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ABSTRACT 

Muddamallappa, Mallikarjunaiah Siddapura, Analytical and computational studies of 

magneto-convection in solidifying mushy layer. Master of Science(MS), August 2009, 46 pages, 

31 reference, 5 titles. 

Natural convection in solidifying binary media is of great interest due to it's applications in 

material processing and crystal growth industries. Convective flows between the layers of melt 

during alloy solidification is known to produce mechanical imperfections such as freckle's. 

Hence it is important to investigate the criterion for freckling and discover the means of 

suppressing it. 

A mushy layer, which has both solid and fluid components and is formed between underlying 

solid and overlying liquid, is known to produce chimneys, which are narrow, vertical vents, 

devoid of solid. We consider the problem of magneto-convection in a horizontal mushy layer 

during the solidification of binary alloys. Both cases of permeable and impermeable 

mush-liquid interface were investigated. We carry out the numerical investigation for particular 

range of parameter values which cover those of available experimental studies. Cases of 

constant and variable permeability coupled with mush-liquid interface boundary conditions 

were included in the present study. The governing coupled non-linear partial differential 

equations are non-dimensionalized and solved to get steady basic state solution. Using multiple 

shooting technique we determine the steady state solutions in a range of critical Rayleigh 

number. We analyse the effect of, Chandrasekhar number Q, far-field temperature, permeability 

of the medium, mush-liquid interface condition, on the problem. The results of the analysis and 

computation indicate that increasing Q has the stabilizing effect on the solidification, because the 

critical Rayleigh number increases with increasing the strength of magnetic field. But permeable 

mush-liquid interface condition destabilizes the convection by reducing the critical Rayleigh 
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number. It was also found that for moderate or small values of Robert's number, the critical 

Rayleigh number is mostly insensitive. The most important finding of the present investigation 

is that the convection in a mushy layer decreases upon increasing the strength of externally 

imposed magnetic field and increasing far-field temperature. These theoretical results have been 

observed in related experiments of damped magneto-convection by Vives and Perry (1987). 
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CHAPTER 1 

INTRODUCTION 

The area of solidification is becoming of great importance in real world applications with the 

advancement of technologies day by day. Solidification process is used in various fields such 

as manufacturing, material science, earth science, energy and environmental science. Crystal 

growth, ceramics, welding and castings are various applications in material science involving so­

lidification. Volcanic systems, crystal magmas, ore deposits and sea ice are earth science related 

solidification applications. In engineering applications it is important to reduce the undesirable 

effects of convection in mushy layer and also find ways to prevent formation of localized chim­

neys within the mushy layer. Since it is known that chimney convection can lead to mechanical 

imperfections in the final form of solidified alloy, referred to as freckle's. In geological appli­

cations, a large amount of molten rock is produced within the earth and this melt solidifies in 

magma chambers, along lava flows and during the volcanic eruptions. 

When a binary alloy is cooled from below, a distinct mushy layer made of dendritic crystals is 

formed due to morphological instabilities of the solid-liquid interface. Partially solidified, mush 

region is treated as a reactive porous medium. Convective flow in mushy layer causes freckles. 

Freckles are roughly cylindrical regions that are depleted in solute and often have anisotropi-

cally oriented grains. They form along the direction of solidification and cause a disruption of 

compositional homogeneity. Freckles are commonly found in cast binary alloys such as nickel-

aluminum, aluminum-copper and lead-tin, as well as steel. Hence investigating the criteria and 

controlling natural convection in mushy layer is important in crystal growth processes for semi 

conductor industry. 

The freckles were first reported by Copley et al (1970), during the unidirectional solidification 

of ammonium chloride and water solution. They concluded that freckle formation occurs more 

in the mushy zone with high thermal diffusivity, low solute diffusivity and low viscosity. Hills 

et al. (1983) developed a set of thermodynamic equations for a mushy layer and solved one di­

mensional freezing problem. Fowler (1985) developed a mathematical model for the convective 
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et al. (1983) developed a set of thermodynamic equations for a mushy layer and solved one di­

mensional freezing problem. Fowler (1985) developed a mathematical model for the convective 

flow in chimneys and predicted a criterion for the onset of convection and freckling. Huppert 

(1985) studied experimentally the six different cases that arise when homogeneous solution is 

cooled from below and also evaluated the criterion for which solid-liquid interface becomes un­

stable. Worster (1986) developed a model for dendritic growth that often formed during the 

solidification of binary alloy by considering the region of mixed phase as continuum and sug­

gested different morphologies that can occur due to the variation of the solid fraction. Several 

experimental studies, concerning the solidification of binary alloy with or without magnetic field, 

are available in the literature. Vives and Perry (1987) carried out the experimental studies of 

natural and damped convection during the solidification of metal alloys. The damped convection 

was caused by a stationary and uniform magnetic field parallel to the gravity. They observed 

that the stationary magnetic field decreases the superheat and increases the rate of solidification. 

Vives (1990) examined the influence of rotating aluminium alloy flows, driven by a stationary 

electromagnetic field, during freezing in a toroidal mold. Chen and Chen (1991) conducted di­

rectional solidification experiments, without externally imposed magnetic field, using ammonium 

chloride-water solution, studied different types of convection and calculated the critical Rayleigh 

number of mushy layer for the onset of plume convection. 

Many interesting and important, theoretical and experimental investigations concerning the 

convection within the mushy layer, which is responsible for the formation of chimneys, were 

reported during the last three decades. Worster (1991) developed and analyzed the governing 

equations for a mushy layer in the asymptotic limit of large solutal Rayleigh number. He observed 

that there is downward flow everywhere in the mushy region, except in and near the chimneys. 

He determined a critical Rayleigh number above which the mushy layer is unstable to small 

disturbances. Worster (1992) solved the linear stability problem for binary alloy solidification. He 

detected two modes of instabilities, one of which has been referred to as the mushy layer mode. 

This mode has a wavelength comparable to the depth of the mushy layer and is responsible for 

the development of chimneys within the mushy layer. The second mode of instability, which we 

referred to as the boundary-layer mode was found to have a wavelength comparable to the depth 
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of the compositional boundary layer above the mush-liquid interface. These results were obtained 

under the restriction of infinite Prandtl number. The mushy layer mode drives the convective flow 

downward everywhere except in and near the localized chimneys. This result is in agreement with 

the experimental result of Tait and Jaupart (1992a,b), in which they conducted experiments using 

aqueous solutions of ammonium chloride. In addition, these authors observed that the boundary 

layer at the top of the mush becomes unstable, leading to convection in the overlying fluid. They 

also observed that up flow occured at the cell boundaries and the down flow at the cell centers. 

