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ABSTRACT

Zheng, Xiangqian, Dynamics for the Compound Burgers-KdV Equation. Master of Science (MS),

August, 2014, 34pp, 41 references, 26 titles.

In this thesis, we study the Two-Dimensional Burgers-Korteweg-de Vries (2D-BKdV) equation

and Two-Dimensional Compound Burgers-Korteweg-de Vries (2D-Compound BKdV) by analyz-

ing the first integral equation, which indicates that under some particular conditions, the 2D-BKdV

equation and 2D-Compound BKdV have exact travelling wave solutions. By using the elliptic

integral and some transformations, travelling wave solution to the 2D-BKdV equation and 2D-

Compound BKdV equation are expressed explicitly.
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CHAPTER I

INTRODUCTION

During the past three decades, the Burgers equation, Korteweg-de Vries (KdV) equation and

Burgers-Korteweg-de Vries equation (Burgers-KdV) have attracted a lot of attention from a rather

diverse group of scientists such as physicists and mathematicians, because these three equations not

only arise from realistic physical phenomena, but can also be widely applied to many physically

significant fields such as plasma physics, fluid dynamics, crystal lattice theory, nonlinear circuit

theory and astrophysics [1-10].

Consider the Burgers-KdV equation

ut + αuux + βuxx + suxxx = 0 (1)

where α, β and s are real constants with αβs 6= 0. Equation (1) is applied as a nonlinear model

of the propagation of waves on an elastic tube filled with a viscous fluid [7], the flow of liquids

containing gas bubbles [8] and turbulence [9, 10]. It can also be regarded as a combination of the

Burgers’ equation and KdV equation, since the choices α 6= 0, β 6= 0 and s = 0 lead equation (1)

to the Burgers’ equation

ut + αuux + βUxx = 0 (2)

and the choices α 6= 0, β = 0 and s 6= 0 lead equation (1) to the Kdv equation

ut + αuux + suxxx = 0. (3)
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It is well known that both (2) and (3) are exactly solvable, and have the travelling wave solutions

as follows:

u(x, t) =
2k

α
+

2βk

α
tanh k(x− 2kt)

and

u(x, t) =
12sk2

α
sech2k(x− 4sk2t)

Respectively. A great number of theoretical issues concerning the Burgers-KdV equation have

received considerable attention. In particular, the travelling wave solution to the Burgers-KdV

equation has been studied extensively. Johnson examined the travelling wave solutions to the

Burgers- KdV equation in the phase plan by means of a perturbation method in the regimes where

β � s and s� β, and developed formal asymptotic expansions for the solution [7]. Grua and Hu

used a steady-state version of equation (11) to describe a weak shock profile in plasmas [11]. They

studied the same problem using a similar method to that used by Johnson [7], and a related problem

was studied by Jeffrey [12]. The numerical investigation of the problem was carried out by Canosa

and Gazdag et al [13–15]. Bona and Schonbek studied the existence and uniqueness of bounded

travellingwave solutions to (1) which tend to constant states at plus and minus infinity [16]. They

also considered the limiting behaviour of the travelling wave solution of (1) as → 0 with s of

order 1, and also as s→ 0 with of order 1. The case where both β and s→ 0 with β/s held fixed

was also examined. The asymptotic and global behaviour of the travelling wave solution to (1) as

s > 0 was undertaken by Guan and Gao, and the applications of the theory to diversified turbulent

flow problems were described in detail in [9, 17]. On using variable transformation and the theory

of ordinary differential equation, the asymptotic behaviour and the proper analytical solution to

(1) were presented by Shu [18]. Gibbon et al showed that equation (1) does not have the Painleve

property [19]. Qualitative results concerning the travelling wave solutions to the Burgers-KdV

equation were also obtained by the above mentioned authors and others, but they did not find the
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exact functional form of the travelling wave solution, or any other exact solutions. Since the late

1980s, many mathematicians and physicists have obtained explicit exact solutions to the Burgers-

KdV equation by various methods. Among them are Xiong, who obtained an exact solution to (1)

when α = 1, = c and s = β by the analytic method [20], Liu et al who obtained the same solution

by the method of undetermined coefficients [21], Jeffrey et al, who obtained an exact solution to

(1) by a direct method and a series method [22, 23], Halford and Vlieg-Hulstman, who obtained

the same result in [24] by partial use of a Painleve analysis, Wang, who applied the homogeneous

balance method to obtain an exact solution [25], which was verified by Parkes by the tanh-function

method [26]. However, apart from several minor errors in [25] and [26], the solutions obtained in

the previous literature are actually equivalent to one another. That is, the travelling solitary wave

solution to (1) can be expressed as a composition of a bell solitary wave and a kink solitary wave.

The purpose of this paper is to propose a new approach to the Burgers-KdV equation by using

the theory of commutative algebra, which is currently called the first-integral method. The results

obtained by this technique coincide with those presented in the previous literature.

