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ABSTRACT 

 

 

Hernandez, Wendy, Improving Queueing Implementation on High Speed Switches. Master of 

Science (MS), May, 2015, 85 pp., 77 figures, references, 45 titles. 

In this thesis two different conventional shared memory allocation schemes - Dynamic 

Threshold (DT) and Threshold-based Filtering (TF) - are evaluated under varied traffic 

conditions in order to determine the optimal configuration for each tested scenario. The effect 

that a changing ABL, load, and ratio between buffer size and ports have on the packet loss is 

observed for buffer sharing schemes DT and TF schemes. This allowed to easily determining the 

Alpha and Thresholds required by DT and TF schemes respectively to obtain an optimal 

configuration under each of the different tested scenarios. 

A new shared memory allocation scheme referred to in this thesis as ‘Shortest Queue 

First Lite’ (SQFL) scheme is evaluated. SQFL scheme aims at decreasing the complexity of SQF 

in order to facilitate its hardware implementation. Comparisons are drawn between SQFL, SQF, 

DT and TF in terms of packet loss ratio. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

In the very short period of time since the Internet came to exist we have become 

witnesses of its accelerated evolution [1]. The Internet has changed our lives by providing us 

with limitless information readily available, literally at the tip of our fingers. The Internet has 

come to influence the way we act, the way we learn, the way we conduct business, the way we 

experience consumable media, and so many other things[2] [3]. 

The Internet is ever-changing and ever-growing, and the speed at which changes occur is 

accelerating as the years come [4]. Internet traffic has been growing exponentially, and in 

Cisco’s recent paper it is shown that this trend is likely to continue for the foreseeable future [5]. 

In Cisco’s visual networking index it is studied and presented to us that the growth Internet for 

the last 2 decades. In 1992, global Internet networks carried approximately 100 Gigabytes of data 

per day; in 1997 that amount had already increased to 100 Gigabytes per hour; by the year 2013 

the amount of data being transmitted over the internet had reached a staggering 28,875 Gigabytes 

per second, and it is predicted that by the year 2018 those numbers will be reaching upwards of 

50,000 Gigabytes per second [6]. 

Similarly, the global mobile data traffic saw a growth of 81% just in the year 2013 alone, 

and it is expected to continue growing thanks to the ubiquity of mobile devices such as 

smartphones and tablets. It is predicted that by the end of the year 2014 the number of mobile 

devices connected to the Internet will exceed the world’s population [7]. As stated in the famous 
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Moore’s law the speed and processing power of computers will double every 18 to 24 months, 

and advances in technology now a days have an almost direct correlation to easier access to the 

Internet [5] [8], which in turn translates into higher internet traffic. 

 

Circuit Switching and Packet Switching 

In circuit switching a dedicated connection has to be established between a sender and 

receiver before any transmission occurs; this connection should be able to last as long as the 

entire conversation lasts, at each node the incoming data are sent through the most suitable path 

without any delay [9] [10]. Circuit switching is employed mostly on telephone technology, since 

the telephone service provides a dedicated connection between two telephones [11]. 

Packet switching is an efficient way of transmitting data from one point to another, that 

unlike circuit switching, doesn’t establish a path between the sender and the receiver, instead it 

uses statistical multiplexing were communication from multiple users competes for the use of a 

shared media [11]. In packet switching the data is divided into smaller packets and each one of 

those packets is sent separately. Packets need to be able to reach the correct destination as well as 

in the right order; therefore, each single packet should have an address destination, SYN flag, 

Frame Check Sequence, and a sequence number [12]. The address destination tells the network 

to what port the packet should be deliver, SYN flag is for synchronization pattern, Frame Check 

sequence assures that there has not been an error in the sequence of packets, and last but not least 

we have the sequence number which helps us to reassemble the message that was divided into 

smaller packets [9] [10]. 
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Routers and Switches 

Routers 

A router is an electronic device that operates at layer three of the Open System 

Interconnection (OSI) architecture which function is to link computers to the internet and enable 

users to share a connection by interconnecting multiple networks together. This device consists 

of a processor, a memory and an independent I/O interface for each network it is a part of; 

because of this a router requires the use of more than one IP address, more specifically, one IP 

address for each of the networks the router is a part of. The sole task of a router is to forward 

packets from their destination network to their respective final destination network -most of the 

times requiring the packets to go through more than one router or hop- through a calculated 

shortest path stored in its routing table. A router effectively acts as a postal sorting office, 

determining the best route for a packet based on its destination and the information stored in its 

routing table [11] [13]. 

Switches 

Switches are hardware devices that connect multiple computers over a Local Area 

Network (LAN); they work on layer 2 or data-link layer of the OSI Seven Layer Reference 

Model, which uses MAC addresses. Switches are composed of several ports, each of them 

potentially connected to a single computer, allowing these computers to send frames between 

one another. A switch is capable of sending frames in two different ways; frames can be either 

forwarded or broadcast. Each time a new computer is connected to the network the switch 

broadcasts a message, so that every other computer knows of the existence of the device being 

just added. On the other hand we have frames being only forwarded from one source computer to 

its destination computer. Frames are only forwarded when the destination address is already 
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known. Switches are very sophisticated devices that incorporate memory to help them be more 

efficient. The memory will prevent the loss of packets whenever two incoming packets have the 

same output destination [14] [15]. 

For instance when two packets come into the switch from two different input ports, but 

these packets share as destination the same output port. Since the throughput of the switch is 

limited by the speed of the line, which means that of the two arriving packets only one of them is 

able to be outputted, while the other packet would have to be dropped. The addition of memory 

mitigates the amount of packets lost in these scenarios, thus playing an important role in 

reducing the excess traffic generated by retransmission of packets due to drop in the switch. 

 

Buffering Strategies 

Input Buffered Switches 

This type of switch is composed of a set of individual buffers, each one assigned to a 

single input port as shown in figure 1. This input buffer mitigates packet loss, since in the case 

when multiple packets sharing as destination the same output port arrive on the switch, only one 

of these packets will be launched into the fabric, while the rest will be stored at their respective 

input port of arrival [16]. Because each input port is coupled to a single independent buffer, the 

required bandwidth for these buffers is two times the L line speed. The introduction of input 

buffers creates a new problem however, known as Head-of-Line (HoL) blocking, which causes 

the throughput to be limited to 0.586 [11] [17]. 

HoL blocking is a problem present only in input buffered switches due to the First-In-

First-Out (FIFO) nature of the queues. HoL blocking occurs when at the top of the queues there 

are more than one packets destined to the same output port, only one of those packets will enter 
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the fabric and be outputted through its respective port, the rest of the packets will remain in their 

queues, blocking the next packets in line from entering the fabric and being outputted. HoL 

blocking may be exemplified as a case in which at the top of the queues there are packets going 

to ports 1, 2 and 3; however there are two packets going to port 2, if the packet queued in port 1 

is launched into the fabric, then the packet at the top of the queue on port 2 creates a blockage, 

because even though the second packet in line could be sent through the fabric, it is unable to 

due to the FIFO nature of the queue [18]. 

A number of ways to mitigate or eliminate HoL blocking have been proposed such as 

Virtual Output Queuing (VOQ) [19] [20] [21], where the input buffers are organized as a set of 

queues where packets are stored according to their destination output port; each input port 

containing a separate buffer allocated for each of the switch output ports. This however provides 

very little scalability, since the buffer size required grows quadratically as the number of ports 

increases.  

