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ABSTRACT 

 

 

Navarro, Christina Y., Security Evaluation of Microsoft’s Windows Under Cyber-Flood Attacks. 

Master of Science (MS), December 2020, 75 pp., 1 table, 64 figures, references, 69 titles. 

Cyberattacks are quite common occurrences today as such can compromise entire 

networks producing collective vulnerabilities. As shown herein, manifold experimental findings 

exhibit ramifications for a cyberattack victim during multiple simulations. All experiments were 

conducted with Apple’s iMac, the victim system, and different editions of Microsoft Windows 

10 and Windows 8.1.  

Cyberattacks herein categorize as Distributed Denial of Service (DDoS) attacks including 

Smurf, Ping Flood, Transmission Control Protocol-Synchronize (TCP-SYN) Flood, and User 

Datagram Protocol (UDP) Flood attacks. Experimental results from each cyberattack are 

recordings of computer activities such as memory consumption, disk utilization, and overall 

processor utilization.  

DDoS attack simulations include networks with over 65 thousand systems per network 

which generate attack traffic for the victim system. Likewise, simulated legitimate traffic 

attempts to connect with a victim system for further evaluation purposes. Experimental data 

analysis involves comparing impactful differences between cyberattacks, Microsoft Windows 

versions, and editions of both versions. 
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1. CHAPTER I 

 

 

INTRODUCTION 

 

 

During the early 2000s, electronics with Internet capabilities gradually became a basic 

necessity for most industries in advanced societies. Inevitably, these devices or machines 

sustained various cyberattacks such as, Distributed Denial of Service (DDoS). DDoS attacks are 

roughly defined as the following: multiple preconfigured Denial of Service (DoS) agents which 

deliver immense amounts of attack traffic to a victim system [1]. As further described in Chapter 

II, an attacker or bot-master predetermines types of attack traffic to transmit. Amidst a DDoS 

attack, inundation consumes systems of available resources unpredictably dependent upon 

cyberattack magnitude. As a result of DDoS attacks, numerous repercussions surface such as, 

losing legitimate Hypertext Transfer Protocol (HTTP) client connections [2]. For example, a 

business unwillingly ceases services for HTTP transactions while under attack due to 

oversaturation within their network. Consequently, negative and costly effects compromise a 

business’ overall integrity after a detrimental attack [3]. Moreover, when systems or networks 

pause business operations possible outcomes can include loss of key clientele. 

For clarity, the following paragraphs briefly describe foundational background information 

regarding network communication basics such as, the Open Standards Interface (OSI) reference 

model. This rudimentary model illustrates the overall procedure and process for information and 

data transfer between devices. The OSI model consists of seven different sections, or more 

commonly referred to as protocol layers, which individually depict data communication 
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principles as shown in Figure 1.1 [4]. Each layer of the OSI model represents a different stage in 

the overall process of data transmission between devices [5]. Additionally, all seven protocol 

layers mirror themselves representing both transmitter and receiver sides of communication. 

Overall, the OSI model consistently serves as a visual aid for introductory data transmission 

methodology. 

 

Figure 1.1: Layers of OSI Model [5] 

 

Both information and data transition across each layer of the OSI model via protocol data 

units (PDUs) as variable-length packets in two main parts: header and data [6]. Headers contain 

key routing and delivery instructions for subsequent protocol layers of the OSI model [6]. Based 

on individual protocols, PDU formats mainly differ by header requirements, such as, a source 

and destination Internet Protocol (IP) address of a Layer-3 PDU [6]. The data section of a PDU 

mainly contains content such as an image or document. Examples of PDUs are an IP datagram 

(Layer-3), TCP segment (Layer-4), and Institute of Electronics and Electrical Engineers (IEEE) 

802.3 standard Medium Access Control (MAC) frame (Layer-2) [6].  

PDUs transition through the OSI model by implementing control information via headers for 

data communication [6]. Essentially, each transmitter protocol layer adds headers to packets until 

it reaches a predetermined receiver [6]. Then, a receiver’s protocol layers proceed by removing 

headers until originally sent data is received at the destination process [6]. Likewise, a protocol 

interface may incorporate additional PDUs while using a similar concept to support further 
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actions required by the OSI model [6]. However, every PDU of a protocol interface is not 

required in the OSI model [6]. Examples of PDUs within protocol interfaces are Internet Control 

Message Protocol (ICMP) and Internet Group Management Protocol (IGMP) messages.  

Amid DDoS attack, victim devices uncontrollably lose availability which negatively and 

directly affects the renown CIA (confidentiality, integrity, and availability) triad. The CIA triad 

is another visual representation in network communications displaying key principles for data 

and information security [7]. Roughly, the CIA triad defines its three main concepts as the 

following: [8] 

1. Availability: An attacker compromises computer resource availability or denial of use  

2. Integrity: An attacker modifies computer information or data 

3. Confidentiality: An attacker obtains computer information or data 

If effective, DDoS attacks of medium to large magnitudes can compromise devices such as, 

processor, memory, and bandwidth exhaustion [9][10][11][12]. For instance, Dr. Kumar and 

associates simulate a series of DDoS attacks where they determine the following: overutilization 

of system memory and its processors directly correlates with receiving vast amounts of data 

[10][11][12]. Entities inherently respond quickly during an apparent cyberattack of any size due 

to violations of security principles such as those depicted in the CIA triad, as shown in Figure 

1.2. 

 

Figure 1.2: CIA Triad 

 

CIA

Availability

Integrity Confidentiality
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Inevitably, electronics with Internet capabilities fully expose their vulnerabilities when 

hackers intervene with various cyberattack techniques such as, malicious botnets [13]. A botnet 

is as an interconnected group of compromised devices or bots that commonly perpetrate DDoS 

attacks [14]. Within a botnet, individual bots are programmed with malicious software by a 

master, or bot-master, for command and control (C&C) and potential victim exploitation [15]. 

For example, as described by Herrera, multiple botnets of varying magnitudes greatly diminish a 

victim system’s resources by receiving overwhelming amounts of traffic [16]. In Herrera’s case, 

a botnet exhausts a victim’s resources via DDoS attack. Following a successful botnet attack, a 

victim system becomes unavailable to legitimate users and virtually inoperable.  

 

Figure 1.3: Traditional Botnet Configuration 

 

Botnets are typically categorized by one main characteristic which is size [17]. Arbitrarily 

selected by bot-masters, botnet magnitudes are roughly measured by sheer intensity. For 

example, Gunnam states each bot or host within a single botnet is assigned an Internet Protocol 

version 4 (IPv4) address via an addressing scheme known as classful addressing [18][19]. Thus, 

an attacker may manipulate the classful addressing scheme within multiple networks each 

containing several hosts to curate a botnet for potential cyberattack [15][18]. Additionally, each 

Attacking System

Bots

Target System

Internet
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botnet size directly corresponds to a class from the classful addressing scheme as further 

described in the following paragraph. In short, botnet sizes are determined by two main 

parameters: number of networks and bots per network. 

IPv4 is an original method for IP addresses however it is insufficient and thus incapable of 

supporting massive networks due to expansion limitations [20]. However, IPv4 remains 

prevalent amongst users today due to attributes like security and robustness. Generally, IPv4 

addresses categorize within two different schemes: classful IP addressing and classless IP 

addressing [21]. A convenient advantage for classful IP addressing is unique identification of 

available host and network space [22]. The classful addressing scheme has three principal 

attributes: subnet mask, network, and host space [23]. However, these properties define a fixed 

range for both network and host space within each class of classful IP addressing thus limiting 

potential for expansion, as mentioned earlier [24]. In comparison, the superior IP addressing 

scheme is classless because of wider IP address availability without network or host space 

restrictions as in classful addressing [25]. Nonetheless, some hackers meticulously use classful 

addressing to target victims with fewer IP addresses for intensification purposes [20][21]. In 

total, the classful IP addressing scheme includes five different classes: Classes A-E [26]. Class A 

addresses serve 16,777,214 hosts per network while Class C addresses support a maximum of 

254 hosts. A Class B address was incorporated throughout each experiment herein which holds 

65,534 hosts per network [21]. Classes D and E are reserved for multicasting and research and 

development purposes, respectively [26]. 
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1.1 Problem Statement 

 

As mentioned previously, electronics with Internet capabilities are prone to cyberattack as 

evolution has driven society into technology-dependent entities. More cyberattacks occur each 

year worldwide however, the United States of America ranks highest in targets [27] [28]. In 

2020, a significant increase in cyberattacks are shown due to a worldwide pandemic [27] [29]. 