A notable simplified mushy-layer model was first introduced by Amberg and Homsy (1993). 

The model was based on a near eutectic approximation and in the limit of large far-field temper­

ature. Such asymptotic limits allowed them to examine the dynamics of the mushy layer in the 

form of a small deviation from die classical system of convection in a horizontal porous medium 

with constant permeability. Emms and Fowler (1994) proposed a coupled mush-liquid model 

to study the onset of convection during the directional solidification of binary alloys. Anderson 

and Worster (1995) employed a weakly nonlinear analysis of simplified mushy layer model that 

was proposed by Amberg and Homsy (1993). They considered the limit of large Stefan number, 

which enabled them to reach a domain for the existence of the oscillatory mode of convection. 

The experimental studies of directional solidification of binary alloys in the absence of mag­

netic field are due to Chen and Chen (1991) and Chen (1995). Chen and Chen (1991) conducted 

experiments by cooling sodium chloride and water solution from below at constant temperature. 

They used a Kozeny-Carman type of relation to calculate the permeability and found the critical 

solute Rayleigh number across the mushy layer for the onset of plume convection. Chen (1995) 

applied a dye tracing method to study convection within the mushy layer before and after the on­

set of plume convection and X-ray tomography to measure the solid fraction of a growing mush. 

It was reported that there was no convective motion in the mush prior to the onset of chimneys 

and the solid fraction of the mush decrease toward the bottom of the tank after the chimneys are 

fully developed. 

Several attempts were made to study the solidification process by imposing certain external 

constraints, such as rotation and/or magnetic field, to suppress or at least reduce unwanted con­

vection in the mushy layer. Riahi (1997) studied the effects of a high gravity environment, where 
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rotation serves as an external constraint, on natural convection in cylindrical chimneys within a 

mushy layer during the solidification of binary alloy. It was observed that for some moderate 

values of the rotation rate, axial convection in the chimneys decreases rapidly with increasing 

acceleration parameter and increasing Coriolis parameter. Riahi (2000) investigated, asymptoti­

cally, the effects of vertical magnetic field on the chimney convection in mushy layer. Three cases 

of magnetic field such as strong, moderate and weak were studied. The presence of an externally 

imposed magnetic field in the vertical direction was found to be stabilizing in the case of strong 

magnetic field and ineffective in the case of a moderate (or weak) magnetic field. 

Riahi (2001) also studied non-linear buoyancy driven convection in the melt and in cylin­

drical chimneys in a mushy layer during alloy solidification, subjected to externally imposed 

strong magnetic field under the influence of centrifugal and Coriolis forces. It was found, in 

particular, that chimney convection generally decreases with increasing magnetic parameter Q 

(Chandrasekhar Number), and also chimney convection can have lower amplitude for certain 

ranges of the Coriolis force. Such theoretical results were found agreeable with some available 

experimental and computational results. 

Okhuysen and Riahi (2008a), examined a weakly nonlinear analysis of buoyant convection 

in binary alloy solidification for permeable mush-liquid interface and in the absence of vertical 

magnetic field. They analyzed effects of several parameters on two and three-dimensional steady 

convection patterns in the mushy layers for variable permeability. The most important result of 

their study was the prediction of a subcritical down-hexagonal pattern for variable permeability 

case that corresponds to the smallest value of the Rayleigh number. Okhuysen and Riahi (2008b) 

analyzed the linear flow instabilities of the liquid and mushy regions during directional solidifi­

cation of binary alloy under high gravity environment. Their linear stability analysis indicated 

the presence of mushy layer mode in the case of rotation. The chimney formation in mushy zone 

was found to be reduced by increasing the rotation rate. 

To date, all the flow patterns observed by Tait and Jaupart (1992) remain unaccounted for in 

the theoretical study of such solidification problems. Among the theoretical and computational 

studies of nonlinear convection in mushy layers during solidification of alloys in the absence of 

externally imposed magnetic field that have been done so far, the one that actually predicted the 
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particular flow pattern observed in experiments (Tait and Jaupart, 1992) for flow regime near 

onset of motion, is that due to Okhuysen and Riahi (2008). 

In Chapter 2 mathematical formulation of a single-layer mode of the mushy zone under the 

externally applied uniform magnetic field is provided. This model is the extension of previous 

asymptotic studies of Riahi (2000). First the geometry of the system under consideration is 

presented. Then, physical concepts are introduced and basic assumptions are discussed. The 

governing equations and boundary conditions for the problem are then formulated. 

In Chapter 3, the system formulated in Chapter 2 is analyzed. For each case, linear stability 

is considered. 

Chapter 4 consists of a discussion of the method for obtaining results. The variation of 

Rayleigh number with parameter values of interest are reported for each of the considered cases. 

Chapter 5 concludes this investigation of convection in mushy regions under externally imposed 

uniform magnetic field. 
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CHAPTER 2 

MATHEMATICAL FORMULATIONS 

2.1 The model 

A binary alloy, undergoing the directional solidification, under the influence of externally 

imposed uniform magnetic field, at a constant rate VQ is considered. A distinct mushy layer, 

which is a mixture of melt and solid dendrites is formed between a lower solidified material and 

an upper liquid melt. The lower mush-solid interface is kept at eutectic temperature TE- Let 

Too be the temperature of liquid far above the mushy layer and Tm> TL where Ti is the liquidus 

temperature of the alloy. As the alloy solidifies with a given composition, it releases buoyant 

residual fluid within the mushy layer. A schematic description of this physical system is shown 

in figure 2.1. 

A binary phase diagram is shown in figure 2.2, the left and right extremes correspond to mate­

rials in pure form. The point E is the eutectic point. Let CE and TE be the composition of the melt 

at the eutectic point E. When the temperature of the melt is above the liquidus curve, the sample 

is completely liquid. In the region between the liquidus and the solidus, solid and liquid coexist 

in equilibrium, with the composition of the liquid phase equal to the liquidus concentration and 

the composition of the solid phase equal to the solidus concentration at the given temperature. 

This is the state in the interior of an ideal mushy layer. The regions ACE and BED corresponds 

to the region of solid and liquid coexist in equilibrium, with the composition of the liquid phase 

is equal to the liquidus concentration and the composition of solid phase is equal to the solidus 

concentration at the given temperature. The region ACF represents material of a single phase, 

in which atoms of one component are incorporated into the lattice of trie other to form a solid 

solution. Below the eutectic temperature TE , a composite solid forms composed of crystals of 

both of the end members of the alloy. In an ideal mushy layer, the liquidus is taken to be linear, 

as shown on the right. 
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Figure 2.1: The diagram showing the physical system under consideration. 