In order to improve upon VOQ, Destination Based Buffer Management (DBBM) is 

proposed. Here packets are also stored in queues sorted by destination, but unlike VOQ, DBBM 

contains a fewer number of queues than the number of ports in the switch [22]. DBBM is 

characterized by 4 parameters [23]: queue sharing--indicates whether packets should be allowed 

to be stored in the same queue, when no space is available in the buffers for arriving packets, 

then these are stored in an auxiliary buffer called overflow buffer--, mapping function--computes 

the queue where incoming packet will be stored--, replacement--indicates whether packets may 

be removed from a queue when arriving packets request allocation in it--, restoration--indicates 

whether packets in the overflow buffer may be allowed to be allocated in a normal queue as 

space becomes available. 
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Dynamic DBBM [24] improves upon DBBM by providing a more fair allocation of 

memory through the enabling of the switch to transmit a congestion notification back to the 

transmitting source, which will in term transmit packets with a congestion bit-flag on, enabling 

the switch to separate congested from non-congested traffic. Congested packets are allocated in a 

special buffer called dynamic queue, while non-congested packets are allocated on the remaining 

queues called DBBM queues according to the before mentioned DBBM scheme. 

Regional Explicit Congestion Notification (RECN) [25] completely eliminates HoL 

blocking while requiring minimal resources, making it efficient, scalable and cost effective. 

RECN identifies congested flows and places them in a special dynamically assigned Set Aside 

Queue (SAQ) located at each of the input ports, while standard queues hold non-congested 

traffic. Congestion is detected by setting a threshold for every input queue, whenever this 

threshold is reached, a SAQ starts allocating new incoming packets, and whenever this newly 

allocated SAQ becomes full a new SAQ allocates the nest set of incoming packets. 

Burst-Aware HoL-Blocking Injection Avoidance (BAHIA) [26] dynamically detects 

bursty traffic in the network and isolates it ensuring non-bursty traffic is unaffected, thus 

mitigating HoL blocking that may be produced by long bursts of data. 

 
Figure 1-Input Buffered Switch 
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Output Buffered Switches 

This type of switch, much like input buffer, contains an individual buffer associated to 

each output port as shown in figure 2 [27]. Output buffer switches, unlike input buffer switches, 

do not suffer from HoL blocking, it is however very susceptible to bursty traffic [28], this is 

because in the case when there a several streams of data arriving at different input ports destined 

to the same output port, there is a very high chance of this particular buffer being overflown, 

after which incoming packets will begin being dropped, regardless of the amount of memory left 

unused by the queues at the remaining output buffers, effectively wasting available memory on 

the switch, resulting in these particular scenarios on a higher packet loss ratio than input buffer 

switches. 

Since on the worst case scenario any given output buffer may be required to store an 

incoming packet from all input ports the minimum memory speed required, assuming the switch 

is composed of N ports, with each port supporting L line speed, is L (N + 1) [29]. 

 
Figure 2-Ouput Buffered Switch 

Shared-Memory Switches 

Shared memory switches are similar to output buffer switches in that their buffers are 

located on the output ports, as shown in figure 3. They however differ in the utilization of the 
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utilization of their output buffers; where output buffer switches have separate memory modules 

to allocate each individual output port queue, shared memory switches consist of a single 

memory unit in which all queues are allocated [30]. Allocation of incoming packets is handled in 

a first come first served basis, meaning that regardless of the output port incoming packets are 

destined to, they will be admitted provided there is available space on the buffer, otherwise they 

will be dropped [31]. 

Sharing the available memory amongst all output ports results in a more efficient 

utilization of resources; this same characteristic however poses a disadvantage in itself, as the 

number of reads and writes required for the memory to handle increases twofold resulting in a 

minimum required memory bandwidth equal to L * (2N), increasing costs and reducing 

scalability [32]. 

Another downside of shared memory switches is the lack of fairness, especially under 

bursty traffic conditions. In order to explain this lets think of the worst case scenario, in which all 

arriving packets are destined to the same output port for a period of time long enough so that all 

available memory in the switch is allocated to the same queue, in the event a packet destined to a 

different port arrives at the switch it will most likely be dropped due to lack of space in memory 

to be allocated. 
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Figure 3-Shared-Memory Switch 

 

Motivation and Problem Statement 

As demonstrated in [33], Shortest Queue First (SQF) is a sharing memory scheme that 

presents a better performance in terms of packet loss ratio than existing sharing memory schemes 

such as Shared with Maximum Queue lengths (SMXQ), Shared with Minimum Allocation 

(SMA), as well as Dynamic Queue length Thresholds (DT). Upon closer inspection however, it 

starts to become evident that in order to realize SQF a largely complex hardware would be 

required due to the necessity to continuously sort its priority list utilized in order to insure that 

incoming packets always get stored first on the queues with the smallest amount of packets. This 

thesis attempts to solve that problem by simplifying SQF enough so that implementation 

becomes plausible, while maintaining the signature feature of SQF, giving greater priority to 

queues with the shortest length and allowing packets being destined to these ports to be stored 

first. The proposed scheme dubbed SQFL for SQF Lite is described in detail in Chapter III. 
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Thesis Outline 

Chapter I serves as an introductory chapter, providing explanation for a series of basic 

concepts in an effort to facilitate the comprehension of the materials covered in Chapter II, 

Chapter III, and Chapter IV, as well as defining the propose of the thesis. Chapter II contains the 

detailed descriptions of the simulated conventional sharing buffer schemes, as well as for the 

SQF scheme. Chapter III provides the detailed explanation of the operation of the proposed 

scheme SQFL, as well as the importance and algorithms of different sorting mechanisms. 

Chapter IV provides in-depth knowledge regarding how data was obtained, including 

descriptions of the traffic model utilized, how the buffer available in the switch was simulated, 

the scenarios under which the sharing memory schemes were tested, and the use of the cluster 

computer in order to speed up the process of gathering of data. Chapter V aims to determine the 

optimal configurations for the schemes Dynamic Threshold (DT) and Threshold-Based Filtering 

(TF) under each of the simulated scenarios. Chapter VI draws performance comparisons in terms 

of packet loss ratio first between both conventional schemes, then between the conventional 

schemes and the proposed scheme SQFL. In Chapter VII we test and evaluate the proposed 

SQFL) versus SQF, as well as show the number of comparison required by SQFL and SQF to 

sort a list using three different sorting algorithms. In Chapter VIII we conclude this thesis and 

suggest possible future work. 
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CHAPTER II 

 

 

CONVENTIONAL MEMORY SCHEMES AND SQF 

 

 

In this chapter we will describe three conventional schemes: Dynamic Threshold, 

Threshold Based Filtering and Shortest Queue First, which were implemented in this thesis. We 

will first explain the way each scheme works in detail, we will then follow with a pseudocode of 

the algorithm, as well as a flowchart of the code utilized for the simulation of these schemes. 

Dynamic Threshold (DT) 

Dynamic Threshold (DT) has one of the best ways to make an efficient use of the 

memory available for buffering in a switch. In DT, whenever one output port is active, the 

scheme will try to optimize the usage of memory by allowing it to use all the memory needed as 

long as the dynamic control threshold is not exceeded. If the length of a queue reaches the 

control threshold, any packets going to that queue will be dropped during that time slot, in a 

sense giving a higher priority to smaller queues. The control threshold T(t) is equal to the unused 

buffer space times a user defined multiple α, and it can be calculated with the formula T(t) = α ∙ 

(B – Q(t)) = α ∙ (B - ∑i Qi(t)); where B represents the total available buffer in the switch, Q(t) 

represents the sum of all the queue lengths, and Qi(t) represents the length of queue i. 

A new control threshold is calculated on every time slot, allowing DT to adapt to 

changing traffic conditions. The control threshold may be easily calculated if α is equal to a 

power of two, which would only require the use of a shifter to implement. However, the use of 

DT does not allow for a complete allocation of the memory available. The equation that give us 
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the amount of unused space in memory is given by (B – S) / (1 + α ∙ M); where S represents the 

space occupied by the queues below the control threshold, and M represents the number of 

heavily active queues [34] [35] [36]. The algorithm for the DT sharing scheme is shown in figure 

4, and a flowchart for the operation of the scheme’s simulation is shown in figure 5. 

