
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Theses and Dissertations - UTB/UTPA 

7-2014 

Studies of a mathematical model for generating rhythmic Studies of a mathematical model for generating rhythmic 

behavior with a simple brain behavior with a simple brain 

Juan C. Morales 
University of Texas-Pan American 

Follow this and additional works at: https://scholarworks.utrgv.edu/leg_etd 

 Part of the Applied Mathematics Commons 

Recommended Citation Recommended Citation 
Morales, Juan C., "Studies of a mathematical model for generating rhythmic behavior with a simple brain" 
(2014). Theses and Dissertations - UTB/UTPA. 942. 
https://scholarworks.utrgv.edu/leg_etd/942 

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for 
inclusion in Theses and Dissertations - UTB/UTPA by an authorized administrator of ScholarWorks @ UTRGV. For 
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/leg_etd
https://scholarworks.utrgv.edu/leg_etd?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/leg_etd/942?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F942&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


STUDIES OF A MATHEMATICAL MODEL FOR GENERATING RHYTHMIC

BEHAVIOR WITH A SIMPLE BRAIN

A Thesis

by

JUAN C. MORALES

Submitted to the Graduate School of
The University of Texas-Pan American

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

July 2014

Major Subject: Applied Mathematics





STUDIES OF A MATHEMATICAL MODEL FOR GENERATING RHYTHMIC

BEHAVIOR WITH A SIMPLE BRAIN

A Thesis
by

JUAN C. MORALES

COMMITTEE MEMBERS

Dr. Virgil Pierce
Chair of Committee

Dr. Daniel Plas
Co-Chair of Committee

Dr. Maria Cristina Villalobos
Committee Member

Dr. Eleftherios Gkioulekas
Committee Member

July 2014





Copyright 2014 Juan C. Morales
All Rights Reserved





ABSTRACT

Morales, Juan C., Studies of a Mathematical Model for Generating Rhythmic Behavior with a

Simple Brain . Master of Science (MS), July, 2014, 28 pages, 3 tables, 16 figures, 6 references.

The rhythmic behavior of feeding in the pond snail, Lymnaea stagnalis can be described

computationally by a model describing its central pattern generator network (CPG). The model

includes coupled Hodgkin-Huxley type nonlinear ordinary differential equations describing four

neurons connected by both inhibitory and excitatory synapses. We studied the system’s dependence

on current parameters to generate periodic behavior. We also considered the effect of eliminating

specific connections from the network. In addition, experiments on the biological system were used

to motivate application of the model in Parkinson’s disease.
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CHAPTER I

INTRODUCTION

The most important topic in neurobiology is to understand how the underlying biology

and neural circuitry ultimately lead to the final output: behavior. Understanding complex human

behavior is a formidable task as it involves complex interactions between billions of cells.

1.1 The Nervous System and the Neuron

Cells in the nervous systems vary in morphology, and possess electrical properties that

allow for communication within a neuron. Stereotypical neurons contain three compartments that

participate in the process of communication: (a) Dendrites; (b) Cell Body (Soma); (c) Axon.

Loosely speaking, dendrites receive input, the soma integrates the input, and the result

travels down the axon as the final output. This result takes the form of a transient change in voltage

across the membrane that is called the action potential. Additionally, this output is transmitted to a

follower neuron by release of a neurotransmitter substance at a synapse. Although there may be

many dendrites in a neuron, there is only one soma and one axon. These two compartments may

vary in length and size. From a combinatorial point of view, there are many different versions of the

neuron.

1.2 Central Pattern Generators and Rhythmic Behavior

A single neuron is of no use if it cannot communicate with other neurons. Understanding

the communication process can be complex, as even simple behaviors like chewing require interac-

tions between many neurons. Chewing is just one example of rhythmic behaviors that are found

throughout the animal kingdom. It has been found that these behaviors are produced by dedicated
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networks called central pattern generators (CPG). Other well known CPGs govern behaviors such

as breathing, walking, and swimming.

The CPGs that have been studied share common features including a small network of

neurons, mutual excitation and inhibition, phase locking, and the occurence of bursting neurons. In

addition to providing insight into these specific behaviors, the study of central pattern generators

gives us a tool to study neuronal communication in general.