For example, in May 2020, researchers discovered a platform which launches DDoS attacks 

such as, TCP-SYN and UDP Flood attacks [30][31]. Researchers could trace these attacks after 

several reported incidents [30][31]. Furthermore, the DDoS-launching platform known as 

Lucifer was mainly targeting Microsoft Windows hosts [31][32]. Microsoft has since released 

updates and patches for Lucifer [31][32]. According to several sources, the most common cyber-

flood attacks are TCP-SYN Flood and UDP Flood attacks [33][34][35][36]. 

As customers transition to cloud services, cyber-flood attacks increase in attempt to 

maliciously disrupt users [36]. According to Microsoft Windows, researchers found DDoS 

attacks occurring more regularly and frequently during the pandemic [36]. Furthermore, threat 

researchers mitigated approximately 800 attacks per day in March 2020 which is a fifty percent 

increase in comparison with pre-pandemic records [36]. Between January and June of 2020, 

Microsoft recorded TCP-SYN and UDP Flood attacks as the most common DDoS attack 

observed by their platforms [36].  

Herein realistic and conventional cyberattacks provide awareness for tangible possibilities in 

society. Network security systems have improved significantly over time which increases 

difficulty levels for potential hacks. However, hackers still manage to intervene at times which 

seems like a separate yet, simultaneously ongoing pandemic considering coronavirus.  
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1.2 Proposal 

 

Herein multiple DDoS attacks are executed to provide indications of harmful cyber-flood 

attacks. DDoS attacks under test include TCP-SYN, UDP Flood, Ping Flood, and Smurf attack 

for comparison purposes. As a test environment, an Apple platform with several versions of 

Microsoft Windows serves as a victim system for multiple cases. Microsoft Windows editions 

under evaluation include Enterprise, Core, and Professional as further described in Chapter III. 

As an objective, experimental data herein presents recordings of computer activities and 

behaviors to determine which Microsoft Windows version is superior. Furthermore, evaluations 

of DDoS attack effects are described for further comparison. As a hypothesis, I theorize 

Windows 10 outperforms Windows 8.1 in all recordings for each edition under test. Microsoft 

Windows 8.1 was developed based upon Windows 10 which includes overall better features such 

as, security enhancements as further described in Chapter III. Similarly, Microsoft Windows 

versions are based upon one another with Core serving as the base version [37].  

In 2006, a Microsoft Windows simulation shows processor-intensive Ping Flood attacks in 

comparison with overall processor utilization [11]. Therefore, a prediction for this experiment is 

Ping Flood attacks will cause complete exhaustion of overall processor utilization for Windows 

8.1 versions. In a similar case, a Microsoft Windows platform under Ping Flood attack crashes 

due to memory depletion in 2010 [38]. As a hypothesis, Microsoft Windows 8.1 versions under 

Ping Flood attacks will exhaust all available memory. In 2017, a Smurf attack completely 

exhausted HTTP transaction rates via Microsoft Windows Server while comparing Ping Flood, 

TCP-SYN, and UDP Flood attacks [18]. Thus, as another prediction, HTTP transaction rates will 
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cease due to Smurf attack for Microsoft Windows 8.1 versions. Recent research for disk 

utilization recordings while under DDoS attacks were not found after several failed attempts. 

After extensive research, DDoS attacks mentioned herein which include Microsoft Windows 

10 and 8.1 versions were not found however, few vaguely similar attacks are described below. 

For example, in 2018, researchers executed TCP-SYN Flood attacks on servers including 

Microsoft Windows 2016 Server [39]. Researchers recorded outgoing data rates for each server 

where Microsoft’s Windows Server outperformed an Apache2 server [39]. Another case in 2017, 

compares Microsoft’s Windows Server Lion and 2012 R2 which shows Lion with an overall 

lower performance especially during TCP-SYN Flood attack [10]. Furthermore, this experiment 

depicts relatively slow upstream data rates for the victim system. Similarly, in 2018, Microsoft 

Windows Server 2012 R2 shows TCP-SYN Flood attack as a more harmful attack than UDP 

Flood attack with respect to processor utilization and outgoing data rates [16].  

 

1.3 Thesis Outline 

 

This manuscript provides a security evaluation of an Apple platform with various Microsoft 

Windows operating systems. Although, before an evaluation takes place, an introduction to 

network security and cyberattack concepts are given for background purposes. Then, a problem 

statement and proposal are presented in Chapter I to support this document with intent and 

purpose. In Chapter II, DDoS attacks under evaluation are described in detail to present further 

background information for subsequent chapters. Chapter III describes victim performance 

parameters under evaluation and an experimental setup. Chapters IV through VII extensively 

transcribe and illustrate experimental results from several iterations of various DDoS attacks 
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performed on the device under test (DUT) with different versions and editions of Microsoft 

Windows. Lastly, the final chapter includes an overall comparison and conclusion for all 

experiments herein as explicitly explained in previous chapters. The purpose of this outline is to 

briefly elaborate on the Table of Contents shown on page iv. 
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2. CHAPTER II 

 

 

BACKGROUND FOR DISTRIBUTED DENIAL OF SERVICE ATTACKS 

 

 

Cyberattack effects circumstantially vary based on arbitrary techniques which include 

cyberattack types and unique platforms. As previously mentioned in Chapter I, outcomes of a 

DDoS attack potentially compromise the availability component of the CIA triad 

[40][41][42][43]. Several studies support that DDoS attacks expose network security 

vulnerabilities with resource exhaustion as an apparent result [44][45][46]. Particular DDoS 

attacks in frequent practice include TCP-SYN and Ping Flood attacks [39][47][48]. These two 

DDoS attacks and a couple alike are described in further detail throughout this chapter. 

 

2.1 Ping-Based DDoS Attacks 

 

Types of DDoS attacks categorize based upon specific types of data undesirably received in 

large amounts via the OSI model. Ping-based DDoS attacks directly originate from Layer-3 of 

the OSI model because, Ping messages generate via ICMP [1][49]. The Network Layer (Layer-3) 

primarily forwards, or routes, packets across multiple networks based on Internet Protocol [50]. 

If necessary, ICMP supports Layer-3 with important network troubleshooting and management 

information as procedural aid for protocol transition [51]. An IP datagram generates a reserved 

protocol value to indicate when ICMP is necessary [6][51]. Common ICMP messages are echo-

request and echo-reply which exchange between hosts to check reachability and other parameters
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via a common command known as Ping [49][51]. The Ping command is a native component 

within systems to test reachability of a host [11]. Additionally, an echo-reply is mandatory for 

each request received, as claimed by RFC 792 [51]. As PDUs, echo-request and echo-reply 

messages also include a header and data section which is shown in Figure 2.1 [6]. As a query, 

echo-request and echo-reply message headers hold important information for identification while 

a data section presents optional data [6][11]. Figure 2.1 shows a rudimentary frame format of 

ICMP echo-request and echo-reply messages.  

 

Figure 2.1: Simplified Echo Message Format 

 

2.1.1 Ping Flood Attack 

ICMP messages are vastly exploited by hackers and pose cyberattacks on a host or multiple 

hosts [3]. For instance, in a Ping Flood attack, a victim receives excessive amounts of echo-

request packets which saturates their capacity [11]. Typically, multiple spoofed echo-requests are 

sent to victims via a botnet which defines the severity of each DDoS attack, as described in 

subsequent sections [12]. As mentioned before, each request requires a response which further 

exhausts a victim system’s resources hindering proper operation [49].  

 

2.1.2 Smurf Attack 

Smurf attacks also exploits ICMP messages however, Smurf is more overall complex [1]. 

Ping Flood attacks solely incorporate echo-request messages while Smurf attacks utilize both 

Type: 8 Identifier: ZCode: 0 DATA
Host X Host Y

Type: 0 Identifier: ZCode: 0 DATA

ECHO-REQUEST

ECHO-REPLY
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echo messages [16]. However, Smurf attacks largely incorporate echo-reply messages to execute 

a more intensive and sophisticated DDoS attack [18]. Initially, attackers send several echo-

request messages to an unprotected broadcast domain for Smurf Attacks [43]. Then, attackers 

incorporate a spoofed source IP address to match the victim’s IP address [44]. As a result of 

Smurf attack, a victim receives several unsolicited echo-reply messages thus crippling their 

system [18][43]. Generally, a broadcast domain spreads a packet widely to interconnected 

devices as a method for mass communication [1][16]. Therefore, all hosts connected to a 

broadcast domain must respond to all echo-request messages with a corresponding echo-reply 

[1][44]. In a Smurf attack, broadcast domains amplify to magnitudes that are based on 

calculations and several factors such as, echo-request message size, number of broadcast 

domains, and number of hosts in each broadcast domain [1]. Simplified, the amplified attack rate 

(AAR) is shown below as an equation in bits per second (bps) where bandwidth is a data rate 

selected by attackers [1].  

