
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Theses and Dissertations 

7-2019 

Reduction of the KP Hierarchy Reduction of the KP Hierarchy 

Adrian Eugenio Torres 
The University of Texas Rio Grande Valley 

Follow this and additional works at: https://scholarworks.utrgv.edu/etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Torres, Adrian Eugenio, "Reduction of the KP Hierarchy" (2019). Theses and Dissertations. 596. 
https://scholarworks.utrgv.edu/etd/596 

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more 
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utrgv.edu%2Fetd%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/596?utm_source=scholarworks.utrgv.edu%2Fetd%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


REDUCTION OF THE KP HIERARCHY

A Thesis

by

ADRIAN EUGENIO TORRES

Submitted to the Graduate College of
The University of Texas Rio Grande Valley

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

July 2019

Major Subject: Mathematics





REDUCTION OF THE KP HIERARCHY

A Thesis
by

ADRIAN EUGENIO TORRES

COMMITTEE MEMBERS

Dr. Baofeng Feng
Chair of Committee

Dr. Andras Balogh
Committee Member

Dr. Paul Bracken
Committee Member

Dr. Dambaru Bhatta
Committee Member

July 2019





Copyright 2019 Adrian Eugenio Torres

All Rights Reserved





ABSTRACT

Torres, Adrian Eugenio, Reduction of the KP Hierarchy. Master of Science (MS), July, 2019, 41 pp.,

49 references, 15 titles.

This thesis will delve into the Kadomtsev-Petviashvili equation or KP equation and it’s

heirarchy. More specifically, the solition theory around it. To do so, we first explore the soliton

theory for the Korteweg de-Vries equation or KdV equation by analysing it through the inverse

scattering transform method and presenting it’s soliton solutions. Second, we will introduce, Hirota’s

bilinear form, and understand its main idea. Third, introduce Sato Theory, and use it to formulate

the KP hierarchy, via using pseudo-differential operators, presenting the lax operator, the dressing

operator, Sato equation, and the zero curvature equation (Zakharov-Shabat Equation). Fourth, find

the general solution and one-soliton solution to the KP hierarchy and peform a 2-reduction and

3-reduction on the KP heirarchy. Finally, use Hirota’s bilinear method (direct method) to find the

multiple solition solutions for the KP hierarchy.
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CHAPTER I

INTRODUCTION

In this report we will look into the soliton theory around the KP (Kadomtsev-Petviashvili)

equation. To do so we will look into the inverse scattering transform of the KdV (Korteweg de-Vries)

equation, and brief descriptions of Hirota’s bilinear form and Sato’s Theory.

1.1 Inverse Scattering Transform of the KdV (Korteweg de-Vries) equation

We will show how to solve the Korteweg de-Vries (KdV) equation via the inverse scattering

transformation method. We will present the direct scattering problem, as well as the time evolution

of the scattering data. Then, we will show the Gelfand-Levitan-Marchenko (GLM) equation in

order to solve the inverse scattering problem of the KdV equation. Finally, we will construct and

show explicit one- and two-soliton solutions for the reflectionless case.

The KdV equation is a nonlinear dispersive partial differential equation for a function u of

two variables: x (space variable) and t (time variable), which can be written as follows

∂u
∂ t
−6u

∂u
∂x

+
∂ 3u
∂x3 = 0. (1.1)

This lax pair contains two linear operators, L and M. According to the Schrödinger equation

[2] we have that

L =−∂
2
x +u(x), (1.2)

and that the compatibility condition is as follows

dL
dt

+LM−ML = 0. (1.3)
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We can derive that M = 4∂ 3
x −6u∂x−3ux which produces the KdV equation (1.1).

Therefore the lax pair is given as follows

Lψ = λψ (1.4)

Mψ =
dψ

dt
(1.5)

One can easily show that λt = 0 by taking the derivative with respect to time for (1.4) and

plugging it into (1.5).

In mathematics, scattering means the passing of plane waves ψ ∼ e±ikx through the field of

the potential u(x) from x =−∞ to x =+∞. Let k ∈ R such that k2 = λ , and let u(x) be a smooth

real function that does not depend on t, such that | u(x) |→ 0 for | x |→+∞. The solutions satisfy

ψ ∼ eikx , ψ ∼ e−ikx. By Picard’s method [2] it can be shown that for every k the differential

equation

ψ
′′+ k2

ψ = uψ, (1.6)

with a prescribed asymptotic behavior that has a pair of linearly independent solutions.

Now for φ ∼ e−ikx and φ ∼ eikx as x→−∞, the Wronskian of two solutions is defined as

W (ψ,φ) = ψxφ −ψφx [2]. Also, we have that W (ψ,ψ) = W (φ ,φ) = 2ik [2], meaning it is not

equal to zero, thus forming the basis for the space of solutions. Now the transition matrix from this

basis is formed by ψ and ψ to a basis formed by φ and φ and is given by following

φ

φ

=

a(k) b(k)

b(k) a(k)


ψ

ψ

 , (1.7)

which is the scattering matrix [2].

Since W is an invariant skew symmetric bilinear form, |a(k)|2−|b(k)|2 = 1, then a(k) can
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be analytically extended to ℑk > 0 since

W (ψ,φ) = ψxφ −ψφx (1.8)

= a(k)W (ψ,ψ)+b(k)W (ψ,ψ) (1.9)

= a(k)W (ψ,ψ) (1.10)

⇒ a(k) =
W (ψ,φ)

2ik
. (1.11)

Similarly,

b(k) =
−W (ψ,φ)

2ik
. (1.12)

Also, a(k) = 0 if and only if there exists a solution to Lψ = k2ψ that exponentially decays at infinity.

It follows that a(k) has at most a finite number of zeros in the upper half plane. In other words, the

zeros of a(k) correspond to eigenvalues of the discrete spectrum: a(k) = 0 if and only if λ = k2

is a point of the discrete spectrum. We denote the zeros iκ1, ..., iκn with κ1 > ... > κn > 0. Then

λi =−κ2
i and φs(x) := φ(x, iκs) are the eigenvalues and eigenfunctions of the discrete spectrum of

L respectively [2].

Which can be seen as follows

φs(x) =


eκsx, if x→−∞

bse−κsx, if x→+∞

(1.13)

where bs ∈ R[2].