1.3 Feeding in Lymnaea stagnalis

Lymnaea stagnalis is a freshwater gastropod that is found in Northern United States, Europe,

and Asia. It is approximately three centimeters in length and primarily feeds on plants.

Feeding in the pond snail is rhythmic and exhibits a stereotyped sequence. First, in pro-

traction the snail protrudes a tongue like structure called the radula. Next, in retraction the radula

scrapes the food surface as it is drawn back into the mouth. Finally, in the swallow phase the food

enters the esophagus.

This basic cycle can be produced using a minimum of three neurons in the appropriate

configuration. These neurons have been given the names N1 Medial (N1M), N2 ventral (N2v), and

N3 tonic (N3t). The number (1,2, or 3) in each neuron’s name indicates the phase during which

that neuron fires. Thus, N1M fires during protraction, N2v during retraction, and N3t during the

swallow phase. These neurons are found in close proximity within a paired set of structures called

the buccal ganglia. The basic feeding cycle can be modulated by extrinsic neurons. An important

modulatory neuron found in the buccal ganglion is called the slow oscillator (SO).

1.4 Hodgkin - Huxley Model

The well known Hodgkin-Huxley (HH) equations have been extensively used as a model

for the action potential [2]. These equations were developed using electrophysiological data

recorded from the giant axon of the squid and have been found to apply to neurons generally. The

HH equations model the membrane as an electronic device in which capacitance and time varying

resistances act in parallel. The model becomes more elaborate as more cell features are incorporated.
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The HH equations are of the form:

Cm
dV
dt

= I− ḡL(V −EL)− ḡNa p3h(V −ENa)− ḡKq4(V −EK) (1.1)

d p
dt

=
p∞(V )− p

τp(V )
, (1.2)

dq
dt

=
q∞(V )−q

τq(V )
, (1.3)

dh
dt

=
h∞(V )−h

τh(V )
, (1.4)

where Cm is the membrane capacitance measured in µF , ḡ is the maximal conductance measured in

µS, and p, q, and h are dimensionless ’gating’ variables. The gating variables are time dependant and

describe the dynamics of the open and closed states of specific ion channels in the membrane. The

gating variables are probabilities (p,q,h ∈ [0,1]). The exponent in each gating variable represents

the number of activation and inactivation gates.The asymptotic values, p∞, q∞, h∞ are of the form:

g∞(V ) =
αg(V )

αg(V )+βg(V )
, (1.5)

where g ∈ {p,q,h}. Moreover, αg(V ), and βg(V ) involve V exponentially. These terms vary by

ionic species. They resemble Gaussian or sigmoid curves. Finally, the value Ex, represents the

equilibrium potential with respect to a specific ionic species, x, where x represents either sodium

(Na) or potassium (K). The equilibrium potential is found using the standard Nernst Equation,

Ex =
RT
zF

ln(
[out]x
[in]x

). (1.6)

In equation (1.6), R is Boltzmann’s gas constant, T is absolute temperature, F is Faraday’s constant,

and z is the charge of the respective ion. The term [out]x represents the concentration of the ion x

outside the cell while [in]x represents the concentration inside.

As written, equation (1.1) is in units of current (nA).If the equation is multiplied by the

3



membrane resistance, Rm, measured in MΩ, the result expresses units of millivolts:

RmCm
dV
dt

= Rm(I− ḡL(V −EL)− ḡNa p3h(V −ENa)− ḡKq4(V −EK)), (1.7)

d p
dt

=
p∞(V )− p

τp(V )
, (1.8)

dq
dt

=
q∞(V )−q

τq(V )
, (1.9)

dh
dt

=
h∞(V )−h

τh(V )
. (1.10)

Now, let RmCm = τm be the membrane time constant measured in milliseconds. Because Rm = 1
ḡL

,

multiplication leads to cancellation of conductance units. The result is a dimensionless scalar, γ ,

with γ ∈ R. Thus by Ohm’s law, we now have a voltage measured in millivolts. This algebraic

manipulation leads to the equations,

τm
dV
dt

= IRm− (V −EL)− γNa p3h(V −ENa)− γKq4(V −EK), (1.11)

d p
dt

=
p∞(V )− p

τp(V )
, (1.12)

dq
dt

=
q∞(V )−q

τq(V )
, (1.13)

dh
dt

=
h∞(V )−h

τh(V )
. (1.14)

Units of millivolts will be used for the rest of this manuscript.