The last few decades have seen an enormous growth in the applicability of nonlinear models and in

the development of related nonlinear concepts. This has been driven by modern computer power as

well as by the discovery of new mathematical techniques, which include two contrasting themes:

(i) the theory of dynamical systems, most popularly associated with the study of chaos, and (ii) the

theory of integrable systems associated, among other things, with the study of solitons. However,

not all systems arising from physical phenomena are integrable, for example, the two-dimensional

BurgersKortewegde Vries (2D-BKdV) equation. Therefore, a direct method together with qual-

itative analysis for treating such nonlinear systems appears to be more powerful and important.

Applications of nonlinear models range from atmospheric science to condensed matter physics

and to biology, from the smallest scales of theoretical particle physics up to the largest scales of

cosmic structure.
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Consider the 2D-BKdV equation

(Ut + αUUx + Uxx + sUxxx)x+ Uyy = 0 (4)

where α, β, s and γ are real constants and αβsγ 6= 0. Equation (1) is a two-dimensional general-

ization of the Burgers-Korteweg-de Vries equation

Ut + αUUx + βUxx + sUxxx = 0 (5)

which arises from many different physical contexts as a nonlinear model equation incorporating

the effects of dispersion, dissipation and nonlinearity. Johnson derived (2) as the governing equa-

tion for waves propagating in a liquid-lled elastic tube [7] and Wijngaarden and Gao used it as a

nonlinear model in the ow of liquids containing gas bubbles [8] and turbulence [9]. Grad and Hu

used a steady state version of (2) to describe a weak shock prole in plasmas [11]. During the last

few decades, many theoretical issues concerning the exact solutions of 2D-BKdV equation have

received considerable attention. Barrera and Brugarino applied Lie group analysis to study the

similarity solutions of (1) and examined some features of these invariant solutions, but the explicit

travelling wave solution to (1) was not shown [35]. Li and Wang used the Hopf-Cole transfor-

mation and a computer algebra system to study (1) and found an exact travelling wave solution

to (1) [36]. In the mean time, Ma proposed a bounded travelling wave solution to (1) by apply-

ing a special solution of square HopfCole type to an ordinary differential equation [37]. These two

methods were compared to each other, and the solutions are proved to be equivalent by Parkes [38].

Fan obtained the same result by using an extended tanh-function method for constructing multiple

travelling wave solutions of nonlinear partial differential equations in a unied way [39]. Recently,

Fan et al [40] claimed that a new complex line soliton for the 2D-BKdV equation was obtained by

making use of the same technique as described in [39], and Elwakil et al [41] claimed that a new

travelling solitary wave solution was obtained by using a modied extended tanh-function method.
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In our recent papers [31–34], we studied equation (1) by utilizing the rst integral method and the

Painleve analysis, respectively, and obtained a more general travelling wave solution in terms of

elliptic functions
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CHAPTER II

FIRST-INTEGRAL METHOD TO STUDY THE BKdV EQUATION

2.1 Preliminaries

Assume that equation (1) has travelling wave solutions in the form u(x, t) = u(ξ), ξ = x− vt,

(v ∈ R). Substituting it into equation (1) and integrating once we have

u′′(ξ)− ru′(ξ)− au2(ξ)− bu(ξ)− d = 0 (6)

where r = −β
s

, a = − α
2s

, b = v
s

and d is an arbitrary integration constant. Equation (6) is a

nonlinear ordinary differential equation. It is commonly believed that it is very difficult for us to

find exact solutions to equation (6) by usual ways [17]. Let x = u, y = uξ, then equation (6) is

equivalent to a planar dynamical system


.
x = y,

.
y = ry + ax2 + bx+ d

(7)

By the qualitative theory of ordinary differential equations [27], if we can find two first-

integrals to (7) under the same conditions, then the general solutions to (7) can be expressed ex-

plicitly. However, in general, it is really difficult for us to realize this, even for one first-integral,

because for a given plane autonomous system, there is no systematic theory that can tell us how to

find its first-integrals, nor is there a logical way to tell us what these first-integrals are.
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In this section, we are applying the first-integral method to study (1). That is, we will apply

the Hilbert-Nullstellensatz theorem to obtain one first-integral to (7) which reduces equation (6) to

a first-order integrable ordinary differential equation. An exact solution to (1) is then obtained by

solving this equation. At the end of this section, the solutions obtained in the previous literature are

compared with ours. For convenience, first let us recall the Hilbert-Nullstellensatz theorem [28].

2.2 Hilbert-Nullstellensatz Theorem

Let k be a field and L an algebraic closure of k.

(i) Every ideal γ of k[X1, ..., Xn] not containing 1 admits at least one zero in Ln.