Liquid 

Liquid & solid mix 
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Figure 2.2: The equilibrium phase diagram of a eutectic binary alloy. 
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We assume that the concentration of the melt Co is greater than the eutectic concentration CE-

The concentration of the liquid is related to the temperature in the mush by the liquidus relation 

(Worster 1991). 

T = TL(C) = TE+r(C-CE), (2.1) 

where F is the slope of the liquidus. The density of the fluid is expressed in terms of its tempera­

ture T and composition C as 

p, = P o [ l - a * ( r - r 0 ) - / 3 * ( C - C b ) ] , (2.2) 

where a* and j3* are expansion coefficients for heat and solute, respectively, and po, 7b, and Co 

are reference values. Using equation (2.1) in (2.2), the equation of state can be written as 

p / = p 0 [ l - ( a T - / 3 * ) ( C - C b ) ] . (2.3) 

Many authors took different approaches to the formulation of governing equations. We follow 

an approach close to Worster (1991, 1992) for the so called ideal mushy layer (Worster 1997). 

Conservation equations for hydro-magnetic convective flow (Chandrasekhar 1961, Riahi 2000) 

through Darcy law are derived at the continuum level. When the Oberbeck-Boussinesq approxi­

mation is applied, the equation for conservation of mass, momentum, heat and concentration can 

be written as 

V.« = 0, (2.4) 

V.H = 0, (2.5) 

n ( £ ) 4/rp yp SnpJ VPo 

^ . + -i-(ujHi-UiHj) = rjV2Hi, (2.7) 

cm(di-V0d-z)T + c,u-VT = V-(£mVr)- j§f(^-Vbd 2) ;e , (2.8) 
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(dr-Vodi)\xC+(i-ft)Cs]+Q-VC = V-(DmVC). (2.9) 

Here p is static pressure, j£? is the latent heat of solidification, u is the Darcy velocity, H is 

the magnetic field, v is the dynamic viscosity, n is the permeability function, % is liquid volume 

fraction, p is the density, g is the acceleration due to gravity, cm, kmand Dm are weighted averages 

of specific heat, heat and molecular mass respectively, dj and <9| are partial derivatives with respect 

to t and z-

At the solid-mush interface, z = 0, the temperature is held at the eutectic temperature and no 

penetration of fluid into the solid region is possible: 

T = TE, uez=0, (2.10) 

where ez is the unit vector oriented along the vertical axis. 

At the mush-liquid interface, Worster (1986, 1991) introduces two interfacial conditions that 

express conservation of heat, solute and the continuity of mass flux, temperature and heat flux. 

These can be expressed as 

[n-u}=0, \p]=0,[T]=0, [ n - V r ] = 0 (2.11) 

In one case, we assume that the mush-liquid interface is impermeable, so that, 

n-u = 0 (2.12) 

Chung and Chen (2000) considered the Amberg-Homsy (1993) model with one modification. 

Instead of considering the mush-liquid interface to be impermeable, they considered the mush-

liquid interface to be permeable so that the vertical velocity gradient is zero. 

n-V(u-n)=0 (2.13) 

In (2.13), n is a unit vector normal to the interface and in (2.11), [ ] denotes the jump in the 

enclosed quantity across the interface. We will consider both cases (2.12) and (2.13) in this study. 
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2.2 Nondimensional System 

The governing equations are dimensionalised by the following scalings. Velocity is scaled by 

the speed of the solidification front, Vo- Length and time scales are made dimensionless using 

K/VQ, K/VQ respectively. Pressure is scaled by [(j3* — Ta*)ACpogK] /%, Concentration of solute 

is scaled by AC = CQ — CE, temperature is scaled by AT = TL(Co) — TE. Finally the magnetic field 

is scaled by h. 

The non-dimensional form of the basic equations for the hydromagnetic convective flow in 

mushy layer are given by 

V-V = 0, (2.14) 

V # = 0, (2.15) 

KTf + VP + RSk-- (j- + # V ) # = 0, (2.16) 

(-^--^-j[@-S^} + Jfe-V2Q = 0, (2.18) 

(j--j-][(l-<S>)@ + C@} + T?-V@ = 0, (2.19) 

where u =Ui + V j + Wk is the volume flux vector per unit area, which is also known as the 

Darcy velocity vector, U and V are the horizontal components of U, W is the vertical compo­

nent of U, P is the non-dimensional modified pressure, 0 is the non-dimensional temperature, 

equivalently modified composition, 0 = [T — Ti(Co)]/AT, also 0 = (C — Cb)/AC, t is the time 

variable, 4> is the local solid volume fraction, R = (5 ACgTlo/VoV is the mush Rayleigh num­

ber, Flo is reference value of permeability of the porous medium, which is assumed to be finite, 

K = ITo/n is the permeability function of the medium, v is the kinematic viscosity, j3 is the 

expansion co-efficient of solid, Q = iJ.Ji2Ho/(47tpovri) is the Chandrasekhar number which rep­

resents the strength of externally imposed magnetic field, /x is the magnetic permeability, r} is the 

magnetic diffusivity, T = K/X] is the Roberts number, h is the uniform magnetic field's strength, 

S = L/yAT is the Stefan number, y is the specific heat per unit volume, L is the Latent heat of 
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solidification per unit volume, C = (CiV — Co)/AC is a concentration ratio, Cs is the composition 

of the solid phase forming the dendrites. In addition i, j and k axe, unit vectors along X-, Y- and 

Z- directions, respectively. 

The above governing equations are subjected to the following boundary conditions 

0 = - 1 , W = 0, 7? =k at Z = 0, (2.20) 

0 = 0, 0 = 0, W = 0 or dzW = 0, H = k at Z = 8. (2.21) 

Where S = dVo/K is the growth Peclet number representing the dimensionless depth of the 

mushy layer, d is the thickness of the mushy layer. The non-dimensional boundary conditions 

(2.21) at the upper boundary correspond to those for an impermeable flat boundary with zero 

solid fraction, whose temperature is that of the liquidus temperature relevant for the flow a single-

mushy layer model (Amberg and Homsy, 1993). In addition, we also used the continuity of the 

heat flux across the mush-liquid interface to determine a relation for the basic state solution for 

the temperature. 