 
Figure 4-Algorithm for DT scheme 
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Figure 5-Flowchart for DT scheme 
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Threshold-Based Filtering (TF) 

Threshold-based Filtering (TF) aims at making a more efficient use of the shared buffer 

while providing a fair distribution of the available resources. In this scheme each port is to be 

considered in one of two states: active or inactive. A port is considered to be active if its queue 

length is larger than the dedicated buffer allocation factor B/N; where B represents the total 

buffer available for the whole switch, and N represents the number of output ports. A port is 

considered to be inactive if its queue length does not exceed B/N. 

The switch, like the ports, also has two different states: overloaded and non-overloaded. 

The switch will be considered to be overloaded whenever the total queue length Q(t) is larger 

than B-T; where T represents the threshold factor imposed on the switch. The switch will be 

considered to be non-overloaded if the total queue length Q(t) does not exceed B-T. 

TF operates in such a way that when the state of the switch is non-overloaded there are 

no restrictions for the incoming packets; every single arriving packet will be allocated in the 

buffer regardless of whether its destination port is active or inactive. However, when the state of 

the switch is overloaded only packets destined to inactive ports will be allocated in the buffer; 

every packet with an active port as destination will be dropped [37] [38]. The algorithm and 

flowchart for the operation of the TF scheme are shown in figures 6 and 7 respectively. 
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Figure 6-Algorithm for TF scheme 
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Figure 7-Flowchart for TF scheme 
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Shortest Queue First (SQF) 

Shortest Queue First is a buffering scheme where all memory available to the switch is 

shared. In SQF a list of every output port queue is kept sorted from smallest queue to longest 

queue. When the switch receives incoming packets they are stored one packet at a time, 

constantly updating its sorting list in order to ensure that packets going to the shortest queue are 

stored first. When no more packets received in that particular time slot are destined to the 

shortest queue, SQF proceeds to move on to storing packets on the second shortest queue and so 

on until there are no more packets to store or no more memory to store packets in. 

Unlike other schemes SQF does achieve full occupancy of the memory available, while at 

the same time maintaining an unmatched level of fairness. This however comes at great cost, 

requiring the list of queues to be constantly sorted – every time a packet is stored – in order to 

ensure that packets are at all times stored in the shortest queue first [33]. Figures 8 and 9 show 

the algorithm and flowchart of the operation of the SQF scheme. 

 
Figure 8-Algorithm for SQF scheme 
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Figure 9-Flowchart for SQF scheme 



19 

 

 

 

 

 

 

CHAPTER III 

 

 

THE PROPOSED SCHEME 

 

 

In this chapter we will analyze the sorting algorithm used on the implementation of the 

SQFL Scheme, and how the performance of the scheme can be improved by employing a more 

advance sorting algorithm. 

 

Shortest Queue First Lite (SQFL) 

Shortest Queue First Lite is a version of SQF derived from the idea to make its 

implementation more plausible. SQFL follows the same basic principle of maximizing fairness 

in the memory distribution amongst ports in a switch, but using a slightly more lax approach. 

Like SQF, SQFL maintains a list of all its output ports sorted from smallest queue to largest 

queue. Unlike SQF, SQFL grabs all packets destined to the smallest queue and stores them, it 

then moves on the second smallest queue, and so on until either there are no more packets to 

store or no more available memory to stores the packets in. When the storing process is 

completed, and only then, SQFL updates and sorts the new priority table, thus requiring only one 

update per time slot versus the many updates to the priority list required by SQF. Reducing the 

complexity of the SQF scheme makes the implementation of SQFL more feasible, as well as 

allows for the reduction of manufacturing costs. The algorithm and flowchart for the operation of 

the SQFL scheme are shown in figures 10 and 11 respectively. 



20 

 

 
Figure 10-Algorithm for SQFL scheme 
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Figure 11-Flowchart for SQFL scheme 

 

Sorting Algorithms 

In this section we will discuss three sorting algorithms, each one of them having different 

run times. Sorting Algorithm is referring to a process that is use mostly in computer science to 

sort an unordered list of integers either from smallest to largest or in vice versa. We will mention 
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Bubble Sort, Merge Sort, and Radix Sort.  Sorting Algorithms can have a very big impact on 

how efficient your program works whenever it is necessary. 

Bubble Sort 

Bubble sort is the simplest sorting algorithm in terms of implementation, which 

represents its biggest advantage. Bubble sort however has a very inefficient algorithm, the way 

this algorithm works is by iterating down an array element by element. Bubble sort compares 

two adjacent elements at a time and arranges them in such a way that they are ordered in 

ascending or descending order as required. Assuming the number of elements needed to be 

sorted is equal to n, then the number of sweeps required to do over the array is also equal to n. 

For Bubble sort the best case scenario has a time complexity of O(n), whereas both the average 

case and worst case scenario have a time complexity of O(n
2
) [39] [40]. Therefore, to sort a list 

of size of 1024 elements, bubble sort worst case scenario will require 524288 comparisons. 

Figure 12 shows the algorithm for bubble sorting. 

 
Figure 12-Bubble Sort Algorithm 

Merge Sort 

Merge sort is a more efficient way to sort a list of integers than bubble sort achieved by 

utilizing recursion and a divide and conquer approach to sort a list. In the merge sort algorithm 

the list is recursively divided into sublists of equal size until the number of elements on each 

sublist equals 1. Sorting is carried out by recursively merging adjacent sublists while at the same 

time ordering their elements until the final result is stored in a single array completely sorted. 

Merge sort represents an improvement over bubble sort on both average and worst case scenarios 
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with a time complexity of O(n*log(n)). The best case scenario however sees a drop in 

performance when compared to bubble sort with a time complexity of O(n*log(n))[39] [40], but 

this drop is not relevant because in the vast majority of cases the list to be sorted will fall under 

the average or worst case scenario. For a list size of 1024, merge sort will make 10230 

comparisons. Figure 13 shows the algorithm for merge sorting. 

 
Figure 13-Merge Sort Algorithm 

Radix Sort 

Radix sort is an algorithm that requires no comparisons, instead it uses distribution as 

means to achieve the sorting of an array. Radix sort employs a multiple pass distribution sorting 

algorithm that distributes each item in the list to a bucket according to the item’s key, usually 

starting with the least significant part of the key. After finishing each round all the elements 

contained in the buckets are collected, keeping the items in the same order as they were 

originally stored in these buckets. The process is repeated as many times as there are radixes 

contained in the biggest element part of the list to be sorted. Radix sort is more efficient than 

both merge and bubble sort with a time complexity of O(kn) for its best, average, and worst case 

scenarios [41]. Therefore, if we intend to sort a list of 1024 elements making use of the radix sort 

algorithm it will take 1536 steps. Figure 14 shows the algorithm for radix sorting. 

 
Figure 14-Radix Sort Algorithm 
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Chapter Summary 

As demonstrated in this chapter, by making use of a more efficient sorting algorithm, the 

number of iterations required in order to sort a list can be drastically reduced. If we can reduce 

the number of operations performed during the sorting phase of the SQFL algorithm, then we can 

make use of slower components, which in term reduces the cost of the entire hardware unit. 

Table 1draws a comparison in terms of iterations needed to sort a list composed of n elements 

between SQF and SQFL. 

 
Table 1-Sort Algorithm Performance 

Sort Best Average Worst Best Average Worst

Bubble O(n^2) O(n^3) O(n^3) O(n) O(n^2) O(n^2)

Merge O(n^2 log(n)) O(n^2 log(n)) O(n^2 log(n)) O(n log(n)) O(n log(n)) O(n log(n))

Radix O(k n^2) O(k n^2) O(k n^2) O(kn) O(kn) O(kn)

SQF SQFL



25 

 

 

 

 

 

 

CHAPTER IV 

 

 

SIMULATION METHODOLOGIES 

 

 

In this chapter we describe the methodology followed, as well as the tools utilized during 

the simulation of the different buffer allocation schemes. We will start by detailing the traffic 

model employed in the generation of packets, we will then move on to the implementation of the 

buffer, next we will review the architecture and use of the cluster computer utilized for the 

submission of jobs during simulation, and lastly we will discuss the array of scenarios under 

which the different buffer allocation schemes were chosen to be evaluated. 