(ii) Let x = (x1, ..., xn), y = (y1, ..., yn) be two elements of Ln; for the set of polynomials of

k[X1, ..., Xn] zero at x to be identical with the set of polynomials of k[X1, ..., Xn] zero at y,

it is necessary and sufficient that there exists a k-automorphisms of L such that yi = s(xi) for

1 ≤ i ≤ n.

(iii) For an ideal α of k[X1, ..., Xn] to be maximal, it is necessary and sufficient that there exists an

x in Ln such that α is the set of polynomials of k[X1, ..., Xn] zero at x.

(iv) For a polynomial Q of k[X1, ..., Xn] to be zero on the set of zeros in Ln of an ideal α of

k[X1, ..., Xn], it is necessary and sufficient that there exists an integer m > 0 such that Qm ∈ γ .

Following immediately from the Hilbert-Nullstellensatz theorem, we obtain the division theorem

for two variables in the complex domain C:

2.3 Division Theorem

Suppose that P (ω, z) andQ(ω, z) are polynomials in C[ω, z], and P (ω, z) is irreducible in C[ω, z].

7



If Q(ω, z) vanishes at all zero points of P (ω, z), then there exists a polynomial G(ω, z) in C[ω, z]

such that

Q(ω, z) = P (ω, z) ·G(ω, z).

2.4 First-Integral to BKdV Equation

Now, we apply the division theorem to seek the first-integral to (7). Suppose that x = x(ξ) and

y = y(ξ) are the nontrivial solutions to (7), and p(x, y) = Σm
i=0ai(x)yi is an irreducible polynomial

in C[x, y] such that

p[x(ξ), y(ξ)] =
m∑
i=0

ai(x)yi (8)

where ai(x)(i = 0, 1, ...,m) are polynomials of x and all relatively prime in C[x, y], and am(x) 6=

0. Equation (8) is also called the first-integral to (7). We start our study by assuming m = 2 in (8).

Note that dp
dξ

is a polynomial in x and y, and p[x(ξ), y(ξ)] = 0 implies dp
dξ

∣∣
(5)

= 0. By the division

theorem, there exists a polynomial H(x, y) = α(x) + β(x)y in C[x, y] such that

dp

dξ

∣∣∣∣∣
(5)

=

(
∂p

∂x

∂x

∂ξ
+
∂p

∂y

∂y

∂ξ

)∣∣∣∣∣
(5)

=
2∑
i=0

[a
′

i(x)yi.y] +
2∑
i=0

[iai(x)yi−1(ry + ax2 + bx+ d)]

= [α(x) + β(x)y]

[
2∑
i=0

ai(x)yi

]
(9)

On equating the coefficients of yi(i = 3, 2, 1, 0) on both sides of (9), we have

a′(x) = A(x) · a(x) (10)
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and

[0, ax2 + bx+ d,−α(x)] · a(x) = 0 (11)

where a(x) = (a2(x), a1(x), a0(x))t, and

A(x) =


β(x) 0 0

α(x)− 2r β(x) 0

−2(ax2 + bx+ d) a(x)− r β(x)


Since ai(x)(i = 0, 1, 2) are polynomials, from (10), we deduce that a2(x) is a constant and β(x) =

0. For simplification, taking a2(x) = 1 and solving (10), we have

a(x) =


1∫

[α(x)− 2r]dx∫
[a1(x)α(x)− ra1(x)− 2(ax2 + bx+ d)]dx

 (12)

By (11) and (12), we conclude that deg α(x) = 0, i.e., deg a1(x) = 1. Otherwise, if deg α(x) =

k > 0, then we deduce deg a1(x) = k + 1 and deg a0(x) = 2k + 2 from (10). This yields a

contradiction with (9), since the degree of the polynomial a1(x) · (ax2 + bx + d) is k + 3, but the

degree of the polynomial a0(x) · α(x) is 3k + 2.

Assume that a1(x) = A1x+A0, A1, A0 ∈ C withA1 6= 0. By (10), we deduce thatA1 = α(x)−2r

and a0(x) = −2a
3
x3−bx2+ A1(A1+r)

2
x2−2dx+A0(A1+r)x+D, hereD is an arbitrary integration

constant. Substituting a1(x) and a0(x) into (9) and setting all coefficients of xi(i = 3, 2, 1, 0) to

zero we set 

A1a = (−2a
3

)(A1 + 2r)

A0 + A1b = [A1(A1+r)
2

− b] · (A1 + 2r)

A1d+ A0b = [(A1 + r)A0 − 2d] · (A1 + 2r)

A0d = D · (A1 + 2r).