AAR= Number of Broadcast Domains * Number of Hosts in each Broadcast Domain * 

Bandwidth (bps) 

 

Figure 2.2: Smurf Attack Configuration 
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2.2 Transport-Layer-Based DDoS Attacks 

 

TCP-SYN and UDP Flood DDoS attacks share one main similarity which is both attacks 

originate from Layer-4 (Transport Layer) of the OSI model [6][18]. Layer-4 entails data transfer 

logistics for communication networks where hackers may maliciously intervene 

[10][16][52][53]. For example, TCP ensures users of data delivery based on a concept known as 

the three-way handshake [52]. Essentially, three-way handshakes establish a reliable connection 

for hosts before data transmission [52]. Likewise, data transfer utilizes a similar three-way 

handshake for further reliability [6][52]. Three-way handshakes create connections between two 

hosts via a TCP control segment [6]. Within a TCP segment, a header includes important 

numbering and sequencing data for data transfer such as, information for three-way handshakes 

as shown in Figure 2.3 [6]. Furthermore, TCP headers incorporate single-bit flags to indicate 

specific directions such as, resetting or closing a connection. Likewise, a series of flags conduct 

three-way handshakes principally as shown below [6]: 

1. Control segment sent from Host X to Host Y with SYN flag set [SYN segment]   

2. Control segment sent from Host Y to Host X with SYN and Acknowledgment (ACK) 

flags set [SYN-ACK segment] 

3. Control segment sent to Host X from Host Y with ACK flag set [ACK segment] 

Note: SYN Segments usually indicate a request for connection. 

 

Figure 2.3: Simplified TCP Header  
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Figure 2.4: Three-Way Handshake Visual Representation 

 

As mentioned earlier in this section, both UDP and TCP categorize under Layer-4 (Transport 

Layer) of the OSI model. However, UDP unreliably delivers data without prior connection as 

required in TCP (three-way handshake) [6]. As a transaction-oriented protocol, UDP states a 

packet of data is sent to a receiver without guarantee of delivery as mentioned in RFC 768 

[6][53]. UDP datagrams also include a header and data section as shown in Figure 2.5 [6]. 

Essentially, UDP requires connectionless and immediate data delivery without any regard for 

reliability [6][18].  

 
Figure 2.5: Simplified UDP Header 

 

2.2.1 TCP-SYN Flood Attack 

The foundation of a TCP-SYN DDoS attack is the three-way handshake [10]. In accordance 

with RFC 793, a sender requests connectivity via SYN segments as mentioned in Section 2.2 

[52]. Then, receivers respond with a corresponding SYN-ACK segment for acknowledgment and 

approval purposes [6]. Finally, receivers prompt senders for a final ACK segment to establish a 
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connection [6]. In a TCP-SYN attack, attackers use a spoofed IP address to create a system 

vulnerability known as a half-open connection [16]. Half-open connections are only parts one 

and two of the three-way handshake since the final ACK segment cannot respond to an 

unsolicited SYN-ACK segment [38][52]. Therefore, victim systems under a TCP-SYN flood 

attack cannot close the connection by not receiving the final ACK segment as required by the 

three-way handshake [45]. At this point, attackers send overwhelming amounts of SYN segments 

to victim hosts during half-open connection timeout periods [47]. The result of a TCP-SYN flood 

attack usually causes system resource saturation due to several amounts of SYN segments [54]. 

 

2.2.2 UDP Flood Attack 

Attackers execute UDP Flood attacks to flood victim systems via ports [16]. Layer-4 PDUs 

transmit to predetermined ports for subsequent protocols [52][53]. However, TCP-SYN DDoS 

attacks do not incorporate port interaction because that occurs during a preliminary process 

described as the three-way handshake [16][18]. UDP Flood attacks occur with a four-step 

procedure which includes spoofing and a protocol interface PDU [18]. An UDP Flood attack 

typically deploys with the following sequence [16][55]: 

1. An attacker sends numerous UDP packets to random ports within a victim system via 

botnet 

2. The victim system determines which applications have requested data from the targeted 

port 

3. Once the victim system determines no applications have requested data, an ICMP-based 

message known as “destination unreachable” is generated 
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4. ICMP messages are sent back to the victim with a spoofed IP address generated by the 

attacker (similar to Smurf Attack) 

Clearly, UDP Flood attack takes blatant advantage of UDP due to its lack of requirements as 

shown in Figure 2.4 on the following page [16][18][55].  

 

2.3 Chapter II Summary 

 

DDoS attacks in this experiment include Ping-based and Transport Layer-Based DDoS 

attacks. Ping-based DDoS attacks are Ping Flood attack and Smurf attack. Transport Layer-

Based DDoS attacks are TCP-SYN Flood attacks and UDP Flood attacks. Background 

information included in this chapter serves as conceptual information for subsequent chapters. 
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3. CHAPTER III 

 

 

 EXPERIMENTAL SETUP 

 

This experiment included an attack system setup in a controlled and closed network 

environment to simulate numerous DDoS attacks of Class B botnet size on a victim system. In 

this case, the victim system under attack was an Apple iMac (21.5-inch, Mid-2011) installed 

with several up-to-date versions of Microsoft Windows one at a time, as listed below.  

1. Windows 10 Professional  

2. Windows 10 Core  

3. Windows 10 Enterprise  

4. Windows 8.1 Professional  

5. Windows 8.1 Core 

6. Windows 8.1 Enterprise

Editions of Microsoft Windows 10 and 8.1 differ based on additional features [37][56]. For 

example, Microsoft Windows Professional and Enterprise were developed based upon Windows 

Core versions [37][56]. Additional features include enhanced security features such as, machine 

learning analytics for threat response purposes within Microsoft Windows 10 Enterprise 

[37][56]. Furthermore, Microsoft Windows 10 Professional incorporates native information 

protection for users [37]. Microsoft Windows 8.1 editions differ in features such as, a Windows 

8.1 Enterprise exclusive feature which controls applications and files accessibility per user 

[57][58][59]. Microsoft Windows 8.1 Professional includes features not shown in Windows 8.1 

Core such as, hard drive encryption [59]. Similarly, Microsoft Windows 8.1 editions differ from 

Windows 10 editions because the predecessor is developed based upon its successor
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[60][61][62]. For instance, Microsoft Windows 10 editions include better security features than 

Windows 8.1 such as, support for biometric scanning [60]. Additionally, the victim system has 

the following specifications: 

• Quad-Core 2.5 gigahertz (GHZ) Intel "Core i5" I5-2400S (Sandy Bridge) Processor 

• Eight gigabytes (GB) [two four-GB components] of 1,333 megahertz DDR3 Random-

Access Memory (RAM) 

• Thirty-two nanometers Lithography (Processor Housing) 

• 500 GB (7,200 revolutions per minute [RPM]) hard disk drive (HDD) 

• 10/100/1,000BASE-T Gigabit Ethernet (RJ-45 Connector) 

Figure 3.1 depicts the complete configuration with each system under experiment within 

aforementioned environment. 

 

Figure 3.1: Experimental Setup 

 

In each DDoS attack, two different types of network traffic were sent to the victim system 

simultaneously which are legitimate and attack traffic. In this case, legitimate traffic is roughly 

defined as simulated hosts performing multiple requests of a basic website for reachability. The 

victim system hosts a simple website originating from a built-in Microsoft Windows service. 
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Furthermore, these simulated hosts send 3,000 Hyper-Text Transfer Protocol (HTTP) transaction 

requests per second to the victim system to simulate legitimate traffic [63].  