Thus, we obtain the following scattering data:
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1. The reflection coefficient r(k) = b(k)
a(k) , k∈R

2. κ1, ...,κn

3. b1, ...,bn

Therefore constructing the following scattering map:

[u(x)]−→[(r(k),(κ1, ...,κn,b1, ...,bn)] (1.14)

Using the KdV equation represented in the form L̇ = LM−ML and differentiating Lφ = λφ

in time, we get

L(φ̇ +Mφ) = λ (φ̇ +Mφ)+ λ̇ φ (1.15)
= λ (φ̇ +Mφ). (1.16)

So, φ̇ +Mφ is an eigenfunction for λ and must be a linear combination of φ and φ , thus

φ̇ +Mψ = αφ +βφ . (1.17)

The behavior of the left side at x→+∞ is 4ik3eikx while the behavior of the right side is
αeikx +βe−ikx which implies that α and β must be 4ik3 and zero respectively. Thus,

φ̇ +Mφ = 4ik3
φ . (1.18)

We consider φ = aψ +bψ , we proceed by differentiating with respect to time as follows

φ̇ = ȧψ + ḃψ +aψ̇ +bψ̇ (1.19)
⇒ φ̇ +Mφ = ȧψ + ḃψ +a(ψ̇ +Mψ)+b(ψ̇ +Mψ) (1.20)

⇒ 4ik3(αψ +βψ) = ȧψ + ḃψ +4ik3aψ−4ik3bψ (1.21)
⇒ 8ik3bψ = ȧψ + ḃψ (1.22)

where ȧ = 0 and ḃ = 8ik3b⇒ ṙ(k, t) = 8ik3r(k, t) [2].
Therefore, our scattering data evolves with time in the following way:

[r(k),(κ j,b j)
n
j=1]−→[r(k)e8ik3t ,(κ j,b je

8κ3
j t)n

j=1]. (1.23)

The inverse scattering is the problem of reconstructing u(x, t) from the scattering data. We
first reconstruct a(k) and b(k) from the scattering data. Then, we define The Fourier transform of
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r(k) as follows:

r̂(x) =
1

2πi

∫ +∞

−∞

r(k)eikxdk, (1.24)

F(x) = ∑
n
j=1

b je−κ jx

ia′(k)
+ r̂(x), (1.25)

K(x,y) =
1

2π

∫
∞

−∞

eik(y−x)(ψ(x,k)eikx−1)dk. (1.26)

Then we derive the Gelfand-Levitan-Marchenko (GLM) equation starting from the fact
that φ(x,k) = a(k)ψ(x,k)+b(k)ψ(x,k) [2], we multiply both sides by eiky

a(k) and, after subtracting

e−ikx (in order to get a well-defined integral), we integrate both sides with respect to k and perform
the necessary simplifications and substitutions while making use of the "dressing" operator, and
therefore we arrive at

r̂(x+ y)+∑
n
j=1

b j

ia′(iks)
e−ks(x+y)+K(x,y)

+
∫

∞

x
K(x,z)(r̂(z+ y)+∑

n
j=1

b je−k j(z+y)

ia′(k)
)dz = 0. (1.27)

Where the sum of the first two terms was called before F(x) [2].
We substitute our previously defined function (1.25) into equation (1.27) and get the

Gelfand-Levitan Marchenko (GLM) equation as follows,

F(x+ y)+K(x,y)+
∫

∞

x
K(x,z)F(z+ y)dz = 0. (1.28)

A simplifed version [2].
Substituting ψ with the "dressing operator" in equation (1.6) gives the formula for the

potential:
u(x, t) =−2Kx(x,x). (1.29)

We consider the following theorem:

Theorem 1. Let |H|= det(hi j) = |δi j +
∫

∞

x φ i(x)φi(x)dx| (where hi j is an n by n matrix). We define

K(x,z) =

 hi j φ1(x)

φ 1(z)...φ n(z) 0


|H| and F(x,z) = ∑

n
i=1φ i(z)φi(x), then these two functions solve the

Gelfand-Levitan-Marchenko (GLM ) equation.

We prove it as follows
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Proof.

∫
∞

x
K(x,s)F(s,z)ds =

1
|H|

∫
∞

x

 hi j φ1(s)

φ 1(s)...φ n(s) 0

∑
n
i=1φ i(z)φi(s)ds

=
1
|H|∑

n
i=1φ i(z)

 hi j φ1(s)∫
∞

x φ 1(s)φ1(s)ds...
∫

∞

x φ N(s)φ1(s)ds 0


=
−1
|H|

(∑
n
i=1φ i(z)φi(x)|H|+

 hi j φ1(x)

φ 1(z)...φ n(z) 0

)
= −F(x,z)−K(x,z)

It can be shown that
K(x,x) =

d
dx

log(H) =
Hx

H
, (1.30)

therefore

u(x, t) =−2Kx(x,x) =−2
d2

dx2 log(H). (1.31)

Now in the case of n = 1, we get that

H = 1+
ce−2kx+8k3t

2k
. (1.32)

Taking second derivatives and performing necessary computations gives the result:

u(x, t) =−2κ
2sech2[κx−4κ

3t− x0] (1.33)

here the soliton has a phase-shift of x0 = 1
2k log( c

2k) and is moving to the right with a constant
velocity 4κ2 [1]. One can perform similar, but much longer calculations and solve for the potential
in case of n = 2 and get the two-soliton solution.

1.2 Hirota’s bilinear form

In 1971 Hirota developed a new method or direct method for constructing multisoliton
solutions to integrable nonlinear evolution equations [5]-[6] The basic idea was to formulate a
transformation into new variables, in order for their mulisolition solutions to appear in a simple
form. This method was successful and therefore ended up being applied to the Korteweg de-Vries
(KdV) equation [6], modifed Korteweg de-Vries (mKdV) equation [7], sine-Gordon equation [8],

6



and nonlinear Schrödinger (NLS) equation [10] . Later on it was observed that the new dependent
variables (called tau-functions) had very good properties and therefore become a starting point for
further developments [5].

Most integrable PDE’s that appear in some particular problems tend to not be in the most
convenient form to work with. This is where Hirota’s bilinear form comes into play.

The basic idea here is that these equations of a non-convenient form can usually be bilin-
earized by introducing a new dependent variable whose natural degree is 0, i.e. log F or f/g.

So consider that w=α log F , where α is a free parameter. Following from this, we result
with

F2 · (...........2)+3α(2−α)(2FF ′′−F ′2)F ′2 = 0. (1.34)

If we let α = 2, then the following quadratic equation results

FxxxxF−4FxxxFx +3F2
xx +FxtF−FxFt = 0, (1.35)

which in the Hirota bilinear form must be satisfied by two conditions: one, it must be quadratic in
the dependent variables, which it is; Two, satisfy the condition of with respect to the derivatives, i.e.
they should only appear in combinations that can be expressed using Hirota’s D-operator [5]. This
is defined as follows

Dn
x f ·g = (∂x1−∂x2)

n f (x1)g(x2) |x2=x1=x, (1.36)

where the operator D operates on the product of two functions like Leibnitz rule [5], with the
exception of difference of signs, i.e,

Dx f ·g = fxg− f gx, (1.37)
DxDt f ·g = f gxt− fxgt− ftgx + f gxt . (1.38)

Using the D-operator, equation (1.35) can be rewritten as follows

(D4
x +DxDt)F ·F = 0. (1.39)

This result is made possible by the following dependent variable transformation, u=2∂ 2
x log

F , which has been integrated once. In the following subsubsection we will show how this procedure
is applied to the Korteweg de-Vries (KdV) equation, i.e, show that equation (1.39) is the bilinear
form for the KdV equation.