(13)

9



Taking the integrating constant d = 0, we have

A1 = −4r

5
A0 = − 12r3

125a
− 2br

5a
D = 0 (14)

By the third equation of (13), we obtain

b =
6r2

25
or b = −6r2

25
. (15)

2.5 Exact Travelling Wave Solution to BKdV Equation

In the case b = 6r2

25
, A0 in (14) can be simplified as A0 = −4br

5a
. Substituting a0(x) and a1(x) into

(8) we set

y2 − (
4r

5
x+

4br

5a
)y − 2a

3
x3 − bx2 − 2r2

25
x2 − 4br2

25a
x = 0 (16)

From (16), y can be expressed in terms of x, i.e.

y =
2r

5
x+

2br

5a
±
√

2a

3
x3 + 2bx2 +

2b2

a
x+

2b3

3a2

=
2r

5
x+

2br

5a
±
√

2

3a2
(ax+ b)3 (17)

Combining (7) and (17), we have

dx

2r
5
x+ 2br

5a
± (ax+ b)

√
2

3a2
(ax+ b)

= dξ (18)

By a transformation z =
√

2
3a2

(ax+ b), an exact solution to (1) can be obtained as follows by

10



solving (18) directly

u(x, t) =
3a

2

[
± 2r

5a
e
r
5
ξ

e

r
5

+ c

]2
− b

a

= −12β2

25αs

[
e−

β
3s
ξ

e−
β
3s
ξ + c

]2
+

2v

α
, (19)

where ξ = x− vt and c is an arbitrary integration constant.

Since b = v
s

and r = −β
s
, b = 6r2

25
in (15) implies v = 6β2

25s
. By using the equality 4A[ e2t

1+e2t
] =

−A sech2t+2A tanh t+2A and setting c = 1 in (17), the explicit travelling solitary wave solution

to equation (1) can be written as

u(x, t) =
3β2

25αs
sech2

[
1

2

(
− β

5s
x+

6β3

125s2
t

)]
− 6β2

25αs
tanh

[
1

2

(
− β

5s
x+

6β3

125s2
t

)]
+

6β2

25αs
(20)

Similarly, in case b = −6r2

25
, an exact solution to (1) is as follows:

u(x, t) = −12β2

25αs

[
e−

β
5s
ξ

e−
β
5s
ξ + c

]2
(21)

where ξ = x− vt and c is an arbitrary integration constant.

Note that b = −6r2

25
in (15) implies v = 6β2

25s
. By setting c = 1 in (21), explicit travelling solitary

wave solutions to equation (1) can be rewritten as

u(x, t) =
3β2

25αs
sech2

[
1

2

(
− β

5s
x− 6β3

125s2
t

)]
− 6β2

25αs
tanh

[
1

2

(
− β

5s
x− 6β3

125s2
t

)]
− 6β2

25αs
(22)

Equations (19) and (21) also confirm the qualitative analysis of equation (1) by Guan and Gao

in [17].
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CHAPTER III

EXACT TRAVELLING WAVE SOLUTION TO 2D-BKdV EQUATION

3.1 From PDE to ODE

Consider the 2D-BKdV equation

(Ut + αUUx + βUxx + sUxxx)x + γUyy = 0, (23)

where α, β, s, and γ are constants and αβsγ 6= 0.

Assume that equation (23) has an exact solution in the form

U(x, y, t) ≡ U(ξ), ξ = hx+ ly − wt, (24)

where h, l, w are real constants to be determined. Substituting equation (24) into equation (23)

yields

−whUξξ + αh2(UUξ)ξ + βh3Uξξξ + sh4Uξξξξ + γl2Uξξ = 0.

Integrating the above equation twice with respect to ξ, then we have

sh4Uξξ + βh3Uξ +
α

2
h2U2 + γl2U − whU = D,

where we assume that the first integration constant is zero and the second one is an arbitrary

12



constant D. Rewrite above second-order ordinary differential equation as

U
′′
(ξ)− δU ′

(ξ)− aU2(ξ)− bU(ξ)− d = 0, (25)

where δ = − β
sh

, a = − α
2sh2

, b = −γl2−wh
sh4

and d = − D
sh4

.

3.2 Analyse Planar Dynamical System

When we take D = 0, equation (25) can be rewritten into the following planar dynamical system


dU
dξ

= Y,

dY
dξ

= δY + aU2 + bU

(26)

For any a 6= 0, the system (26) has two equilibrium points, defined by O(0, 0), A(− b
a
, 0).

System (26) is integrable, when we set b = −6δ2

25
, and has a first integral with respect to ξ as fol-

lows [29].

H1(U, Y, ξ) =

(
1

2

(
Y − 2

5
δU
)2
− 1

3
aU3

)
e

(
− 6

5
δξ

)
= h.

Where h is a real arbitrary constant.

Consider the linearization of system (26) when b = −6δ2

25P ′
Q′

 = J

P
Q


where J is Jacobian Matrix.Since f1(ξ) = Y and f2(ξ) = δY + aU2 + bU ,

13



J =

∂f1∂U
∂f1
∂Y

∂f2
∂U

∂f2
∂Y

 =

 0 1

2aU + b δ

 .
At the equilibrium point O(0, 0), the linearized system has coefficient matrix

J1 =

 0 1

−6δ2

25
δ

 .
The characteristic function is

λ2 − δλ+
6δ2

25
= 0.

