28);
DO : in dual_rail_logic_vector(1 to 28) ;
CI : out dual_rail_logic_vector(1 to 28);
Dl : out dual_rail_logic_vector(1 to 28));

end component;
component expl

port (RO : in dual_rail_logic_vector(1 to 32);
bo : out dual_rail_logic_vector(1 to 48));

end component;
component pc2

port(CI : in dual_rail_logic_vector(1 to 28);
Dl : in dual_rail_logic_vector(1 to 28);
ao : out dual_rail_logic_vector(1 to 48));

end component;
component xordll

port (ao : in dual_rail_logic_vector(1 to 48);
bo : in dual_rail_logic_vector(1 to 48);
el,e2,e3,e4,e5,e6,e7,e8 : out dual_rail_logic_vector(1 to 6)),

end component;
component si

port (b : in dual_rail_logic_vector(1 to 6);
s : out dual_rail_logic_vector(1 to 4));

end component;
component s2

port (b : in dual_rail_logic_vector(1 to 6) ;
s : out dual_rail_logic_vector(1 to 4));

end component;
component s3

port (b : in dual_rail_logic_vector(1 to 6);

132

s : out dual__rail_logic_vector (1 to 4)
end component;
component s4

port (b :
s :

end component;
component s5

port (b :
S :

end component;
component s6

port (b :
s

end component ;
component s7

port (b

S :
end component ;
component s 8

port (b :
s

end component;
component fp

port (yl,y2,y3,y4,y5,y6,y7,y8 : in dual_rail_logic_vector(1 to 4)
f : out dual_rail_logic_vector(1 to 32));

end component;
component xordl2

port (ao : in dual_rail_logic_vector(1 to 32);
bo : in dual_rail_logic_vector(1 to 32);
z : out dual_rail_logic_vector(1 to 32));

end component;

in dual_rail_logic_vector(1 to 6);
out dual_rail_logic_vector(1 to 4));

in dual_rail_logic_vector(1 to 6);
out dual_rail_logic_vector(1 to 4));

in dual_rail_logic_vector(1 to 6);
out dual_rail_logic_vector(1 to 4))

in dual_rail_logic_vector(1 to 6);
out dual_rail_logic_vector(1 to 4));

in dual_rail_logic_vector(1 to 6) ;
out dual_rail_logic_vector(1 to 4));

begin
compl : shifterl port map(Ci,Di,C,D);
Co <= C; Do <= D;
L <- Li; R <= Ri;
Lo <= R;
comp2
comp3
comp4
comp5
comp6
comp7
comp8
comp9
complO
compll
compl2
compl3
comp!4

expl port map(R,bo);
pc2 port map(C,D,ao);
xordll port map(ao,bo,el,e2,e3,e4,e5,e6,e7,e8)
si port map(el,yl);
s2 port map(e2,y2);
s3 port map(e3,y3);
s4 port map(e4,y4);
s5 port map(e5,y5);
S6 port map(e6,y6);
s7 port map(e7,y7);
s8 port map(e8,y8);
fp port map(yl,y2,y3,y4,y5,yS,y7,y8,f);
xordl2 port map(f,L,Ro);

end Behavioral;

finalround.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE . STD_LOGIC_UNSIGNED . ALL ;
use work.ncl_signals.all;

entity finalround is
port (L16 : in dual_rail_logic_vector(1 to 32);

R16 : in dual_rail_logic_vector(1 to 32);
ct : out dual_rail_logic_vector(1 to 64)),

end finalround;

architecture Behavioral of finalround is
signal uu : dual_rail_logic_vector(1 to 64)
begin
-- process(uu)

http://IEEE.STD_LOGIC_ARITH.ALL

133

-- begin
uu(l to 32) <= L16; uu(33 to 64) <= RIG;

ct(l)<=uu(40)
ct(5)<=uu(56)
ct(9)<=uu(39)
ct(13)<=uu(55
ct(17)<=uu(38
ct(21)<=uu(54
ct(25)<=uu(37
Ct(29)<=uu(53
Ct(33)<=uu(36
ct(37)<=uu(52
ct(41)<=uu(35
ct(45)<=uu(51
ct(49)<=uu(34
ct(53)<=uu(50
Ct(57)<=uu(33
ct(61)<=uu(49
-- end process
end Behavioral

ct(2)<
ct (6)<
ct(10)
ct (14
ct (18
ct(22
ct(26
ct(30
ct(34
ct (38
ct(42
Ct(46
Ct(50
ct(54
ct(58
Ct(62