We use a Kozeny-Carman type of relation for variable permeability (Worster, 1992), as a 

function of porosity or local liquid fraction, 

K(x,y,z,t) = ^ . (2.22) 

The Permeability IT is derived from 

n(*) = (!-*(*,» *,'))"• 

Hence the Permeability function is given by 

K ={\-<&)-n. (2.23) 

In the above permeability function, n = 0 represents the case of constant permeability in 
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which there is no coupling between permeability and porosity and is known as the case of passive 

mushy layer. Also n = 3 in equation (2.22) represents the case of variable permeability which is 

known as the case of reactive mushy layer. Hence in K = (1 — <J>)~3, K increases as <I> increases, 

which is physically realistic. These two relations for K has been used by many authors (Worster 

1992, Amberg and Homsy 1993, Emms and Fowler 1994, Okhuysen and Riahi 2008a) in similar 

studies. 
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CHAPTER 3 

PERTURBATION ANALYSIS 

Here we employ a similar approach to the one of Okhuysen and Riahi (2008), if the con­

straint of analytical solutions is removed and the use of one-dimensional numerical integration 

is accepted, then the linear stability of the governing system may be studied for fixed parameter 

values. 

3.1 Steady Basic State and Perturbation Systems 

The basic state is considered to be motionless and the corresponding quantities are designated by 

subscript' b ' and are assumed to be functions of Z. 

0 = 9h(Z)+e6(x,y,z,t), (3.1) 

4> = & ( Z ) + e 0 ( x , y , z , r ) , (3.2) 

T? = ~(? + elt(x,y, z,t), (3.3) 

P = Pb{z)+ep(x,y,z,t), (3.4) 

1 = Kh(<j>h) + £K(x,y,z,t), (3.5) 

H = k + et{x,y,z,t), (3.6) 

where e ( e « l ) is the perturbation parameter and the perturbed quantities can vary with respect to 

spatial and time variables. 0,(j),lt,p,K and h are the perturbed quantities for the corresponding 

dependent variables. Using equation (3.1) - (3.6) in (2.14) - (2.19) and the boundary conditions 

(2.20) - (2.21) and setting all perturbation quantities to be zero, we find the following steady 

basic-state system of equations. 
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d2eh deh 

dz2 f 

(i-fc) 

dz 
d9t 
dz 

dpb 
dz 

= S 
d<t>b 

dz' 

= (0b-C) 

= -RBb. 

d<j>b 

dz' 

(3.7) 

(3.8) 

(3.9) 

The corresponding boundary conditions are as follows 

Ob = —1 at z = 0, 

0b = <fe = 0 at z — 8. 

(3.10) 

(3.11) 

In order to solve (3.7) - (3.9) along with the boundary conditions (3.10) - (3.11), we follow 

Okhuysen and Riahi (2008). We integrate the heat and solute equations once, apply the boundary 

conditions and then substitute the expression for <ph into the integrated form of the heat equation, 

integrate and apply the boundary conditions again to determine the basic state solutions. We also 

used a boundary condition at the top boundary d6b/dz — Boo (Worster, 1991, 1992), where &*, = 

[Too — TI(CQ)]/AT is the non-dimensional far-field temperature. Using this boundary condition, 

we find the following inverse relation for basic-state temperature, 

*«=£§•• 1+A 
-I In 

A-B 

1+fi 

B-dh 
(3.12) 

[A-eh_ 

where A and B are the roots of the equation 9% — (S+C + 9oo)9b + CQoo = 0. The values of A and 

B in terms of S, C and (L are given by the following equations 

5 + C-|-0-, + V(5-r-C + eL)2-4CeL 
(3.13) 
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The basic-state solid fraction and pressure are given by 

<fc = % 
Ob-C 

ph = -R 9hdz + Po, 

(3.15) 

(3.16) 

where Po is a constant. 

To determine the thickness of the mushy layer 8, we use the remaining boundary condition in 

(3.11) for the basic-state temperature at the upper boundary by replacing Ob and z in (3.12) with 0 

and 8, respectively. Thus the following expression for 8 is obtained as function of the parameters 

S, C and 0„ 

A-B 
l+A C - B 1 H In 

A-B 
1+fi 

B 
(3.17) 

Using (3.5) in (2.23), we find a relation for the basic-state permeability function as 

* • * = ( ! - < & * ) - " . (3.18) 
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3.2 Linear Perturbation System 

We find the following linear perturbation system and the corresponding boundary conditions that 

will be needed for further analysis 

Kh!? + Vp + Rek-

d d \ —> dlt 
dt dz) dz 

Qdh 

X dz 

Vt = 
T 

V-lt = 
V- h 

d% d d 2\ f d c ^ 

• - < * - < M | - S V > + * > 

0, (3.19) 

0, (3.20) 

0, (3.21) 

0, (3.22) 

0, (3.23) 

0. (3.24) 

The boundary conditions are given by 

6 — w = ti3 = 0 at z = 0, 

0 = w or dzw = 0, <j> = hi = 0 at z — d, 

(3.25) 

(3.26) 

where hj, is the vertical component of induced magnetic field h . 

The perturbation equations and the boundary conditions are obtained by taking the z-component 

of the double-curl of equation (3.19), z-component of equation(3.20) and using equations (3.21) 

and (3.22), we obtain the following coupled system. 

„ 2 1 dKb dw R A n Q d . 

Kh dz dz Kh xKh dz 
(d d \ i dw 1 2 i 

\dt dz) dz T 

d__d_ 
dt dz '-"iriiJ^f 

0, (3.27) 

0, (3.28) 

0, (3.29) 
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(1 A \ I d d \ , d < t > b e-{eb-c)[jt-^-\0 + ^ ( 0 +w) = o, (3.30) 

where V2 and A2,respectively, 3D and 2D laplacian, and the boundary conditions are 

e = w = /z 3 =0 at Z = 0, (3.31) 

0 = w or dzw = 0,<p = h3=0 at z = d. (3.32) 

Since the coefficients in (3.27) - (3.30) are functions of z only, we use normal mode approach 

(Chandrasekhar 1961). The perturbations are expressed in terms of a set of normal modes in the 

form of two dimensional waves. 

(w, 9, <j>, h3) = [w(z), 0(z), 0(z), h(z)] -exp(ikx + ot), (3.33) 

where k is the wave number of the disturbance, i is the imaginary unit (z = \f^\), x is the 

horizontal variable, t is the time variable and a is the growth rate of the disturbance, for the 

onset of stationary solution we seek a = 0. Using (3.33) in (3.27) - (3.32). These give rise to 

the following linearized equations and boundary conditions in which the variables w, 0, 0, h^ 

represent the disturbance amplitudes. 