Again, considering the Korteweg de-Vries (KdV) equation

uxxx +6uux +ut = 0. (1.40)

Our first step, is to do a bilinearizing transformation to the KdV equation. So, we focus on
transforming the equation into a form that is quadratic in the dependent variables. In order to do so
we find a transformation that is a leading derivative that should go together with a nonlinear term,
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and, in particular, have the same number of derivatives. If we count a derivative with respect to x
having a degree of 1, then to balance the first two terms for the KdV equation, we should consider
that u has a degree of 2. Hence, we introduce the transformation to a dependent variable w, which
has a degree of 0, as seen before, i.e., w=α log F .

We let
u = ∂

2
x w, (1.41)

then the KdV equation can rewritten as

wxxxxx +6wxxwxxx +wxxt = 0, (1.42)

then by integrating with respect to x we result with

wxxxx +3w2
xx +wxt = 0. (1.43)

Therefore, we went from nonlinear to bilinear, using Hirota’s bilinear form for the KdV
equation [5].

1.3 Sato Theory

The previous sections serve as basis for the concept of Sato Theory. A concept that shows
a deep level of algebraic and geometric understanding of integrable systems with infinitely many
degrees of freedom and their solutions [14]. It’s main idea is that these systems are not just solely
isolated and should be seen as belonging to infinite families, i.e., hierarchies of mutually compatible
systems. Systems that are governed by an infinite set of evolution parameters in terms of which
their (common) solutions can be expressed [14].
Sato’s theory can be described as follows:

"Start from an ordinary differential equation and suppose that its solutions satisfy certain
dispersion relations, for a set of supplementary parameters. Then, as conditions on the coefficients
of this ordinary differential equation, we obtain a set of integrable nonlinear partial differential
equations [14]."

Thus, we will use Sato Theory to formulate the KP hierarchy in the following chapter.
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CHAPTER II

SATO FORMULATION

2.1 The KP Equation

The KP (Kadomtsev-Petviashvili) equation is given by the following partial differential

equation:

(−4ut +6uux +uxxx)x +3uyy = 0. (2.1)

If we let u = 2wx, then equation (2.1) becomes

(−4wxt +12wxwxx +wxxxx)+3wxyy = 0. (2.2)

We then integrate with respect to x once and taking zero to be the integration constant and

thus result with the potential form of the KP equation as follows

(−4wt +6w2
x +wxxx)x +3wyy = 0. (2.3)

Which is sometimes referred as the KP equation [12]. This version of the KP equation will play a

role in a later chapter.

2.2 Lax Equation

To begin formulating the KP hierarchy, we consider the following operators as follows:

The pseudo-differential operator

L = ∂ +u1∂
−1 +u2∂

−2 +u3∂
−3 + ...= ∂ +

∞

∑
n=1

un∂
−n, (2.4)

9



where,

ui = ui(t1, t2, .., tn, ..). (2.5)

The differential operator

Bn = (Ln)+. (2.6)

Following these two operators we consider the lax equations

∂L
∂ tn

= [Bn,L], (2.7)

∂Lm

∂ tn
= [Bn,Lm]. (2.8)

With Bn = (Ln)≥0, where n = 1,2, .....

2.3 The Zero Curvature Equation (Zakharov-Shabat Equation)

Now, we consider the zero curvature equation (Zakharov-Shabat Equation) lemma

∂Bn

∂ tm
− ∂Bm

∂ tn
+[Bn,Bm] = 0, (2.9)

which is satisfied by Bn = (Ln)≥0. We prove it as follows

Proof. First we note,

∂Ln

∂ tm
=

m−1

∑
k=0

Lk ∂L
∂ tm

Ln−k−1

=
n−1

∑
k=0

Lk[Bm,L]Ln−k−1

=
n−1

∑
k=0

LkBmLn−k−
n−1

∑
k=0

Lk+1BmLn−k−1

= BmLn−LnBm

= [Bm,Ln].
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Then using the decomposition L = Bn +(Ln)<0, and (2.8) we have

∂Ln

∂ tm
− ∂Lm

∂ tn
= [Bm,Ln]− [Bn,Lm]

= [Bm,Bn]+ [Bm,(Ln)<0]− [Bn,Lm]

= [Bm,Bn]+ [Bm,(Ln)<0]+ [(Ln)<0,Lm]

= [Bm,Bn]− [(Lm)<0,(Ln)<0].

Then taking the differential part of the above equation, will result in

∂Bn

∂ tm
− ∂Bm

∂ tn
+[Bm,Bn] = 0.

Hence proved [12].

With this result, we prove the following theorem:

Theorem 2. Equations (2.7) and (2.8) are compatible, i.e.

∂ 2L
∂ tn∂ tm

=
∂ 2L

∂ tm∂ tn
, (2.10)

for every m,n ∈ N.

Proof. First, we compute the right hand side

∂ 2L
∂ tm∂ tn

= [
∂Bn

∂ tm
,L]+ [Bn,

∂L
∂ tm

]

= [
∂Bn

∂ tm
,L]+ [Bn, [Bm,L]].

Next, the left hand side

∂ 2L
∂ tn∂ tm

= [
∂Bm

∂ tn
,L]+ [Bm, [Bn,L]].

11



Using both results, we obtain

∂ 2L
∂ tm∂ tn

− ∂ 2L
∂ tn∂ tm

= [
∂Bn

∂ tm
− ∂Bm

∂ tn
,L]+ [Bn, [Bm,L]]− [Bm, [Bn,L]]

= [
∂Bn

∂ tm
− ∂Bm

∂ tn
,L]+ [[Bn,Bm],L]

= [
∂Bn

∂ tm
− ∂Bm

∂ tn
+[Bn,Bm],L].

Then by using the Jacobi identity for the commutator we have that

[
∂Bn

∂ tm
− ∂Bm

∂ tn
+[Bn,Bm],L] = 0.

Now from the zero curvature equation (Zakharov-Shabat Equation) Lemma, we deduce that

∂ 2L
∂ tm∂ tn

− ∂ 2L
∂ tn∂ tm

= 0.

Which implies that
∂ 2L

∂ tn∂ tm
=

∂ 2L
∂ tm∂ tn

.

Hence, proved [12].

2.4 The Dressing Operator

Now, one can eliminate all the variables ui from lax operator L by a gauge operator W . We

call this gauge operator the dressing operator. It is written in the following form:

W = 1+w1∂
−1 +w2∂

−2 + ...= 1+
∞

∑
k=1

wk∂
−k (2.11)

such that

L =W∂W−1. (2.12)

We have that the zero curvature equation (Zakharov-Shabat Equation) is the compatibility
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condition for the following linear problems

∂ tmψ = Bmψ (2.13)

∂ tnψ = Bnψ (2.14)

Lψ = zψ (2.15)

We denote as follows

ξ (t,z) = xz+ t2z2 + t3z3 + ... (2.16)

So we will find the solution to (2.13) and (2.14) in the form

ψ = (1+
ξ1

z1
+

ξ2

z2
+ ...)eξ (t,z), (2.17)

where the cofficients ξi depend only on x and on t j. Using the dressing operator, W , in (2.17) then

we can find the common solutions to (2.13) , (2.14), and (2.15). So we have that

ψ =Weξ (t,z) = (1+ξ1∂
−1 +ξ ∂

−2 + ...)eξ (t,z), (2.18)

where ∂−1 acts to the exponential function according to the rule ∂−1exz = z−1exz.