Note that the 4 variables in the HH model of a single axon, lead to dynamics that act in a

subspace of R4. The biological inspiration of the model suggest bounded domains for voltage.
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CHAPTER II

THE MODEL AND ITS PROPERTIES

The model will be described in a systematic way. I will start by showing how each neuron is

modeled by a system of differential equations, continue with a description of the CPG, and finish

with an exploration of a few properties of the model.

2.1 Modeling Feeding Neurons in Lymnaea

As previously stated, a neuron is made up of three compartments. Hodgkin and Huxley

developed a model for neural activity in the axonal compartment of the giant squid. To argue for a

more realistic model that accounts for potential in more than just the axon, Vavoulis et al. proposed

a two compartment model of feeding neurons [4]. Fig. (2.1) describes the current terms that will

change membrane potential.

The CPG can be visualized graphically by nodes and edges (Fig. 2.2). Each node represents

a neuron that is being modeled by a system of differential equations. An edge represents a synapse.

Moreover, circles represent inhibitory synapses while bars represent excitatory ones. As mentioned

before the interplay of excitatory and inhibitory connections is commonly present in CPG networks.

This network topology is known to be biologically correct based on previous experimental work [4].

There are several additions that need to be made to the basic HH equations to model feeding

in Lymnaea. These additions must account for synaptic communication, compartment coupling and

ionic terms based on Lymnaea’s cellular properties. For example, in this particular model, synapses

are modeled by alpha functions [6].

The general governing differential equation for the somatic compartment is of the form,

5



Figure 2.1: Soma coupled with Axon. Arrows directed into the compartment represent inward

currents and those directed out of the compartment represent outward currents. Currents affecting

the soma: IL is the leak current, Isyn is the synaptic current, INaL and IT are currents responsible for

slow developing changes in the membrane potential, IACh is the current due to acetylcholine, and

Iec,S is the current due to compartment coupling with some resistivity. Currents affecting the axon:

IK is the potassium current, IL is the leak current, INaT is the transient sodium current and Iec,A is

the current due to the compartment coupling with some resistivity.
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Figure 2.2: CPG of feeding in Lymnaea stagnalis. The 4 neurons in the basic feeding network

are represented by circles (nodes). Edges represent synapses. More specifically, bars represent an

inhibitory synapse while circles represent excitatory ones.
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τm
dvi,s

dt
= Ii,stim− Ileak,s− Iion− Isynapse− Iec,s, (2.1)

where i ∈ {1,2,3,4}. The first term in the right hand side of the equation is the stimulus term. This

can be thought of as the ’forcing’ term,

Ii,stim = Ii,sR. (2.2)

In this particular model, R = 1.00 MΩ, everywhere. The leak term encompasses a lot of information

and is used for simplicity. It is of the form,

Ileak,s = vi,s−Eleak,s, (2.3)

where the difference, vi,s - Eleak,s, will be called the driving force. In general, every term other

than the stimulus term and the coupling term involve a driving force. The most important term in

the equation is the term that accounts for the potential changes caused by dynamical interactions

between open and closed states of ion channels. It is of the form,

Iion = γion(pi)
k
ion(qi)

l
ion(vi,s−Eion), (2.4)

where k,l ∈ {0,1,2,3,4} and ion ∈ {ACh,NaL,T} in this particular model. In practice exponents

and ionic terms are chosen based on experimental work. Synaptic communication alter membrane

potential. The term responsible for this change is,

Isyn = ∑
j

γ js j(vi,s−Esyn, j). (2.5)

The nonlinearity of the system is a direct consequence of the ionic and synaptic terms.

The last term accounts for the coupling between the soma and axon, and is of the form,

Iec,s = γec,s(vi,s− vi,a). (2.6)

This allows the system to act as one neuron.
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Similarly, the governing differential equation for the axon’s potential is of the form,

τm
dvi,a

dt
=−Iion− Iec,a− Ileak,a. (2.7)

Notice that the axonal compartment does not have a stimulus term, nor does it have a synaptic term.