In mushy region, 0 < z < 8, the disturbance equations take form 

fTj. , 2 x ~ 1 dKh dw Rk2~ Q , , , 2 ~ 
(3.34) 

(3.35) (<7-D)h3-Dw--(D2-k2)h3 = 0, 

{a-D-D2+k2)e-S{a-D)^ + wDdh = 0, (3.36) 

[(l-&)(CT-Z>) + D 0 * ] 0 - ( e A - C ) ( f f - D ) £ + De*(0 + w) = 0. (3.37) 

The corresponding boundary conditions applied to dependent variables are 
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9 = w = h3 = 0 at z = 0, (3.38) 

0 = w or dzw = 0, 0 = /i3 = 0 at z = 8. (3.39) 

3.3 Computational Procedure 

The analytical solution obtained in equation (3.12) gives z in terms of basic-state temperature, 

6b- We use Muller's method (Cheney and Kincaid, 2008) to obtain the basic-state temperature 

from this equation without actually inverting it. The basic-state solid volume fraction, fa is then 

computed from equation (3.15) using 9b obtained above. Using equation (3.17), we compute the 

thickness of the mushy layer. 

To analyze the marginal stability numerically, we first convert the linear system involving 

ordinary differential equations (ODE) and boundary conditions given by equations (3.34) - (3.39) 

to a linear system involving simple ODEs and corresponding boundary conditions. Multiple 

shooting technique (Cheney and Kincaid, 2008) is used to solve this ODE system. Starting at z = 

0, for a fixed wave number, and Rayleigh number, we integrate the ODEs using an efficient fourth 

order Runge-Kutta algorithm (Cheney and Kincaid, 2008) for four different initial conditions 

until we reach z= 8. Then at z = d, we apply the boundary conditions and check the value of Det 

= Det (k, R: Q, 0„, T, S, C). We iterate over R and repeat the same procedure until Det « 0. This 

procedure was repeated, until we get a pair of wave number and Rayleigh number (k, R). The 

minimum value of the eigenvalue Rc with respect to kc is then determined from the marginally 

stable state values for different kcs. At a minimum point on the marginal stability curve, which 

is the least upper bound on a stable flow regime, above which instabilities will manifest. Then 

the linear solutions at that critical wave number and Rayleigh number are determined. Marginal 

stability graphs are obtained for different cases of magnetic field, far-field temperature, magnetic 

field gradient and variable permeability parameter. 

The strength of externally imposed magnetic field represented by a non dimensional Chan-

drasekhar number, Q is chosen as 0.01, 1.0 and 3.0 to represent the cases of weak, moderate and 
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strong magnetic field (Riahi 2000). For the case of non-magnetic field, we use Q = 0. Also the 

Roberts number is set as 0.0001 (Vives and Perry, 1987). The effects of Roberts number on the 

convective instabilities during steady solidification of binary alloys were reported as very little or 

no effect (Riahi, 2000). In the present study we also notice very little effect of variation of the 

Roberts number, T, on the solution. 
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CHAPTER 4 

RESULTS 

Here we consider a particular set of parameter values, namely, the concentration ratio, C 

= 9.0, Stefan number, S = 3.2 and far-field temperature, &<,= 0.1, 0.2, 0.3. These values are 

taken from relevant experimental studies concerning the solidification of ammonium chloride 

solution (Tait and Jaupart, 1992, Chung and Chen 2005). The computed thickness, 8 of the 

mushy layer from equation(3.17) are 1.9894, 1.5239 and 1.2687 for far-field temperature 0.1, 0.2 

and 0.3 respectively. It is observed that thickness of the mushy layer decreases as the far-field 

temperature increases. This is due to the fact that, increasing far-field temperature transfer more 

heat flux from liquid region and hence reduces the thickness of the mushy layer (Worster 1992, 

Okhuysen 2005). 

As a way to validate our present computational code, we first considered the case in the 

absence of the magnetic field and generated data for particular values of the parameters C, S and 

0oo similar to those used in Okhuysen (2005). We found very good qualitative and quantitative 

agreements between our results for the critical values of the Rayleigh number and the wave 

number and those in Okhuysen (2005). 

Nature of mushy layer 

Passive mushy layer 

Reactive mushy layer 

Okhuysen(2005) 

£c=11.183i?6=120.25 

kc=\ 1.217 /?c=157.89 

Present study 

A:c.= 11.183#c.=120.1025 

kc=l 1.217 i?c=157.324 

4.1 Passive Mushy layer 

We now focus on a mushy layer in which the permeability function K = l(i.e. n = 0 in eq(2.23)), 

there is no coupling between permeability and porosity. For a two dimensional convection, the 

parameter values were selected from the available experimental studies concerning the solidifi­

cation of binary alloys. In order to make the model realistic, the values of far-field temperature 
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were taken from Tait and Jaupart (1992b), and we select the value of concentration ratio C = 

9.0 and Stefan number S = 3.2 from experimental studies of Chen and Chen (1995). Under the 

case of passive mushy layer, two explicit cases for impermeable and permeable mush-liquid in­

terface were examined. The eigenvalue relationship E(R, k,C, 5, ft*,, Q, T,a) = 0 , then specifies a 

marginal-stability curve of Rc v/s kc for each choice of dimensionless parameters such as Q, 6b 

and T. The system is unstable in the region above each curve and is stable below the curve. 

4.1.1 Impermeable mush-liquid interface 

Here the top boundary is assumed to be impermeable, ie there is no outflow at the mush-liquid 

interface. The first illustrative example of marginal stability curve is displayed in fig (4.1), which 

shows the effect of far-field temperature, £>«> on marginal stability for weak magnetic field, Q 

= 0.01. The system is convectively unstable to the disturbances of wave number kc whenever 

the Rayleigh number is greater than the value Rc given by the marginal stability curve. The 

striking property of this marginal curve is that the critical Rayleigh number, Rc and wave number, 

kc increase with increasing far-field temperature, ft*,. This result agrees with result obtained 

by Worster (1992). The increasing critical Rayleigh number indicates that the mushy layer is 

more stable, and the increasing wave number reflects the fact that instability manifest at shorter 

wave length. This behavior is expected as the mushy layer gets thinner with increasing far-field 

temperature. The critical pair (kc, Rc) for ft*, = 0.1 is (1.7, 18.6), which agrees qualitatively with 

the value obtained for the case of no magnetic field by Okhuysen (2005). 

For the case of moderate magnetic field, the value of Q is taken as 1.0. Figure (4.2) indicates 

the effect of Q on critical Rayleigh number for different values of far-field temperature ft*, = 0.1, 

0.2 and 0.3. It can be seen that the far-field temperature is stabilizing for the case of moderate 

field in the sense that the critical Rayleigh number increases with increasing far-field temperature. 