Equation (2.18) is also called the Baker−Akhiezer function [15].

We prove (2.13) as follows
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Proof.

∂ tmψ = zmWeξ (t,z)+∂ tmWeξ (t,z)

= (zmW +∂ tmW )eξ (t,z)

= (Wzm− (W∂
mW−1)−W )eξ (t,z)

= (W∂
m− (W∂

mW−1)−W )eξ (t,z)

= (W∂
mW−1− (W∂

mW−1)−)Weξ (t,z)

= (Lm− (Lm)−)ψ

= Bmψ.

Thus, it holds true [15].

The same follows for (2.14)

Proof.

∂ tnψ = znWeξ (t,z)+∂ tnWeξ (t,z)

= (znW +∂ tnW )eξ (t,z)

= (Wzn− (W∂
nW−1)−W )eξ (t,z)

= (W∂
n− (W∂

nW−1)−W )eξ (t,z)

= (W∂
nW−1− (W∂

nW−1)−)Weξ (t,z)

= (Ln− (Ln)−)ψ

= Bnψ.

Thus, it holds true [15].

Now the proof for (2.15)
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Proof.

Lψ = L[Weξ (t,z)]

= W∂eξ (t,z)

= Wzeξ (t,z)

= zψ.

Thus, it holds true [15].

2.5 The Sato Equation

So, we impose that the dressing operator W satisfies the Sato equation,

∂W
∂ tn

= BnW −W∂
n, (2.19)

when n = 1,2, .... and where Bn is now given by Bn = (W∂W−1)≥0 [12]. Thus, we have the

following theorem, in which the Sato equation is used:

Theorem 3. If the dressing operator, W, satisfies the Sato equation, then the operator L =W∂W−1

satisfies the lax equation for the KP hierarchy,

∂L
∂ tn

= [Bn,L], (2.20)

where Bn = (Ln)≥0.

Here is the proof as follows
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Proof. By direct calculation we have

∂L
∂ tn

=
∂

∂ tn
L

=
∂

∂ tn
(W∂W−1)

=
∂W
∂ tn

∂W−1 +W∂
∂

∂ tn
(W−1)

=
∂W
∂ tn

∂W−1−W∂W−1 ∂W
∂ tn

W−1

= (BnW −W∂
n)∂W−1−W∂W−1(BnW −W∂

n)W−1

= BnW∂W−1−W∂
n+1W−1− (W∂Bn +W∂

n+1)K−1

= BnW∂W−1−W∂
n+1W−1−W∂W−1Bn +W∂

n+1W−1

= BnW∂W−1−W∂W−1Bn

= [Bn,L].

Hence, proved [12].

Also L = W∂W−1, i.e., LW = W∂ gives the following correspondences between the

coefficients of L and those of W ,

LW = (∂ +
+∞

∑
k=1

uk+1∂
−k)(1−

+∞

∑
k=1

wk∂
−k) (2.21)

= ∂ −
+∞

∑
k=1

(wk∂
1−k +wk,x∂

−k)+
+∞

∑
k=1

(uk+1∂
−k−uk+1

+∞

∑
j=1

+∞

∑
l=1

(
−k
l

)
(∂ lw j)∂

−k− j−l) (2.22)

= ∂ −
+∞

∑
k=1

(wk∂
1−k +wk,x∂

−k)+
+∞

∑
k=1

(uk+1∂
−k−uk+1

+∞

∑
m=2

m−k−l≥1

∑
l=0

(
−k
l

)
(∂ lwm−k−l)∂

−m),

(2.23)

16



then

LW = ∂ −w1− (w2 +w1,x−u2)∂
−1

−
+∞

∑
m=2

(wm+1 +wm,x−um+1 + ∑
k=1

m−k−l≥1

∑
l=0

uk+1

(
−k
l

)
(∂ lwm−k−l))∂

−m. (2.24)

And

W∂ = ∂ +
+∞

∑
m=0

wm+1∂
−m. (2.25)

So, comparing these cofficients of ∂−m, we result with



u2 = w1,x

u3 = w2,x +w1w1,x

u4 = w3,x +w1w2,x +w2w1,x−w2
1,x +w2

1w1,x

...

(2.26)

This means that finding the solution for the W - equation is enough for the KP equation.

We know that u2 satisfies the KP equation as follows

∂

∂x
(4

∂u2

∂ t3
−12u2u2,x−u2,xxx)−3

∂ 2u2

∂ t2
2

= 0. (2.27)

Also, the relation u2 = w1,x implies that w1 satisfies the potential KP equation, mentioned in

section 2.1, as follows

∂

∂x
(−4

∂w1

∂ t3
+6w2

1,x +w1,xxx)+3
∂ 2w1

∂ t2
2

= 0. (2.28)

Now, if we truncate the series W , by considering a finite reduction, we get

W = 1+w1∂
−1 +w2∂

−2 + ...+wN∂
−N . (2.29)
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Then we define the differential operator as follows

WN =W∂
N = ∂

N +w1∂
N−1 +w2∂

N−2 + ..+wN . (2.30)

As proved in Theorem 3, the dressing operator W satisfies the Sato equation, we can also show that

WN satisfies
∂WN

∂ tn
= BnWN−WN∂

n, (2.31)

where Bn = (W∂W−1)≥0 and n = 1,2, .....

We consider the following theorem:

Theorem 4. Suppose that f be a solution of the linear hierarchy, ∂ f
∂ tn

= ∂ n f
∂xn for n = 1,2, ... Then

the N-th order differential equation WN f = 0 is invariant with respect to any flow parameter tn.

Proof. This can be proved by simple computation,

∂

∂ tn
(WN f ) =

∂WN

∂ tn
f +WN

∂ f
∂ tn

= (BnWN−WN∂
n) f +WN

∂ f
∂ tn

= Bn(WN f )+WN(
∂ f
∂ tn
− ∂ n f

∂xn )

= 0.

Hence, proved [12].

From Theorem 4 and it’s proof we have the following


WN f = 0

∂ f
∂ tn

= ∂ n f
∂xn

(2.32)

where n = 1,2, ....
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Recall that WN f = 0 [12] gives us that

f (N) = w1 f (n−1)+w2 f (N−2)+ ...+wN−1 f (1)+wN f , (2.33)

then, with the linearly independent solution fi : i = 1,2, ...,N(a fundamental set of solutions), w1 is

given by

w1 =
∂

∂x
lnWr( f1, f2, ..., fN), (2.34)

where Wr( f1, .., fN) is the Wronskian determinant. Therefore the τ- function is given by

τ =Wr( f1, f2, .., fN). (2.35)

2.6 Tau-function of the KP hierarchy and the Hirota bilinear equation

The Tau-function is used in the formulation of the KP hierarchy. It is regarded as a dependent

variable, which allows to formulate the KP hierarchy as an infinite set of compatible equations for

just one functions, rather then an infinite number of compatible equations.

Now, in terms of the tau-functions, all of the equations of the KP hierarchy become bilinear

and have a single "generating equation", known as the Hirota’s bilinear equation.