=uu(8) ;ct(3)<=uu(48) ;ct(4)<=uu(16) ;
=uu(24) ;Ct(7)<=uu(64) ;ct(8)<=uu(32) ;
:=uu(7) ;ct(ll)<=uu(47) ;Ct (12) <=uu(15) ;
<=uu(23) ;Ct(15)<=uu(63) ;ct(16)<=uu(31)
<=uu(6) ;ct(19)<=uu(46) ; ct (20) <=uu (14) ;
<=uu(22) ;Ct(23)<=uu(62) ; ct (24) <=uu (30)
<=uu(5) ;Ct(27)<=uu(45) ; Ct (28) <=UU (13) ;
<=uu(21) ;ct(31)<=uu(61) ;Ct(32)<=uu(29)
<=uu(4) ;Ct(35)<=uu(44) ;Ct(3 6)<=uu(12) ;
<=uu(20) ;Ct(3 9)<=uu(60) ; ct (40) <=uu (28) ,
<=uu(3) ,-ct(43)<=uu(43) ; Ct (44) <=uu (11) ;
<=uu(19) ;ct (47) <=uu(59) ;Ct (48) <=uu(27)
<=uu(2) ;ct(51)<=uu(42) ; ct(52)<=uu(10) ;
<=uu(18) ;Ct (55)<=uu(58) ; ct (56) <=uu (26)
<=UU(1) ;Ct (59)<=UU(41) ;ct(60)<=uu(9) ;
<=uu(17) ,-ct (63)<=uu(57) ,-ct (64) <=uu (25)

VHDL Files for Soft Error Tolerant Designs

asyncfulladder.vhd
library ieee;
use ieee.std_logic_1164.all;
use work.ncl_signals.all;

entity asyncfulladder is
port(elk : in std_logic;

rst : in std_logic;
Qi : out dual_rail_logic_vector(1 to 2) ;
Qo : out dual_rail_logic_vector(1 to 2));

end asyncfulladder;

architecture behavior of asyncfulladder is
signal D : dual_rail_logic_vector(1 to 3);
signal Ipul : std_logic;
component signal_genl

port(clock : in std_logic;
Di : out dual_rail_logic_vector(1 to 3);
strk : out std_logic);

end component;
component asyncfa

port (Di
I :
rst
Qi
Qo

end component;
begin
cl : signal_genl port map (elk, D, Ipul) ,-
c2 : asyncfa port map(D,Ipul,rst,Qi,Qo)
end behavior;

in dual_rail_logic_vector(1 to 3);
in std_logic;
: in std_logic;
out dual_rail_logic_vector(1 to 2)
out dual_rail_logic_vector(1 to 2)\

signal_genl.vhd
library ieee;
use ieee.std_logic_1164.all;
use work.ncl_signals.all;

entity signal_genl is
port (clock : in std_logic,-

Di : out dual_rail_logic_vector(1 to 3)
strk : out std_logic
) ;

end signal_genl;

134

architecture behavior of signal_genl is
begin
incrementer: process is
variable count_value: natural:=0;

begin
wait until clock = '1';
count_value := (count_value+l) mod 16;
Di(3),railO<='0';Di(2).raill<='0';Di(1).raill<='0'; case count_value is

when 1 to 8 =>
Di(3).raill <=•!•;

when others =>
Di(3).raill <='0';

end case;

case count_value is
when 3 to 10 =>

Di(2).railO <='l';
when others =>

Di(2).railO <='0';
end case;

case count_value is
when 5 to 12 =>

Di(l).railO <='l';
when others =>

Di (1) .railO <='0';
end case;
case count_value is

when 3 =>
strk <='l';

when others =>
strk <='0' ;

end case;

end process incrementer;

end behavior;

asyncfa.vhd
Library IEEE;
Use IEEE.std_logic_1164.all;
Use work.ncl_signals.all;

entity asyncfa is
port (Di : in dual_rail_logic_vector(1 to 3);

I : in std_logic;
rst : in std_logic;
Qi : out dual_rail_logic_vector(1 to 2);
Qo : out dual_rail_logic_vector(1 to 2)) ;

end asyncfa;

architecture behavioral of asyncfa is
signal se,kf,kro,ki,kri,kfo : std_logic;
signal Qia,Qic : dual_rail_logic_yector(1 to 3);
signal sc.Qins : dual_rail_logic_vector(1 to 2) ;
component initreg is

port (D : in dual_rail_logic_vector(1 to 3);
ki : in std_logic;
rst : in std_logic;
Q : out dual_rail_logic_vector(1 to 3);
ko : out std_logic);

end component;
component finalreg is

port (D : in dual_rail_logic_vector(1 to 2) ;
ki : in std_logic;
rst : in std_logic;
Q : out dual_rail_logic_vector(1 to 2);
ko : out std_logic);

end component;
component fulladder is

135

port (a : in dual_rail_logic_vector(1 to 3);
strk : in std_logic;
s : out dual_rail_logic_vector(1 to 2)) ;