Bursty Traffic Model 

The bursty traffic is generated using a two state ON-OFF model as shown in figure 15. 

The ON state represents a geometrically distributed active period where packets or cells are 

generated in a Bernoulli fashion. The OFF state represents a geometrically distributed idle period 

in which no packets or cells are generated. Throughout the course of this thesis we will make use 

of a unit measure of time that will be referred to as a time slot. This unit represents a period of 

time in which no more than one packet or cell may arrive at each of the input ports. 

If we use r and p to denote the duration of active and idle periods respectively, then the 

probability that an active state last i time slots is given by P(i) = p ∙ (1 – p)i-1, for i ≥ 1, and the 

Average Burst Length (ABL) is given by EB[i] = 1 / p. In a similar way, the probability that an 

idle period lasts for j time slots is given by R(j) = r ∙ (1 – r)j, for j ≥ 0, and the corresponding 
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mean idle period is given by Et[j] = (1 – r) /r. Therefore, if p and r are given, then the offered 

load can be calculated using the expression L = r / (r +p + r ∙ p) [42] [43]. 

 
Figure 15-Bursty Traffic ON-OFF Model 

Implementation 

In order to implement the Bursty Traffic model a class consisting of 8 functions was 

implemented. The first function is initialize which receives 3 values: ABL, Load and Number of 

Ports. A call to this function calculates the duration idle where p = 1 / ABL; it calculates the 

duration of active where r = (Load * p) / (1 – Load + (Load * p)); it also determines the initial 

state of the model: if a randomly generated number between 0 and 1 is greater than r then the 

model starts on idle, otherwise the model starts on active. 

The second function is cycle which generates a random value between 0 and 1 and 

determines the state of the next time slot. When the current state of the model is idle and the 

random number is greater than r the next state will be idle, otherwise the next state will be active. 

When the current state of the model is active and the random number is greater than p the next 

state will be active, otherwise the next state will be idle. If the state of the model changes from 



27 

 

active to idle and the random number is greater than r then that idle period will last at least one 

time slot, otherwise the idle period will last zero time slots. Every time the Bursty Traffic model 

state changes from idle to active the destination of the packet generated will change. As long as 

the state of the model remains active the destination of the packets generated will not change. A 

series of active periods in a row generates a burst or train where all packets share the same 

destination. In the instance where the Bursty Traffic model state changes from active to idle and 

immediately back to active, i.e. when the duration of the idle period is zero time slots, we have 

what is known as back to back trains; this looks like a single group of active periods where at 

one point the destination of the packet generated changes, thus implying the presence of an idle 

period lasting zero time slots. 

Six more functions are implemented that provide statistics about the traffic generated by 

the Bursty Traffic model. 

“retout” returns the destination of the past packet generated, where 0 signifies idle and 

any other number signifies the port in the switch to which the packet is destined. 

“retactive” returns the number of active time slots. 

“retidle” returns the number of idle time slots. 

“retrains” returns the number of trains. 

“retL” returns the calculated Load where L = active / (active + idle). 

“retABL” returns the calculated ABL where ABL = active / # of trains. 

 

Buffer 

A buffer is physical memory where data can be temporarily stored while it waits to be 

sent out to its destination. Buffers are required due to instances in which more than one packet 
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arriving to the switch share their destination port, only one of these packets will be able to be 

outputted, while the other will remain in the buffer waiting for the next time slot [11] [44]. 

Implementation 

The buffer was implemented as a collection of queues, one for each output port. The data 

structure used to implement each of the necessary queues was a linked list. A linked list is a 

dynamic data structure, which means that it does not have a fixed number of elements; it can 

grow or shrink as needed [40]. Four functions were implemented when defining our queue: 

“retsize” returns the size of the queue, which is used to monitor the total occupied space 

in the available buffer. 

“retavgdelay” returns the calculated average delay; the average time packets spend in the 

queue, from the moment they arrive to the moment they depart. 

“add” adds a new element to the queue. 

“update” deletes the oldest element of the queue, updates the size variable, as well as 

calculates the new average delay. 

 

Cluster Computer 

In order to complete this thesis a cluster computer was utilized to run the simulations on. 

Because of its inherit ability to run multiple tasks at once, the use of a cluster was crucial in the 

process of simulating and generating data. Without it the number of computations required to 

collect the data necessary to write this thesis would have taken months to complete, instead of 

weeks. Ahead the architecture of the utilized cluster computer, as well as the method for job 

submission are discussed. 
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Architecture 

In the cluster computer at The University of Texas-Pan American the main system is 

composed of 68 compute nodes running Red Hat Linux. Of the 68 compute nodes 8 are 

dedicated for use as a single “virtual SMP node”, and the remaining 60 are regular compute 

nodes. In total there are 816 cores available for computation, each node consisting of 12 dual-

core Intel Xeon processors as well as 4 GB of memory. Four more nodes are used for internal 

purposes like the cluster controller, the primary and backup login servers, and the file server. The 

login node is as a job scheduler, submitting jobs for processing to the compute nodes [45]. Figure 

16 shows the diagram of the cluster computer architecture. 

 
Figure 16-Cluster Computer Diagram 
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Job Submission 

In order to submit jobs to the cluster computer the following steps are required: 

 Download and install the software GOMPUTE Explorer. This will serve as a 

guided user interface (GUI) that will allow for the upload and download of code 

and results to and from the cluster. 

 Upon launching the GOMPUTE Explorer a prompt for the cluster’s account 

username and password as shown in figure 17. 

 For every different scenario simulated a file has to be uploaded and submitted to 

the cluster to be executed utilizing the GUI as shown in figure 18. 

 Once a code is loaded into the cluster access to the cluster’s bash shell is required, 

such as Putty. 

 The first command inputted into Putty is “g++ -o NameOfFile NameOfFile.cpp” 

which compiles the code and generates a binary executable file. 

 The second command inputted into Putty is “qsub –b y 

~/nameOfFolder/NameOfFile” which takes the binary executable file and feeds it 

to the job scheduler to be submitted to a computing core. 

 Once a program finishes execution it will generate an output file in plain text 

format containing the packet loss ratio and average delay from that particular run. 

 The generated results file is then downloaded from the cluster computer by 

making use of the GUI as shown in figure 19. 
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Figure 17-GOMPUTE Login 

 
Figure 18-GOMPUTE File Transfer 

 
Figure 19-Output File Sample 

 

Simulation Scenarios 

The simulated sharing memory allocation schemes were subjected to a wide range of 

scenarios including three different sizes of switches: 16, 32, and 64 ports; 3 different buffer 

sizes: 1024, 2048, and 4096 packets. For DT the chosen alphas were 1, 4, 8, and 32; while for TF 

the utilized threshold was relative to the total memory: 1/16, 1/8, and 1/4. 
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As for the traffic generated, the memory allocation schemes where subjected to 3 

different average burst lengths: 8, 32, and 64 packets per burst, as well as loads ranging from 

10% to 100% in step increments of 10%. 
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CHAPTER V 

 

 

OPTIMAL CONFIGURATIONS FOR CONVENTIONAL SCHEMES 

 

 

In this chapter we will present the effects of the four main variables we used to simulate 

the Dynamic Threshold and Threshold-Based Filtering schemes, which are: Average Burst 

Length and load of the traffic fed into the switch, and the total size of the buffer as well as 

number of ports available on the switch. We will determine the optimal configurations in terms 

of packet loss ratio for both conventional schemes under each of the different tested scenarios. 

The last section of the chapter provides a summary of the results presented on this chapter. 