We consider the following theorem:

Theorem 5. For the ψ -function of any solution to the KP-Hierarchy the following bilinear identity

holds

resz(ψ(t,z)ψ∗(t ′,z)) = 0, (2.36)

where t = t j and t ′ = t ′j are two arbitrary sets of times.

We previously mentioned the following

ψ =Weξ (t,z) = (1+ξ1∂
−1 +ξ ∂

−2 + ...)eξ (t,z),

the Baker−Akhiezer function, equation (2.18) from section 2.4. Now consider the following
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theorem where the tau-function is used:

Theorem 6. Let ψ and ψ∗ be the Baker-Ahkiezer functions of the KP hierarchy, then there exists a

function τ(t1, t2, t3, ...) such that

ψ(t,z) = eξ (t,z)
τ(t1− 1

z , t2−
1

2z2 , ...)

τ(t, t2, t3, ...)
, (2.37)

and

ψ
∗(t,z) = e−ξ (t,z)

τ(t1 + 1
z , t2 +

1
2z2 , ...)

τ(t, t2, t3, ...)
. (2.38)

I will describe the process of proving equation (2.37).

So we write ψ(t,z) as follows:

ψ(t,z) = eξ (t,z)w(t,z), (2.39)

and the same for ψ∗(t,z):

ψ
∗(t,z) = e−ξ (t,z)w∗(t,z) (2.40)

we take the logarithmic derivative with respect to z on both sides and result with

∂z logw(t,z) = ∑
m≥1

∂ logw(t,z)
∂ tm

z−m−1 + ∑
m≥1

∂ logτ

∂tm
z−m−1 (2.41)

which is also equal to
∂ logτ

∂ tn
= resz(zn(∂z−∂ (z)) logw(t,z)), (2.42)

where

∂ (z) := ∑
j≥1

z− j−1 ∂

∂ t j
. (2.43)

So, to show that the tau-function exists is enough to prove the following expression

resz(zn(∂z−∂ (z))∂tm logw(t,z)) (2.44)
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is symmetric under the permutation of m and n.

The overall idea of the proof is based on the bilinear identity. We let t ′j = t j−ζ− j/ j in the

bilinear idenity and write as follows

resz(ψ(t,z)ψ∗(t− [ζ−1],z)) = 0, (2.45)

where we conveniently introduce the follwing

F(t± [z])≡ F(t1± z, t2±
z2

2
, t3±

z3

3
, ..). (2.46)

We substitute equation (2.39) and equation (2.40) into equation (2.45) and result with

resz(
w(t,z)w∗(t− [ζ−1],z)

1− z
ζ

) = 0. (2.47)

One can see that for any series f (z) = 1+∑ j≥1 f jz− j the identity

resz(
f (z)

1− z
ζ

) = ∑
j≥1

f jζ
1− j = ζ ( f (ζ )−1), (2.48)

holds.

Applying to the previous equality we get the relation between w and w∗ as follows

w(t,z)w∗(t,z)(t− [z−1],z) = 1. (2.49)

In a similar fashion, from the bilinear identity

resz(ψ(t,z)ψ∗(t− [ζ−1]− [ζ−2],z)) = 0 (2.50)
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can be rewritten as follows

resz(
w(t,z)w∗(t− [ζ−1]− [ζ−2],z)

(1− z
ζ1
)(1− z

ζ2
)

) = 0 (2.51)

it follows that

w(t,z)w∗(t− [ζ−1]− [ζ−2],ζ1) = w(t,ζ2)w∗(t− [ζ−1]− [ζ−2],ζ2), (2.52)

where the following identity is used

1/ζ1−1/ζ2

(1− z
ζ1
)(1− z

ζ2
)
=

1
ζ1(1− z

ζ1
)
− 1

ζ2(1− z
ζ2
)
, (2.53)

and equation (2.48).

Using equation (2.53), we can express w∗ through w and let ζ1 = z, and ζ2 = ζ .

So, the result is
w(t,z)

w(t− [ζ−1],z)
=

w(t,ζ )
w(t− [z−1],ζ )

. (2.54)

Now, we take the log of the equality (2.54) and use the operator ∂z−∂ (z) and get

(∂z−∂ (z)) logw(t,z)− (∂z−∂ (z)) logw(t− [ζ−1],z) =−∂ logw(t,ζ ). (2.55)

To make it simple we let Yn(t) := resz(zn(∂z−∂ (z)) logw(t,z)) [15]. Thus, multiplying both sides

of equation (2.55) by zn and taking the residue, we result with

Yn(t)−Yn(t− [ζ−1]) =−∂tn logw(t,ζ ). (2.56)

So we differentiate with respect to tm and subtracting a similar equality with interchanged m, n, thus

yielding

∂tmYn(t)−∂tnYm(t) = ∂tmYn(t− [ζ−1])−∂tnYm(t− [ζ−1]). (2.57)
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We denote the left hand side by Fmn(t). Then expand Fmn(t− [ζ−1]) in powers of ζ as follows

Fmn(t− [ζ−1]) = Fmn(t)−ζ
−1

∂t1Fmn(t)+
1
2

ζ
−2(∂ 2

t1Fmn(t)−∂t2Fmn(t))+ ... (2.58)

Since Fmn(t− [ζ−1]) = Fmn(t) for all tk and all solutions, the comparison of coefficients at

ζ−1 implies that ∂t1Fmn(t) = 0 for all t, meaning that Fmn does not depend on t1. The same goes

for ζ−2. Therefore this goes on beyond ζ−3 and conclude that Fmn does not depend on all times,

i.e. it is constant. Of course the trivial solution, ui = 0 the constant is 0. Since Fmn is a differential

polynomial of ui, then this constant is equal to 0 for any solution. Hence, ∂tmYn(t) = ∂tnYm(t),

implying the existence of the tau-function and that both equation (2.37) and equation (2.42) hold

true. A similar proof for equation (2.38) can be shown as well [15].

Through the tau-function, ψ and ψ∗ can be expressed using the "Japanese" formulas. Doing

so, results the following bilinear relation of the tau-function:

resz(τ(t− [z−1])τ(t ′+[z−1])eξ (t−t ′,z)) = 0, (2.59)

or ∮
eξ (t−t ′,z)

τ(t− [z−1])τ(t ′+[z−1])dz = 0. (2.60)

Equation (2.60) is equal to an infinite system of bilinear differential equations of the tau-

function. To acquire these, we equal the expansion coefficients in the Taylor series for the left hand

side in t ′− t to zero.
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Now if we substitute ti−Ti , and ti +Ti for ti and t ′i , then

resz[τ(t−T − [z−1])τ(t +T +[z−1])e−2ξ (T,z)] = resz[eξ (∂ T ,z−1)](τ(t−T )τ(t +T ))e−2ξ (T,z)] (2.61)

= resz[∑
j≥0

z− jh j(∂ T )(τ(t−T )τ(t +T ))∑
l≥0

zlhl(−2T )]

(2.62)

= ∑
j≥0

h j(−2T )h j+1(∂ T )τ(t−T )τ(t +T ) (2.63)

= 0. (2.64)

So

∑
j≥0

h j(−2T )h j+1(∂ T )τ(t−T )τ(t +T ) = 0. (2.65)

Equation (2.65) can also be expressed as follows

∑
j≥0

h j(−2T )h j+1(∂ X)e∑l≥1 TlDl τ(t−X)τ(t +X) = 0, (2.66)

where Xm = 0.

