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ABSTRACT

Melendez, Esteban J., BALANCED MODULAR PARAMETERIZATIONS. Master of Science (MS),

August, 2014, 25 pages, 1 table, 2 figures, 17 references, 12 titles.

In this thesis, we show that Classical representations for certain modular forms have sym-

metric form. These symmetric formulations are interpreted in terms of more general balanced

homogeneous polynomial representations resulting from a permutative action of Hecke congruence

subgroups on quotients of theta functions. For prime levels between 5 and 19, sets of permuted

theta quotients are constructed that generate the corresponding vector spaces of modular forms of

weight one.
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CHAPTER I

INTRODUCTION

Certain polynomial representations for modular forms demonstrate coefficient symmetry. In

this thesis, we construct polynomial generators for vector spaces of modular forms of small prime

level that parameterize modular forms for congruence subgroups intermediate to PSL(2,Z) in a

symmetric way. The search for precise generators and the study of their properties is motivated by

the numerous areas where modular forms are implicated.

The symmetric forms studied here are exemplified by the Klein polynomials, whose roots en-

code distinguished points of the stereographically projected circumsphere for a regular icosahedron,

are symmetric in absolute value about the middle coefficients

Ke(Λ) = 1+228Λ+494Λ
2−228Λ

3 +Λ
4. (I.1)

Figure 1.1: stereographic projection of icosahedron

The polynomial Ke(Λ) corresponds to representations for Eisenstein series in terms of

two modular parameters of level five. The symmetry results from transformation properties for

1



Eisenstein series and their representations in terms of Klein polynomials are

B20Ke(Λ) = 1+240
∞

∑
n=1

n3qn

1−qn , |q|< 1, (I.2)

A5(q) = q
(q;q)2

∞

(q2,q3;q5)5
∞

, B5(q) =
(q;q)2

∞

(q,q4;q5)5
∞

, Λ = A5/B5, (I.3)

where (a;q)n = ∏
n−1
k=0 1−aqk and (a1,a2, . . . ,ar;q)n = ∏

r
j−1(a j;q)n for n ∈ N∪{∞}.

For small prime levels, these balanced modular parameterizations result from an action

of subgroups of Klein’s automorphism groups for regular polyhedra and their generalizations on

quotients of theta functions. The relevant group actions originate from modular transformation

formulas for vector-valued modular forms.

The coefficient symmetry comes from formulations for the modular forms in terms of special

bases of theta quotients that generate vector spaces of modular forms of weight one on

Γ1(p) =


a b

c d

 ∈ PSL(2,Z) | c≡ 0, a≡ d ≡ 1 (mod p)

 . (I.4)

For each level p, p prime, that we consider, the polynomial ring generators are permuted up to a

change of sign, {±1}, by

Γ0(p) =


a b

c d

 ∈ PSL(2,Z) | c≡ 0 (mod p)

 . (I.5)

A key goal of this thesis is to show that balanced polynomial representations for modular

forms of weight one on Γ0(p) result from nontrivial permutative action on a set of generators for

the vector spaces of modular forms of weight one for Γ1(p) induced by modular transformation

formulas.

In this thesis, we primarily analyze the permuted generators of level five. Proceeding

similarly we can construct sets of permuted generators for each level p on Γ0(p), p= 7,11,13,17,19,

for the vector space of forms on Γ1(p). A set of Γ0(7)-permuted generators for the vector space of

forms on Γ1(7) is

x = q
(q2,q5,q7,q7;q7)∞

(q3,q4;q7)2
∞

, y =−q
(q,q6,q7,q7;q7)∞

(q2,q5;q7)2
∞

, z =
(q3,q4,q7,q7;q7)∞

(q,q6;q7)2
∞

. (I.6)
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A set of Γ0(11)-permuted generators for the vector space of forms on Γ1(11) is

(q4,q7,q11,q11;q11)∞

(q,q10,q2,q9;q11)∞

, q
(q5,q6,q11,q11;q11)∞

(q3,q8,q4,q7;q11)∞

, q2 (q,q
10,q11,q11;q11)∞

(q3,q8,q5,q6;q11)∞

, (I.7)

q
(q3,q8,q11,q11;q11)∞

(q2,q9,q4,q7;q11)∞

, q
(q2,q9,q11,q11;q11)∞

(q5,q6,q,q10;q11)∞

. (I.8)

A set of Γ0(13)-permuted generators for the vector space of forms on Γ1(13) is

(q6,q7,q13,q13;q13)∞

(q,q12,q3,q10;q13)∞

, q
(q5,q8,q13,q13;q13)∞

(q3,q10,q4,q9;q13)∞

, q
(q,q2,q11,q13;q13)∞

(q,q12,q4,q9;q13)∞

, (I.9)

q
(q4,q9,q13,q13;q13)∞

(q2,q11,q5,q8;q13)∞

, q2 (q
3,q10,q13,q13;q13)∞

(q5,q8,q6,q7;q13)∞

, q2 (q,q
12,q13,q13;q13)∞

(q2,q11,q6,q7;q13)∞

. (I.10)

A set of Γ0(17)-permuted generators for the vector space of forms on Γ1(17) is

(q8,q9,q17,q17;q17)∞

(q2,q15,q3,q14;q17)∞

, q
(q5,q12,q17,q17;q17)∞

(q3,q14,q4,q13;q17)∞

, q3 (q,q
16,q17,q17;q17)∞

(q4,q13,q6,q11;q17)∞

, (I.11)

q2 (q
7,q10,q17,q17;q17)∞

(q6,q11,q8,q9;q17)∞

, q3 (q
2,q15,q17,q17;q17)∞

(q5,q12,q8,q9;q17)∞

, q
(q3,q14,q17,q17;q17)∞

(q,q16,q5,q12;q17)∞

, (I.12)

q
(q4,q13,q17,q17;q17)∞

(q,q16,q7,q10;q17)∞

, q
(q6,q11,q17,q17;q17)∞

(q2,q15,q7,q10;q17)∞

. (I.13)

and a set of Γ0(19)-permuted generators for the vector space of forms on Γ1(19) is