end component;
component andgates is

port (data : in dual_rail_logic_vector(1 to 3);
q : in std_logic;
output : out dual_rail_logic_vector(1 to 3));

end component;
component rstcircuit

port (faout : in dual_rail_logic_vector(1 to 2);
kinsout : in std_logic;
kinitial : in std_logic;
kinsin : out std_logic;
q : out std_logic);

end component;
component agate

port (a : in std_logic;
b : in std_logic;
c : out std_logic);

end component;
begin
regl : initreg port map(Di,kf,rst,Qia,ki);
al : andgates port map(Qia,se.Qic);
combil : fulladder port map(Qic,I,sc);
Qi<=sc,-
a2 : rstcircuit port map(sc,kro,ki,kri,se);
regi : finalreg port map(sc,kri,rst,Qins,kro);
reg2 : finalreg port map(Qins,kfo,rst,Qo,kf) ;
a3 : agate port map (kf, se, kfo) ,-
end behavioral;

initreg.vhd
Library IEEE;
Use IEEE.std_logic_1164.all;
Use work.ncl_signals.all;

entity initreg is
port (D : in dual_rail_logic_vector(1 to 3);

ki : in std_logic;
rst : in std_logic;
Q : out dual_rail_logic_vector(1 to 3);
ko : out std_logic);

end initreg;

architecture behavioral of initreg is
signal ao : std_logic_vector(1 to 3);
component ncl_register_D

generic(width : integer;initial_value: integer); -- 1=DATA1, 0=DATA0, -4=NULL
port(D: in dual_rail_logic_vector(width-1 downto 0);

ki: in std_logic;
rst: in std_logic;
Q: out dual_rail_logic_vector(width-1 downto 0);
ko : out std_logic_vector(width-1 downto 0));

end component;
component th3 3x0

port(a: in std_logic;
b: in std_logic;
c: in std_logic;
z: out std_logic);

end component ,-
begin
regi : ncl_register_D generic map(width=>3,initial_value=>-4)

port map(D,ki,rst,Q,ao);
cdi : th33x0 port map(ao(3),ao(l),ao(2),ko);
end behavioral;

finalreg.vhd
Library IEEE;

136

Use IEEE. std_logic_HS4. all;
Use work.ncl_signals.all;

entity finalreg is
port (D : in dual_rail_logic_vector(1 to 2);

ki : in std_logic;
rst : in std_logic;
Q : out dual_rail_logic_vector(1 to 2);
ko : out std_logic);

end finalreg;

architecture behavioral of finalreg is
signal ao : std_logic_vector(1 to 2);
component ncl_register_D

generic(width : integer;initial_value: integer); -- 1=DATA1, 0=DATA0, -4=NULL
port(D: in dual_rail_logic_vector(width-1 downto 0) ;

ki: in std_logic;
rst: in std_logic;
Q: out dual_rail_logic_vector(width-1 downto 0);
ko : out std_logic_vector (width-1 downto 0)) ,-

end component;
component th22x0

port(a: in std_logic;
b: in std_logic;
z: out std_logic);

end component;
begin
regi : ncl_register_D generic map(width=>2,initial_value=>-4)

port map(D,ki,rst,Q,ao);
cdi : th22x0 port map(ao(2),ao(l),ko);
end behavioral;

fulladder.vhd
Library IEEE;
use IEEE. STD_LOGIC_1164. ALL;
use work.ncl_signals.all;

entity fulladder is
port (a : in dual_rail_logic_vector(1 to 3);

strk : in std_logic;
s : out dual_rail_logic_vector(1 to 2)

);
end fulladder;

architecture beh of fulladder is
signal cO,cl,cstrk : std_logic;
component strike is

port (data : in std_logic;
i : in std_logic;
ipulse : out std_logic);

end component;
component th23x0 is

port(a: in std_logic;
b: in std_logic;
c: in std_logic;
z: out std_logic);

end component;
component th34w2x0 is

port(a: in std_logic; -- weight 2
b: in std_logic;
c: in std_logic;
d: in std_logic;
z: out std_logic);

end component;
begin
gO : strike port map(a(1).raill,strk,cstrk);
gl : th23x0 port map (a (1) .railo, a (2) .railO, a (3) .railO, cO) ,-
g2 : th23x0 port map(cstrk,a(2).raill,a(3).raill,cl);
s(l) .railO<=cO,-s(l) .raill<=cl;
g3 : th34w2x0 port mapfcl,a(1).railO,a(2).railO,a(3).railO,s(2).railO);