In this defined rule

P(D) f (t) ·g(t) := P(∂X)( f (t−X)(g(t +X)) = 0 (2.67)

where X = 0 [15]. We use the symbol D j of the "Hirota derivative" [15] for any polynomial P(D) of Di , we

can write equation (2.66) in the following form

∑
j≥0

h j(−2T )h j+1(D)e∑l≥1 TlDl τ(t) · τ(t) = 0. (2.68)

Where, the relation contains all of the bilinear Hirota equations for the KP hierarchy.

In equation (2.59) we let t ′ = t− [λ1
−1]− [λ2

−1]− [λ3
−1], where λ1,2,3 are arbitrary complex parameters, i.e.

t ′k = tk−
λ1
−k

k
− λ2

−k

k
− λ3

−k

k
. (2.69)
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With these in mind, the bilinear relation takes on the following form

resz(
τ(t− [z−1])τ(t− [λ1

−1]− [λ2
−1]− [λ3

−1]+ [z−1])

(1− z
λ1
)(1− z

λ2
)(1− z

λ3
)

) = 0. (2.70)

Now, we use the identity (2.48) to represent the product of the pole factors as a sum of poles:

( 1
λ1
− 1

λ2
)( 1

λ1
− 1

λ3
)( 1

λ2
− 1

λ3
)

(1− z
λ1
)(1− z

λ2
)(1− z

λ3
)

=

( 1
λ2
− 1

λ3
)

λ1
2

1− z
λ1

+(231)+(312), (2.71)

where the last two terms are obtained from the first one by cyclic permutations of indices (1→ 2,2→ 3,3→ 1)

and (1→ 3,2→ 1,3→ 2) [15].

Again using identity (2.48), we result in

(λ2−λ3)τ(t− [λ1
−1])τ(t− [λ2

−1]− [λ3
−1])

+(λ3−λ1)τ(t− [λ2
−1])τ(t− [λ3

−1]− [λ1
−1])

+(λ1−λ2)τ(t− [λ3
−1])τ(t− [λ1

−1]− [λ2
−1]) = 0. (2.72)

This result is satisfied by the tau-function of the KP hierarchy, and is called the Hirota-Miwa equation.
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CHAPTER III

GENERAL SOLUTION TO THE KP HIERARCHY AND IT’S REDUCTION

3.1 The General Solution

We first show that the KP hierarchy indeed contains equation (2.1) (the KP equation).

We substitute n = 2 and m = 3 into Bn = (Ln)≥0 and get that


B2 = (L2)+ = ∂ 2 +2u1

B3 = (L3)+ = ∂ 3 +3u1∂ +3(u1,x +u2).

(3.1)

Substituting (3.1) into the Zakharov-Shabat equation gives us:

0 =
∂B2

∂ t3
− ∂B3

∂ t2
+[B2,B3], (3.2)

or

0 = (−3
∂u1

∂ t2
+3u1,xx +6u2,x)∂ +2

∂u1

∂ t3
−3

∂

∂ t2
(u1,x +u2)+u1,xxx +3u2,xx−6u1u1,x. (3.3)

From here 
∂u1
∂ t2

= u1,xx +2u2,x

2 ∂u1
∂ t3

= 3 ∂

∂ t2
(u1,x +u2)−u1,xxx−3u2,xx +6u1u1,x

(3.4)

Eliminating u2 and letting (u1 = u
2 , t2 = y, t3 = t) gives us the KP equation. Also, we can let

(u1 =−w1x , t2 = y, t3 = t) and get the potential form of the KP equation as seen in section 2.1,

(−4wt +6w2
1,x +w1,xxx)x +3w1,yy = 0 (3.5)

Now, we would like to find a general solution to equation (3.5).
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Truncating W and multiplying it by ∂ N defines the following differential operator:

WN =W∂
N = ∂

N +w1∂
N−1 +w2∂

N−2 + ...+wN ,

as seen in section 2.5 as equation (2.30).

Also, from section 2.5 we have that the dressing operator W satisfies the Sato equation, then WN

satisfies
∂WN

∂ tn
= BnWN−WN∂

n,

which is equation (2.31).

Another result was from the proof of Theorem 4 in section 2.5, which was


WN f = 0

∂ f
∂ tn

= ∂ n f
∂xn

that is equation (2.32).

So, we have the following functions that satisfy Theorem 4 from section 2.5:

f = ∑
N
i=1aiEi (3.6)

such that

Ei = ekix+k2
i t2+k3

i t3+... (3.7)

Now, by Cramer’s rule, we get

− f (N) = w1 f (N−1)+w2 f (N−2)+ ...+wN−1 f (1)+wN f (3.8)

then, for the set of linearly independent solutions, ( fi : i = 1,2, ...,N), we denote τ = Wr( f1, f2, ..., fN).

Therefore we have that

w1 =−(lnτ)x (3.9)
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Since w1 satisfies equation (3.5), we have that

u =−2w1,x = 2(lnτ)xx (3.10)

satisfies equation (2.1). Thus, finding the general solution to the KP hierarchy.

3.2 One-Soliton Solution for the KP Equation

If we let N = 2 (we get N−1 = 1 solitons), a1 = a2 = 1, and consider a regular three-dimensional

KP equation with t2 = y, t3 = t. then our solutions to the KP hierarchy, equation (3.5), take the following

form:

f1(x,y, t) = ek1x+k2
1y+k3

1t + ek2x+k2
2y+k3

2t (3.11)

From equation (3.9), we have that

w1 =−(ln f1)x =
1
2
(k1 + k2)+

1
2
(k1− k2) tanh(

ξ1−ξ2

2
),

where ξi = kix+ k2
i y+ k3

i t. Thus, equation (3.10) becomes:

u =
1
2
(k1− k2)

2sech2[
1
2
(k1− k2)x+

1
2
(k2

1− k2
2)y+

1
2
(k3

1− k3
2)t],

which is a one-soliton solution to the KP equation.

3.3 2-Reduction

We use the Gelf’and - Dikii reduction:

LN = BN = (LN)≥0 (3.12)

Then equation (2.7), the KP hierarchy, becomes

∂BN

∂ tn
= [Bn,BN ]. (3.13)
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When N = 2, we get that

L2 = ∂
2 +2u1 +(u1,x +2u2)∂

−1 +(u2,x +u2
1 +2u3)∂

−2 + ... (3.14)

Now, we know that

B2 = (L2)+ = ∂
2 +2u1, (3.15)

iterating, we get 

u2 =−u1,x
2

u3 =−u1,xx
4 −

u2
1

2

...

