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ABSTRACT 

 

Parra Peña, David A., Analysis of The Functional Relationship of Protein Kinase Families Using 

Phospho-Proteomics Data. Master of Science (MS), August 2020, 36 pp., 1 Table, 7 figures, 25 

references, 21 titles. 

As cancer research advances, Mass-spectrometry based proteomics is becoming a widely 

used technique for proteome characterization. Phosphoproteomics is a specific type of 

proteomics that characterizes proteins with the reversible post-translational modification of 

phosphorylation (PTM), which has allowed the identifications of thousands of phosphorylation 

sites. These phosphorylation sites, also known as substrates, are known to interact with a protein 

type named kinases. Studies have shown that abnormal phosphorylation activity is related to 

cancer diseases. Moreover, these kinases are divided into families, based on the similarity of 

their catalytic domain, as this part of their amino acid sequence determines a large part of what 

their functions are. In this work, propose 2 new methods to assess the relationship of kinases 

based on the correlation of the phosphorylation pattern of their substrates. Using these metrics, 

we cluster the kinases and analyze their inter-family interactions. 
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CHAPTER I  

INTRODUCTION 

 

Overview 

Mass-spectrometry based proteomics is becoming a widely used technique for proteome 

characterization. Proteomic analysis of 3D cellular models and single-cell systems provides a 

method for correlating cellular heterogeneity and patient-specific responses to chemotherapy 

drugs, resulting in better cancer treatments with less side effects [1]. Phosphoproteoimcs is a 

specific type of proteomics that characterizes proteins with the reversible post-translational 

modification of phosphorylation (PTM), which has allowed the identifications of thousands of 

phosphorylation sites [2]. These phosphorylation sites, also known as substrates, are known to 

interact with a protein type named kinases. Studies have shown that abnormal phosphorylation 

activity is related to cancer diseases [7]. Moreover, these kinases are divided into families, based 

on the similarity of their catalytic domain, as this part of their amino acid sequence determines a 

large part of what their functions are. 

 In this work, we analyzed 3 different phosphoproteomics datasets with the goal of 

obtaining a better understanding of how these kinases interact in term of their respective 

families. In chapter 3, we describe the methods that we used to cluster the kinases, and in chapter 

4, we present the result of this analysis. 
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CHAPTER II  

REVIEW OF LITERATURE 

 

 Kinases and Phosphorylation 

Protein Kinases are a class of enzymes in charge of regulating many different biological 

events. Protein phosphorylation is one of the regulatory mechanisms in which a kinase attaches a 

phosphate group (𝑃𝑃𝑃𝑃4) to its target protein, allowing it to change conformation when interacting 

with other molecules (Figure 1). This mechanism is involved in many cellular processes such as 

protein synthesis, cell division, signal transduction, cell growth and development, and aging as 

many enzymes and receptors are activated and deactivated via 

phosphorylation/dephosphorylation events due to specific kinases and phosphatases. Moreover, 

kinases are known to regulate the majority of cellular pathways, particularly those involved in 

signal transduction. Being one of the most common Post-translational modifications (PTMs), 

protein phosphorylation is involved in the regulation of multiple biological processes and 

overexpression of kinases. When regulatory mechanisms are mutated or defective, the signaling 

pathways of kinases become dysregulated and/or abnormally active, being this the basis for 

oncogenesis for multiple tumors [8]. 
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Figure 1. Phosphorylation process 

 

 Kinase phosphorylation on Cancer 

Kinase over expression has been found in cancer related diseases. Therefore, 

understanding their interactions is key in the development of drugs in order to maximize the 

therapy’s effect as well as minimize collateral damage in patients [6]. Studies have shown that 

abnormal phosphorylation activity has been found in Cancer diseases [8]. In breast cancer, 

therapies have developed to inhibit CDK4/6 which then expanded to other members of the CDK 

family, as they are known to regulate cell progressions in different phases of the cell cycle. In 

particular, CDK2 is a target of several candidate cancer. The inhibition of CDK2 however, has 

shown not to prevent cancer cell growth due to CDK redundancy [10]. Other kinases targeted in 

the treatment of breast cancer arePI3K/AKT and mTOR (PAM) because the inhibition of their 

pathway has shown to be beneficial as the PAM pathway has been estimated to be in as frequent 

as 70% of breast cancers [11]. Ovarian cancer is reported to have the Mirk/dyrk1B gene 

upregulated as it mediates cancer cell survival by decreasing the toxic ROS levels [12]. 
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 Human Kinome 