 

Dynamic Threshold (DT) 

Average Burst Length (ABL) 

Increasing the ABL extends the range of high end loads under which the high load 

optimal configuration remains the most effective at reducing the packet loss. As an example we 

look at the scenario in which the number of ports on the switch equals 48, the total available 

buffer is 1024 cells. We can observe that when subjected to traffic with an ABL of 8 the optimal 

configuration on the higher loads requires an alpha equal to 1; this is the optimal configuration 

under loads of 100% down to 80%. When we quadruple the ABL of the traffic to 32 we can 

observe that the alpha required for an optimal configuration is again equal to 1, however this 

configuration now yields the best results in terms of packets loss ratio under loads of 100% down 

to 60%. If we increase the ABL of the traffic further, this time to 64, then we are able to observe 
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how by only doubling the ABL the range of effectiveness for which the configuration in which 

alpha is equal to 1 is not different from the scenario in which the ABL is 32. The difference 

however can be noticed on the second range of loads. When the ABL is 32 the configuration 

with an alpha equal to 4 is optimal under loads of 50%, whereas when the ABL is 64 this same 

configuration is optimal for loads of 50% and 40%. The results are shown in figures 20, 21 and 

22. 

 
Figure 20-DT; Ports=48; Buffer=1024; ABL=8 
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Figure 21-DT; Ports=48; Buffer=1024; ABL=32 

 
Figure 22-DT; Ports=48; Buffer=1024; ABL=64 

Buffer Versus Ports 

As the ratio between the buffer size and the number of ports increases, the alpha required 

to obtain the optimal configuration becomes larger. If for example we observe all the simulated 

buffer/ports ratio under a load of 100 percent, we find that with a ratio of 21.33 and 42.67 the 

alpha required in order to achieve optimal configuration is equal to 1; this particular 
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configuration shows an improvement of 48.09% over the remaining tested scenarios.  With a 

ratio of 85.33 the alpha required in order to achieve optimal configuration is equal to 4; this 

particular configuration shows an improvement of 47.24% over the remaining tested scenarios. 

With a ratio of 128 and 170.67 the alpha required in order to achieve optimal configuration is 

equal to 8; this particular configuration shows an improvement of 43.60% over the remaining 

tested scenarios. With a ratio of 256 and 512 the alpha required in order to achieve optimal 

configuration is equal to 32; this particular configuration shows an improvement of 17.40% over 

the remaining tested scenarios. The results are shown in figures 23 to 27. 

 
Figure 23-DT; Ports=8; Buffer=1024; ABL=64 
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Figure 24-DT; Ports=24; Buffer=1024; ABL=64 

 
Figure 25-DT; Ports=48; Buffer=1024; ABL=64 
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Figure 26-DT; Ports=48; Buffer=2048; ABL=64 

 
Figure 27-DT; Ports=48; Buffer=4096; ABL=64 

Load 

As the load decreases the alpha required in order to achieve the optimal configuration 

increases. If we look at the scenario where the number of ports equals 48, the ABL is set to 64, 

and the available buffer size is 1024, then we can appreciate the effect. in this particular we can 

see that for loads ranging from 100% down to 60% the alpha required for an optimal 
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configuration is 1, being up to 57.67% better than the other configurations; we can appreciate 

how as the load to which the switch is subjected gets lower the difference between alpha 1 and 

alpha 4 becomes smaller, until eventually at a load of 50% alpha 4 becomes the optimal 

configuration. Alpha 4 is optimal only on loads of 40% and 50%, being up to 59.31% better than 

the other configurations. Under loads of 30% the optimal configuration is with an alpha of 8, 

being up to 75.92% better than the other configurations. And under loads of 10% and 20% the 

best configuration was with an alpha of 32, being up to 100% better than the other 

configurations. The results are shown in figures 28, 29 and 30. 

 
Figure 28-DT; Ports=8; Buffer=1024; ABL=64 
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Figure 29-DT; Ports=24; Buffer=1024; ABL=32 

 
Figure 30-DT; Ports=48; Buffer=1024; ABL=8 

 

Threshold-Based Filtering (TF) 

Average Burst Length (ABL) 

After simulating the different configurations selected for the TF scheme it was found that 

under all tested scenarios a threshold of 1/16 of the total available memory provided the optimal 
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configuration, followed by a threshold of 1/8, and a threshold of 1/4 in that order. If for example 

we are to take as an example the scenario in which the number of ports equals 8 and the total 

available memory is 1024, then we find that under a traffic with an ABL of 8, 32 and 64, 

regardless of the load to which the switch is subjected, the optimal configuration requires a 

threshold of 1/16 of the total available memory. However it may be noticed how as the ABL of 

the traffic subjected increases, the extent to which this configuration outperforms the remaining 

simulated configurations diminishes. We found that under an ABL of 8 the optimal configuration 

outperforms the others by up to 8.71%; under an ABL of 32 the optimal configuration 

outperforms the others by up to 4.06%; under an ABL of 64 the optimal configuration 

outperforms the others by up to 2.46%. The results are shown in figures 31, 32 and 33. 

 
Figure 31-TF; Ports=48; Buffer=1024; ABL=8 
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Figure 32- TF; Ports=48; Buffer=1024; ABL=32 

 
Figure 33- TF; Ports=48; Buffer=1024; ABL=64 

Buffer Versus Ports 

After simulating the different configurations selected for the TF scheme it was found that 

under all tested scenarios a threshold of 1/16 of the total available memory provided the optimal 

configuration, followed by a threshold of 1/8, and a threshold of 1/4 in that order. If for example 

we look at all the scenarios in which the traffic load and ABL are equal to 100% and 64 



43 

 

respectively, then we find that regardless of the ratio of buffer versus number of ports, the 

optimal configuration requires a threshold of 1/16 of the total available memory. However it may 

be noticed how as the ratio between buffer and ports increases, the extent to which this 

configuration outperforms the remaining simulated configurations increases. We found that with 

a ratio of 21.33 the optimal configuration outperforms the others by up to 2.46%; with a ratio of 

85.33 the optimal configuration outperforms the others by up to 6.42%; with a ratio of 170.67 the 

optimal configuration outperforms the others by up to 8.74%; with a ratio of 512 the optimal 

configuration outperforms the others by up to 13.04%. The results are shown in figures 34 to 38. 

 
Figure 34- TF; Ports=8; Buffer=1024; ABL=64 
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Figure 35- TF; Ports=24; Buffer=1024; ABL=64 

 
Figure 36- TF; Ports=48; Buffer=1024; ABL=64 



45 

 

 
Figure 37- TF; Ports=48; Buffer=2048; ABL=64 

 
Figure 38- TF; Ports=48; Buffer=4096; ABL=64 

Load 

After simulating the different configurations selected for the TF scheme it was found that 

under all tested scenarios a threshold of 1/16 of the total available memory provided the optimal 

configuration, followed by a threshold of 1/8, and a threshold of 1/4 in that order. If for example 

we look at the scenario in which the number of ports and total buffer size available in a switch 
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equal 48 and 1024 respectively, and the ABL is equal to 64, then we find that regardless of the 

load to which the switch is subjected, the optimal configuration requires a threshold of 1/16 of 

the total available memory. However it may be noticed that as the load decreases, the extent to 

which this configuration outperforms the remaining simulated configurations increases. It was 

found that under a load of 100% this configuration outperformed the other simulated 

configurations by up to 2.46%; under a load of 80% this configuration outperformed the other 

simulated configurations by up to 4.94%; under a load of 60% this configuration outperformed 

the other simulated configurations by up to 13.13%; under a load of 40% this configuration 

outperformed the other simulated configurations by up to 48.47%; under a load of 20% this 

configuration outperformed the other simulated configurations by up to 89.57%. The results are 

shown in figure 39, 40 and 41. 