(3.16)

Where all u j’s are determined by a single variable u1. Now, we have that

B3 = (∂ +u1∂
−1 +u2∂

−2)(∂ 2 +2u1) = ∂
3 +3u1∂ +

3u1,x

2
. (3.17)

Therefore, calculating [B3,B2] with


B3B2 = ∂ 5 +5u1∂ 3 + 15

2 u1,x∂ 2 +6(u1,xx +u2
1)∂ +2u1,xxx +9u1u1,x

B2B3 = ∂ 5 +5u1∂ 3 + 15
2 u1,x∂ 2 +6(u1,xx +u2

1)∂ + 3
2 u1,xxx +3u1u1,x

(3.18)

gives us that
∂u1

∂ t3
=

1
4

u1,xxx +3u1u1,x. (3.19)

Substituting u1 =
u
2 and t3 = t yields

−4ut +6uux +uxxx = 0, (3.20)

which is a KdV equation. Now, we can easily get a one-soliton solution to the KdV equation from the

one-soliton solution to the KP equation by letting k1 =−k2 which will cancel the y component from equation

(3.11) and give us the following:

u = 2k2
2sech2[−1

2
k2x− k3

2t], (3.21)
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which is a one-soliton solution to equation (3.20) - the KdV equation.

3.4 3-Reduction

Now, we let N=3 and get that

L3 = ∂
3 +3u1 +3(u2 +u1,x)+(3u3 +3u2,x +3u2

1 +u1,xx)∂
−1 + ... (3.22)

We have that

B3 = ∂
3 +3u1∂ +

3u1,x

2
. (3.23)

Now, letting u = 3u1 and v = 3u2 +3u1,x, we get that



u1 =
u
3

u2 =
1
3(v−ux)

u3 =
1
9(2uxx−3vx−u2)

...

(3.24)

We plug in n = 2 and N = 3 into equation (3.6) which yields

∂B3

∂ t2
= [B2,B3]. (3.25)

Now, we calculate [B2,B3] and get the following system of equations:


∂u
∂ t2

=−uxx +2vx

∂v
∂ t2

= vxx− 2
3(uxxx +uux)

(3.26)

Eliminating v from the system and substituting t2 = y along with u = 3u
2 , we obtain

3uyy +(uxxx+6uux)x = 0, (3.27)

which is the Boussinesq equation. Similarly to the KdV case, we can get a one-soliton solution to the
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Boussinesq equation from the one-soliton solution to the KP equation by letting k1 = k2e−
2πi
3 which will

cancel the t component from equation (3.11) and give us the following:

u = (
3
4
+

3
√

3i
4

)k2
2sech2[(−3

4
−−
√

3i
4

)k2x+(−3
4
+

√
3i

4
)k2

2y], (3.28)

which is a one-soliton solution to equation (3.27) - the Boussinesq equation.
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CHAPTER IV

MULTI-SOLITON SOLUTION

4.1 Hirota’s direct method

In section 3.2 we gave the one-soliton solution for the KP equation. Now we will work towards a

multi-soliton solution for it. To do so we will use the direct method developed by Hirota as stated in section

1.2, that is used for deriving multiple-soliton solutions for completely integrable equations [3]-[4]. The

following bilinear differential operators were introduced in this method:

Dm
t Dn

x(a∗b) = (
∂

∂ t
− ∂

∂ t ′
)m(

∂

∂x
− ∂

∂x′
)na(x, t)b(x′, t ′), (4.1)

where x = x′ and t = t ′.

The solution for the KP equation can be expressed as follows

u = 2
∂ 2

∂x2 ln f . (4.2)

Where f is represented by following expansion

f = 1+∑
∞

n=1ε
n fn(x,y, t), (4.3)

and ε is a formal expansion parameter. In our case, multiple-soliton solutions, we set

f = 1+ ε f1 + ε
2 f2 + ε

3 f3 + ...... (4.4)

where the functions f1, f2, f3, ... can be found via Hirota bilinear formalism or direct substitution of (4.3) into

the correct equation, as will be seen later.
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4.2 A simplified version of Hirota’s direct method

Hirota’s direct method always leads to a bilinear form, if such form exists. In this method it was

shown that soliton solutions are just polynomials of exponentials. This method uses (127) to show the

dependent variable transformation

u = 2(ln f )xx, (4.5)

that transforms (2.1) into the bilinear form

B( f , f ) = (D4 +DxDt ±D2
y) f · f = 0, (4.6)

or more so

[ f ( fxt + f4x± f2y)]− [ fx ft +4 fx f3x−3 f 2
2x± f 2

y ] = 0. (4.7)

A simplified way of Hirota method was introduced by Hereman et,al. [4,5].

The method is as follows:

Equation (4.7) can be transformed into the linear operator L and the nonlinear operator N as follows

L =
∂ 2

∂x∂ t
+

∂ 4

∂x4 ±
∂ 2

∂y2 , (4.8)

N( f , f ) =− fx ft −4 fx f3x +3 f2x f2x± f 2
y . (4.9)

Now, let f have an expansion of the form as in equation (4.3) but this time ε is a non-small formal expansion

parameter.

With both the direct and simplified version of Hirota’s method we substitute (4.3) into (4.7) and by
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equating the powers of ε to zero, we result with



O(ε1) : L f1 = 0,

O(ε2) : L f2 =−N( f1, f1),

O(ε3) : L f3 =− f1L f2−N( f1, f2)−N( f2, f1),

O(ε4) : L f4 =− f1L f3− f2L f2− f3L f1−N( f1, f3)−N( f2, f2)−N( f2, f1),

...

O(εn) : L fn =−∑
n−1
j=1[ f jL fn−1 +N( f j, fn− j)] = 0.

(4.10)

Thus, the N-soliton solution is obtained from

f1 = ∑
N
i=1eθi , (4.11)

where θi = kix+miy− cit and where ki, mi, and ci are arbitrary constants.

Plugging (156) into O(ε1) : L f1 = 0, we get the dispersion relation

ci =
k4

i ±m2
i

ki
. (4.12)

Thus,

θi = kix+miy−
k4

i ±m2
i

ki
. (4.13)

Therefore,

f1 = eθ1 = ek1x+m1y− k4
1±m2

1
k1 , (4.14)

which is acquired by setting N = 1 in (4.11).

4.3 The Application

We will show two, three, and four soliton solutions.

First, the two-soliton solution:
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Set N = 2 in (4.11). We get

f1 = eθ1 + eθ2 , (4.15)

and we have that

f = 1+ eθ1 + eθ2 + f2(x,y, t). (4.16)

Now we substitute equation (4.16) into O(ε2) : L f2 =−N( f1, f1) and then evaluate the right hand

side and equating it to the left hand side we obtain

f2 = ∑1≤i< j≤2ai jeθ1+θ2 , (4.17)

in which

a12 =
3k2

1k2
2(k1− k2)

2− (k1m2− k2m1)
2

3k2
1k2

2(k1 + k2)2− (k1m2− k2m1)2 , (4.18)

and θ1,θ2 are given by θi = kix+miy− cit.

Since we are using 1≤ i < j ≤ 2, we obtain the following

f = 1+ eθ1 + eθ2 +a12eθ1+θ2 (4.19)

= 1+ eθ1 + eθ2 +
3k2

1k2
2(k1− k2)

2− (k1m2− k2m1)
2

3k2
1k2

2(k1 + k2)2− (k1m2− k2m1)2 eθ1+θ2 , (4.20)

the two-soliton solution.