137

g4 : th34w2x0 port map(cO,cstrk,a(2).raill,a(3).raill,s(2).raill);
end beh;

strike.vhd
library ieee;
use ieee.std_logic_1164.ALL;

entity strike is
port(data : in std_logic;

i : in std_logic;
ipulse : out std_logic);

end strike;

architecture beh of strike is
begin

process(data,i)
begin

if i = '1' then
ipulse <= i;

else
ipulse <= data;

end i f;
end process;

end beh;

andgates.vhd
Library IEEE;
use IEEE . STD_LOGIC_1164 . ALL;
use work.ncl_signals.all;

entity andgates is
port (data : in dual_rail_logic_vector(1 to 3);

q : in std_logic;
output : out dual_rail_logic_vector(1 to 3)

);
end andgates;

architecture beh of andgates is
begin
process(data,q)

begin
for i in 1 to data'length loop

output(i).railO <= data(i).railo and q;
output(i).raill <= data(i).raill and q;

end loop;
end process;

end beh;

rstcircuit.vhd
Library IEEE;
Use IEEE.std_logic_1164.all;
Use work.ncl_signals.all;

entity rstcircuit is
port (faout : in dual_rail_logic_vector(1 to 2);

kinsout : in std_logic;
kinitial : in std_logic;
kinsin : out std_logic;
q : out std_logic);

end rstcircuit;
architecture behavioral of rstcircuit is
signal qs,ka : std_logic;
component sedetect is

port(sc : in dual_rail_logic_vector(1 to 2) ;
se : out std_logic);

end component;
component doorl is

port(si : in std_logic;

s2 : in std_logic;
t : out std_logic) ,-

end component;
component door2 is

port(ml : in std_logic;
m2 : in std_logic;
n : out std_logic);

end component;
begin
si : sedetect port map(faout,qs);
q<=qs;
al : doorl port map(kinitial,kinsout,ka);
a2 : door2 port map(ka,qs,kinsin);
end behavioral ;

sedetect. vhd
Library IEEE;
Use IEEE.std_logic_1164.all;
Use work.ncl_signals.all;

entity sedetect is
port(sc : in dual_rail_logic_vector(1 to 2)

se : out std_logic);
end sedetect;
architecture beh of sedetect is
signal det,detl,det2 : std_logic;
component th22x0

port (a : in std_logic;
in std_logic;
out std_logic);

end component;
component thl2bx0

port (a : in std_logic;
b : in std_logic;
zb : out std_logic);

end component;
begin

gi
g2
g3
end beh

th22x0 port map(sc(1).railO,sc(1).raill,detl),
th22x0 port map(sc(2) .railO,sc(2) .raill,det2) ,
thl2bx0 port map(detl,det2,se);

doorl .vhd
Library IEEE;
Use IEEE.std_logic_1164.all;

entity doorl is
port(si : in std_logic;

s2 : in std_logic;
t : out std_logic);

-- kl : out std_logic);--test
end doorl;
architecture beh of doorl is
signal si,ti : std_logic;
begin

process(si,s2)
begin

si <= not si;
t <= si and s2;

end process;
end beh;

door2.vhd
Library IEEE;
Use IEEE.std_logic_1164.all,•

entity door2 is
port(ml : in std_logic;

139

m2 : in std_logic;
n : out std_logic) ,•

end door2;
architecture beh of door2 is
begin

process(ml,m2)
begin

n <= ml and m2;
end process;

end beh;

agate.vhd
library IEEE;
Use IEEE.std_logic_1164.all;

entity agate is
port (a : in std_logic;

b : in std_logic;
c : out std_logic);

end agate;

architecture behavioral of agate is
begin

process(a,b)
begin

c<=a and b;
end process;

end behavioral;

140

BIOGRAPHICAL SKETCH

Deepya Reddy Nalubolu was born in Nellore, Andhra Pradesh, India on May 19, 1984,

the daughter of VenuGopal Reddy Nalubolu and Sowjanya Nalubolu. She completed her

schooling from Space Central School, Sriharikota, India in 2001 and joined PBR

Visvodaya Institute of Technology & Science affiliated to Jawaharlal Nehru

Technological University (JNTU) for her Bachelor's in Technology (BTech). She

graduated with a BTech degree in Electronics and Communications Engineering in April

2005 and later decided to work as a lecturer teaching electronic concepts from December

2006 till December 2007. She quit her job to come to USA for pursuing her Master's

degree at UTPA, Edinburg, Texas in January 2007. During her graduate program at the

Department of Electrical Engineering, she worked as a Teaching Assistant and as a

Research Assistant. She is expected to graduate in August 2009.

Permanent Address: 1609 W Schunior st,

Apt #1704,

Edinburg, TX-78541.

This thesis was typed by the Author.

	Asynchronous designs on FPGA with soft error tolerance for security algorithms
	Recommended Citation

	ProQuest Dissertations