(q8,q11,q9,q10,q19,q19;q19)∞

(q3,q16,q4,q15,q5,q14;q19)∞

, q
(q2,q17,q7,q12,q7,q12;q19)∞

(q,q18,q4,q15,q6,q13;q19)∞

, (I.14)

q
(q3,q16,q9,q10,q19,q19;q19)∞

(q,q18,q5,q14,q8,q11;q19)∞

, q
(q4,q15,q7,q12,q19,q19;q19)∞

(q2,q17,q5,q14,q6,q13;q19)∞

, (I.15)

q5 (q,q
18,q3,q16,q19,q19;q19)∞

(q6,q13,q8,q11,q9,q10;q19)∞

, q2 (q
4,q15,q5,q14,q19,q19;q19)∞

(q2,q17,q7,q12,q8,q11;q19)∞

, (I.16)

q2 (q,q
18,q6,q13,q19,q19;q19)∞

(q2,q17,q3,q16,q9,q10;q19)∞

, q2 (q
5,q14,q8,q11,q19,q19;q19)∞

(q4,q15,q7,q12,q9,q10;q19)∞

, (I.17)

q
(q2,q17,q6,q13,q19,q19;q19)∞

(q,q18,q3,q16,q7,q12;q19)∞

. (I.18)

A characteristic aspect of each of sets of permuted generators for levels p,5 ≤ p ≤ 19, is that

any modular form of weight one on a subgroup containing Γ0(p) may be represented as a linear

function with a certain coefficient symmetry. The coefficient symmetry is induced by transformation

formulas satisfied by the generators. To describe the symmetry displayed in formulations of modular
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forms in terms of the above parameters of level p, let γ ∈ PSL(2,Z) act on the upper half plane, and

define the slash operator on a modular form f of weight k on Γ1(p) [[4], pg.108] by

|γ ( f ) = (γ21τ + γ22)
−k f (γτ), γ =

 γ11 γ12

γ21 γ22

 ∈ PSL(2,Z). (I.19)

Theorem I.1. The generators for Γ1(p) from (I.3)–(I.18) are permuted up to change of sign by

Γ0(p) under action by the slash operator, with permutation representation (Z/pZ)∗/{±1}.

The generators appearing here originate from Eisenstein series, modular on Γ0(p) with

Dirichlet character χ modulo p, defined for general weight k by

Ek,χ(τ) = 1+
2

L(1− k,χ)

∞

∑
n=1

χ(n)
nk−1qn

1−qn , q = e2πiτ , (I.20)

where L(1− k,χ) is the analytic continuation of the associated Dirichlet L-series and χ(−1) =

(−1)k. Underlying the symmetric parameterizations of this paper is a useful new link between theta

functions and Eisenstein series.

Theorem I.2. For primes 5≤ p≤ 19, the action by Γ0(p) by (I.19) generates a linearly independent

set of functions xi(τ), 1≤ i≤ (p−1)/2 over C generating the vector space of modular forms of

weight one for Γ1(p). These generators are permuted up to change of sign by Γ0(p) with permutation

representation (Z/pZ)∗/{±1}.

We can now summarize the content of the rest of this thesis. The goal for Chapter II is to

elaborate precise forms for parameters appearing in Theorems I.1–I.2. These constructions will be

accomplished through elementary elliptic function theory. Sections 2.1- 2.2 draw from the theory

of elliptic modular forms to show that the preceding theta quotients generate the vector space of

modular forms of weight one for each level. We also give explicit constructions for the vector space

of modular forms on Γ1(p) in terms of theta quotients. In Chapter III, we conclude our work by

summerizing the main results of this research.
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CHAPTER II

ELLIPTIC FUNCTIONS

In this Chapter we will introduce requisite knowledge of elliptic modular form theory.

2.1 Elliptic Modular Preliminaries

A lattice [8] is a subgroup which is free over Z which generates C over R with dimension 2.

Let L be a lattice in C by which we mean the set of all integral linear combinations of two given

complex numbers w1 and w2, where w1,w2 do not lie on the same line through the origin. The

fundamental parallelogram [7, 8] for w1,w2 is defined as

Ω = {α +aw1 +bw2|α ∈ C, 0≤ a,b≤ 1}.

Figure 2.1: Ω-Parallelogram
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If w1,w2 are basis for the lattice L over Z, then L = [w1,w2] for Im(w1/w2) > 0, where

w1/w2 lies on H,defined by H= {x+ iy|y > 0}. An Elliptic function is a meromorphic function

f (z) : C→ C∪{∞} on C that satisfies

f (z+w) = f (z). (II.1)

for all z ∈ C and all w ∈ L.

Theorem II.1. The sum of residues of an elliptic function on its period parallelogram is zero [5].

Proof. Let f be an elliptic function. Then, f is a doubly periodic function. Since f is an elliptic

function, then the poles of f are isolated so we can take an α ∈ C so that f is regular (holomorphic)

on the boundary ∂Ωα of the period parallelogram Ωα . Then, at each point x ∈ C

∑
x∈Ωα

resx f =
1

2πi

∫
∂Ωα

f (z)dz

=
1

2πi

(∫
α+w2

α

f (z)dz+
∫

α+w1+w2

α+w2

f (z)dz+
∫

α+w1

α+w1+w2

f (z)dz+
∫

α

α+w1

f (z)dz
)

=
1

2πi

([∫
α+w2

α

f (z)dz+
∫

α+w1

α+w1+w2

f (z)dz
]
+

[∫
α+w1+w2

α+w2

f (z)dz+
∫

α

α+w1

f (z)dz
])

=
1

2πi

([∫
α+w2

α

f (z)− f (z+w1)dz
]
+

[∫
α+w1

α

f (z+w2)− f (z)dz
])

= 0

by using periodicity of the function f on the period parallelogram and a change of variable.