Kinases are classified based on their sequence similarities into families, each containing 

subsets denoted as subfamilies. The Hanks and Hunter classification scheme is rooted in the 

catalytic domain (also known as kinase domain) phylogeny which enabled them to reveal 

conserved features of the domain [3]. Further additions to the scheme where made by the 

KinBase project, which utilized knowledge of sequence similarity and domain structure foreign 

to the catalytic domain, as well as known biological functions and gross similarity in these 

functions of kinases across organisms [4]. While these schemes describe the kinases as 

“members of a team with matching uniforms”, it does not encompass their performance in 

diseases. In this project, we are trying to use the mass spectrometry-based phosphoproteomics 

data to cluster the kinases. For this purpose, we use the phosphorylation of the substrates of 

kinases to cluster the kinases based on their activities. Our hypothesis is the phosphorylation of 

kinase’s substrates reflect the activity of the kinases and can capture the collaborative kinases 

better that the traditional sequence-based clustering. 
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CHAPTER III  

METHODOLOGY 

 

 Data description 

 Phosphoproteomic data 

The data utilized is comprised of 3 datasets, 2 for breast cancer and 1 for ovarian cancer 

derived from proteomic and phosphoproteomic profiles. The first set consists of mass-

spectrometry based proteomics for breast cancer patient-derived xenografts consisting of 56874 

phosphosites in 24 breast cancer PDX models generated by the isobaric tag method for relative 

and absolute quantification (iTRAQ Fold Change) [13]. For the purpose of this study, the 

observations missing intensity values in fifty percent or more of their samples were removed, 

resulting in intensity data for 34980 phosphosites. Furthermore, the second set of breast cancer 

data is composed by mass-spectrometry based phosphoproteomics analysis of TCGA breast 

cancer samples conducted by The NCI Clinical Proteomic Tumor Analysis Consortium [15]. 

This collection consists of 62679 phosphosites in 111 tumors, which resulted in 24704 after 

filtering. The third set of data of this study data is composed by mass-spectrometry based 

phosphoproteomics of ovarian HGSC tumors characterized by the Cancer Genome Atlas, 

containing 24429 phosphosites in 69 tumors [16]. Following the same filtering procedure in the 

previous descriptions, 6490 phosphosites remained in data. 
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 Kinase-Substrate association data 

In order to map the phosphosites (also known as substrates) in the experimental data to 

their respective kinase partners, a compilation of known kinase-substrate interactions was 

extracted from the PhosphoSitePlus database [17]. In conjunction to the kinase-substrate 

association data, the KinBase database for the human kinome was used to verify the correct 

name of the kinases and unify the data, as proteins usually have alternate names, as well as 

generate the kinase family groups or clusters. After matching the phoshophosites to their 

respective kinase for the first breast cancer dataset, kinases with less than 2 substrates where 

removed from the data, resulting in 1952 observations, with 117 kinases. Moreover, with the 

same filtering process over the second breast cancer data, 1458 observations with 103 kinases. 

Finally, 905 observations with 70 kinases were found on the ovarian cancer data set after 

processing. 

 Perturbation data 

In order to validate our clustering method, we use an independent dataset. 

Phosphopeptide quantification data and kinase-perturbation benchmarking data containing data 

files for 80 labeled conditions [14]. 

 

 Assesment of the relationship between protein kinases 

As discussed before, the objective of this study is clustering kinases by correlating the 

phosphorylation pattern of their substrates and compare them with family-cluster perspective. In 

the following sections, we describe two methods that we used to quantify the relationships 

between kinases. 
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 Group Correlation Score (GCS) 

This method is introduced to evaluate the relationship of a given pair of kinases based on 

the correlation of phosphorylation of their substrates while also considering those substrates that 

are phosphorylated by both kinases (i.e. shared substrates) as well as the number of substrates 

that both kinases correlate. 

Let us denote 𝑘𝑘𝑛𝑛 = {𝑘𝑘 | 𝑘𝑘 ∈ 𝐾𝐾} as a kinase in the set of kinases 𝐾𝐾. 