 
Figure 39-TF; Ports=8; Buffer=1024; ABL=64 
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Figure 40-TF; Ports=24; Buffer=1024; ABL=32 

 
Figure 41-TF; Ports=48; Buffer=1024; ABL=8 

 

Summary of Results 

Out of the simulated shared memory schemes, TF is the easiest to configure, because 

regardless of the average burst length, load, number of ports or size of available buffer, the 

manner in which it performs is always consistent. Under all tested scenarios TF required a 
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threshold of 1/16 of the total available buffer in order to achieve the lowest packet loss ratio. The 

threshold required for an optimal performance for TF under the different tested scenarios is 

shown in table 2. 

DT on the other hand requires a more granular fine tuning, having a required Alpha 

ranging from 1 to 32 depending on the switch configuration and traffic load to which they are 

subjected. The alpha required for an optimal performance for DT under the different tested 

scenarios is shown in table 3. 

 
Table 2-Optimal Configurations for DT 

Ports ABL Bffr 10 20 30 40 50 60 70 80 90 100

8 8 1024 32 32 32 32 32 32 32 32 32 8

8 8 2048 32 32 32 32 32 32 32 32 32 32

8 8 4096 32 32 32 32 32 32 32 32 32 32

8 32 1024 32 32 32 32 32 32 32 32 32 8

8 32 2048 32 32 32 32 32 32 32 32 32 32

8 32 4096 32 32 32 32 32 32 32 32 32 32

8 64 1024 32 32 32 32 32 32 32 32 32 8

8 64 2048 32 32 32 32 32 32 32 32 32 32

8 64 4096 32 32 32 32 32 32 32 32 32 32

24 8 1024 8 8 8 8 8 8 8 8 4 4

24 8 2048 8 8 8 8 8 8 8 8 8 4

24 8 4096 8 8 8 8 8 8 8 8 8 8

24 32 1024 32 32 32 32 8 8 8 4 4 4

24 32 2048 32 32 32 32 32 32 8 8 8 4

24 32 4096 32 32 32 32 32 32 32 32 8 8

24 64 1024 32 32 32 8 8 8 4 4 4 4

24 64 2048 32 32 32 32 32 8 8 8 8 4

24 64 4096 32 32 32 32 32 32 32 8 8 8

48 8 1024 4 4 4 4 4 4 4 1 1 1

48 8 2048 8 8 8 8 8 8 8 8 1 1

48 8 4096 8 8 8 8 8 8 8 8 8 1

48 32 1024 32 32 32 8 4 1 1 1 1 1

48 32 2048 8 8 8 8 8 8 4 1 1 1

48 32 4096 8 8 8 8 8 8 8 4 4 4

48 64 1024 32 32 8 4 4 1 1 1 1 1

48 64 2048 32 32 32 8 8 4 4 1 1 1

48 64 4096 8 8 8 8 8 8 8 4 4 4

L
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Table 3-Optimal Configurations for TF 

Ports ABL Bffr 10 20 30 40 50 60 70 80 90 100

8 8 1024 16 16 16 16 16 16 16 16 16 16

8 8 2048 16 16 16 16 16 16 16 16 16 16

8 8 4096 16 16 16 16 16 16 16 16 16 16

8 32 1024 16 16 16 16 16 16 16 16 16 16

8 32 2048 16 16 16 16 16 16 16 16 16 16

8 32 4096 16 16 16 16 16 16 16 16 16 16

8 64 1024 16 16 16 16 16 16 16 16 16 16

8 64 2048 16 16 16 16 16 16 16 16 16 16

8 64 4096 16 16 16 16 16 16 16 16 16 16

24 8 1024 16 16 16 16 16 16 16 16 16 16

24 8 2048 16 16 16 16 16 16 16 16 16 16

24 8 4096 16 16 16 16 16 16 16 16 16 16

24 32 1024 16 16 16 16 16 16 16 16 16 16

24 32 2048 16 16 16 16 16 16 16 16 16 16

24 32 4096 16 16 16 16 16 16 16 16 16 16

24 64 1024 16 16 16 16 16 16 16 16 16 16

24 64 2048 16 16 16 16 16 16 16 16 16 16

24 64 4096 16 16 16 16 16 16 16 16 16 16

48 8 1024 16 16 16 16 16 16 16 16 16 16

48 8 2048 16 16 16 16 16 16 16 16 16 16

48 8 4096 16 16 16 16 16 16 16 16 16 16

48 32 1024 16 16 16 16 16 16 16 16 16 16

48 32 2048 16 16 16 16 16 16 16 16 16 16

48 32 4096 16 16 16 16 16 16 16 16 16 16

48 64 1024 16 16 16 16 16 16 16 16 16 16

48 64 2048 16 16 16 16 16 16 16 16 16 16

48 64 4096 16 16 16 16 16 16 16 16 16 16

L
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CHAPTER VI 

 

 

COMPARATIVE PERFORMANCE EVALUATION 

 

 

In this chapter we test and evaluate the proposed scheme Shortest Queue First Lite 

(SQFL) under the same simulated scenarios as the conventional schemes tested in the previous 

chapter. We will compare their optimal configurations against SQFL and determine the extent to 

which SQFL outperforms DT and TF in terms of packet loss ratio. 

 

DT Versus TF 

Average Burst Length (ABL) 

We can appreciate how when comparing DT versus TF that under all tested average burst 

lengths DT outdid TF.  The degree to which DT enhanced upon the performance of TF fluctuates 

however.  For instance, we found that in the case when the tested switch was composed of 48 

ports, with a total available buffer of 1024 is subjected to a load of 100%.  When the ABL of the 

traffic equals 8 DT has an improvement of 13.97 % over TF. When we increase the ABL from 8 

to 32 TF performed better leaving a smaller gap between DT and TF, reducing the gap in 

performance a difference of 8.61%. If the ABL is increased furthermore, this time to 64, then we 

find that the gap between DT and TF becomes even smaller, resulting in a performance 

difference of 5.08%. The results are shown in figures 42, 43 and 44. 
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Figure 42-DT vs TF; Ports=48; Buffer=1024; ABL=8 

 
Figure 43-DT vs TF; Ports=48; Buffer=1024; ABL=32 
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Figure 44-DT vs TF; Ports=48; Buffer=1024; ABL=64 

Buffer Versus Ports 

We realize when comparing DT versus DT that under all tested buffer versus port ratios 

DT exceled TF.  The amount that DT improved upon the performance of TF varies however. We 

discovered that for instance in the case when the tested switch was subjected to a load of 100%, 

and an ABL of 64: when the ratio of available buffer to ports equals 21.33 DT has an 

improvement of 5.08% over TF; when the ratio to available buffer to ports equals 42.67 DT has 

an improvement of 8.76% over TF; when the ratio to available buffer to ports equals 85.33 DT 

has an improvement of 11.49% over TF; when the ratio to available buffer to ports equals 128 

DT has an improvement of 8.47% over TF; when the ratio to available buffer to ports equals 

170.67 DT has an improvement of 14.15% over TF; when the ratio to available buffer to ports 

equals 256 DT has an improvement of 10.82% over TF; and when the ratio to available buffer to 

ports equals 512 DT has an improvement of 11.70% over TF. The results are shown in figures 45 

to 49. 
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Figure 45-DT vs TF; Ports=8; Buffer=1024; ABL=64 

 
Figure 46-DT vs TF; Ports=24; Buffer=1024; ABL=64 
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Figure 47-DT vs TF; Ports=48; Buffer=1024; ABL=64 

 
Figure 48-DT vs TF; Ports=48; Buffer=2048; ABL=64 
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Figure 49-DT vs TF; Ports=48; Buffer=4096; ABL=64 

Load 

Observing the data gathered from this simulation it was discovered that as the load to 

which the switch was subjected decreased, the difference between DT and TF increased.  