For each prime p, the linearly independent Eisenstein series of weight k = 1 and primitive

character χ generate a subspace of modular forms of weight one for Γ1(p) called the Eisenstein

subspace [4],[Theorem 4.8.1]. Let Mk(Γ) denote the vector space of weight k modular forms for

Γ⊆ PSL(2,Z). For each prime p with 5≤ p≤ 19, [2, 11]

dim(M1(Γ1(p))) =
p−1

2
. (II.2)

Thus, the Eisenstein subspace forms a basis for M1(Γ1(p)) over C. To develop the change of

bases from Eisenstein series to the permuted bases of products, from (I.3)–(I.18), we will need to
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construct representations for sums of Eisenstein series in terms of the Dedekind eta function, in

Theorem II.3, η(τ) = q1/24(q;q)∞, a weight 1/2 modular form for SL(2,Z) with multiplier given

explicitly by [6, p.51]. The following will be important ingredients for our work. We first define the

Jacobi theta function

θ1(z | q) =−iq1/8
∞

∑
n=−∞

(−1)nqn(n+1)/2e(2n+1)iz, (II.3)

an odd function of z with a simple zero at the origin such that [12, p. 489]

θ ′1
θ1

(z | q) = cotz+4
∞

∑
n=1

qn

1−qn sin2nz (II.4)

= i−2i
∞

∑
n=1

qne2iz

1−qne2iz +2i
∞

∑
n=0

qne−2iz

1−qne−2iz . (II.5)

The following equations are required for results on II.59–II.63

θ1(z+nπ) = (−1)n
θ1(z | q), θ1(z+nπτ | q) = (−1)nq−n2/2e−2inz

θ1(z | q). (II.6)

The product representations it is being derived from the Jacobi Triple Product expansion given by

[12]

θ1(z | q) =−iq1/8eiz(q;q)∞(qe2iz;q)∞(e−2iz;q)∞. (II.7)

The derivative of the Jacobi theta function (II.7) at the origin , is

θ
′
1(q) := lim

z→0

θ1(z | q)
z

= 2q1/8(q;q)3
∞. (II.8)

In order to characterize the action by Γ0(p) on the generating theta quotients, we will be

applying transformations formulas for special values of the Jacobi theta function (II.3) in the form

of those for theta constants of odd order k and index `, defined by [5]

ϕk,`(τ) = θ

 2`−1
k

1

(0,kτ), 1≤ `≤ k−1
2

, (II.9)

constructed, in turn, from theta constants of characteristic [ε,ε ′] ∈ R2

θ

 ε

ε ′

(z,τ) = ∑
n∈Z

exp2πi
{

1
2

(
n+

ε

2

)2
τ +
(

n+
ε

2

)(
z+

ε ′

2

)}
. (II.10)
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Theorem II.2. [5, pp. 215-219] For odd positive integers k ≥ 3, The Vk is a vector-valued form of

weight 1/2 on PSL(2,Z) let

Vk(τ) =

θ

 (k−2)/k

1

(kτ),θ

 (k−4)/k

1

(kτ), . . . ,θ

 1/k

1

(kτ)


T

. (II.11)

inducing a representation

πk : PSL(2,Z)→ PGL((k−1)/2,C)

which is determined by the images of generators for SL(2,Z),

S =

0 −1

1 0

 , T =

1 1

0 1



VN(T τ) = VN(τ +1) = πN(T )VN(τ), VN(Sτ) = VN(−1/τ) = τ
1/2

πN(S)VN(τ),

where the matrices πN(S) and πN(T ) have (`, j)th entry, for 1≤ `, j ≤ (N−1)/2,

{πN(T )}(`, j) =


exp
(
(N−2`)2πi

4N )
)
, `= j,

0, else,
(II.12)

{πN(S)}(`, j) =

(
1+ e

(2 j−N)(N−2`)
k πi

)
exp
(
( j(−2N+4`+2)+N2−2(N+1)`)

2N πi
)

√
iN

. (II.13)

2.2 Eisenstein Expansions and Permutation Representations

The main objective of this section is to prove claims made in Chapter I for generators of the

vector space of modular forms on Γ1(p). We construct the generators and analyze the permutative

action by Γ0(p). In Theorem II.3, product expansions are constructed for the normalized sums

of weight one Eisenstein series twisted by the odd primitive Dirichlet characters modulo p. By

determining the Γ0(p)-orbit of the Eisenstein sums under modular transformation, we construct

in Theorems II.4 and II.5, bases for the weight one forms on Γ1(p) and precisely characterize the
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permutative action by Γ0(p). Theorem II.6 shows that the Eisenstein bases from Theorem II.4 can

be written as quotients of theta functions. We subsequently show that the image of each of these

sums under the Γ0(p)-action by the slash operator results in a set of (p−1)/2 quotients generating

the vector space of weight one modular forms for Γ1(p). The resulting generators are shown to be

permuted by Γ0(p).

Theorem II.3. Define Eχ,k(τ) as in (I.20). For each prime 5≤ p≤ 19, let

Ep(τ) =
2

p−1 ∑
χ(−1)=−1

E1,χ(τ), (II.14)

where the sum is over the odd primitive Dirichlet characters modulo p. Then

E5(τ) =
(q;q)2

∞

(q,q4;q5)5
∞

, E7(τ) =
(q3,q4,q7,q7;q7)∞

(q,q6;q7)2
∞

, (II.15)

E11(τ) =
(q4,q7,q11,q11;q11)∞

(q,q10,q2,q9;q11)∞

, E13(τ) =
(q6,q7,q13,q13;q13)∞

(q,q12,q3,q10;q13)∞

, (II.16)

E17(τ) =
(q8,q9,q17,q17;q17)∞

(q2,q15,q3,q14;q17)∞

, E19(τ) =
(q8,q11,q9,q10,q19,q19;q19)∞

(q3,q16,q4,q15,q5,q14;q19)∞

. (II.17)

Proof. To prove each one of them, we use Theorem III.1, that the sum of the residues of an elliptic

function on its period parallelogram is zero. We begin by proving the equation involving E5(τ)

from (II.15). Let

f5(z) =
e−2izθ 3

1 (z−πτ | q5)