In this case, attack traffic was generated by a botnet of varying traffic amounts via Ethernet 

cable which has the followings specifications and characteristics:  

• Berk-Tek Hyper Plus Category 5e 

•  Maximum Transmission Speed: One gigabit per second (Gbps)  

The programmed botnet transmits attack traffic toward the victim system beginning with a line 

rate 100 megabits per second (Mbps), then increases by 100 Mbps until 1000 Mbps (1 Gbps) is 

reached. Essentially, attack traffic was delivered beginning with 100 Mbps then, increments of 

100 Mbps, ending with the total link bandwidth. The purpose for this particular experiment is to 

further investigate impact endured by the victim system. Each experiment follows the subsequent 

procedure: only legitimate traffic is sent to the victim system which serves as a baseline for each 

test. Thereafter, legitimate and attack traffic are sent simultaneously while only attack traffic 

incrementally intensifies for an overall duration of approximately one hour. 

 

3.1 Performance Parameters 

 

Each simulated DDoS attack performed, based on the experimental setup, is deployed to 

obtain the following information: Hyper-Text Transfer Protocol (HTTP) transaction rates, 

overall processor utilization (OPU), available Random-Access Memory (RAM), and disk 

utilization (DU). Analysis and evaluation of each data set considers the effects of each DDoS 

attack posed on the victim system. Each data set is obtained by a built-in Microsoft Windows 

application named Performance Monitor. 
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HTTP transaction rates transcribe amounts of successful requests per second [63]. 

Essentially, each HTTP transaction that successfully requested the website, which serves a 

purpose for legitimate traffic, is recorded for analysis and evaluation. Overall processor 

utilization data shows an average of each core’s processor utilization as a percentage based on 

time per program [64][65]. In this case, the iMac under evaluation has four cores which 

represents the number of independent central processing units within Intel Corporation’s chip 

[66]. Recorded memory consumption depicts overall RAM used by the victim system in 

megabytes. Disk utilization data describes the overall main hard disk utilization within the victim 

system [67]. A hard disk stores operating system, executable programs, and files [68]. 

 

3.2 Chapter III Summary 

 

This experiment involves several simulations of the four aforementioned DDoS attacks 

which are Ping Flood, Smurf, TCP-SYN Flood, and UDP Flood. Each aforementioned DDoS 

attack was simulated to cyberattack six different Microsoft Windows operating systems for 

evaluation purposes. Two different types of traffic were simultaneously sent toward the victim 

system which are legitimate and attack to simulate a real-world scenario. The application 

Performance Monitor from Microsoft recorded four different performance parameters for each 

simulation. In total, twenty-four simulations were conducted which are shown in several 

following chapters. 
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4. CHAPTER IV 

 

 

COMPARISON BETWEEN MICROSOFT WINDOWS 10  

 

AND WINDOWS 8.1 ENTERPRISE VERSIONS 

 

 

The following chapters include data and results from each DDoS attack simulation. The 

sole purpose of these simulations is to compare between various versions of Microsoft Windows 

10 and 8.1 based on gathered data. For example, in this chapter, a comparison between both 

Enterprise versions of Microsoft Windows 10 and 8.1 consider the aforementioned performance 

parameters. Security evaluations for each DDoS attack simulation are based on each comparison 

which is described within each of the following chapters. Each figure within this chapter 

includes a legend signifying both enterprise versions of Windows 10 and Windows 8.1 within 

each graph as follows: Win10Enterpise (Windows 10 Enterprise) and Win81Enterprise 

(Windows 8.1 Enterprise). 

 

4.1 Microsoft Windows Enterprise Versions’ under Ping Flood Attack 

 

This attack causes significant disruption to the victim system since both echo-request and 

reply messages are expected. Figure 4.1 shows the overall processor utilization of the victim 

system while under Ping Flood attack for both Enterprise versions of Windows 10 and 8.1. 

Furthermore, Ping Flood attack poses an obvious fluctuation throughout the entire duration of 

this simulation for both operating systems. More specifically, Figure 4.1 shows a gradual 
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increase in processor utilization from zero (baseline) to 200 Mbps of attack traffic sent toward 

the victim system in Windows 10 Enterprise Again, only legitimate traffic is transmitted at the 

baseline thus, zero attack traffic is delivered at this point. Yet, Microsoft Windows 8.1 Enterprise 

hardly changes within the aforementioned range (zero to 200 Mbps) excluding zero Mbps. Then, 

dissimilar fluctuation patterns occur between both operating systems from 200 to 600 Mbps of 

attack traffic. For Windows 10 Enterprise in Ping Flood attack, overall processor utilization 

decreases after 200 Mbps of attack traffic then an incline pattern forms from 300 to 500 Mbps. 

Finally, another decrease in OPU values is shown after 500 Mbps which becomes a starting point 

for a steady-state pattern with a value of approximately thirty-five percent that continues for the 

remainder of this simulation.  

As mentioned before, Windows 8.1 Enterprise also shows significant fluctuation in values 

during this simulation however, this pattern does not exactly compare to Windows 10 Enterprise. 

Windows 8.1 Enterprise under Ping Flood attack has a significant decline in OPU after 200 

Mbps of attack traffic however, this decline in value continues until 400 Mbps. After 400 Mbps 

of attack traffic, a small incline occurs at 500 Mbps then, similar to Windows 10 Enterprise 

during Ping Flood attack, a steady-state pattern is shown with an approximate value of twenty-

three percent until the end of simulation. Also, Windows 10 Enterprise OPU data is significantly 

greater in value compared to Windows 8.1 Enterprise while under Ping Flood attack. 

An overall higher processor utilization value is shown near 200 Mbps than the total link 

bandwidth in both cases of Figure 4.1 which is further described in this section. Figure 4.1 

clearly depicts Microsoft Windows 10 is a direct software upgrade from Windows 8.1 based 

upon differences between OPU values. As mentioned earlier, Microsoft Windows 10 includes 

more built-in features than its predecessor.  
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Figure 4.1: Microsoft Windows Enterprise Versions’ Overall Processor Utilization under Ping 

Flood Attack 

 

Figure 4.2 depicts Ping Flood attack posing a significant steady-state effect on the victim 

system in both operating systems. Every attack traffic line rate remains at one approximate value 

which is around 1,300 and 800 megabytes of memory consumed for Windows 10 and 8.1, 

respectively. Notably, Ping Flood attack is not memory intensive on Microsoft Windows 

Enterprise versions due to nearly identical memory consumption values throughout this entire 

experiment. Also, Microsoft Windows 10 has noticeably more memory consumption than 

Windows 8.1 in this simulation as shown in Figure 4.2. As previously mentioned, Microsoft 

Windows 10 includes more built-in features than Windows 8.1 as depicted in Figure 4.2.  

 

Figure 4.2: Microsoft Windows Enterprise Versions’ Memory Consumption under Ping Flood 

Attack 
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The system’s hard disk is not significantly affected in this entire simulation of Ping Flood 

attack as shown in Figure 4.3. Only Microsoft Windows 10 Enterprise exceeds ten percent of 

overall disk utilization near 200 Mbps of attack traffic which is shown as an obvious point of 

fluctuation for the victim system in Figure 4.3. Furthermore, a minimal initial disk utilization 

value is shown at zero attack traffic then, values slightly decrease at 100 Mbps and increase 

again near 200 Mbps for Windows 10 Enterprise during this simulation. The aforementioned 

fluctuation is determined as background processes during DDoS attack launch. After 200 Mbps 

of attack traffic, a similar steady-state pattern is shown with an approximate value of zero 

percent DU as seen in Figure 4.3. Also, in this simulation, Microsoft Windows 8.1 Enterprise 

shows DU values less than ten percent during this entire simulation along with a slow decline 

until a steady-state pattern is reached with a value of approximately zero percent matching 

Windows 10. As described for Figures 4.1 and 4.2, Windows 10 Enterprise values overall exceed 

Windows 8.1 Enterprise such as DU values during this simulation. 

 

Figure 4.3: Microsoft Windows Enterprise Versions’ Disk Utilization under Ping Flood Attack 
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HTTP transactions after 500 Mbps. Although, Microsoft Windows 10 continued generating 

small yet, note-worthy amounts of HTTP transactions after 500 Mbps until ceasing all at 800 

Mbps of attack traffic. Both Windows 10 and 8.1 Enterprise maintained all requested HTTP 

transactions until 200 Mbps during this simulation. The main difference between both operating 

systems in this experiment is within 300 and 500 Mbps of attack traffic because each operating 

system declines at different rates under Ping Flood attack. Microsoft Windows 10 Enterprise 

downgrades drastically from 3,000 to 1,300 between 300 and 500 Mbps of attack traffic during 

this simulation. After 300 Mbps of attack traffic, a steady decline can be seen in Figure 4.4 for 

Windows 10 Enterprise until completely ceasing all HTTP transactions. Windows 8.1 Enterprise 

shows a similar pattern in comparison with Windows 10 Enterprise during this simulation such 

that, HTTP transaction rates decline after 200 Mbps of attack traffic except with an approximate 

value of 2,000 transactions per second. Then, a steep decline occurs with a margin of 

approximately 1,300 HTTP transactions per second between 300 and 400 Mbps of attack traffic. 