Also, the critical pair for Q = 1.0 and 9m — 0.1 is (2.0, 26.5), which is qualitatively higher than 

in the case of weak magnetic field. The same qualitative result was found to be valid for the case 

of strong magnetic field(Q = 3.0). 

Figure (4.3) shows the effect of magnetic field on the onset of motion, the critical Rayleigh 
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number increases with increasing Q. It can be seen that magnetic field has notable stabilizing 

effect on the onset of convective motion in the sense that the value of the critical Rayleigh number 

increases with the strength of the magnetic field. 
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Figure 4.1: Effect of far-field temperature on marginal stability for the case of weak magnetic 

field g = 0.01 

64 

T 
on 
i_r 
(0 

E 
D 
Z 
.C 
O) 
<D 

>< TO 

56 

48 

40 

32 

24 H 

0.5 1 1.5 2 2.5 3 

wavenumber, k -
3.5 

Figure 4.2: Marginal stability graph showing the effect of far-field temperature for the case of 

moderate magnetic field Q = 1.0. 
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Figure 4.3: Effect of magnetic field on marginal stability for 0^ = 0.1. 
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4.1.2 Permeable mush-liquid interface 

Here we consider passive mushy layer with out flow at the top. The condition (dw/dz = 0) of 

permeable mush-liquid interface, which is much closer to the experimental condition than a non-

permeable W = 0 condition at such surface, was used first by Chung and Chen (2000) in their 

theoretical study of directional solidification. The present permeable interface condition can be 

derived using the constant pressure condition across mush-liquid interface (Okhuysen and Riahi 

2008). 

Figure (4.4) shows the effect of far-field temperature for moderate magnetic field (Q = 1.0) on 

the marginal stability. The critical Rayleigh number and wave number increases with increasing 

far-field temperature. The computed values of the critical pair (kc,Rc) are (1.5, 20.6807), (1.9, 

23.5612) and (2.3, 26.4707) for &*,= 0.1, 0.2 and 0.3 respectively. It is seen from this figure that 

the effect of the far-field temperature is stabilizing in the sense that Rc increases with the far-field 

temperature for the case of moderate magnetic field. The same qualitative result was found to be 

valid for the cases of weak (Q = 0.01) and strong fields (Q = 5.0). 

Figure (4.5) shows the stabilizing effect of externally imposed magnetic field, which can be 

weak (Q = 0.001), moderate (Q = 1) or strong (Q = 5), on the marginal stability curve for 9^= 

0.1. The critical Rayleigh number and wave number increase with increasing Q. The point (kc , 

Rc) on the curve shifts to the right side as the value of Q increases. Hence externally imposed 

strong uniform magnetic field has stabilizing effect on solidification. 

Comparison of the marginal stability curves for permeable and impermeable mush-liquid 

interface is shown in Figure (4.6). It is clear that the present permeable interface condition desta­

bilizes the convection by reducing the critical Rayleigh number. Figure (4.7) depicts the variation 

of the vertical velocity with respect to the permeable and the impermeable mush-liquid interfaces. 

The result presented in this figure makes it clear that the vertical velocity component is nonzero 

at the top of mushy layer for the permeable mush-liquid interface condition whereas it is zero for 

the impermeable mush-liquid interface condition. 

The perturbed vertical velocity for the case of moderate magnetic field (Q = 1.0) and 0^= 0.1 

is depicted in Figure (4.8) as function of x and z- It is seen that the peak values of the vertical 



26 

velocity increases with z. Figure (4.9), shows the effect of far-field temperature on the vertical 

velocity for the case of moderate magnetic field, i.e., Q = 1.0. It is clear that the maximum 

of the vertical velocity occurs around the middle of mushy layer. The computed values of the 

vertical velocity are higher for smaller far-filed temperatures as seen from the graph. This result 

is consistent with the stabilizing effect of the far-field temperature. 

A three dimensional plot of perturbed solid volume fraction for the case of moderate magnetic 

field and 0^= 0.1 is shown in Figure (4.10). The large values of the solid fraction with positive 

and negative signs shown near the bottom of the layer at different horizontal locations indicates, 

in particular, tendency for chimney formation at different locations near lower boundary as far as 

the linear theory is concerned. The variation in the solid volume fraction towards the bottom of 

the layer, which is more prominent than at the top region, also was found to hold qualitatively for 

different values of Q and other parameters. 
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Figure 4.4: Marginal stability graph depicting the effect of far-field temperature for moderate 

magnetic field Q = 1.0. 
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Figure 4.5: Marginal stability graph showing the effect of externally imposed uniform magnetic 

field for 0oo = O.l. 
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Figure 4.6: Marginal stability graph showing the comparison of impermeable and permeable 

mush-liquid interface for Q = 1.0 and 0«. = 0.1. 
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Figure 4.7: Graph of perturbed vertical velocity for impermeable and permeable mush-liquid 

interface, Q = 1.0 and ft*, = 0.1. 
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Figure 4.8: 3D plot of perturbed vertical velocity for Q = 1.0 and ft*, = 0.1. 
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Figure 4.9: Effect of far-field temperature on perturbed vertical velocity foi Q = 1.0. 
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Figure 4.10: 3D graph of perturbed solid volume fraction for Q = 1.0 and 0„ = 0.1. 
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4.2 Reactive Mushy layer 

The nature and stability of the mushy layer depends on the internal structure of the mushy layer, 

particularly on its permeability. Here we assume the permeability of the mushy layer is tied to 

porosity by K = 1/(1 — 0)3(Wbrster 1992), which can be obtained by selecting the value of n as 

3 in equation(2.23). Many researchers used different forms of permeability relations, the present 

form of K, also known as the Kozeny-Carmen relation, seems to be physically realistic because 

permeability increases with increasing liquid fraction. With the above permeability function, the 

linear stability of the mushy layer is investigated for different cases of magnetic field and fixed 

parameter values. 

The Kozeny-Carmen type relation that we used between permeability and the solid fraction 

with n = 3 within the mushy layer is closer to the one in the actual experimental studies than any 

other relation used by other authors in related theoretical studies. 

4.2.1 Impermeable mush-liquid interface 

A reactive mushy layer with no out flow at the top is being considered here in the marginal sta­

bility analysis. The effect of far-field temperature on the marginal stability for the case moderate 

magnetic field is depicted in Figure (4.11). It is found that the far-field temperature has stabilizing 

effect on the solidification. This result is in consistent agreement with previous case of constant 

permeability also. The stabilizing effect of magnetic field for reactive mushy layer is observed in 

Figure (4.12) as critical pair (kc, Rc) for magnetic case shift upwards compared to non-magnetic 

case. 