The eigenvalues are

λ1 =
δ + 1

5
|δ|

2
, λ2 =

δ − 1
5
|δ|

2
.

When δ < 0, Re(λ1) < 0 and Re(λ2) < 0, the equilibrium point O(0, 0) is a stable node

point.(Fig. 1.1)

When δ > 0, Re(λ1) > 0 and Re(λ2) > 0, the equilibrium point O(0, 0) is an unstable node

point.(Fig. 1.2)

Similarly, at the equilibrium point A(− b
a
, 0), the linearized system has coefficient matrix

J2 =

 0 1

6δ2

25
δ

 .
The characteristic function is

λ2 − δλ− 6δ2

25
= 0.

The eigenvalues are

λ1 =
δ + 7

5
|δ|

2
, λ2 =

δ − 7
5
|δ|

2
.

14



When δ < 0, Re(λ1) > 0 and Re(λ2) < 0, the equilibrium point A(− b
a
, 0) is a saddle point.

(Fig. 1.3)

When δ > 0, Re(λ1) > 0 and Re(λ2) < 0, the equilibrium point A(− b
a
, 0) is a saddle point.

(Fig. 1.4)
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3.3 Exact Travelling Wave Solution In Two Cases

3.3.1 Case 1.1 h = 0

When h = 0, we have

H1(U, Y, ξ) =

(
1

2

(
Y − 2

5
δU
)2
− 1

3
aU3

)
e

(
− 6

5
δξ

)
= 0.

Therefore, Y = 2
5
δU ±

√
2
3
aU3.

Since dU
dξ

= Y ,

dU

dξ
=

2

5
δU ±

√
2

3
aU3. (27)

Integrating equation (27), we have

U1(ξ) =
6δ2

25a(1− C01e
− 1

5
δξ)
, U2(ξ) =

6δ2

25a(1 + C02e
− 1

5
δξ)
,

where C01, C02 are constant.

When δ > 0, ξ →∞, U1(ξ)→ 0, U2(ξ)→ 0.

When δ > 0, ξ → −∞, U1(ξ)→ 6δ2

25a
, U2(ξ)→ 6δ2

25a
.

3.3.2 Case 1.2 h 6= 0

Using transformation as follows,

w =
1√
2
Ue−

2
5
δξ, z =

5

δ
e

1
5
δξ,

16



we can obtain

dw

dξ
=

1√
2
U ′e−

2
5
δξ −

√
2

5
Ue−

2
5
δξ,

dz

dξ
= e

1
5
δξ,

dU

dξ
=
√

2e
3
5
δ dw

dz
+

2

5
δU.

Substituting dw
dξ
, dz
dξ
, dU
dξ
and U =

√
2we

2
5
δξ into the first integral equation H1(U, Y, ξ) = h.

This first integral equation can be rewritten in the form

(dw
dz

)2
− 2
√

2

3
aw3 = h. (28)

Simplify equation (28)

dw

dz
= ±

√
h+

2
√

2

3
aw3.

Therefore, for any h > 0, we have an integral of dw
dz

in form

z − z0 = ±
∫ w

−∞

dw
√
h
√

1 + 2
√
2

3h
aw3

= ±
∫ w

−∞

dw
√
h

√
1−

(
− 2

√
2

3h
aw3

)
= ±

(
− 2
√

2

3

)− 1
3
h−

1
6

∫ w̃

−∞

dw̃√
1− w̃3

, (29)

where w =
(
− 3h

2
√
2a

) 1
3
w̃ and z0 is arbitrary integral constant .

Since the elliptic integral has the form

17



∫ x

−∞

dx√
1− x3

=
1
4
√

3
cn−1

(
1−
√

3− x
1 +
√

3− x
, k2

)
,

where k2 =

√
2+
√
3

2
.

Hence equation (29) can be rewritten into the following form

z − z0 = ±
(
− 2
√

2

3

)− 1
3
h−

1
6

1
4
√

3
cn−1

(
1−
√

3− w̃
1 +
√

3− w̃
, k2

)
.

Solve for w̃, we have

1−
√

3− w̃
1 +
√

3− w̃
= cn

((
− 2
√

2

3

) 1
3
h

1
6

4
√

3(z − z0), k2

)
,

and then

w̃(z) = 1 +
√

3 +
2
√

3

cn

((
− 2

√
2

3

) 1
3
h

1
6

4
√

3(z − z0), k2

)
− 1

. (30)

Therefore,

w(z) =
(
− 3h

2
√

2a

) 1
3
w̃

=
(
− 3h

2
√

2a

) 1
3
(

1 +
√

3 +
2
√

3

cn(m1(z − z0), k2)− 1

)
, (31)

where m1 =
(
− 2

√
2

3

) 1
3
h

1
6

4
√

3, k2 =

√
2+
√
3

2
, z = 5

δ
e

1
5
δξ and z0 is an arbitrary constant.