Lastly, from 400 to 500 Mbps of attack traffic, a steady-state pattern is shown during this 

simulation for Microsoft Windows 8.1 with a value of approximately 640 transactions per 

second. Ultimately, Windows 10 and 8.1 Enterprise under Ping Flood attack show quite similar 

HTTP transaction decline patterns with a significant difference in rates of change.  
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Figure 4.4: Microsoft Windows Enterprise Versions’ HTTP Transaction Rates under Ping Flood 

Attack 

 

Cause for sporadic behaviors due to DDoS attack deployed on a victim system are not widely 

researched however, assumptions can be made such as the following. In both operating systems, 

as attack traffic increases, OPU also increases until 300 Mbps likewise, HTTP transaction rates 

are affected until approximately 300 Mbps. Thus, a tradeoff is shown near 300 Mbps of attack 

traffic in Figures 4.1 and 4.4 for both OPU and HTTP transaction rates. Simultaneously, OPU 

also decreases due to obvious resource compensation purposes during this simulation. During the 

remainder of this simulation, OPU stabilizes with a steady-state pattern and thereon only HTTP 

transaction rates are affected. Microsoft Windows 8.1 requires a unique configuration setting for 

legitimate traffic which explains prioritization for HTTP transactions in this case. This 

simulation is a clear indication of exhaustion of system resources for both systems.  

 

4.2 Microsoft Windows Enterprise Versions’ under Smurf Attack 

 

As mentioned in Chapter II, Smurf attack amplifies an attack by broadcasting echo requests 
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Enterprise. Similarly, Windows 8.1 nears ninety percent OPU only after 100 Mbps of attack 

traffic is delivered as shown in Figure 4.5. However, the main difference between the two plots 

shown in Figure 4.5 is near 100 Mbps of attack traffic since a significant thirty percent difference 

in OPU is present. Also, as mentioned before, Windows 10 Enterprise values are significantly 

higher than Windows 8.1 Enterprise OPU values for this entire simulation. Both Windows 10 

and 8.1 Enterprise versions show steady-state patterns for most of this simulation. As shown in 

Figure 4.1 and 4.5, initial OPU values for both Windows 10 and 8.1 Enterprise versions are 

nearly identical during Ping and Smurf attacks which consistently supports these simulations 

with a common baseline.  

 

 

Figure 4.5: Microsoft Windows Enterprise Versions’ Overall Processor Utilization under Smurf 

Attack 
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Thus, memory consumption steady-state values for Windows 10 and 8.1 Enterprise under Smurf 

attack are near 1,470 and 800 megabytes, respectively. 

 

Figure 4.6: Microsoft Windows Enterprise Versions’ under Memory Consumption under Smurf 

Attack 

 

In comparison, Windows 10 Enterprise disk utilization plots from both Ping Flood and Smurf 
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further described in Chapter VII. Apparently, Smurf attack triggers another performance counter 

for this specific victim system due to resource compensation.  

 

Figure 4.7: Microsoft Windows Enterprise Versions’ Disk Utilization under Smurf Attack 

 

Figure 4.8 shows significant differences between both operating systems under evaluation in 
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transactions were successful until 300 Mbps of attack traffic which shows 1,500 HTTP 

transactions then approximately zero at 400 Mbps. Both Windows 10 and 8.1 Enterprise versions 

relatively cease all HTTP transactions after 300 Mbps whereas, Windows 8.1 shows small HTTP 

values at 400 and 500 Mbps. Again, Windows 8.1 prioritizes HTTP transactions instead of disk 

utilization due to a preconfigured setting. 
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Figure 4.8: Microsoft Windows Enterprise Versions’ HTTP transaction rates under Smurf Attack 

 

In comparison, Figures 4.7 and 4.8 depict correlating fluctuation patterns due to large 

amounts of attack traffic. For example, in both Figures 4.7 and 4.8, Windows 8.1 plots show 

drastic changes at 400 Mbps such as, a decline in HTTP transaction rates and DU spikes to 1 

Gbps. In comparison, Microsoft Windows 10 OPU data sharply increases at 100 Mbps of attack 

traffic as shown in Figure 4.5. Similarly, Figure 4.8 illustrates Windows 10 HTTP transaction 

rates significantly decrease at 100 Mbps of attack traffic. Clearly, the victim system is 

compensating for this large influx of attack traffic. As shown in Figure 4.7, this simulation 

forced the victim system to incorporate more resources in order to fulfil given instructions within 

Windows 8.1 which henceforth is dubbed resource compensation.  
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4.3 Microsoft Windows Enterprise Versions’ under TCP-SYN Flood Attack 

 

During a TCP-SYN flood attack, a hacker manipulates the three-way handshake to exhaust a 

victim’s resources. As shown in Figure 4.9, both operating systems under evaluation, approach 

100 percent of OPU after 300 Mbps of attack traffic. Although, Windows 10 Enterprise reaches 

near 100 percent of OPU faster than Windows 8.1 at just 100 Mbps of attack traffic during this 

simulation. Also, Figure 4.9 shows apparent fluctuation between zero and 400 Mbps of attack 

traffic for Windows 8.1 Enterprise OPU data similar to Ping Flood attack initial data fluctuation 

in both operating systems under investigation. However, unlike Ping Flood attack OPU data both 

operating systems do not present an alike pattern during this simulation. Windows 10 Enterprise 

shows an expected baseline value then, a steady pattern occurs during this attack. As mentioned 

before, Microsoft Windows 8.1 Enterprise shows initial fluctuation then a rough steady-state 

pattern. As described in Section 4.1, fluctuation is typically a result of multiple resources 

compensating one another as attack traffic increases over time especially near 300 Mbps of 

attack traffic. 

 

Figure 4.9: Microsoft Windows Enterprise Versions’ Overall Processor Utilization under TCP-

SYN Flood Attack 
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Presumably, the victim system does not change memory consumption data patterns for 

neither operating systems during this simulation, particularly only data values as shown in Figure 

4.10. As described in a previous section, typically Windows 10 consumes more memory than 

Windows 8.1 operating system while under DDoS attack. Windows 10 and 8.1 Enterprise show 

steady-state values of approximately 1,460 and 760 megabytes of consumed memory, 

respectively. 

 

Figure 4.10: Microsoft Windows Enterprise Versions’ Memory Consumption under TCP-SYN 

Flood Attack 

 

Similar to Figure 4.3, Figure 4.11 shows neither operating system is notably affected by this 

simulation. However, at the baseline, Windows 10 DU data shows small spikes in value which 

are assumed as background processes. Similar to Ping Flood attack, Microsoft Windows 10 

shows initial fluctuation while Windows 8.1 remains at a steady state. As attack traffic increases, 
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Figure 4.11: Microsoft Windows Enterprise Versions’ Disk Utilization under TCP-SYN Flood 

Attack 
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aforementioned reasons. As mentioned previously in this chapter, Microsoft Windows 8.1 

prioritizes HTTP transaction due to a preset configuration for legitimate traffic. 

 

Figure 4.12: Microsoft Windows Enterprise Versions’ HTTP Transaction Rates under TCP-SYN 

Flood Attack 
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Figure 4.13: Microsoft Windows Enterprise Versions’ Overall Processor Utilization under UDP 

Flood Attack 

 

Figure 4.14 illustrates Windows 10 and 8.1 memory consumption as a steady-state 

phenomenon which is also recorded for all other DDoS attack simulations shown in each section 

of this chapter. During this simulation, memory consumption includes a maximum value of 

approximately 1,450 and 750 megabytes for both Windows 10 and 8.1, respectively while under 

UDP Flood attack. 

 

Figure 4.14: Microsoft Windows Enterprise Versions’ Memory Consumption under UDP Flood 

Attack 
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greater values than Windows 10 for a majority of the duration of all attacks under investigation 

excluding Smurf. Figures 4.3 and 4.11 vaguely show similar disk utilization data patterns to 

Figure 4.15 for Windows 10 Enterprise during Ping, TCP-SYN, and UDP Flood attacks. 