Looking at the data collected for the scenario in which the number of ports equals 48, the ABL 

of the traffic to which the switch was exposed equal 64, and the total buffer available on the 

switch is for 1024 cells, then we realized that the difference between DT and TF range from 

5.08% improvement at loads of 100%, to a 25.63% improvement under the loads of 10%. The 

results are shown in figures 50, 51 and 52. 
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Figure 50-DT vs TF; Ports=8; Buffer=1024; ABL=64 

 
Figure 51-DT vs TF; Ports=24; Buffer=1024; ABL=32 
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Figure 52-DT vs TF; Ports=48; Buffer=1024; ABL=8 

 

SQFL Versus Conventional Schemes 

Average Burst Length (ABL) 

We can see how when comparing SQFL against DT that under all tested average burst 

lengths SQFL outperformed DT. The degree to which SQFL improved upon the performance of 

DT varies however. We found that for instance in the case when the tested switch was composed 

of 48 ports, with a total available buffer of 1024 is subjected to a load of 100%. When the ABL 

of the traffic equals 8 SQFL has an improvement of 1.43% over DT. When we increase the ABL 

from 8 to 32 there is a slight spike in the performance of DT, reducing the gap in performance to 

a difference of 1.18%. If the ABL is increased further, this time to 64, then we find that the gap 

between SQFL and DT widens once more, resulting in a performance difference of 1.36%. 

If SQFL is compared against TF, we find that once again SQFL outperforms this 

conventional scheme. It was observed that as the ABL to which the switch is submitted increases 

the performance of TF improves. If we look at the case where the switch consists of 48 ports 
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with a total available memory of 1024, and we subject this switch to a load of 100%. We find 

that for an ABL of 8 SQFL outperforms TF by 15.20%, if we increment the ABL to 32 we find 

that SQFL outperforms TF by 9.69%, and if we are to subject the switch to an ABL of 64 we 

find that SQFL outperforms TF by 6.37%. The results are found in figures 53, 54 and 55. 

 
Figure 53-Comparison; Ports=48; Buffer=1024; ABL=8 

 
Figure 54-Comparison; Ports=48; Buffer=1024; ABL=32 
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Figure 55- Comparison; Ports=48; Buffer=1024; ABL=64 

Buffer Versus Ports 

We can see how when comparing SQFL against DT that under all tested buffer versus 

port ratios SQFL outperformed DT. The degree to which SQFL improved upon the performance 

of DT varies however. We found that for instance in the case when the tested switch was 

subjected to a load of 100%, and an ABL of 64: when the ratio of available buffer to ports equals 

21.33 SQFL has an improvement of 1.36% over DT; when the ratio of available buffer to ports 

equals 42.67 SQFL has an improvement of 1.48% over DT; when the ratio of available buffer to 

ports equals 85.33 SQFL has an improvement of 0.89% over DT; when the ratio of available 

buffer to ports equals 128 SQFL has an improvement of 1.15% over DT; when the ratio of 

available buffer to ports equals 170.67 SQFL has an improvement of 0.47% over DT; when the 

ratio of available buffer to ports equals 256 SQFL has an improvement of 0.10% over DT; and 

when the ratio of available buffer to ports equals 512 SQFL has an improvement of 0.05% over 

DT. 
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We can see how when comparing SQFL against TF that under all tested buffer versus 

port ratios SQFL outperformed TF. The degree to which SQFL improved upon the performance 

of TF varies however. We found that for instance in the case when the tested switch was 

subjected to a load of 100%, and an ABL of 64: when the ratio of available buffer to ports equals 

21.33 SQFL has an improvement of 6.37% over TF; when the ratio of available buffer to ports 

equals 42.67 SQFL has an improvement of 10.11% over TF; when the ratio of available buffer to 

ports equals 85.33 SQFL has an improvement of 12.28% over TF; when the ratio of available 

buffer to ports equals 128 SQFL has an improvement of 9.52% over TF; when the ratio of 

available buffer to ports equals 170.67 SQFL has an improvement of 14.55% over TF; when the 

ratio of available buffer to ports equals 256 SQFL has an improvement of 10.92% over TF; and 

when the ratio of available buffer to ports equals 512 SQFL has an improvement of 11.66% over 

TF. The results are shown in figures 56 to 60. 

 
Figure 56- Comparison; Ports=8; Buffer=1024; ABL=64 
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Figure 57- Comparison; Ports=24; Buffer=1024; ABL=64 

 
Figure 58- Comparison; Ports=48; Buffer=1024; ABL=64 
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Figure 59- Comparison; Ports=48; Buffer=2048; ABL=64 

 
Figure 60 Comparison; Ports=48; Buffer=4096; ABL=64 

Load 

Looking at the data gathered from the simulation it was observed that as the load to 

which the switch was subjected decreased, the difference between SQFL and DT and TF 

increased. If we look at the data collected for the scenario in which the number of ports equals 

48, the ABL of the traffic to which the switch is subjected equals 64, and the total available 
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buffer on the switch is for 1024 cells, then we can see that the differences between SQFL and DT 

range from 1.36% improvement at loads of 100%, to a 36.86% improvement under loads of 

10%. for the same scenario in which the number of ports equals 48, the ABL of the traffic to 

which the switch is subjected equals 64, and the total available buffer on the switch is for 1024 

cells, we can see that the differences between SQFL and TF range from 6.37% improvement at 

loads of 100%, to a 53.04% improvement under loads of 10%. The results are shown in figures 

61, 62 and 63. 

 
Figure 61-Comparison; Ports=8; Buffer=1024; ABL=64 
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Figure 62-Comparison; Ports=24; Buffer=1024; ABL=32 

 
Figure 63-Comparison; Ports=48; Buffer=1024; ABL=8 

 

Summary of Results 

When the proposed scheme SQFL was compared to the optimal configurations of both 

conventional schemes in terms of packet loss ratio, it was found that under each and all tested 

scenarios SQFL presented the lowest packet loss ratio. This proves that despite having a simpler 
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algorithm than SQF, SQFL is still capable of outperforming the conventional methods of 

buffering in switches. Table 4 shows the scheme with the lowest packet loss ratio under each of 

the tested scenarios amongst schemes DT, TF, as well as SQFL. 

 
Table 4- Best Scheme

Ports ABL Bffr 10 20 30 40 50 60 70 80 90 100

8 8 1024 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

8 8 2048 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

8 8 4096 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

8 32 1024 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

8 32 2048 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

8 32 4096 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

8 64 1024 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

8 64 2048 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

8 64 4096 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

24 8 1024 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

24 8 2048 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

24 8 4096 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

24 32 1024 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

24 32 2048 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

24 32 4096 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

24 64 1024 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

24 64 2048 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

24 64 4096 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

48 8 1024 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

48 8 2048 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

48 8 4096 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

48 32 1024 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

48 32 2048 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

48 32 4096 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

48 64 1024 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

48 64 2048 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

48 64 4096 SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL SQFL

L
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CHAPTER VII 

 

 

SQFL VERSUS SQF 

 

 

In this chapter we test and evaluate the proposed scheme Shortest Queue First Lite 

(SQFL) versus Shortest Queue First (SQF) under different Average Burst Lengths (ABL), 

different buffer versus ports ratios, and different loads. Also in this chapter, we will show the 

number of comparison required by SQFL and SQF to sort a list using three different sorting 

algorithms: bubble sort, merge sort, and radix sort. 