Since U(ξ) =
√

2we
2
5
δξ, the equation (23) has exactly solution

U(ξ) =
√

2we
2
5
δξ =

(
− 3h

a

) 1
3
(

1 +
√

3 +
2
√

3

cn(m1(z − z0), k2)− 1

)
e

2
5
δξ. (32)

18



Similarly, for any h < 0, and consider another elliptic integral

∫ ∞
x

dx√
x3 − 1

=
1
4
√

3
cn−1

(
x− 1−

√
3

x− 1 +
√

3
, k1

)
,

where k1 =

√
2−
√
3

2
.

We obtain

z − z0 = ±
∫ ∞
w

dw√
|h|
√

2
√
2

3|h| aw
3 − 1

= ±
(2
√

2

3

)− 1
3 |h|−

1
6

∫ ∞
w̃

dw̃√
w̃3 − 1

= ±
(2
√

2

3

)− 1
3 |h|−

1
6

1
4
√

3
cn−1

(
w̃ − 1−

√
3

w̃ − 1 +
√

3
, k1

)
. (33)

Therefore,

w(z) =
( 3|h|

2
√

2a

) 1
3 ˜w(z)

=
( 3|h|

2
√

2a

) 1
3
(

1−
√

3 +
2
√

3

1− cn(m2(z − z0), k1)

)
, (34)

where m2 = ±
(

2
√
2

3

) 1
3 |h| 16 4

√
3.

The equation (23) has the following solution

U(ξ) =
√

2we
2
5
δξ

=
(3|h|
a

) 1
3
(

1−
√

3 +
2
√

3

1− cn(m2(z − z0), k1)

)
e

2
5
δξ, (35)

where m2 = ±
(

2
√
2

3

) 1
3 |h| 16 4

√
3, k1 =

√
2−
√
3

2
, z = 5

δ
e

1
5
δξ and z0 is an arbitrary constant.
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CHAPTER IV

EXACT TRAVELLING WAVE SOLUTION TO 2D-CBKdV EQUATION

4.1 From PDE to ODE

Consider the 2D-CBKdV equation

(Ut + α1UUx + β1UUx + µ1Uxx + s1Uxxx)x + γ1Uyy = 0, (36)

where α1, β1, µ1, s1, and γ1 are constants and α1β1µ1s1γ1 6= 0.

Assume that equation (36) has an exact solution in the form

U(x, y, t) ≡ U(ξ), ξ = hx+ ly − wt, (37)

where h, l, w are real constants to be determined. Substituting equation (37) into equation (36)

yields

−whUξξ + α1h
2(UUξ)ξ + 2β1h

2UU2
ξ + βh21UUξξ + µ1h

3Uξξξ + s1h
4Uξξξξ + γ1l

2Uξξ = 0.

Integrating the above equation twice with respect to ξ, then we have

s1h
4Uξξ +

β1h
2

3
U3 + µ1h

3Uξ +
α1

2
h2U2 + γ1l

2U − whU = D,

20



where we assume that the first integration constant is zero and the second one is arbitrary constant

D. Rewrite above second-order ordinary differential equation as

U
′′
(ξ)− δ1U

′
(ξ)− a1U3(ξ)− b1U2(ξ)− c1U(ξ)− d1 = 0, (38)

where δ1 = − β1
µ1h

, a1 = − β1
3s1h2

, b1 = α1

2s1h2
, c1 = −γ1l2−wh

s1h4
and d = − D

s1h4
.

4.2 Analyse Planar Dynamical System

When we take D = 0, equation (38) can be rewritten into the following planar dynamical system


dU
dξ

= Y,

dY
dξ

= δ1Y + a1U
3 + b1U

2 + c1U + d1

(39)

Let U = Ũ − b1
3a1

and d1 = c1b1
3a1
− 2b31

27a2
, the system will be rewritten into form


dŨ
dξ

= Y,

dY
dξ

= δ1Y + a1Ũ
3 + nŨ

(40)

where n = c1 − b21
3a1

.

When b1 = −6δ21
25

, na1 < 0, for any a1 6= 0, the system (40) has three equilibrium points, defined

by O(0, 0), A(−
√
− n
a1
, 0), B(

√
− n
a1
, 0).

System (40) is integrable, when we set b1 = −6δ21
25

, and has a first integral of system (40) with

respect to ξ as follows [29].

H2(Ũ , Y, ξ) =

(
1

2

(
Y − 1

3
δ1Ũ

)2
− 1

4
a1Ũ

4

)
e

(
− 4

3
δ1ξ

)
= h,

21



where h is a real arbitrary constant.