Windows 10 and 8.1 disk utilization values measured during UDP Flood attack are recorded 

higher than Ping and TCP-SYN Flood due to compensation of resources which varies throughout 

each DDoS attack. Both operating systems under test fluctuate yet, inversely of one another 

during this simulation as shown in Figure 4.15. 

 

Figure 4.15: Microsoft Windows Enterprise Versions’ Disk Utilization under UDP Flood Attack 

 

Figure 4.16 depicts HTTP transaction rates, for both operating system, decreasing as the 

attack intensifies. As expected, Windows 10 HTTP transaction rates decreases drastically after 

200 Mbps of attack traffic as a result of resource compensation. Similarly, Windows 8.1 data 

displays a negative correlation beginning after 200 Mbps yet, not as drastically as Windows 10. 

All HTTP transactions cease after 600 Mbps of attack traffic as shown in Figure 4.16. 
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Figure 4.16: Microsoft Windows Enterprise Versions’ HTTP Transaction Rates under UDP 

Flood Attack 

 

4.5 Chapter IV Summary 
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5. CHAPTER V 

 

 

COMPARISON BETWEEN MICROSOFT WINDOWS 10  

 

AND WINDOWS 8.1 PROFESSIONAL VERSIONS 

 

 

Similar to Chapter III, chapter four describes a comparison of two operating systems 

which are both professional versions of Microsoft Windows 10 and 8.1 for analysis and 

evaluation purposes. Likewise, all four DDoS attacks and performance parameters shown in 

Chapter III are analyzed and evaluated within this chapter. Each figure within this chapter 

includes a legend signifying both professional versions of Windows 10 and 8.1 within each 

graph as follows: Win10Pro (Windows 10 Professional) and Win81Pro (Windows 8.1 

Professional). 

 

5.1 Microsoft Windows Professional Versions’ under Ping Attack 

 

Ping attack caused familiar fluctuation in OPU data for both enterprise versions of Windows 

operating systems under evaluation. Similarly, Figure 5.1 shows an identical OPU data pattern as 

Figure 4.1 which occurs due to resource compensation. Although, OPU percentage values for 

Windows 8.1 operating system are slightly different due to resource compensation throughout 

this attack in comparison with Figures 4.1 and 5.1.
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Figure 5.1: Microsoft Windows Professional Versions' Overall Processor Utilization under Ping 

Flood Attack 

 

Figure 5.2 shows a steady-state pattern for both operating system during this simulation. 

However, Windows 8.1 Professional version memory consumption data under Ping Flood attack 

is notably lower than memory consumption data for Windows 8.1 Enterprise version by two 

hundred megabytes. Windows 10 Enterprise and Professional versions negligibly differ in 

memory consumption value during this simulation. 

 

Figure 5.2: Microsoft Windows Professional Versions’ Memory Consumption under Ping Flood 

Attack 
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5.3, a steady state trendline shows redundant DU data for both operating systems under 

evaluation with the exception of the baseline data for Windows 10. As described in Chapter 4, 

this baseline data short spike in DU value is likely caused by background processes. 

 

Figure 5.3: Microsoft Windows Professional Versions’ Disk Utilization under Ping Flood Attack 

 

As expected, similar-looking data is shown in Figure 5.4 because both operating systems 

HTTP transactions rates decrease near 300 Mbps of attack traffic. As mentioned previously, 

Windows 10 HTTP transactions rates decreases at a more rapid rate than Windows 8.1 during 

this simulation as shown in Section 4.1. However, during this simulation, Windows 10 HTTP 

transaction data shows a trendline even more similar to Windows 8.1. An educated assumption is 

made to describe the aforementioned behavior follows: Ping Flood attack in this section is not as 
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Figure 5.4: Microsoft Windows Professional Versions’ HTTP Transaction Rates under Ping 

Flood Attack 
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Figure 5.5: Microsoft Windows Professional Versions’ Overall Processor Utilization under 

Smurf Attack 

 

Memory consumption remains as a constant steady-state trendline for both operating systems 

during this simulation. Although, Figure 5.6 conveys lower memory consumption values for both 

operating systems in comparison to each DDoS attack in Chapter IV with the exception of Ping 

Flood attack. 

 

Figure 5.6: Microsoft Windows Professional Versions’ Memory Consumption under Smurf 

Attack 
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trendline compared to the Smurf attack DU data shown in Chapter IV which is caused by 

resource compensation. Likewise, the disk utilization process name is NT Kernel and System 

Application which is described in further detail in Chapter VIII. 

 

Figure 5.7: Microsoft Windows Professional Versions’ Disk Utilization under Smurf Attack 

 

In Figure 5.8, HTTP transaction rates begin to drop near 300 Mbps of attack traffic for 

Microsoft Windows 8.1 Professional. However, transaction rates quick diminish near 200 Mbps 

of attack traffic for Microsoft Windows 10 Professional. Disk utilization compensation accounts 

for differences seen in Figure 5.8.  

 

Figure 5.8: Microsoft Windows Professional Versions’ HTTP Transaction Rates under Smurf 

Attack 
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5.3 Microsoft Windows Professional Versions’ under TCP-SYN Flood Attack 

 

In Chapter IV, TCP-SYN Flood attack caused a significant fluctuation data pattern from zero 

to 400 Mbps of attack traffic in Windows 8.1 yet, a steady-state OPU data pattern for Windows 

10 version. Figure 5.9 illustrates this very aforementioned phenomenon occurred as well as 

similar OPU percentage values during this simulation for both operating systems.  

 

Figure 5.9: Microsoft Windows Professional Versions’ Overall Processor Utilization under TCP-

SYN Flood Attack 

 

As mentioned previously, the following image continues to portray a constant and redundant 

graph for both operating systems in comparison with Section 4.3 as shown in Figure 5.10. 

 

Figure 5.10: Microsoft Windows Professional Versions’ Memory Consumption under TCP-SYN 

Flood Attack 
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Similarly, the following image shows a lack of noteworthy data for both operating systems 

under evaluation during this simulation. 

 

Figure 5.11: Microsoft Windows Professional Versions’ Disk Utilization under TCP-SYN Flood 

Attack 

 

As in Section 4.3, Windows 10 HTTP transactions decline quickly as attack traffic intensifies 

due to a threshold or resource compensation. Windows 8.1 HTTP transaction rates, during this 

simulation, are notably higher than other DDoS attacks yet, the cause for this is due to resource 

compensation. For example, in Figure 5.12, HTTP transactions do not completely cease for 

Windows 8.1 version however, OPU is much higher than UDP Flood and Ping Flood in overall 

value throughout this simulation. Windows 10 does not perform well during this attack opposed 
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simulation for both operating systems. 
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Figure 5.12: Microsoft Windows Professional Versions’ HTTP Transaction Rates under TCP-

SYN Flood Attack 

 

5.4 Microsoft Windows Professional Versions’ under UDP Flood Attack 

 

As shown in Section 4.4, UDP Flood attack OPU data fluctuates for both operating systems 

which is a result of resource compensation. In Figure 5.13, Windows 10 OPU data reaches a 

maximum of approximately eighty percent at 200 Mbps of attack traffic. Thereafter, OPU data 

for both operating systems eventually reach a steady-state trend which also results from resource 

compensation as described in Section 4.4. 

 

Figure 5.13: Microsoft Windows Professional Versions’ Overall Processor Utilization under 

UDP Flood Attack 
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Figure 5.14 shows an image of memory consumption for both operating systems under 

evaluation which persists as portraying a steady state trendline during a UDP Flood attack. 

Additionally, Windows 10 Pro. shows quite similar memory consumption data in comparison 

with Windows 10 Ent. However, both Windows 8.1 Enterprise and Professional show a 

significant difference in steady-state values of approximately two hundred megabytes as shown 

in Figures 4.14 and 5.14. 

 

Figure 5.14: Microsoft Windows Professional Versions’ Memory Consumption under UDP 

Flood Attack 

 

The following graph shows redundant data as disk utilization is only affected while under 

Smurf attack as mentioned in detail above. Although, an initial DU value is shown which can be 

described as background processes during simulation initialization. 