Let 𝑆𝑆𝑘𝑘𝑛𝑛 = {𝑆𝑆1, 𝑆𝑆2,𝑆𝑆3 … 𝑆𝑆𝑚𝑚} be the set of substrates with which 𝑘𝑘 interacts. 

For a given pair of kinases 𝑘𝑘𝑖𝑖 and 𝑘𝑘𝑗𝑗, the Group Correlation Score (GCS) is computed as: 

𝐺𝐺𝐺𝐺𝐺𝐺�𝑘𝑘𝑖𝑖, 𝑘𝑘𝑗𝑗� =
∑ �𝜌𝜌𝑆𝑆𝑘𝑘𝑖𝑖 ,𝑆𝑆𝑘𝑘𝑗𝑗� [𝜌𝜌 ≥ 𝛼𝛼]

𝑛𝑛𝜌𝜌 ∗ 𝜎𝜎𝜌𝜌
+

�𝑆𝑆𝑘𝑘𝑖𝑖 ∩ 𝑆𝑆𝑘𝑘𝑗𝑗�

�𝑆𝑆𝑘𝑘𝑖𝑖� + |𝑆𝑆𝑘𝑘𝑗𝑗|
 

Where, 

 �𝜌𝜌𝑆𝑆𝑘𝑘𝑖𝑖 ,𝑆𝑆𝑘𝑘𝑗𝑗� is the absolute value of Spearman’s rank correlation coefficient for 

phosphorylation of two given substrates.  

�𝑆𝑆𝑘𝑘𝑖𝑖 ∩ 𝑆𝑆𝑘𝑘𝑗𝑗� is the cardinality of the intersection of between the set of substrates. 

�𝑆𝑆𝑘𝑘𝑖𝑖� and |𝑆𝑆𝑘𝑘𝑗𝑗| are the cardinality of the set of substrates. 

𝛼𝛼 is the cut-off threshold value for the correlation 𝜌𝜌.  

𝑛𝑛𝜌𝜌 is the number of correlations greater than or equal to 𝛼𝛼.  

And 𝜎𝜎𝜌𝜌 is the standard deviation of the correlations that passed the cut-off point. 
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 Correlation of the kinase features (KFC) 

In this method, we reduce the dimensions of phosphorylation of substrates of a kinase 

using singular value decomposition (SVD). For this purpose, for a given kinases, we pick the top 

two largest eigen vectors of the phosphorylation data of substrates of the kinase. 

Let 𝑀𝑀𝑘𝑘be the data matrix of the substrates for a kinase with dimensions 𝑚𝑚 𝑥𝑥 𝑛𝑛 . 𝑀𝑀𝑘𝑘 is 

factorized as: 

𝑀𝑀𝑛𝑛 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇 

Where, Σ is an 𝑚𝑚 𝑥𝑥 𝑛𝑛 rectangular diagonal matrix. 𝑈𝑈 and 𝑉𝑉𝑇𝑇 are both unitary matrices, of 

dimensions 𝑚𝑚 𝑥𝑥 𝑚𝑚 and 𝑛𝑛 𝑥𝑥 𝑛𝑛 respectively.  

 𝑉𝑉 is found by transposing 𝑉𝑉𝑇𝑇 from which the first two vectors are extracted as 𝑣𝑣 to 

compute the feature 𝐹𝐹𝑘𝑘 as: 

𝐹𝐹𝑘𝑘 = 𝑀𝑀𝑘𝑘 ∗ 𝑣𝑣 

 For a give pair of kinases  𝑘𝑘𝑖𝑖 and 𝑘𝑘𝑗𝑗, the Spearman’s correlation is computed using their 

features 𝐹𝐹𝑘𝑘𝑖𝑖 and 𝐹𝐹𝑘𝑘𝑗𝑗  as KFC �𝐹𝐹𝑘𝑘𝑖𝑖 ,𝐹𝐹𝑘𝑘𝑗𝑗  � =  𝜌𝜌𝑆𝑆𝑘𝑘𝑖𝑖 ,𝑆𝑆𝑘𝑘𝑗𝑗  . 