θ 2
1 (z | q5)θ1(z+2πτ | q5)

. (II.18)

Apply (II.6) to verify that f5(z) is an elliptic function with periods π and 5πτ . By using

properties of the Jacobi theta function, we observe that f5(z) has a simple pole at z =−2πτ and a
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double pole at z = 0. The residue of f5(z) at z =−2πτ is :

lim
z→−2πτ

(z+2πτ) f5(z) = lim
z→−2πτ

(z+2πτ)

θ1(z+2πτ | q5)
lim

z→−2πτ

e−2izθ 3
1 (z−πτ | q5)

θ 2
1 (z | q5)

. (II.19)

= lim
z→−2πτ

0
θ1(0 | q5)

·
e4iπτθ 3

1 ((−3πτ | q5)

θ 2
1 (−2πτ | q5)

(II.20)

For the first limit we must use L’Hopital rule and (III.8). Then, we obtain (II.21)

= lim
z→−2πτ

(z+2πτ)′

θ1(z+2πτ | q5)′
·

e4iπτθ 3
1 ((−3πτ | q5)

θ 2
1 (−2πτ | q5)

(II.22)

=
q2θ 3

1 (−3πτ | q5)

2q5/8(q5;q5)3
∞θ 2

1 (−2πτ | q5)
. (II.23)

Now, we use the Jacobi Theta Product expansion and simplify

lim
z→−2πτ

(z+2πτ) f5(z) =
q2θ 3

1 (−3πτ | q5)

2q5/8(q5;q5)3
∞θ 2

1 (−2πτ | q5)
(II.24)

=
q2(−iq5/8ei(−3πτ)(q5;q5)∞

2q5/8(q5;q5)3
∞(−iq5/8ei(−2πτ)(q5;q5)∞

× (q5e2i(−3πτ);q5)∞(e−2i(−3πτ);q5)∞)
3

(q5e2i(−2πτ);q5)∞(e−2i(−2πτ);q5)∞)2
(II.25)

=
q2iq15/8q−9/2(q5;q5)3

∞(q
5q−3;q5)3

∞(q
3;q5)3

∞

2q5/8(q5;q5)3
∞i2q10/8q−2(q5;q5)2

∞(q5q−2;q5)2
∞(q2;q5)2

∞

(II.26)

=
q−5/8(q5;q5)3

∞(q
2;q5)3

∞(q
3;q5)3

∞

2iq−1/8(q5;q5)3
∞(q5;q5)2

∞(q3;q5)2
∞(q2;q5)2

∞

(II.27)

=
(q2;q5)∞(q3;q5)∞

2iq1/2(q5;q5)2
∞

(II.28)

The residue of f5(z) at z = 0 is

lim
z→0

(z2 f5(z))′ = 2z f5(z)+ z2 f ′5(z) (II.29)

= lim
z→0

z2
(2z

z2 f5(z)+ f ′5(z)
)

(II.30)

= lim
z→0

(
z2 f (z)

)(2
z
+

f ′5(z)
f5(z)

)
(II.31)

=

(
lim
z→0

z2

θ 2
1 (z | q5)

)(
lim
z→0

e−2izθ 3
1 (z−πτ | q5)

(z+2πτ | q5)

)(
lim
z→0

2
z
+

f ′5(z)
f5(z)

)
(II.32)

=
−1

(2q5/8(q5;q5)3
∞)

2
·

θ 3
1 (πτ | q5)

(2πτ | q5)

(
lim
z→0

2
z
+

f ′5(z)
f5(z)

)
(II.33)
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=
−(−iq5/8ei(πτ)(q5;q5)∞(q5e2i(πτ);q5)∞(e−2i(πτ);q5)∞)

3

4q10/8(q5;q5)6
∞(−iq5/8ei(2πτ)(q5;q5)∞(q5e2i(2πτ);q5)∞(e−2i(2πτ);q5)∞)

×
(

lim
z→0

2
z
+

f ′5(z)
f5(z)

)
(II.34)

=
−iq27/8(q5;q5)3

∞(q
6;q5)3

∞(q
−1;q5)3

∞

−4iq23/8(q5;q5)7
∞(q7;q5)∞(q−2;q5)∞

(
lim
z→0

2
z
+

f ′5(z)
f5(z)

)
(II.35)

=
−iq27/8(q5;q5)3

∞(1−q)3(q;q5)3
∞(1−q−1)3(q4;q5)3

∞

−4iq23/8(q5;q5)7
∞(1−q2)(q2;q5)∞(1−q−2)(q3;q5)∞

(
lim
z→0

2
z
+

f ′5(z)
f5(z)

)
(II.36)

=
−(q;q5)3

∞(q
4;q5)3

∞

4q1/2(q5;q5)4
∞(q2;q5)∞(q3;q5)∞

(
lim
z→0

2
z
+

f ′5(z)
f5(z)

)
(II.37)

(II.38)

Since the sum of the residues of f5(z) by Theorem II.1 is zero, we get the following:

2i
(q2,q3,q5;q5)2

∞

(q,q4,q5;q5)3
∞

(q5;q5)3
∞ = lim

z→0

2
z
+

f ′5(z)
f5(z)

. (II.39)

By applying identities (II.4)-(II.5), and the Laurent expansion for cotz, we derive

lim
z→0

2
z
+

f ′5(z)
f5(z)

= lim
z→0

(
2
z
−2

θ ′1
θ1

(z | q5)

)
−2i−3

θ ′1
θ1

(πτ | q5)−
θ ′1
θ1

(2πτ | q5) (II.40)

=−2i−3
θ ′1
θ1

(πτ | q5)−
θ ′1
θ1

(2πτ | q5) (II.41)

=−2i+6i
∞

∑
n=1

q5n+1

1−q5n+1 −6i
∞

∑
n=1

q5n−1

1−q5n−1 +2i
∞

∑
n=1

q5n+2

1−q5n+2 −2i
∞

∑
n=1

q5n−2

1−q5n−2

−4i−6i
(

q−1

1−q−1

)
−2i

(
q−2

1−q−2

)
(II.42)