 

Average Burst Length (ABL) 

We can see how when comparing SQFL against SQF that under all tested average burst 

lengths SQF outperformed SQFL, as expected. However, the degree to which SQFL sees its 

performance lowered versus the performance of SQF is not significant. We found that for 

instance in the case when the tested switch was composed of 48 ports, with a total available 

buffer of 1024 is subjected to a load of 100%. When the ABL of the traffic equals 8 SQFL 

presents a packet loss ratio only 0.11% under SQF. When we increase the ABL from 8 to 32 

there is a slight spike in the performance of SQF, increasing the gap in performance to a 

difference of 0.14%. If the ABL is increased further, this time to 64, then we find that the gap 

between SQFL and SQF shrinks once more, resulting in a performance difference of 0.12%. The 

results are shown in figures 64, 65 and 66. 
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Figure 64-SQFL vs SQF; Ports=48; Buffer=1024; ABL=8 

 
Figure 65-SQFL vs SQF; Ports=48; Buffer=1024; ABL=32 
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Figure 66-SQFL vs SQF; Ports=48; Buffer=1024; ABL=64 

 

Buffer Versus Ports 

We can see how when comparing SQFL against SQF under all tested buffer versus port 

ratios SQFL is only outperform by SQF by a very small margin. We found that for instance in 

the case when the tested switch was subjected to a load of 100%, and an ABL of 64: when the 

ratio of available buffer to ports equals 21.33 SQFL presents a packet loss difference of 0.12% 

with respect to SQF; when the ratio of available buffer to ports equals 42.67 the difference 

between SQF and SQFL is 0.07%; when the ratio of available buffer to ports equals 85.33 the 

difference between SQF and SQFL is 0.05%; when the ratio of available buffer to ports equals 

128 the difference between SQF and SQFL is 0.04%; when the ratio of available buffer to ports 

equals 170.67 the difference between SQF and SQFL is 0.03%; when the ratio of available 

buffer to ports equals 256 the difference between SQF and SQFL is 0.07%; and when the ratio 

for available buffer to ports equals 512 SQF outperforms SQFL by only 0.04%. The results are 

shown in figures 67 to 71. 
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Figure 67-SQFL vs SQF; Ports=8; Buffer=1024; ABL=64 

 
Figure 68-SQFL vs SQF; Ports=24; Buffer=1024; ABL=64 
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Figure 69-SQFL vs SQF; Ports=48; Buffer=1024; ABL=64 

 
Figure 70-SQFL vs SQF; Ports=48; Buffer=2048; ABL=64 
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Figure 71-SQFL vs SQF; Ports=48; Buffer=4096; ABL=64 

 

Load 

Looking at the data gathered from the simulation it was observed that regardless of the 

load to which the switch was subjected decreased, the performance of SQFL saw only a minor 

decreased compared to the packet loss ratio of SQF. If we look at the data collected for the 

scenario in which the number of ports equals 48, the ABL of the traffic to which the switch is 

subjected equals 64, and the total available buffer on the switch is for 1024 cells, then we can see 

that the differences between SQFL and SQF range from 1.07% at loads of 20%, to 0.01 at loads 

of 50%. The results are shown in figures 72, 73 and 74. 
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Figure 72-SQFL vs SQF; Ports=8; Buffer=1024; ABL=64 

 
Figure 73- SQFL vs SQF; Ports=24; Buffer=1024; ABL=32 
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Figure 74-SQFL vs SQF; Ports=48; Buffer=1024; ABL=8 

 

Scheme Complexity 

As it was demonstrated in the first three sections of this chapter, SQFL scheme has a 

packet loss ratio that is comparable to that of SQF scheme. The difference between both of them 

is negligible, however in terms of complexity is where SQFL scheme improves upon SQF 

scheme, requiring SQFL to perform a significantly lower number of comparisons in order to sort 

the switch’s priority list each time slot. For instance, using bubble sort in a switch of size 8x8 

SQF has to perform 224 more comparisons, or a 87.50% more comparisons than SQFL; in a 

switch of size 24x24 SQF has to perform 6624 more comparisons, or a 95.83% more 

comparisons than SQFL; in a switch of size 48x48 SQF has to perform 54144 more comparisons, 

or a 97.92% more comparisons than SQFL; in a switch of size 64x64 SQF has to perform 

129024 more comparisons, or a 98.44% more comparisons than SQFL; in a switch of size 

128x128 SQF has to perform 1040384 more comparisons, or a 99.22% more comparisons than 

SQFL; in a switch of size 256x256 SQF has to perform 8355840 more comparisons, or a 99.61% 
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more comparisons than SQFL; in a switch of size 512x512 SQF has to perform 66977792 more 

comparisons, or a 99.80% more comparisons than SQFL; instance in a switch of size 1024x1024 

SQF has to perform 536346624 more comparisons, or a 99.90% more comparisons than SQFL; 

in a switch of size 2048x2048 SQF has to perform 4292870144 more comparisons, or a 99.95% 

more comparisons than SQFL. Table 5 contains the number of comparisons required by SQF and 

SQFL to sort the switch’s priority list for switches ranging from sizes 8x8 to 2048x2048 making 

use of the three different sorting algorithms detailed in Chapter III. Figures 75, 76 and 77 depict 

in a visual manner the data contained in table 5. 

 
Table 5-Number of Comparisons (Worst Case Scenario) 

Algorithm Ports SQF SQFL

Bubble 8 256 32

24 6912 288

48 55296 1152

64 131072 2048

128 1048576 8192

256 8388608 32768

512 67108864 131072

1024 536870912 524288

2048 4294967296 2097152

Merge 8 192 24

24 2641 110

48 12868 268

64 24576 384

128 114688 896

256 524288 2048

512 2359296 4608

1024 10485760 10240

2048 46137344 22528

Radix 8 64 8

24 1152 48

48 4608 96

64 8192 128

128 49152 384

256 196608 768

512 786432 1536

1024 4194304 4096

2048 16777216 8192
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Figure 75-Number of Comparisons: Bubble Sort (Worst Case Scenario) 

 
Figure 76-Number of Comparisons: Merge Sort (Worst Case Scenario) 
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Figure 77-Number of Comparisons: Radix Sort (Worst Case Scenario) 

 

Summary of Results 

When the proposed scheme SQFL was compared to the SQF scheme it was found that the 

difference in packet loss ratio was almost non-existent. As it was shown in Chapter III as well as 

the previous section in this chapter, SQFL has a lower complexity than SQF, which allows for a 

lower number of comparisons required to sort the switch’s priority list. These qualities make the 

SQFL scheme not only easier to implement, but also lower in production cost, making SQFL a 

better alternative compared to SQF scheme. 
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CHAPTER VIII 

 

 

CONCLUSION 

 

 

The primary goal of this thesis was to find a way to facilitate the implementation of 

Shortest Queue First in hardware. In Chapter III we propose a scheme which we named Shortest 

Queue First Lite that attempts to facilitate the hardware implementation of Shortest Queue First, 

simplifying the algorithm originally employed by reducing the number of sorts operations 

required, which not only reduces the complexity of the sharing scheme, but also reduces 

manufacturing costs, thus making the proposed scheme much more feasible. 

In Chapter IV it was determined the optimal configurations for Dynamic Threshold and 

Threshold-based Filtering under each of the tested scenarios. This information was then used in 

Chapter V to compare the two conventional sharing memory versus Shortest Queue First Lite, 

where it was determined that under each of the tested scenarios the proposed scheme presented a 

lower packet loss ratio than both Dynamic Threshold and Threshold-based Filtering, proving that 

the simplified scheme outperforms the conventional schemes. 

In Chapter VII the performance of the proposed scheme SQFL is compared against the 

performance of the SQF scheme; here it was demonstrated that despite the simplification of the 

scheme, the difference in packet loss ratio between SQFL and SQF were negligible. Also in this 

chapter it is show how the simplified SQFL scheme greatly reduces the number of comparisons 

required to sort the switch’s priority list, making SQFL a more viable and attractive alternative to 

the conventional buffer sharing schemes. 
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As future work we can suggest the testing and comparison of the conventional schemes, 

Shortest Queue First, and Shortest Queue First Lite in Multistage Interconnection Networks 

(MINs), as they are becoming an increasingly common way to build bigger switching fabrics. 

We also suggest the implementation, as well as testing of the scheme under real world traffic 

conditions. 
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