 RV Coefficient (RVc) 

The RV coefficient is a multivariate generalization of the squared Pearson Correlation 

Coefficient which measures the relationship between two sets of variables. The principle of this 

method is that two sets of variables are perfectly correlated if there exists an orthogonal 

transformation such that the sets overlap. In this study, the adjusted RV coefficient is used [18]. 
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 Correlation metrics to distance conversion 

Let 𝑑𝑑 be the distance between a pair of kinases 𝑘𝑘𝑖𝑖 and 𝑘𝑘𝑗𝑗, and 𝐶𝐶𝐶𝐶�𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑗𝑗� as any of the 

previous correlation metrics explained. These are converted to distance with: 

𝑑𝑑 =  
1

𝐶𝐶𝐶𝐶�𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑗𝑗� + 1
 

For the Group Correlation Score 𝐺𝐺𝐺𝐺𝐺𝐺�𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑗𝑗�  and the 𝑅𝑅𝑅𝑅 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and 

𝑑𝑑 =  �1 − 𝐶𝐶𝐶𝐶�𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑗𝑗�  

For the correlation of the kinase features 𝐾𝐾𝐾𝐾𝐾𝐾. 

 

 Clustering Kinases 

Traditionally, protein kinases are separated into families and subfamilies based on the 

amino acid sequence of their catalytic domains. One of the main objectives of this work, is to use 

the phosphoproteomics data to generate clusters of kinases and assess the statistical significance 

of family occurrences within a cluster.  

 Hierarchical clustering 

While there exist many different clustering algorithms with different advantages and 

disadvantages, for the sake of simplicity, agglomerative hierarchical clustering was chosen as it 

is widely used in the area of computational biology. In addition, this approach produces a 

dendrogram which depicts the similarities and branching between groups in a data cluster, 

making the process of cluster number selection straightforward (Figure 2). While we tested the 
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partitioning of clusters in the range from 5 to 12, only the results for k=7 was reported as it 

seemed as a good medium. 

 

Figure 2. Phylogenetic tree of the phospho-clusters for Breast Cancer 1 from the GCS metric 

 

 Analysis of Kinase Clusters 

 Sequence-Based Clusters (Kinase Families) vs Phospho-Based Clusters 

Protein kinases are grouped into families, based on the similarity of their sequence and 

catalytic domain. The hypothesis is that, while kinases with similar catalytic domains may 

participate together in the phosphorylation process, these may be interacting with other kinases 

that do may belong to different families. To test this hypothesis, the cluster overlap significance 

between the family groups and the clusters generated from the experimental phosphorylation 

data is computed. To evaluate the significance of the existing overlap between the clusters and 
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the family groups, we use the hypergeometric cumulative distribution function. In addition, in 

order to quantify the similarity of these phospho-clusters, we use Normalized Mutual 

Information (NMI) given by the formula: 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑌𝑌,𝐶𝐶) =  
2 ∗ 𝐼𝐼(𝑌𝑌;𝐶𝐶)
𝐻𝐻(𝑌𝑌) + 𝐻𝐻(𝐶𝐶)

 

Where, 𝑌𝑌 is the family class labels, 𝐶𝐶 is the cluster labels, 𝐻𝐻(. ) is the entropy, and 

𝐼𝐼(𝑌𝑌;𝐶𝐶) is the mutual information between 𝑌𝑌 and 𝐶𝐶. 

 Family Interaction Assessment 

We also assess the collaboration of kinases from different families. For this purpose, we 

evaluate the number of kinases from different families that are grouped together in phospho-

based clusters. We calculate a multivariate hypergeometric probability using the threshold 𝑝𝑝 ≤

 .025.  

 Kinase-Substrate Enrichment Analysis (KSEA) 

To further explore the functional relationship of kinases withing the phospho-based 

clusters, we used an independent dataset to measure the activities of kinases that are clustered 

together. For this purpose, we perform KSEA across the 80 conditions represented by the 

perturbation dataset [14]. KSEA systematically infers the activation of the pathways for a given 

kinase, providing a method for the systematic profiling of kinase pathway activities [19, 20]. The 

kinase’s normalized score is calculated as follows:  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
(𝑠̅𝑠 − 𝑝̅𝑝)√𝑚𝑚

𝛿𝛿
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Here, 𝑠̅𝑠 denotes the mean log2(FC) of know phosphosite substrates of the given kinase, 𝑝̅𝑝 

represents the mean log2(FC) of all phosphosites in the dataset, 𝑚𝑚 denotes the total number of 

phosphosite substrates identified from the experiment that annotate to the specified kinase, and 𝛿𝛿 

denotes the standard deviation of the log2(FC) across all phosphosites in the dataset [19]. 