Notice that:

−4i−6i
(

q−1

1−q−1

)
−2i

(
q−2

1−q−2

)
=−4i−6i

( 1
q

q−1
q

)
−2i

 1
q2

q2−1
q2

 (II.43)

=−4i+6i
(

1
1−q

)
+2i

(
1

1−q2

)
(II.44)

=−4i+6i
(

q
1−q

)
+2i

(
q2

1−q2

)
(II.45)

(II.46)
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Therefore,

lim
z→0

2
z
+

f ′5(z)
f5(z)

= 2i+
∞

∑
n=1

cnqn

1−qn , (II.47)

where, from (II.5), {cn}∞
n=1 is a periodic sequence modulo five such that

c1 = 6i, c2 = 2i, c3 =−2i, c4 =−6i, c5 = 0. (II.48)

If we denote the two odd primitive Dirichlet characters modulo five by

〈χ2,5(n)〉4n=0 = 〈0,1, i,−i,−1〉, 〈χ4,5(n)〉4n=0 = 〈0,1,−i, i,−1〉, (II.49)

then, since for χ non-principal modulo p, we may write [4, pp.136−137],

L(χ,0) =
p−1

∑
n=0

χ(n)
(

1
2
− n

p

)
, (II.50)

it follows from (II.49) and (II.50) that

cn =
2iχ2,5(n)
L(χ2,5,0)

+
2iχ4,5(n)
L(χ4,5,0)

(II.51)

Therefore, from (II.75) and identities (II.47), (II.51), and (I.20),

lim
z→0

2
z
+

f ′5(z)
f5(z)

= 2i+
∞

∑
n=1

cnqn

1−qn (II.52)

= 2i+
∞

∑
n=1

(
2iχ2,5(n)
L(χ2,5,0)

+
2iχ4,5(n)
L(χ4,5,0)

)qn

1−qn (II.53)

= 2i+2i
∞

∑
n=1

(
χ2,5(n)

L(χ2,5,0)
+

χ4,5(n)
L(χ4,5,0)

)
· qn

1−qn (II.54)

= 2i

(
1+

∞

∑
n=1

(
χ2,5(n)

L(χ2,5,0)
+

χ4,5(n)
L(χ4,5,0)

) · qn

1−qn

)
(II.55)

= 2i

(
1+

(
∞

∑
n=1

χ2,5(n)
L(χ2,5,0)

· qn

1−qn +
∞

∑
n=1

χ4,5(n)
L(χ4,5,0)

· qn

1−qn

))
(II.56)

= 2i

((
1
2
+

∞

∑
n=1

χ2,5(n)
L(χ2,5,0)

· qn

1−qn

)
+

(
1
2
+

∞

∑
n=1

χ4,5(n)
L(χ4,5,0)

· qn

1−qn

))
(II.57)

= 2iE5(q). (II.58)
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This completes the proof for E5(q) equation of (II.15). A construction of E7(q) equation of (II.15)

from (II.59) may be derived from [9,Eq.(3.23)]. For the next levels 7 ≤ p ≤ 19, the product

expansions for the Eisenstein sums Ep(τ) mentioned before may be obtained by applying the

residue theorem with the elliptic functions fp(z) of period π, pπτ , defined by

f7(z) = e2iz θ 2
1 (z+πτ | q7)θ1(z+2πτ | q7)

θ 2
1 (z | q7)θ1(z−3πτ | q7)

, (II.59)

f11(z) = e−2iz θ1(z−2πτ | q11)θ1(z−3πτ | q11)θ1(z−5πτ | q11)

θ 2
1 (z | q11)θ1(z+πτ | q11)

, (II.60)

f13(z) = e−2iz θ1(z−3πτ | q13)θ1(z−4πτ | q13)θ1(z−5πτ | q13)

θ 2
1 (z | q13)θ1(z+πτ | q13)

, (II.61)

f17(z) = e−2iz θ1(z−3πτ | q17)θ1(z−5πτ | q17)θ1(z−7πτ | q17)

θ 2
1 (z | q17)θ1(z+2πτ | q17)

, (II.62)

f19(z) = e−2iz θ1(z−4πτ | q19)θ1(z−5πτ | q19)θ1(z−7πτ | q19)

θ 2
1 (z | q19)θ1(z+3πτ | q19)

, (II.63)

These can be shown to be periodic, with periods π and pπτ , by applying (II.6) Now we let Γ0(p)

act on the series Ep(τ) to obtain a change of basis for each level p from the Eisenstein basis for

M1(Γ1(p)) to a corresponding basis of products.

For the bases constructed below, we require that the first nonzero coefficient in the q-

expansion of the image of Ep(τ) under the slash operator to be 1. Since this action depends only on

the lower right entry of γ ∈ Γ0(p), we list only this element in the following results, and denote the

operator of

|γ= 〈γ22〉 (II.64)

Theorem II.4. Define 〈·〉 by (II.64) and define Ep by (II.75). For prime 5 ≤ p ≤ 19, and a set of

distinct elements {ak,p}
(p−1)/2
k=1 ⊂ (Z/pZ)∗/{±1}, there exists a basis decomposition

M1 (Γ1(p)) =
(p−1)/2⊕

k=1

C〈ak,p〉(Ep). (II.65)

Moreover, if the constants ak,p are as follows, the basis elements 〈ak,p〉(Ep) of (II.65) are normalized

so that the first nonzero coefficient in their q-expansion is 1:

(ak,5)
2
k=1 = (1,2), (ak,7)

3
k=1 = (1,2,3), (ak,11)

5
k=1 = (1,2,3,5,7),
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(ak,13)
6
k=1 = (1,2,3,4,5,7), (ak,17)

8
k=1 = (1,2,3,5,7,8,11,13),

(ak,19)
9
k=1 = (1,2,3,4,5,7,9,11,13).