This occurs because the synapses occur from soma to soma. The equations for the leak and the

coupling terms are defined very similarly and given by,

Ileak,a = vi,a−Eleak,a, (2.8)

Iec,a = γec,a(vi,a− vi,s). (2.9)

The ionic term is of the form,

Iion = γion(hi)
k
ion(ni)

l
ion(vi,s−Eion), (2.10)

where ion ∈ {NaT,K} and k, l ∈ {1,3,4}.

It is important to know that intracellular and patch clamp electrophysiology in Lymnaea,

records neural activity from the soma. Thus, solutions to the four differential equations governing

the somatic compartment will replicate qualitative features seen in physiology recordings.

Differential equations governing the gating variables take on the form,

dui

dt
=

u∞−ui

τu,i
, (2.11)

where u ∈ {p,q,h,n} and u ∈ [0,1].

These final two equations govern the alpha functions, r j(t) and s j(t). These variables, r and

s model synaptic transmission [6],

dr j

dt
=

r∞, j− r j

τsyn, j
, (2.12)

9



ds j

dt
=

r j− s j

τsyn, j
, (2.13)

with,

r∞, j =
1

1+ e
(−40−vpre,i)

2.5

. (2.14)

Here vpre,i is the presynaptic neuron which is sending a signal to the postsynaptic cell.

Above I have given a detailed explanation of each term in the differential equations. The

entire system is coupled and thus we can describe it as,

τm
d~V
dt

= ~F(~V ), (2.15)

where ~V ∈ R37 and ~F = ( f1, f2, ..., f37). Each fw is smooth and more specifically each fw is a C1

map, for any w ∈ {1,2, ...,37}. Conductance and other parameter values were taken from previous

work [4]. The tables (2.1, 2.2, 2.3) below summarize all parameter values.
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Table 2.1: Parameter Values for Somatic Compartment without Synaptic Parameters

Neuron γ̄ion Eion (mV) Steady States Time Constants τu,i (ms)

N1M ¯γACh = 200 EACh = -30 p∞,1 = (1+ e
−38.8−v1,s

10 )−1 τp,1 = 250

N2v ¯γNaL = 2 ENaL = 55
p∞,2 = (1+ e

−51−v2,s
10.3 )−1 τp,2 = 28.3+44.1e−(

−11.8−v2,a
26.6 )2

q∞,2 = (1+ e
−45−v2,s
−3 )−1 τq,2 = 187.6+637.7e−(

−9.5−v2,a
23.3 )2

N3t γ̄T = 3.27 ET = 80
p∞,3 = (1+ e

−61.6−v3,s
5.6 )−1 τp,3 = 4

q∞,3 = (1+ e
−73.2−v3,s
−5.1 )−1 τq,3 = 400

SO N/A N/A N/A N/A

Table 2.2: Parameter Values for Synaptic Transmission

Postsynaptic Presynaptic Polarity Esyn, j(mV ) ¯γsyn, j (τsyn, j)

N1M

SO Excitatory 0 4 200

N2v Inhibitory -90 50 50

N3t Inhibitory -90 8 50

N2v
SO Excitatory 0 1.0 200

N1M Excitatory 0 0.077 200

N3t
N1M Inhibitory -90 0.5 50

N2v Inhibitory -90 2 50

SO N2v Inhibitory -90 8 50
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Table 2.3: Parameter Values for Axonal Compartment

Neuron ¯γion Eion(mV ) Steady States Time Constants (τu,i)

All 4 Neurons
¯γNaT = 350 ENaT = 55

m∞,i = (1+ e
−34.6−vi,a

9.6 )−1

γ̄K = 90 EK = -90
h∞,i = (1+ e

−55.2−vi,a
−7.1 )−1 τh,i = 1.1+7.2e−(

−61.3−vi,a
22.7 )2

n∞,i = (1+ e
−30−vi,a

17.4 )−1 τn,i = 1.1+4.6e−(
−61−vi,a

54.3 )2

Now that we have a description of the nonlinear system and the governing differential

equations, we can start asking questions about the solution to the system with respect to a given

initial condition.

2.2 Numerical Solution of the Nonlinear System

Modeling real phenomena can be a great task as complex behavior involves many factors.

One of the complexities arises with the nonlinear nature of the problem. Nonlinearity brings

difficulties in finding analytic solutions for the system. In this study we use a custom code, written

in Matlab, to implement the classical fourth order Runge-Kutta method (RK4). We used a step size

of one tenth of a millisecond. That is, h = 0.1 ms, and the error is of order O(h4).