 



 

13 
 

CHAPTER IV  

RESULTS 

 

 Overlap significance between the family groups and the clusters 

The catalytic domain of kinases is relevant to the phosphorylation mechanism as it is the 

region that interacts with its substrates to cause an enzymatic reaction. However, this does not 

provide a broad enough picture that accurately represents the phosphorylation activity in the 

experimental data. For each data file, we intersect the sets clusters provided by each kinase 

relationship metric and the family groups to evaluate if a given family is strongly represented 

within a cluster. In addition, we compute the interaction of the families within a cluster to 

provide further analysis (The overlap significance values use 𝑝𝑝 <  .05 as a threshold). 

 Starting the analysis of the first breast cancer cluster sets (BC1), the Group Correlation 

Score (GCS) clusters report 11 significant intersections with 8 distinct families (NMI = 0.2598), 

having 4 clusters overlapping with 2 families each (see Figure 3). The set of clusters generated 

with the KFC method produced 11 significant overlaps with the 9 of the family groups (NMI = 

0.1553). As well as GCS, this method shows 3 clusters that overlap significantly with 5 families. 

Continuing, the clusters from the RV coefficient had the same number of significant overlaps 

with the family groups as the previous method, with a total count of 11 (NMI = 0.2019). From 

the graph, we can observe that it presents 4 clusters that interconnect with at least 2 families 

each. Our data reports some combinations of overlaps appearing in at least two of the clustering 
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methods. For instance, the GCS set contains a cluster that overlaps with both the STE and TK 

families; such combination is also found in the RV set of clusters. Similarly, the KFC set, and the 

RV set present a cluster each that overlaps significantly with the AGC and CMGC families.  

 

 

Figure 3. Cluster Overlap Significance between the clusters from BC1 and the Family groups 

 

Following with the second breast cancer cluster sets BC2, GCS clusters report 7 

significant overlaps connecting 6 of the clusters to 5 different families (NMI = 0.1534), with the 

combination of TKL and AGC at cluster 5. Next, the KFC clusters are found to have 8 

significant overlaps, presenting the combination of families AGC with CMGC again, as well as 

well as Other and TK both overlapping with 2 clusters together (NMI = 0.2018). The RV 

coefficient method reports 9 significant overlaps between 6 of the 7 clusters from the set and 7 

families (NMI = 0.2735). In this dataset we found overlaps of AGC and TKL in a cluster of the 

GCS set, as well as in the RV coefficient set. It is also worth noticing that the KFC method also 

reported AGC and CMGC overlapping significantly with a cluster (Supplementary Figure 1). 

 Continuing with ovarian cancer cluster set (OC), the clusters from the GCS method 

contain 11 overlaps with a significant number of interconnections between 4 of the clusters with 
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5 families (NMI = 0.4117). Likewise, KFC clusters have 10 significant overlaps while providing 

8 links interconnecting 4 families (STE, TKL, TK, Other) to 6 clusters (NMI = 0.1535). Finally, 

RV coefficient produced 9 significant overlaps, while providing 7 links connecting 6 families to 

4 clusters, with a NMI value of 0.2969 (Supplementary Figure 2). 

 To summarize the previous results, the analysis shows that in most clusters, at least one 

family will be significantly present while sharing membership with other families. In addition, 

results show that the kinase from different families might functionally be relevant. Moreover, we 

show that might a given cluster might even have more than one family strongly represented as 

each of the methods reported at least 1 cluster overlapping with at least 2 families. However, this 

does not mean that 2 clusters with a given combination of families are going to contain the exact 

same kinases.  