Proof. The orthogonality of the Dirichlet characters modulo p may be used to derive

∑
χ(−1)=−1

χ(a)χ(b) =


±ϕ(p)/2, a≡±b (mod p),

0, a 6≡ ±b (mod p),
(II.66)

Therefore, if {ak,p}
(p−1)/2
k=1 = (Z/pZ)∗/{±1} and {χ2s}

(p−1)/2
s=1 are odd, the rows of

(B)k,s = χ2s(ak,p), 1≤ k,s≤ (p−1)/2, (II.67)

are orthogonal under the standard Hermitian inner product. Since an orthogonal set of vectors is

linearly independent, the matrix B is an invertible linear transformation corresponding to the change

of basis for M1 (Γ1(p))

B
(

E1,χ2(τ), . . . ,E1,χ2p(τ)
)T

=
(
〈a1,p〉(Ep), . . . ,〈a(p−1)/2,p〉(Ep)

)T
. (II.68)

The normalization claims of Theorem II.4 may be verified from q-expansions for the linear combi-

nation of Eisenstein series defining each basis element in the image.

Theorem II.5. The basis elements from (II.65) are permuted up to a change of sign by Γ0(p) under

〈·〉, with permutation representation isomorphic to (Z/pZ)∗/{±1}.

Proof. Let δ : Γ0(p)→ (Z/pZ)∗ be defined by

δ

a b

c d

= d(mod p) (II.69)

and κ : (Z/pZ)∗→ PGL
(

p−1
2 ,C

)
be defined by

δ (d) = diag(χ2(d),χ4(d), · · · ,χ2s(d)). (II.70)

Since δ is an onto homomorphism from Γ0(p) to (Z/pZ)∗,

δ (Γ0(p)) = (Z/pZ)∗. (II.71)
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Since the kernel of κ ∈ (Z/pZ)∗ is {±1}, we get, using the first isomorphism theorem,

κ ◦δ (Γ0(p)) = δ (Γ0(p))/Kerκ = (Z/pZ)∗/{±1}. (II.72)

If we identify scalar multiples of modular forms, then the slash operator defines a group action

Γ0(p).X on a set of generators for the vector space of weight one modular forms on Γ1(p)

X = M1(Γ1(p))

To determine the permutation representations for this group action, we note that each generator

given in theorem II.4 for M1(Γ1(p)) is uniquely representable as a linear combination of Eisenstein

series E1,χ(τ) of weight one for Γ0(p) twisted by an odd Dirichlet character χ . The Eisenstein

series transform under Γ0(p) according to

E1,χ(γτ) = χ(d)(cτ +d)E1,χ(τ), γ =

a b

c d

 . (II.73)

Therefore, a linear combination of the Eisenstein series transforms according to

〈γ〉

 p−1
2

∑
s=1

csE1,χ2s(γ,τ)

=

p−1
2

∑
s=1

csχ2s(d)E1,χ2s(γ,τ). (II.74)

Since one of the generators for M1(Γ1(p)) is

Ep(τ) =
2

p−1 ∑
χ(−1)=−1

E1,χ(τ), (II.75)

we see that the orbit of Ep(τ) under the action of Γ0(p) on X = M1(Γ1(p)) is 2
p−1

p−1
2

∑
s=1

χ2s(d)E1,χ2s(γ,τ)|d ∈ (Z/pZ)∗
 .

Hence, a group representation for the permutation of X by Γ0(p) is given by the image of

κ ◦δ : Γ0(p)→ PGL
(

p−1
2

,C
)
. (II.76)

Since we have proven above that

κ ◦δ (Γ0(p)) = (Z/pZ)∗/{±1}, (II.77)
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the permutation representation for the action of Γ0(p) on X is

(Z/pZ)∗/{±1}. (II.78)

In other words, the action of Γ0(p) under the slash operator permutes the given generators for

M1(Γ1(p)) with permutation representation

(Z/pZ)∗/{±1}. (II.79)

The proof of Theorem II.5 implies that the action of d ∈ (Z/pZ)∗ on Ep satisfies

〈d〉〈ak,p〉(Ep) = 〈d ·ak,p〉(Ep) =±〈a′k,p〉(Ep), ±d ·ak,p ≡ a′k,p ∈ {ak,p}
(p−1)/2
k=1 . (II.80)

A basis for M1(Γ1(7)) is 〈1〉E7(τ),〈2〉E7(τ),〈3〉E7(τ). This basis is permuted up to a change of

sign by Γ0(7). An example is given below.

Example (II.6), Take a2,7 from Theorem II.4 and let d = 2. Then,

〈d〉〈2〉E7(τ) = 〈d〉(〈2〉E7(τ)) (II.81)

= 〈d〉
(

2
7−1

χ2,7(2)Eχ2,7(τ)+
2

7−1
χ4,7(2)Eχ4,7(τ)+

2
7−1

χ6,7(2)Eχ6,7(τ)

)
(II.82)

= 〈d〉
(

1
3

χ2,7(2)Eχ2,7(τ)+
1
3

χ4,7(2)Eχ4,7(τ)+
1
3

χ6,7(2)Eχ6,7(τ)

)
(II.83)

=

(
1
3

χ2,7(2)χ2,7(d)Eχ2,7(τ)+
1
3

χ4,7(2)χ4,7(d)Eχ4,7(τ)+
1
3

χ6,7(2)χ6,7(d)Eχ6,7(τ)

)
(II.84)

=

(
1
3

χ2,7(4)Eχ2,7(τ)+
1
3

χ4,7(4)Eχ4,7(τ)+
1
3

χ6,7(4)Eχ6,7(τ)

)
(II.85)

=

(
1
3

χ2,7(−3)Eχ2,7(τ)+
1
3

χ4,7(−3)Eχ4,7(τ)+
1
3

χ6,7(−3)Eχ6,7(τ)

)
(II.86)

=
(1

3
χ2,7(−1)χ2,7(3)Eχ2,7(τ)+

1
3

χ4,7(−1)χ4,7(3)Eχ4,7(τ)

+
1
3

χ6,7(−1)χ6,7(3)Eχ6,7(τ)
)

(II.87)

=

(
−1

3
χ2,7(3)Eχ2,7(τ)−

1
3

χ4,7(3)Eχ4,7(τ)−
1
3

χ6,7(3)Eχ6,7(τ)

)
(II.88)

=−
(

2
7−1

χ2,7(3)Eχ2,7(τ)+
2

7−1
χ4,7(3)Eχ4,7(τ)+

2
7−1

χ6,7(3)Eχ6,7(τ)

)
(II.89)

=−〈3〉E7(τ). (II.90)
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Thus, 〈d〉〈2〉E7(τ) =−〈3〉E7(τ).