To find the two-soliton solution explicitly, use equation (4.5) for the function f into equation (4.20).

Next, the three-soliton solution:

Set N = 3 in (4.11). We get

f1 = eθ1 + eθ2 + eθ3 . (4.21)

Also

f2 = a12eθ1+θ2 +a23eθ2+θ3 +a13eθ1+θ3 . (4.22)

Overall, we have that

f = 1+ eθ1 + eθ2 + eθ3 +a12eθ1+θ2 +a23eθ2+θ3 +a13eθ1+θ3 + f3(x,y, t). (4.23)
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Now we substitute equation (4.23) into O(ε3) : L f3 =− f1L f2−N( f1, f2)−N( f2, f1), we result with

f3 = b123eθ1+θ2+θ3 , (4.24)

where

ai j =
3k2

i k2
j(ki− k j)

2− (kim j− k jmi)
2

3k2
i k2

j(ki + k j)2− (kim j− k jmi)2 , (4.25)

1 ≤ i < j ≤ 3, since it is a three-soliton solution case, and also that b123 = a12a13a23, where θ1,θ2,θ3 are

given by θi = kix+miy− cit.

Therefore, we obtain that

f = 1+ eθ1 + eθ2 + eθ3 +a12eθ1+θ2 +a13eθ1+θ3 +a23eθ2+θ3 +b123eθ1+θ2+θ3 . (4.26)

or equivalently

f = 1+ eθ1 + eθ2 + eθ3 +
3k2

1k2
2(k1− k2)

2− (k1m2− k2m1)
2

3k2
1k2

2(k1 + k2)2− (k1m2− k2m1)2 eθ1+θ2

+
3k2

2k2
3(k2− k3)

2− (k2m3− k3m2)
2

3k2
2k2

3(k2 + k3)2− (k2m3− k3m2)2 eθ2+θ3

+
3k2

1k2
3(k1− k3)

2− (k1m3− k3m1)
2

3k2
1k2

3(k1 + k3)2− (k1m3− k3m1)2 eθ1+θ3

+(
3k2

1k2
2(k1− k2)

2− (k1m2− k2m1)
2

3k2
1k2

2(k1 + k2)2− (k1m2− k2m1)2 )(
3k2

1k2
3(k1− k3)

2− (k1m3− k3m1)
2

3k2
1k2

3(k1 + k3)2− (k1m3− k3m1)2 )

((
3k2

2k2
3(k2− k3)

2− (k2m3− k3m2)
2

3k2
2k2

3(k2 + k3)2− (k2m3− k3m2)2 )e
θ1+θ2+θ3). (4.27)

the three-soliton solution.

To find the three-soliton solution explicitly, use equation (4.5) for the function f into equation (4.27).

Then the four-soliton solution:
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Set N = 4 in (4.11). We get

f1 = eθ1 + eθ2 + eθ3 + eθ4 , (4.28)

f2 = a12eθ1+θ2 +a13eθ1+θ3 +a14eθ1+θ4 +a23eθ2+θ3 +a24eθ2+θ4 +a34eθ3+θ4 , (4.29)

f3 = b123eθ1+θ2+θ3 +b124eθ1+θ2+θ3 +b134eθ1+θ3+θ4 +b234eθ2+θ3+θ4 . (4.30)

Overall, we have that

f = 1+ eθ1 + eθ2 + eθ3 + eθ4 +a12eθ1+θ2 +a13eθ1+θ3 +a14eθ1+θ4 +a23eθ2+θ3 +a24eθ2+θ4 +a34eθ3+θ4

+b123eθ1+θ2+θ3 +b124eθ1+θ2+θ3 +b134eθ1+θ3+θ4 +b234eθ2+θ3+θ4 + f4(x,y, t). (4.31)

Now we substitute equation (4.31) into

O(ε4) : L f4 =− f1L f3− f2L f2− f3L f1−N( f1, f3)−N( f2, f2)−N( f2, f1),

we result with

f4 = c1234(θ1 +θ2 +θ3 +θ4), (4.32)

where c1234 = a12a13a14a23a24a34 and θ1,θ2,θ3,θ4 are given by θi = kix+miy− cit.

Since we are doing four-soliton solution, we use 1≤ i < j ≤ 4 and therefore obtain that

f = 1+ eθ1 + eθ2 + eθ3 + eθ4 +a12eθ1+θ2 +a13eθ1+θ3 +a14eθ1+θ4 +a23eθ2+θ3 +a24eθ2+θ4 +a34eθ3+θ4

+b123eθ1+θ2+θ3 +b124eθ1+θ2+θ3 +b134eθ1+θ3+θ4 +b234eθ2+θ3+θ4 + c1234(θ1 +θ2 +θ3 +θ4). (4.33)

which is the four-soliton solution.

Where

ai j =
3k2

i k2
j(ki− k j)

2− (kim j− k jmi)
2

3k2
i k2

j(ki + k j)2− (kim j− k jmi)2 ,1≤ i < j ≤ 4, (4.34)

bi jr = ai jaira jr , 1≤ i < j < r ≤ 4, and c1234 = a12a13a14a23a24a34.

To find the four-soliton solution explicitly, use equation (4.5) for the function f into (4.33).

So the multi-soliton solutions for the KP equation are as follows
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Two-soliton solution:

f = 1+ eθ1 + eθ2 +a12eθ1+θ2 .

equation (4.19).

Three-soliton solution:

f = 1+ eθ1 + eθ2 + eθ3 +a12eθ1+θ2 +a13eθ1+θ3 +a23eθ2+θ3 +b123eθ1+θ2+θ3 .

equation (4.26).

Four-soliton solution:

f = 1+ eθ1 + eθ2 + eθ3 + eθ4 +a12eθ1+θ2 +a13eθ1+θ3 +a14eθ1+θ4 +a23eθ2+θ3 +a24eθ2+θ4 +a34eθ3+θ4

+b123eθ1+θ2+θ3 +b124eθ1+θ2+θ3 +b134eθ1+θ3+θ4 +b234eθ2+θ3+θ4 + c1234(θ1 +θ2 +θ3 +θ4).

equation (4.33).

Similarly, this method follows for a five-soliton solution and beyond, i.e, N ≥ 6, as stated by Wazwaz [13].

Hirota [6]-[7]-[8]-[9]-[11], implied that the soliton solutions are just polynomials of exponentials and also

that higher-soliton solutions do not have new free parameters other than ai j derived from the two-soliton

solution.
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CHAPTER V

SUMMARY AND CONCLUSION

By looking into the soltion theory of the Kortewegde-Vries equation or KdV equation via inverse

scattering transform, and how Hirota’s bilinear method applied to the KdV equation. We were able to, with

the help of Sato Theory, reduce the KP hierarchy into the KdV equation (2-reduction) and into the Boussinesq

equation (3-reduction), find it’s general solution and one-soliton solution, and applying Hirota’s bilinear form

(direct method) to find it’s multiple soliton solutions.
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