 

Figure 5.15: Microsoft Windows Professional Versions’ Disk Utilization under UDP Flood 

Attack 
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Figure 5.16 shows similar HTTP transaction data compared to Section 4.4 because nearly 

each operating system shows nearly identical trendlines while comparing Windows 10 versions 

and Windows 8.1 versions, respectively. Figures 5.13 and 5.16 clearly show resource 

compensation for both operating systems except, Windows 10 quickly declines while Windows 

8.1 does so slowly.  

 

Figure 5.16: Microsoft Windows Professional Versions’ HTTP Transaction Rates under UDP 

Flood Attack 

 

5.5 Chapter V Summary 

 

This chapter reflects data shown throughout Chapter IV however, these simulations support 
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Chapters III and IV, Smurf attack is the overall most intense attack of all four DDoS attacks 
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6. CHAPTER VI 

 

 

COMPARISON BETWEEN MICROSOFT WINDOWS 10  

 

AND WINDOWS 8.1 CORE VERSIONS 

 

 

As in previous chapters, Chapter VI describes a comparison of two operating systems 

which are both core versions of Microsoft Windows 10 and 8.1 for analysis and evaluation 

purposes. A core version of an operating system means the basic version since each succeeding 

version builds upon this version as a foundation. All four DDoS attacks and performance 

parameters shown in Chapter IV and V are analyzed and evaluated within this chapter. Each 

figure within this chapter includes a legend signifying both core versions of Windows 10 and 8.1 

within each graph as follows: Win10Core (Windows 10 Core) and Win8.1Core (Windows 8.1 

Core). 

 

6.1 Microsoft Windows Core Versions’ under Ping Flood Attack 

 

As shown in previous chapters, a fluctuant trendline within the early stages of an attack 

signifies resource compensation during a simulation. Figure 6.1 shows the aforementioned 

trendline for both operating systems during this simulation. OPU data is quite similar to Section 

5.1 while Section 4.1 shows higher OPU values for both operating systems. Although, these 

changes in values are caused by resource compensation most commonly near 300 Mbps of attack 

traffic for each simulation.
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Figure 6.1: Microsoft Windows Core Versions' Overall Processor Utilization under Ping Flood 

Attack 

 

As shown in Figure 6.2, the following performance parameter has shown consistent 

trendlines for both operating systems undergoing each DDoS attack in discussion throughout this 

paper. Additionally, Windows 8.1 Core memory consumption plot shows similar data values in 

megabytes as Windows 8.1 Professional version. However, Windows 8.1 Enterprise version 

memory consumption is significantly higher than both Core and Professional versions of 

Windows 8.1 due to installments of additional features.  

 

Figure 6.2: Microsoft Windows Core Versions’ Memory Consumption under Ping Flood Attack 
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Disk utilization data did not depict substantial amounts of data while under Ping Flood attack 

for any Windows versions under evaluation. However, previous comparative chapters show a 

small baseline spike of DU for Windows 10 primarily. Windows 8.1 DU data did not show any 

note-worthy activity while under Ping Flood attack. 

 

Figure 6.3: Microsoft Windows Core Versions’ Disk Utilization under Ping Flood Attack 

 

Interestingly, Ping Flood attack causes Windows 10 versions HTTP transaction data rates to 

convey similar data as Section 4.1 because a steep decline in data incurs at 300 Mbps of attack 

traffic due to resource compensation. HTTP transaction rates for all Windows 8.1 versions show 

a similar negative correlation during Ping Flood attack. 

 

Figure 6.4: Microsoft Windows Core Versions’ HTTP Transaction Rates under Ping Flood 

Attack 
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6.2 Microsoft Windows Core Versions’ under Smurf Attack 

 

In previous chapters, Smurf attack DU data shows obvious resource compensation with high 

OPU and low HTTP transaction rates in Windows 8.1 versions under evaluation. Likewise, as 

shown in Figure 6.5, both operating systems produce high OPU percentages after 100 Mbps of 

attack traffic. 

 

Figure 6.5: Microsoft Windows Core Versions’ Overall Processor Utilization under Smurf 

Attack 

 

Figure 6.6 shows two plots of memory consumption during a Ping Flood attack which is 

continually portrays as a steady state trendline for both operating systems undergoing each 

DDoS attack in discussion throughout this paper. Additionally, Windows 8.1 Core memory 

consumption plot shows similar data values in megabytes as Windows 8.1 Professional version 

during this simulation such as, Ping Flood attack. However, Windows 8.1 Enterprise version 

memory consumption is significantly higher than both Core and Professional versions of 

Windows 8.1 due to installments of additional features. 
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Figure 6.6: Microsoft Windows Core Versions’ Memory Consumption under Smurf Attack 

 

As expected, Windows 8.1 DU data shows high percentage values while under Smurf attack. 

Thus, in each comparative chapter, all versions of Windows 8.1 under evaluation initiated high 

DU percentage values during this attack. All Windows 10 version under evaluation significantly 

increased compensation of other resources such as, HTTP transaction rates because relatively 

similar values for DU are shown herein. In all Smurf attacks, high disk utilization values are 

caused by a process called NT Kernel & System Application in Microsoft Windows 8.1. 

 

Figure 6.7: Microsoft Windows Core Versions’ Disk Utilization under Smurf Attack 
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In Figure 6.8, Smurf attack causes HTTP transaction data rates for Windows 10 to convey 

similar data as Section 3.1 and 4.1 because a steep decline in data incurs at 100 Mbps of attack 

traffic due to resource compensation. However, the severity of each decline differs within each 

Smurf attack against Windows 10 versions under evaluation. HTTP transaction rates for 

Windows 10 versions under Smurf attack recorded as follows: Windows 10 Enterprise measured 

approximately two hundred and fifty transactions per second, Windows 10 Professional nearly 

five hundred, and Windows Core of about one thousand. HTTP transaction rates for all Windows 

8.1 versions show a similar negative correlation during Smurf attack near 300 Mbps of attack 

traffic. However, similar to Windows 10, HTTP transaction rates differ in magnitude at 300 

Mbps for each Windows 8.1 version as follows: Windows 8.1 Enterprise exchanged nearly one 

thousand five hundred transactions per second while Windows 8.1 Professional and Core 

measured about five hundred during each of their individual simulations. 

 

Figure 6.8: Microsoft Windows Core Versions’ HTTP Transaction Rates under Smurf Attack 
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6.3 Microsoft Windows Core Versions’ under TCP-SYN Flood Attack 

 

In all comparative chapters, including this one, TCP-SYN Flood attack caused a significant 

fluctuation data pattern for OPU from zero to 400 Mbps of attack traffic in all versions of 

Windows 8.1 yet, a steady-state data pattern for Windows 10 versions. Furthermore, each 

comparative chapter included quite similar values of OPU throughout the duration of each attack 

for all operating systems under evaluation. Microsoft Windows 8.1 surpasses ninety percent of 

OPU near 400 Mbps of attack traffic. In most experiments, significant fluctuation is shown near 

300 Mbps of attack traffic which is further described in Chapter VIII.  

 

Figure 6.9: Microsoft Windows Core Versions’ Overall Processor Utilization under TCP-SYN 

Flood Attack 

 

Memory consumption data trendlines remained consistent throughout this paper during each 

TCP-SYN Flood attack and operating system under evaluation. In magnitude, each operating 

system stayed within a range of less than two hundred megabytes of one another during each 

simulation. These minor fluctuations were most likely caused by resource compensation which 

occurred during each TCP-SYN Flood attack for both operating systems. 
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Figure 6.10: Microsoft Windows Core Versions’ Memory Consumption under TCP-SYN Flood 

Attack 

 

Disk utilization data trendlines remained consistent throughout this manuscript during each 

TCP-SYN Flood attack in both operating systems under evaluation. In magnitude, each operating 

system stayed within a range of less than twenty percent DU of one another during each 

simulation. These minor fluctuations were most likely caused by background processes during 

each simulation as mentioned earlier. 

 

Figure 6.11: Microsoft Windows Core Versions’ Disk Utilization under TCP-SYN Flood Attack 
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While comparing all three Windows 10 versions under evaluation, an apparent pattern shows 

TCP-SYN Flood attack quickly diminishing virtually all HTTP transactions near 200 Mbps of 

attack traffic during each iteration. Likewise, Windows 8.1 versions produce a similar pattern, in 

comparison, such that HTTP transaction rates begin to fall below three thousand HTTP 

transactions per second near 300 Mbps. Then, as previously mentioned, transaction rates rise 

again at 400 Mbps of attack traffic. Shortly thereafter, HTTP transaction rates fail to recover due 

to high amounts of attack traffic inundating the victim system. However, Windows 8.1 Core is 

affected more than both Windows 8.1 Professional and Enterprise versions because HTTP 

transactions significantly drop in value. For example, averaging raw values of HTTP transactions 

rates from 300 to 500 Mbps of attack traffic in each Windows 8.1 version accurately depicts this 

steep decline as shown below in approximation.  