Marginal stability curve showing the effect of permeability in the case of moderate magnetic 

field in displayed in Figure (4.13) which demonstrates that reactive mushy layer is more stable 

than the passive mushy layer. 

For the present case of reactive mushy layer with no out flow at the top, the marginal stabil­

ity graph showing the effect of externally imposed uniform magnetic field is depicted in Figure 

(4.14). Again critical Rayleigh number and wave number increases when the strength of mag­

netic field in vertical direction is increased. Figure (4.15) shows the effect of externally imposed 
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uniform magnetic field on perturbed vertical velocity for the case of variable permeability. This 

figure reveals that strong magnetic field has more stabilizing effect on the solidification in the 

sense that it decreases the unwanted convection (Vives and Perry, 1987). For the same magnetic 

field, the convection in reactive mushy layer is more than the convection with passive mushy 

layer as displayed in Figure (4.16). 
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Figure 4.11: Marginal stability graph indicating the effect of far-field temperature for Q = 1.0. 
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Figure 4.12: Effect of magnetic field on marginal stability for reactive mushy layer for 6L = 0.1. 
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Figure 4.13: Effect of permeability on marginal stability for Q = 1.0 and fto = 0.1. 
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Figure 4.14: Marginal stability graph showing the effect of magnetic field for reactive mushy layer and 

ft. = 0.1. 
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Figure 4.16: Effect of permeability on perturbed vertical velocity for 2 = 1 0 and 6„ = 0.1. 
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4.2.2 Permeable mush-liquid interface 

In contrast to previous cases, here we treat the mushy layer as a reacting porous medium whose 

permeability varies as the solid dendrites grow or dissolve within it. We shall discover how the 

externally impressed uniform magnetic field affects the convection and also the local solid frac­

tion within the mushy layer and draw conclusions regarding the way in which chimney formation 

can be controlled. The present case of variable permeability and permeable interface condition 

is more closer to the relevant experimental studies concerning the solidification of binary alloys 

under externally imposed magnetic field. 

The effect of far-field temperature on marginal stability for the case of moderate magnetic 

field (Q = 1.0) is depicted in figure 4.17. The critical Rayleigh number and critical wave number 

increases with increasing far-field temperature. This indicates that mushy layer is more stable. 

Increasing wave number indicates that the instability propagates with shorter wave length. The 

computed values of critical Rayleigh number is much higher compare to the previous interface 

conditions. 

Presence of externally imposed magnetic field in vertical direction with uniform strength is 

stabilizing in the case of strong field, or is ineffective in the case of weak field, is depicted in 

figure 4.18. The computed value of critical pair (kc, Rc) for Q = 1.0 and 0^= 0.1 is (1.5,22.4791). 

The critical Rayleigh number and critical wave number increases with increasing magnetic field. 

The system is unstable in the region above each curve and is stable below the curve. 

Figure 4.19 indicates the destabilizing effect of permeable mush-liquid interface condition. 

The critical Rayleigh number is low in the present case of permeable mush-liquid interface con­

dition compare to the case of impermeable mush-liquid interface condition. Even though the 

permeable interface condition is destabilizing but physically it is realistic. 

Effect of externally imposed uniform magnetic field on perturbed vertical velocity component 

is shown in the figure 4.20. Convection in mushy layer decreases with increasing magnetic field. 

This interesting result suggests an important operational procedure for possible weakening of 

convection. Figure 4.21 depicts the variation of the vertical velocity with respect to the permeable 

and the impermeable mush-liquid interfaces. The result presented in this figure makes it clear 
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that the vertical velocity component is nonzero at the top of mushy layer for the permeable mush-

liquid interface condition whereas it is zero for the impermeable mush-liquid interface condition. 

A three dimensional plot of perturbed solid volume fraction for the case of moderate magnetic 

field and &»= 0.1 is shown in Figure 4.22. For this case, there is a substantial decrease in the solid 

fraction in the interior of the mushy layer in regions of up flow which indicates a tendency to form 

chimneys. 



38 

t 
or 

£ 
ZJ 

>. 
TO 

9^=0.3, Q=1 

9^=0.2, Q=1 

e =o.i, Q=I 

1 1.5 2 2.5 3 

wavenumber, k-

Figure 4.17: Effect of far-field temperature on marginal stability for the case of moderate mag­

netic field, Q = 1.0 and ft*, = 0.1. 

Q=3.0, 9„=0.1 

Q=1.0, 9^=0.1 

Q=o.oi,e =0.1 

1 1.5 2 2.5 3 3.5 

wavenumber, k-» 

Figure 4.18: Marginal stability graph indicating the effect of magnetic field for &» = 0.1. 
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Figure 4.20: Effect of magnetic field on perturbed vertical velocity component for ft = 0.1. 
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CHAPTER 5 

CONCLUSIONS AND SCOPE FOR FUTURE STUDY 

Here, we investigated the problem of linear convective stability analysis in a mushy layer 

under externally imposed uniform magnetic field. Both cases of impermeable and permeable 

mush-liquid interface coupled with constant and variable permeability were studied. We obtain 

solutions to linear problem using multiple shooting techniques for the interface conditions and 

the parameters that we selected from available experiments . We analyze the effect of strength of 

magnetic field (represented by nondimensional Chandrasekhar number) and far-field temperature 

on the marginal stability. Our linear stability analysis and the corresponding numerical results 

indicate the presence of mushy layer mode, which is primarily responsible for the formation of 

the chimneys. The results of the perturbation analysis and computations are as follows. 

(1) permeable mush-liquid interface condition for passive mushy layer destabilizes the con­

vection as the critical Rayleigh number is low compared to the case of impermeable mush-liquid 

interface. 

(2) Far-field temperature has stabilizing effect in the sense that the critical Rayleigh number 

increases with increasing far-field temperature. This result for the flow stability is in some partial 

agreement with the results of those previous related studies of several researchers. 

(3) Externally imposed strong uniform magnetic field in vertical direction has stabilizing 

effect on the solidification compared to the case of weak or moderate magnetic field since the 

critical Rayleigh number is much higher compare to the other two cases. 

(4) Our computational results indicates that the Robert's number, T, has very little or no effect 

on critical Rayleigh number for all the far-field temperature that we considered. 

(5) The convection in the chimneys can be reduced or weakened by maintaining sufficiently 

high far-field temperature and strong magnetic field. This result suggests an important industrial 

procedure for possible elimination of freckle formation tendency. 
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(6) We also investigated numerically the present eigenvalue problem for cases of perturba­

tion' s growth rate with non-zero imaginary part in order to explore the possibility for the presence 

of an oscillatory mode of convection, but we were unsuccessful for the present set of parameter 

values that we considered in this thesis. 