Consider the linearization of system (40) when b = −6δ2

25
.

P ′
Q′

 = J

P
Q


Where J is Jacobian Matrix. Since g1(ξ) = Y and g2(ξ) = δ1Y + a1Ũ

3 + nŨ .

J =

∂g1∂U
∂g1
∂Y

∂g2
∂U

∂g2
∂Y

 =

 0 1

3a1Ũ
2 + n δ1

 .
At the equilibrium point O(0, 0), the linearized system has coefficient matrix

J1 =

0 1

n δ1

 .
The characteristic function is

λ2 − δ1λ− n = 0

The eigenvalues are

λ1 =
δ1 +

√
δ21 + 4n

2
, λ2 =

δ1 −
√
δ21 + 4n

2

When n > 0,

1. δ1 < 0, Re(λ1) > 0 and Re(λ2) < 0, the equilibrium point O(0, 0) is a saddle point. (Fig. 2.1)

2. δ1 > 0, Re(λ1) > 0 and Re(λ2) < 0, the equilibrium point O(0, 0) is a saddle point. (Fig. 2.2)

When n < 0,

3. δ1 < 0, Re(λ1) < 0 and Re(λ2) < 0, the equilibrium point O(0, 0) is a stable node point. (Fig.

2.3)
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4. δ1 > 0, Re(λ1) > 0 and Re(λ2) > 0, the equilibrium point O(0, 0) is an unstable node point.

(Fig. 2.4)

Similarly, at the equilibrium point A(−
√
− n
a1
, 0), B(

√
− n
a1
, 0), the linearized system has coeffi-

cient matrix

J2 =

 0 1

2n δ1

 .
The characteristic function is

λ2 − δ1λ+ 2n = 0

The eigenvalues are

λ1 =
δ1 +

√
δ21 − 8n

2
, λ2 =

δ1 −
√
δ21 − 8n

2
.

When 0 < n <
δ21
8

,

1. δ1 < 0, Re(λ1) < 0 and Re(λ2) < 0, equilibrium points A(−
√
− n
a1
, 0) and B(

√
− n
a1
, 0) are

stable node points.(Fig. 2.1)

2. δ1 > 0, Re(λ1) > 0 and Re(λ2) > 0, equilibrium points A(−
√
− n
a1
, 0) and B(

√
− n
a1
, 0) are

unstable node points.(Fig. 2.2)

When n < 0,

3. δ1 < 0, Re(λ1) > 0 and Re(λ2) < 0, equilibrium points A(−
√
− n
a1
, 0) and B(

√
− n
a1
, 0) are

stable node points.(Fig. 2.3)

4. δ1 > 0, Re(λ1) > 0 and Re(λ2) < 0, equilibrium points A(−
√
− n
a1
, 0) and B(

√
− n
a1
, 0) are

saddle points. (Fig. 2.4)
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Fig. 2.4 δ1 < 0, n < 0

4.3 Exact Travelling Wave Solution In Two Cases

4.3.1 Case 2.1 h = 0

When h = 0, we have

H2(Ũ , Y, ξ) =

(
1

2

(
Y − 1

3
δ1Ũ

)2
− 1

4
a1Ũ

4

)
e

(
− 4

3
δ1ξ

)
= 0
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Therefore, Y = 1
3
δ1Ũ ±

√
1
2
aŨ2

Since dŨ
dξ

= Y ,

dŨ

dξ
=

1

3
δ1Ũ ±

√
1

2
aŨ2 (41)

Integrating equation (41), we have

Ũ1(ξ) =
δ1

3(
√

a1
2

+ C11e
− 1

3
δ1ξ)

, Ũ2(ξ) = − δ1

3(
√

a1
2

+ C12e
− 1

3
δ1ξ)

,

where C11, C12 are constants.

When ξ →∞, Ũ1(ξ)→ 0, Ũ2(ξ)→ 0.

When ξ → −∞, Ũ1(ξ)→ −1
3

√
2
a
|δ1|, Ũ2(ξ)→ 1

3

√
2
a
|δ1|.

4.3.2 Case 2.2 h 6= 0

Using transformation as follows,

w =
1√
2
Ũe−

1
3
δ1ξ, z =

3

δ1
e

1
3
δξ.

We can obtain

dw

dξ
=

1√
2
Ũ ′e−

1
3
δ1ξ − 1

3
√

2
Ũδ1e

− 1
3
δ1ξ,

dz

dξ
= e−

1
3
δ1ξ,

dŨ

dξ
=
√

2e
2
3
δ1
dw

dz
+

1

3
δ1Ũ .
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Substituting dw
dξ
, dz
dξ
, dŨ
dξ
and Ũ =

√
2we

1
3
δ1ξ into the first integral equation H1(U, Y, ξ) = h.