We now show that the normalized Eisenstein sums from Theorem II.4 are synonymous with

the products (I.3)–(I.18) from the Introduction. To prove this, we show that each basis element of

level p for M1 (Γ1(p)) from Theorem II.4 is representable as a quotient of modified theta constants

with Jacobi triple product representation [5, p. 141]

θ

[
m/n

1

]
(nτ) = exp

(
πim
2n

)
qm2/(8n)(q(n−m)/2;qn)∞(q(n+m)/2;qn)∞(qn;qn)∞. (II.91)

We derive each theta quotient by writing the product formulations of Theorem II.3 in terms of

modified theta constants and applying transformations for the theta constants.

Theorem II.6. Define ϕ`,k by (II.9), and, for [b1, . . . ,b(p−1)/2] ∈ Z(p−1)/2, denote

Tp[b1, . . . ,b(p−1)/2](τ) = η
3(pτ)

(p−1)/2

∏
`=1

exp
(
−πib`(2−1)

2p

)
ϕ

b`
p,`(τ). (II.92)

The bases for M1(Γ1(p)) from Theorem II.4 have the theta quotient representations:

Level, p Basis for M1(Γ1(p))

5 〈1〉(E5) = T5[2,−3], 〈2〉(E5) = T5[−3,2]

7 〈1〉(E7) = T7[1,0,−2], 〈2〉(E7) = T7[−2,1,0], 〈3〉(E7) = T7[0,−2,1]

11 〈1〉(E11) = T11[0,1,0,−1,−1], 〈2〉(E11) = T11[−1,0,0,1,−1]

〈3〉(E11) = T11[1,−1,−1,0,0], 〈5〉(E11) = T11[0,−1,1,−1,0]

〈7〉(E11) = T11[−1,0,−1,0,1]

13 〈1〉(E13) = T13[1,0,0,−1,0,−1], 〈2〉(E13) = T13[−1,−1,0,1,0,0],

〈3〉(E13) = T13[0,0,−1,0,1,−1], 〈4〉(E13) = T11[0,1,−1,−1,0,0],

〈5〉(E13) = T13[0,−1,1,0,−1,0], 〈7〉(E13) = T13[−1,0,0,0,−1,1]

17 〈1〉(E17) = T17[1,0,0,0,0,−1,−1,0],

〈2〉(E17) = T17[0,−1,0,0,1,0,0,−1],

〈3〉(E17) = T17[0,0,0,−1,0,1,0,−1],

〈5〉(E17) = T17[0,0,0,1,−1,−1,0,0],
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〈7〉(E17) = T17[0,−1,1,0,0,0,−1,0],

〈8〉(E17) = T17[0,0,−1,0,−1,0,0,1]

〈11〉(E17) = T17[−1,1,−1,0,0,0,0,0],

〈13〉(E17) = T17[−1,0,0,−1,0,0,1,0],

19 〈1〉(E19) = T19[1,1,0,0,−1,−1,−1,0,0],

〈2〉(E19) = T19[0,−1,−1,0,1,1,0,−1,0],

〈3〉(E19) = T19[1,−1,0,0,−1,0,1,0,−1],

〈4〉(E19) = T19[0,0,1,−1,0,−1,0,1,−1],

〈5〉(E19) = T19[0,0,−1,1,0,0,−1,1,−1],

〈7〉(E19) = T19[0,0,1,−1,−1,1,0,−1,0]

〈9〉(E19) = T19[−1,−1,0,−1,0,0,1,0,1],

〈11〉(E19) = T19[−1,0,0,1,0,0,−1,−1,1]

〈13〉(E19) = T19[−1,1,−1,0,1,−1,0,0,0]

Table 2.1: bases for M1(Γ1(p))

Proof. The theta quotient representations for Ep(τ) = 〈1〉(Ep)(τ) may be deduced from the product

representations proved in Theorem II.4. Transformation formula for these theta quotients under

Γ0(p), in turn, may be deduced from corresponding modular transformation formulas for η(τ)

from [6, p.51] and those for vectors of modified theta constants VN(τ), defined by (II.11), under

generators for the full modular group from Theorem II.2. For each prime p, we may deduce

the product representations for each normalized Eisenstein sum 〈ak,p〉(Ep) from the modular

transformation formulas for these building blocks. We illustrate the general procedure with p = 5.

From Theorem II.3 and (II.91),

〈1〉(E5) =
(q;q)2

∞

(q,q4;q5)5
∞

= η
3(5τ)

e−2πi/10ϕ2
5,1(τ)

e−9πi/10ϕ3
5,2(τ)

= T5[2,−3](τ). (II.93)
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A set of generators for Γ0(5) is given by [10]

T =

1 1

0 1

 , α =

2 −1

5 −2

 , β =

3 −2

5 −3

 . (II.94)

We now employ transformation formulas up to a constant multiple for the weight 1/2 vector

of modified theta constants [ϕ5,2,ϕ5,1]
tr. We begin with parameterizations for the generators of

Γ0(5) in terms of those for the full modular group

α = T ST 2ST 3S, β = T ST 3ST 2S. (II.95)

Up to a constant multiple, transformation matrices for the vectors of modified theta constants may be

computed from their images in PGL((p−1)/2,C) via the representation πp given in (II.12)–(II.13)