Future studies include additional effects due to externally imposed rotational constraints, due 

to a vertical rotation or a high gravity environment, extension to weakly nonlinear modeling in 

presence of externally imposed magnetic field and/or externally imposed rotational constraint. 

Also, future studies for extension of the present model to the cases of two-layer system with 

or without inclusion of a magnetic field or a rotational constraints, can all be very important in 

order to establish a very reliable mathematical model which can be used for flow control cases in 

material processing and crystal growth industries. 

Also a complete stability investigation, which require full numerical computation, without 

using perturbation approach, which requires extensive work and will be a topic for future study. 



43 

REFERENCES 

[1] Amberg, G. and Homsy, G. (1993). Nonlinear analysis of buoyant convection in binary 

solidification with application to channel formation. Journal of Fluid Mechanics, 252 

79-98. 

[2] Anderson, D. and Worster, M. G. (1995). Weakly nonlinear analysis of convection in 

mushy layers during the solidification of binary alloys. Journal of Fluid Mechanics, 302 

307-331. 

[3] Chandrasekhar, S. (1981). Hydrodynamic and Hydromagnetic Stability. Dover 

New York. 

[4] Bhatta D., Muddamallappa M. S., Riahi D.N., on perturbation and marginal stability 

analysis of magneto-convection in active mushy layer, accepted for publication in 

Transport in Porous Media. 

[5] Bhatta D., Muddamallappa M. S., Riahi D.N., Effect of non-uniform magnetic field 

on convective instability of a mushy layer with variable permeability, in review 

International Journal of Engineering Science. 

[6] Chen, F. and Chen, C. (1991). Experimental study of directional solidification of aqueous 

ammonium chloride solution. Journal of Fluid Mechanics, 227:567-586. 

[7] Chen C.F.(1995) Experimental study of convection in a mushy layer during 

directional solidification, Journal of Fluid Mechanics, 293:81-98. 

[8] Chung, C. and Chen, F. (2000). Onset of plume convection in mushy layers. Journal of 

Fluid Mechanics, 408:53-82. 

[9] Cheney W., Kincaid D.(2008) Numerical Mathematics and Computing, Thomson Brooks/Co. 

6th edition. 

[10] Copley, S., Giamei, A., Johnson, S., and Hornbecker, M. (1970). The origin of freckles 

in unidirectionally solidified castings. Metallurgical Transactions, 1:2193-2204. 



44 

[11] Davis S. H. (2001). Theory of solidification. Cambridge University Press. 

[12] Emms, P. and Fowler, A. (1994). Compositional convection in the solidification of binary 

alloys. Journal of Fluid Mechanics, 262:111-139. 

[13] Fowler, A. (1985). The formation of freckles in binary alloys. Journal of Applied 

Mathematics, 35:159-174. 

[14] Hills, R., Loper, D., and Roberts, P. (1983). A thermodynamically consistent model of 

a mushy zone. Quarterly Journal of Mechanics and Applied Mathematics, 36(4) 

505-539. 

[15] Huppert, H. and Worster, M. (1985). Dynamic solidification of a binary melt. Nature 

314:703-707. 

[16] Huppert, H. E. (1990). The fluid mechanics of solidification. Journal of Fluid Mechanics 

212:209-240. 

[17] Iooss, G. and Joseph, D. (1990). Elementary Stability and Bifurcation Theory. Springer 

2nd edition. 

[18] Muddamallappa M.S., Bhatta D., Riahi D.N. (2009) Numerical investigation on marginal 

stability and convection with and without magnetic field in a mushy layer, Transport in 

Porous Media, 79, 301-317 

[19] Muddamallappa M. S., Bhatta D., Riahi D.N., Linear convective stability in a mushy 

layer with non-uniform magnetic field and permeable mush-liquid interface, accepted 

for publication in Journal of Porous Media. 

[20] Okhuysen B.S. (2005) Analytical and computational studies of convection in solidifying 

binary Media, Ph.D. thesis, Department of Theoretical and Applied Mechanics, 

University of Illinois at Urbana-Champaign, USA. 

[21] Okhuysen B.S., Riahi D.N.(2008a) On weakly nonlinear convection in mushy layers 

during solidification of alloys, Journal Fluid Mechanics. 596, 143-167. 

[22] Okhuysen B.S., Riahi D.N.(2008b) Flow instabilities of liquid and mushy region during 

alloy solidification and under high gravity environment induced by rotation, 

Int. J. Eng. Sci. 46, 189-201. 

[23] Riahi D.N.(2000) Effects of a vertical magnetic field on chimney convection in a 



45 

mushy layer/. Crystal Growth, 216, 501-511. 

[24] Riahi D.N.(2001) Effects of centrifugal and Coriolis forces on a hydromagnetic chimney 

convection in a mushy layer, J. Crystal Growth, 226, 393-405. 

[25] Riahi, D. (2003). Nonlinear steady convection in rotating mushy layers. Journal of 

Fluid Mechanics, 485:279-306. 

[26] Tait, S., Jahrling, K., and Jaupart, C. (1992). The planform of compositional 

convection and chimney formation in a mushy layer. Nature, 359:406-408. 

[27] Vives, C , Perry, C. (1987). Effects of magnetically damped convection during 

the controlled solidification of metals and alloys. Int. J. Heat Mass Transfer 

30(3), 479-496. 

[28] Worster, M. G. (1986). Solidification of an alloy from a cooled boundary. Journal of 

Fluid Mechanics, 167:481-501. 

[29] Worster, M. G. (1991). Natural convection in a mushy layer. Journal of Fluid Mechanics, 

224:335-359. 

[30] Worster, M. G. (1992). Instabilities of the liquid and mushy regions during solidification 

of alloys. Journal of Fluid Mechanics, 237:649-669. 

[31] Worster, M.G.(1997). Convection in mushy layers. Ann. Rev. Fluid Mechanics. 

29, 91-122. 



46 

BIOGRAPHICAL SKETCH 

Muddamallappa, Mallikarjunaiah S. was born in Siddapura, Karnataka, India. He obtained his 

Bachelors and Masters in Mathematics from Bangalore University, India in 2000 and 2003 

respectively. He has teaching experience of four years and has taught undergraduate courses for 

students in Engineering College, Bangalore, India. He joined the Department of Mathematics, 

UTPA in Fall 2007 to pursue Masters in Mathematics. 


	Analytical and Computational Studies of Magneto-Convection in Solidifying Mushy Layer
	Recommended Citation

	ProQuest Dissertations