This first integral equation can be rewritten in the form

(dw
dz

)2
− a1w4 = h. (42)

Simplify equation (42)

dw

dz
= ±

√
h+ a1w4.

Therefore, for any h > 0, we have an integral of dw
dz

in form

z − z0 = ±
∫ w

−∞

dw√
h
√

1 + a1
h
w4

= ±
(
a1h
)− 1

4

∫ ∞
w̃

dw̃√
1 + w̃4

, (43)

where w =
(
h
a1

) 1
4
w̃ and z0 is an arbitrary integral constant .

Since the elliptic integral has the form

∫ ∞
x

dt√
1 + t4

=
1

2
cn−1

(
x2 − 1

x2 + 1
, k1

)
,

where k1 =
√
2
2

.

Hence equation (43) can be rewritten into the following form

z − z0 = ±
(
a1h
)− 1

4

∫ ∞
w̃

dw̃√
1 + w̃4

= ±1

2

(
a1h
)− 1

4
cn−1

(
w̃2 − 1

w̃2 + 1
, k1

)
. (44)
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Solve for w̃, we have

w̃2 − 1

w̃2 + 1
= cn

(
± 2
(
a1h
) 1

4
(z − z0), k1

)
,

and then

w̃(z) = ±

√√√√√cn
(
± 2
(
a1h
) 1

4 (z − z0), k1
)

+ 1

cn
(
± 2
(
a1h
) 1

4 (z − z0), k1
)
− 1

. (45)

Therefore,

w(z) =
( h
a1

) 1
4
w̃(z)

=
( h
a1

) 1
4

√√√√√cn
(
± 2
(
a1h
) 1

4 (z − z0), k1
)

+ 1

cn
(
± 2
(
a1h
) 1

4 (z − z0), k1
)
− 1

, (46)

where k1 =
√
2
2

, z = 3
δ
e

1
3
δξ and z0 is an arbitrary constant.

Since U(ξ) =
√

2we
1
3
δξ, the equation (24) has exactly solution

U(ξ) =
√

2we
1
3
δξ

=
√

2
( h
a1

) 1
4
w̃(z)

=
( h
a1

) 1
4
e

1
3
δξ

√√√√√cn
(
± 2
(
a1h
) 1

4 (z − z0), k1
)

+ 1

cn
(
± 2
(
a1h
) 1

4 (z − z0), k1
)
− 1

. (47)
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Similarly, for any h < 0, and consider another elliptic integral in form

z − z0 = ±
∫ w

−∞

dw√
|h|
√

a1
|h|w

4 − 1

= ±
(
a1|h|

)− 1
4

∫ ∞
w̃

dw̃√
w̃4 − 1

, (48)

where w =
(
|h|
a1

) 1
4
w̃ and z0 is arbitrary integral constant .

Since the elliptic integral has the form

∫ ∞
x

dt√
t4 − 1

=
1√
2
cn−1

(
1

x
, k1

)
,

where k1 =
√
2
2

.

Hence equation (48) can be rewritten into the following form

z − z0 = ±
(
a1|h|

)− 1
4

∫ ∞
w̃

dw̃√
w̃4 − 1

= ± 1√
2

(
a1h
)− 1

4
cn−1

(
1

w̃
, k1

)
(49)

Solve for w̃, we have

1

w̃
= cn

(
±
√

2
(
a1|h|

) 1
4
(z − z0), k1

)
,
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and then

w̃(z) =
1

cn

(
±
√

2
(
a1|h|

) 1
4
(z − z0), k1

)

= nc

(
±
√

2
(
a1|h|

) 1
4
(z − z0), k1

)
. (50)

Therefore,

w =
( |h|
a1

) 1
4
w̃

=
( |h|
a1

) 1
4
nc

(
±
√

2
(
a1|h|

) 1
4
(z − z0), k1

)
, (51)

Since U(ξ) =
√

2we
1
3
δξ, the equation (24) has exact solution

U(ξ) =
√

2we
1
3
δξ

=
√

2
( |h|
a1

) 1
4
w̃(z)e

1
3
δξ

=
√

2
( |h|
a1

) 1
4
e

1
3
δξnc

(
±
√

2
(
a1|h|

) 1
4
(z − z0), k1

)
. (52)

where k1 =
√
2
2

, z = 3
δ
e

1
3
δξ and z0 is an arbitrary constant.
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CHAPTER V

CONCLUSION

In this thesis, we studied the Two-Dimensional Burgers-Korteweg-de Vries (2D-BKdV) equa-

tion and Two-Dimensional Compound Burgers-Korteweg-de Vries (2D-Compound BKdV) by an-

alyzing the first integral equation, which indicates that under some particular conditions, the 2D-

BKdV equation and 2D-Compound BKdV have exact travelling wave solutions. By using the

elliptic integral and some transformations, travelling wave solution to the 2D-BKdV equation and

2D-Compound BKdV equation are expressed explicitly.
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