 

 Overlap significance between the different sets of clusters 

In the past section we showed that in the different cluster sets, there are some kinase 

families that are present together in across the clusters, suggesting the existence of an underlying 

structure present in the data. We used an independent dataset (BC2, and OC) to assess the 

reproducibility of this collaborative patterns among kinase families. For this purpose, we 

identified the kinase clusters using BC2 and OC datasets, and we measure the intersection of 

these clusters with cluster identified based on BC1. For consistency, sets of clusters from 

different datasets are only analyzed together if they were generated using the same kinase 

relationship metric. These results are presented in Figure 4 and Figure 5. 
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As seen in the figure 3, there are 7 significant overlap across 6 clusters from BC1 and 5 

from BC2S. In contrast, KFC clusters report 11 significant overlaps across all the clusters from 

both datasets. Lastly, the clusters from the RV coefficient provide 8 significant overlaps that link 

the 7 clusters of BC1 with 5 Clusters of BC2. These results suggest that the kinases of BC1 and 

BC2 have some significant groups in common across them, and the clusters identified in BC1 are 

reproducible. In addition, KFC clusters reported AGC and CMGC connection to a single cluster 

in both datasets, while RV coefficient reported the AGC-TKL combination on both datasets. 

BC1 and OC sets of clusters computed with the GCS metric report 6 overlaps across 4 clusters 

each. The KFC cluster sets report 7 links between 4 clusters from BC1 with 6 clusters from OC. 

RV coefficient cluster sets show 6 links across 4 clusters from BC1 and 4 from OC.  

Between the BC2 and OC cluster sets for GCS metric, we report 5 significant cluster 

overlaps with 4 of them from BC2 interconnecting to 3 from OC. Consequently, KFC set 

reported 6 significant overlaps between BC2 and OC across 4 clusters each. Continuing with the 

RV coefficient clusters, we find 5 significant overlaps with linkage between 4 clusters per set. 

No common pair of families sharing a cluster across the data is reported. The result of this 

analysis is presented in Supplementary Figure 3. 

 

Figure 4. Cluster Overlap Significance between the clusters from BC1 and BC2 
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Figure 5. Cluster Overlap Significance between the clusters from BC1 and OC 

 

For discussion, let us consider Figure 3. This cluster sets were computed using the KFC 

metric we introduced. The data shows that cluster 1 has a significant overlap with the families 

AGC and CMGC, Additionally, the KFC cluster set for BC2 reported that same combination of 

families on cluster 1 as well. Looking at Table 1 we observe that while both clusters have AGC, 

Other, CMGC, CAMK and STE families present, the kinases are almost completely different. 

For instance, consider the AGC and CMGC families in the BC1_1 and BC2_1 cluster. These 

clusters have 9 and 8 kinases belonging to AGC respectively. However, PKCH is the only 

common kinase between them that is a member of the family. Additionally, CMGC is 

represented by 10 kinases in cluster BC1_1 and 8 in BC2_1 from which 5 are found on both 

clusters. While this is a larger overlap for CMGC than AGC, the kinases are different, and thus, 

this 2 clusters do not show up on the cluster overlap analysis for BC1 vs BC2, even though they 

contain similar distribution of families. In conclusion, these results show some degree of 

association across the clusters coming from different datasets, suggesting that kinases are 

grouping together somewhat independent of their families. While we can observe that indeed, the 

clusters have highly significant overlaps to some of the families, our data shows that clusters that 

the overlap with a given family do not necessarily share the same kinases. 
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Table 1. Kinases in Cluster 1 of BC1 and Cluster 2 of BC2 (KFC) 

 

 Kinase Substrate Enrichment Analysis 

Following a similar structure to the previous sections, we analyze the sets of clusters 

generated by the different metrics for each dataset. As shown in Figure 6, the cluster set for GCS 

in the BC1 dataset reports some similar average correlations as the individual families that 

appear in the cluster, while a couple of them had higher values than all the families represented 

inside. For instance, let us consider cluster 3, which in the previous analysis showed significant 

overlap with the CMGC (6 members) and Other (5 members) families. The average correlation 

in those 2 families from the KSEA analysis are .1686 and .1112 respectively, compared to the 

.3827 value reported by our cluster. The KFC cluster set reports similar results although most of 

the cluster average correlations are closer to the family values (Supplementary Figure 4). 