 

Table 1: Average HTTP Transactions Per Second within 300 to 500 Mbps of Attack Traffic  

Windows 8.1 Version 
HTTP Transactions Per 

Second 

Core 1,185 

Professional 2,214 

Enterprise 2,797 
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Figure 6.12: Microsoft Windows Core Versions’ HTTP Transaction Rates under TCP-SYN 

Flood Attack 

 

6.4 Microsoft Windows Core Versions’ under UDP Flood Attack 
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Figure 6.13: Microsoft Windows Core Versions’ Overall Processor Utilization under UDP Flood 

Attack 
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As mentioned throughout this paper, memory consumption has consistently shown an overall 

steady-state pattern during each DDoS attack for all operating systems under evaluation. As 

shown in Figure 6.14, a similar data pattern for memory consumption is quite obvious for both 

versions. However, a steady-state value of approximately 1,300 megabytes is shown for 

Windows 10 Core throughout this attack. Dissimilarly, Windows 10 Enterprise and Professional 

memory consumption steady-state values both slightly exceed 1,400 megabytes. Furthermore, 

Windows 8.1 Core shows very similar steady-states memory consumption values in comparison 

with Windows 8.1 Professional. Microsoft Windows 8.1 consumes less memory consumption 

than Windows 10 in all cases. 

 

Figure 6.14: Microsoft Windows Core Versions’ Memory Consumption under UDP Flood 

Attack 
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values are below ten percent. Small fluctuations are sporadic in Windows 8.1 due to gradual 

increase in attack traffic which is not seen in Windows 10. 

 

Figure 6.15: Microsoft Windows Core Versions’ Disk Utilization under UDP Flood Attack 
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Figure 6.16: Microsoft Windows Core Versions’ HTTP Transaction Rates under UDP Flood 

Attack 

 

6.5 Chapter VI Summary 
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7. CHAPTER VII 

 

FURTHER COMPARISON 

 

 

In this chapter, additional comparisons are given to highlight outcomes in previous 

chapters. Additional comparisons include analysis of particular attacks and operating systems 

herein. As shown in Figure 7.1, a clearer indication of a familiar fluctuation is shown in 

Microsoft Windows 8.1 Enterprise. Likewise, Microsoft Windows 8.1 Core spikes to a 

maximum value of 100 percent disk utilization at 900 Mbps then, slightly drops back to 1 Gbps. 

After further research, attack traffic was overloading the victim system’s disk and other 

resources. As a result, overflow traffic offloaded to other processes such as non-recorded 

performance parameters. 

 

Figure 7.1: Microsoft Windows Versions’ Disk Utilization under Smurf Attack
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As shown in Figure 7.2, a similar pattern is shown for all plots of Microsoft Windows 8.1 

under TCP-SYN Flood attack while Enterprise version lasts throughout the entire simulation. As 

an observation, Microsoft Windows Enterprise persists longer than its comparisons due to its 

robust built-in security features. As mentioned in Chapter III, Microsoft Windows Professional 

and Core versions do not include as many features as Enterprise. 

 

Figure 7.2: Microsoft Windows Versions’ HTTP Transaction Rates under TCP-SYN Flood 

Attack 

 

As shown in Figure 7.3, a broader analysis of this experiment is depicted as results and 

conclusions remain mostly consistent across all windows versions in these simulations. 

High disk utilization values under Smurf attack for Microsoft Windows 8.1 Core version while 

all other attacks show minimal values mentioned in further detail in Chapter VIII. 

 

Figure 7.3: Microsoft Windows 8.1 Core Version Disk Utilization under Various DDoS Attacks 
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As shown earlier, high HTTP transaction rates can be seen only during TCP-SYN Flood 

attack for Microsoft Windows 8.1 Enterprise version. Meanwhile, other attacks near zero 

transactions between 300 and 500 Mbps whereas TCP-SYN transactions last until maximum data 

rate. After further investigation, Microsoft Windows 8.1 prioritizes HTTP transaction rates over 

other resources due to preconfigured settings for legitimate traffic. 

 

Figure 7.4: Microsoft Windows 8.1 Enterprise Version HTTP Transaction Rates under DDoS 

Various Attacks 
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Figure 7.5: Microsoft Windows 10 Enterprise Version Overall Processor Utilization under 

Various DDoS Attacks 

 

As shown in Figure 7.6, Ping Flood attack records a high memory consumption value which 

concludes Ping and UDP Flood Attacks are more memory intensive in Microsoft Windows 10 

Professional and Core versions respectively due to PDU requirements.  

 

Figure 7.6: Microsoft Windows 10 Enterprise Version Memory Consumption under Various 

DDoS Attacks 
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8. CHAPTER VIII 

 

 

CONCLUSION 

 

 

Generally, each experiment presents fair indications of interesting findings for DDoS 

attacks mentioned herein. These DDoS attacks serve as threats typically yet, in this case, 

substantial data is observed and evaluated for exposure purposes. DDoS attacks under test herein 

show different outcomes in each simulation. For example, Smurf attack served as the greatest 

threat to the victim system for both operating systems under evaluation. An obvious example is 

disk utilization values for each Windows 8.1 version which reached 100 percent during multiple 

simulations. With further investigation, a process named NT Kernel & System Application 

included this high disk utilization value as shown in Figure 8.1. Furthermore, this process 

handles operations in protocol interfaces to reduce memory consumption [69]. Thus, one 

additional resource was required for Microsoft Windows 8.1 versions while under Smurf attack 

for resource compensation purposes. Obviously, Microsoft fixed this issue for Windows 10 

versions. 

 

Figure 8.1: Microsoft Windows 8.1 Disk Utilization Near 100 Percent under Smurf Attack
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Similarly, Microsoft Windows 8.1 prioritized HTTP transactions instead of disk utilization 

during TCP-SYN Flood attacks because of a preconfigured firewall setting. Furthermore, 

Windows 8.1 requires enabling of a firewall rule before HTTP transaction can be exchanged 

whereas Windows 10 does not require such beforehand. Therefore, this firewall rule favors 

HTTP transactions due to a manual setting opposed to other resources such as OPU. Likewise, 

Microsoft Windows 10 and 8.1 preconfigured setting negatively affected UDP Flood attack in all 

aspects. In Microsoft Windows 8.1 a required setting for legitimate traffic caused the victim 

system significant harm during each simulation under UDP Flood attack. Likewise, Microsoft 

Windows 10 required a similar setting for configuration of UDP Flood attacks resulting in 

nonideal conditions for the victim system. Further research regarding these cases were not found. 

In light of predictions, Microsoft Windows 8.1 versions did not completely exhaust their 

memory and OPU while under Ping Flood attack in this experiment. However, after 600 Mbps of 

attack traffic HTTP transactions did cease as predicted during each Smurf attack in Microsoft 

Windows 8.1. Microsoft Windows 10 output lower OPU, memory consumption, and HTTP 

transaction values than Window 8.1 throughout entire experiment. Additionally, in each 

experiment, Microsoft Windows 10 editions could not withstand high amounts of attack traffic 

causing HTTP transactions rates to diminish quickly. Memory consumption and most disk 

utilization maintained consistent steady-state values throughout all simulations. Thus, DDoS 

attacks simulations herein are shown as processor, and in certain cases, hard disk intensive. 

Overall, all Microsoft Windows 10 version’s results are better than Microsoft Windows 8.1 

version due to high disk utilization in Smurf attack and HTTP transaction rates in TCP-SYN 

Flood attack simulations. Likewise, Microsoft Windows Enterprise versions shows better 

security features than Professional in Figure 7.2. Similarly, Microsoft Windows Professional 
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performs better than Windows Core in Figure 7.2 as well. Smurf and TCP-SYN Flood serve as 

most intense attacks overall which is based on PDU architecture as mentioned in Chapter VII 

[43]. Likewise, UDP Flood and Ping Flood attacks less overall intensive due to PDU 

architectures.
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