π5(T ) =

e
9πi
20 0

0 e
πi
20

 , π5(α) =

 0 e
πi
20

−e
9πi
20 0

 , π5(β ) =

 0 e
πi
4

−e
πi
4 0

 . (II.96)

Hence, by (II.93), and the modular transformation formula for η(τ), we deduce that up to a constant

multiple, C,

〈2〉(E5) = (5τ−3)−1T5[2,−3](βτ) (II.97)

= (5τ−3)−1
η

3(5βτ)
2

∏
`=1

exp
(
−πib`(2−1)

2(5)

)
ϕ

b`
5,`(βτ) (II.98)

= (5τ−3)−1
η

3(5βτ)

[
exp
(
−πib1(2−1)

2(5)

)
ϕ

b1
5,1(βτ) · exp

(
−πib2(2−1)

2(5)

)
ϕ

b2
5,2(βτ)

]
(II.99)

= (5τ−3)−1
η

3(5βτ)

[
e
(
− πi(2)

10

)
ϕ

2
5,1(βτ) · e

(
− πi(−3)

10

)
ϕ
−3
5,2 (βτ)

]
(II.100)

= (5τ−3)−1
η

3(5βτ)

[
e(

3πi
10 )

e(
2πi
10 )
·

ϕ2
5,1(βτ)

ϕ3
5,2(βτ)

]
(II.101)
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From (II.96) we note that, up to a constant multiple, the transformation corresponding to β is

π5(β ) ·

θ

[ 3
5
1

]
(5τ)

θ

[ 1
5
1

]
(5τ)

=

 0 e
πi
4

−e
πi
4 0

 ·
θ

[ 3
5
1

]
(5τ)

θ

[ 1
5
1

]
(5τ)

 (II.102)

=

 e
πi
4 θ

[ 1
5
1

]
(5τ)

−e
πi
4 θ

[ 3
5
1

]
(5τ).

 . (II.103)

Therefore, up to a constant multiple, ϕ5,1 is sent to ϕ5,2 under β and vice versa. By applying the

modular transformation, including that for η(τ), we derive

〈2〉(E5) = (5τ−3)−1
η

3(5τ)

e(
3πi
10 )

e(
2πi
10 )
·

(
−e

πi
4 ϕ5,2(τ)

)2

(
e

πi
4 ϕ5,1(τ)

)3

 (II.104)

=Cη
3(5τ)

ϕ2
5,2(τ)

ϕ3
5,1(τ)

(II.105)

=C
e6πi/10

e3πi/10 q+O(q2). (II.106)

On the other hand, from transformation formulas satisfied by Eχ2,5,1(τ) and Eχ4,5,1(τ) from (II.49)

and (II.73),

〈2〉(E5) = E5(βτ) =
χ2,5(2)

2
Eχ2,5,1(τ)+

χ4,5(2)
2

Eχ4,5,1(τ) (II.107)

=
χ2,5(2)

2

(
1+

2
L(0,χ2,5)

∞

∑
n=1

χ2,5(n)qn

1−qn

)
+

χ4,5(2)
2

(
1+

2
L(0,χ4,5)

∞

∑
n=1

χ4,5(n)qn

1−qn

)
(II.108)

=

(
χ2,5(2)

2
+

2χ2,5(2)
2L(0,χ2,5)

∞

∑
n=1

χ2,5(n)qn

1−qn

)
+

(
χ4,5(2)

2
+

2χ4,5(2)
2L(0,χ4,5)

∞

∑
n=1

χ4,5(n)qn

1−qn

)
(II.109)

=

(
i
2
+

i
L(0,χ2,5)

∞

∑
n=1

χ2,5(n)qn

1−qn

)
+

(
(−i)

2
+

(−i)
L(0,χ4,5)

∞

∑
n=1

χ4,5(n)qn

1−qn

)
(II.110)

=
i

L(0,χ2,5)

∞

∑
n=1

(
∑
d|n

χ2,5(d)

)
qn +

(−i)
L(0,χ4,5)

∞

∑
n=1

(
∑
d|n

χ4,5(d)

)
qn (II.111)

= q+O(q2). (II.112)
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Therefore, C = e−3πi/10, and so

〈2〉(E5) = e−3πi/10
η

3(5τ)
ϕ2

5,2(τ)

ϕ3
5,1(τ)

= T5[−3,2](τ) = q
(q;q)2

∞

(q2,q3;q5)5
∞

. (II.113)

For 5≤ p≤ 19 we obtain the theta quotient representations of the bases for M1(Γ1(p)) from

those for Ep(τ). In each case, we permute the theta quotients according to the image of πN and apply

the transformation formulas for Eisenstein series on Γ0(p), (γ21τ +γ22)
−kEk,χ(γτ) = χ(γ22)Ek,χ(τ)

for γ ∈ Γ0(p), to each componenent of Ep(τ). We then compare the first nonzero entry in the

resulting q-expansions. By repeating this process with each independent set of generators for

M1(Γ0(p)) from Theorem II.4, we ultimately obtain the linearly independent sets of theta quotient

representations claimed in Theorem II.6. For higher levels 7≤ p≤ 19, we similarly use the fact

that the image of Γ0(p) under the presentation πp defined by Theorem II.2 is a matrix with a single

nonzero entry in each row and column.
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CHAPTER III

CONCLUSION

The reason why the results in this thesis are important is that they continue my colleagues’

work [3]. Richard Charles et al. showed that Eisenstein series for PSL(2,Z) are representable

symmetrically in terms of certain infinite products that are modular forms of level N = 5. His work

uses recursion formulas satisfied by the Eisenstein series. In this thesis, we have given an algebraic

explanation for the symmetries of these polynomials and have described the symmetry precisely.

This work also extends the phenomenon beyond the level N = 5 case. The following is an example

of the phenomenon for level N = 7 exhibiting the symmetry in a formulation for the Eisenstein

series of weight four (I.3) from chapter I:

1+240∑
∞
n=1

n3qn

1−qn
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