BC1 – Cluster 1 BC2 – Cluster 2 
KINASE FAMILY KINASE FAMILY 

AMPKA1 CAMK AKT2 AGC 
ATM Atypical AURA Other 
BRK TK BRAF TKL 

CDC2 CMGC CDC2 CMGC 
CDK5 CMGC CDK4 CMGC 
CHK1 CAMK CHAK1 Atypical 
CLK1 CMGC CK1D CK1 
ERK1 CMGC COT STE 
ERK5 CMGC DYRK2 CMGC 

GSK3B CMGC ERK1 CMGC 
JNK2 CMGC GSK3A CMGC 
LATS1 AGC HIPK2 CMGC 

MAP2K7 STE IKKB Other 
MAP3K7 STE MAP2K1 STE 
MARK2 CAMK MAP3K5 STE 
MARK3 CAMK MAP3K7 STE 
NEK2 Other MSK1 AGC 
NEK6 Other NDR1 AGC 
P38A CMGC P70S6K AGC 

P70S6KB AGC PAK1 STE 
PKACA AGC PAK4 STE 
PKCE AGC PDK1 AGC 
PKCI AGC PKCB AGC 
PLK1 Other PKCI AGC 
RAF1 TKL PKCZ AGC 

ROCK1 AGC PKD2 CAMK 
RSK2 AGC PLK3 Other 
SGK1 AGC ROCK2 AGC 

  RSK2 AGC 
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Looking at cluster 5 we find it to have a mix of different families while producing an average 

correlation value of .2175, which is slightly above the values reported for the families with the 

closest being AGC. Finally, the results for the RV coefficient clusters show a similar story with 

cluster 1, 6 and 7 have significantly higher values than the families inside of them 

(Supplementary Figure 5). 

Continuing with the discussion with BC2, GCS produced cross-correlation means that are 

in line with the families (Supplementary Figure 6). In general, the results only show cluster 2 

being better correlated than the members of the families in it. This cluster features 3 kinases from 

the CMGC family and 1 from the Other family. KFC reports the pattern where the clusters have 

similar averages than their family counterparts while having better correlation than the families 

with which they had a significant overlap in most cases (Supplementary Figure 7). Looking at 

cluster 4, it reports higher average than CAMK which is the family with whom it had a 

significant overlap, while also having members of 3 more families. This mix of kinase-families 

correlates better than the kinases in the family alone. In contrast, cluster 2 did not overlap 

significantly with any family while having a of kinases from 6 families in total and produced a 

higher mean correlation than any of those families. Continuing with RV coefficient cluster set, it 

shows a similar patter with some significant results (Supplementary Figure 8). In general, these 

results suggest that the phospho-based clusters might represent more functional relevance among 

kinases as compare to the kinase families. 

Finalizing this part of the analysis, let us consider the cluster sets for ovarian cancer. GCS 

report is in line with the previous results, as the average correlation of the clusters is around the 

values of the families (Supplementary Figure 9). However, we find some special cases where the 

clusters either have a noticeable higher average correlation and one with significantly lower. For 
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instance, looking at cluster 3, which overlapped with families CAMK and STE, reported a lower 

value than the families inside, containing 3 kinases from CAMK and 1 from STE and AGC 

respectively. Since these families are better correlated alone, it suggests that the kinases in the 

cluster are going in different directions in terms of activity. In comparison, cluster 5 has a 

significantly higher mean correlation than the families, which hints that those kinases from 

different families combined are following a closer pattern of activation than the kinases from the 

families alone. For its part, KFC presents a similar picture, where 3 of the clusters captured a 

combination of kinases from different families which correlate better than the families, 

highlighting clusters 3, 4, and 6 (Supplementary Figure 10). RV coefficient also present the 

pattern, these clusters also captured combinations of kinases that correlate better on the 

perturbation data (Supplementary Figure 11).  

 

 

Figure 6. Plot of the cross-correlation mean of the kinase enrichment values 
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To conclude, while all of our cluster sets did not outperformed the families on every 

single case, there is enough occurrences to suggest that kinases with similar catalytic domain do 

not follow the same phosphorylation pattern, even though they may have the same functions in 

the cell. 

 

 Interaction Matrices 

In this section, we investigate how kinases from different families are grouped together in 

the phosphor-based kinase clusters. This analysis would show the collaborative interactions 

among families. 

To open the discussion, we look at the interactions produced by GCS across BC1, BC2 

and OC (see Figure 7). The result shows that GCS clusters detected the most common interacting 

pair of families to be AGC with CAMK, CMGC with Other, and AGC with CMGC, with 5, 6 

and 7 interactions across all the datasets respectively. KFC reported the same pairs also to be the 

most interacting families with 11 and 13 respectively, with the addition of other family 

combinations such as Other with TK with 9 interactions, and AGC with Other with 8 interactions 

(Supplementary Figure 12). RV coefficient results are also consistent reporting AGC with 

CAMK, and CMGC with AGC as the most interacting pairs, while also showing significant 

interactions of AGC with Other, CMGC with Other (Supplementary Figure 11). 

In perspective, we report we found many interactions across the datasets to be rather 

spread around. However, across all these results we find AGC, CMGC and CAMK to be 

involved together the most. 

 



 

22 
 

 

Figure 7. Interaction matrices of the cluster set generated by GCS across the three datasets (BC1, BC2, OC) 

 

 Discussion 

Kinases are grouped together by the similarity of their catalytic domain which has proved 

to be a good indicator in the classification of eukaryotic protein kinases [21]. However, many 

protein kinases have found their catalytic domain to be tethered to one or more non-kinases 

domains that are responsible for different actions such as regulation, substrate specificity among 

others. These similarities and differences in the domain architectures indicate some critical 

features required for functional specialization [22]. Previous research has found the STE group to 

activate the MAPK family which is part of the set of families enveloped by CMGC [23] which 

was reported in our interaction matrices. In another study they found CMGC and CAMK, as well 

as CMGC and AGC families, to be involved in the majority of regulatory circuits of a kinase-

kinase interaction network [24]. This is consistent with some of the findings of our interaction 

matrices. 



 

23 
 

CHAPTER V  

SUMMARY AND CONCLUSION 

 

In this work, we analyze 3 phosphoproteomics datasets, 2 for breast cancer and 1 for 

ovarian cancer. We proposed 3 different metrics to assess the relationship of kinases based on the 

correlation of their substrates. Then, we used hierarchical clustering to generate groups of 

kinases and analyze their relationship to the families found within them by assessing the 

significant overlap of kinases using the hypergeometric cumulative distribution function. Our 

results show several combinations of families within clusters suggesting their interaction in the 

phosphorylation process. We also show the identified clusters are reproducible using 

independent datasets. We validate the kinase activities of phospho-based clusters by performing 

kinase enrichment analysis on the perturbation data of phosphosites in 80 different conditions, 

and we compare the correlation of our clusters in that dataset and the correlation of the families. 

Our results show combinations of kinase families that had higher correlation than the families of 

the kinases involved in those clusters.  

In general, we have provided different methods to analyze the relationship of kinases and 

their families and interactions from a Computer Science/Mathematics perspective. These clusters 

might be useful in identifying alternative drug targets and understanding underlying mechanism 

and interactions among kinases. Further improvements could be found by extending this analysis 

include data about their catalytic domain sequences and tethered domains, including data 
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regarding the kinase families know functions as well as exploring the kinase family relationship 

in more diseases. 
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SUPLEMENTARY FIGURES 

 

Supplementary Figure 1. Cluster Overlap Significance between the clusters from BC2 and the Family Groups 

 

 

Supplementary Figure 2. Cluster Overlap Significance between the clusters from OC and the Family groups 

 

Supplementary Figure 3. Cluster Overlap Significance between the clusters from BC2 and OC 
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Supplementary Figure 4. Plot of the cross-correlation mean of the kinase enrichment values for BC1 (KFC) 

 

 

Supplementary Figure 5. Plot of the cross-correlation mean of the kinase enrichment values for BC1 (RV Coefficient) 
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Supplementary Figure 6. Plot of the cross-correlation mean of the kinase enrichment values for BC2 (GCS) 

 

 

Supplementary Figure 7. Plot of the cross-correlation mean of the kinase enrichment values for BC2 (KFC) 
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Supplementary Figure 8. Plot of the cross-correlation mean of the kinase enrichment values for BC2(RV Coefficient) 

 

 

Supplementary Figure 9. Plot of the cross-correlation mean of the kinase enrichment values for OC (GCS) 
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Supplementary Figure 10. Plot of the cross-correlation mean of the kinase enrichment values for OC (KFC) 

 

 

Supplementary Figure 11. Plot of the cross-correlation mean of the kinase enrichment values for OC (RV Coefficient) 
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Supplementary Figure 12. Interaction matrices of the cluster set generated by KFC across the three datasets (BC1, BC2, OC) 

 

 

Supplementary Figure 13. Interaction matrices of the cluster set generated by RV Coefficient across the three datasets (BC1, 
BC2, OC)
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