After using RK4 we decided to further justify qualitative features of the solution. We

justified the systems insensitivity to the solver by using the built in Matlab function, ODE45. This

built in function uses a combination of a fourth - fifth order Runge-Kutta method. An absolute error

tolerance of 10−6 was used. Using an adaptive step size, this algorithm is able to control the error

based on the chosen error tolerance. In both cases, similar qualitative features persist (Fig. 2.3, and

Fig. 2.4).

2.3 Key Parameters and Properties of the Model

One of the key parameters in the system is the constant input current (Ii,s). These are present

in the four differential equations governing the membrane potential of somatic compartments. This

can be thought of as a ’forcing’ term. We will notice that this parameter is critical for the system to

enter a periodic behavior that models the three cycles seen in Lymnaea’s feeding behavior.
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Figure 2.3: Simulation using custom code of RK4. The vertical axis denotes N1M’s voltage

measured in millivolts. The horizontal axis denotes the number of time steps for a total of 3 seconds.

Figure 2.4: Simulation using ODE45. The vertical axis denotes N1M’s voltage measured in

millivolts. The horizonal axis denotes time in milliseconds for a total of 3 seconds.
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Although we can think of this parameter intuitively as a ’forcing’ parameter, biologically, it

seems that this parameter hides many sins. It encompasses for a great deal of biochemical events

occurring in the system.

For example, in preparations of the snail, it makes perfect sense for this parameter to be the

injected current applied via the amplifier. This essentially forces a depolarization of the membrane

and will ultimately lead to many action potentials. The perplexing aspect of this term is the fact

that feeding occurs in vivo and thus occurs without a forcing term within the biological organism.

From a biological point of view, we would like to unravel the mystery behind these parameters

and be able to explain the biochemical events that make up this term. We assume that this term

encompasses information coming from other parts of the snail’s nervous system.

2.3.1 Current Parameters

We considered a couple of cases of the input currents importance to the system. Current

parameters are important for periodic behavior.

Case 1: Ii = 0.00 nA where i ∈ {1,2,3,4}. In this case, application of zero current to all neurons

yields tonic spiking of N3t and no triphasic behavior (Fig. 2.5). If N3t fires tonically, the result is

a suppression of rasp behavior. This occurs because N3t acts as a decision making neuron. This

decision is made based on the presence of food [4]. Moreover, we visualize synaptic effects by Fig.

2.6.

Case 2: I4 = 10.00 nA and Ii = 0.00 nA where i ∈ {1,2,3}. Here we fed a constant current of 10.00

nA to SO only. All other currents were fixed at zero throughout the simulation. This leads to a rasp

which lasts approximately 3 seconds (Fig. 2.7). Contrary to the first case, N3t does not fire tonically.

As a consequence of N3t not firing tonically, a feeding rasp occurs and subsequent rasps continue

periodically.

2.3.2 Degrading the Network

We also wanted to study what occurred if we degraded the network. We specifically

investigated the case when SO was removed from the network (Fig. 2.9).
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Figure 2.5: Case 1. The vertical axis is voltage measured in millivolts. The horizontal axis is time

measured in milliseconds. The total time was 15 seconds. Blue is N1M, black is N2v, red is N3t

and green is SO. There is no stimulus being applied to any cell.

Figure 2.6: Case 1. The vertical axis is voltage measured in millivolts. The horizontal axis is time

in milliseconds. This figure is a result of the same simulation ran for Fig. 2.5.
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Figure 2.7: One Rasp. Constant current of 10.00 nA applied to SO only, enables rasping behavior.

The vertical axis is voltage measured in millivolts. The horizontal axis is time measured in

milliseconds.

Figure 2.8: This image was generated using the simulation that produced Fig. (2.7). Again, in all

four graphs, the vertical axis is voltage measured in millivolts and the horizontal axis is time. The

total time was 15 seconds. Phases are clearly visible and solutions possess periodic behavior.
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Figure 2.9: The network without SO. Removal of SO, reduces the system from 37 differential

equations to 27 differential equations. Again, bars represent excitatory synapses while circles

represent inhibitory synapses.

Mathematically, the nonlinear system went from having 37 differential equations to 27

differential equations. With appropriate applied current, the system was able to generate a rasp (Fig.

2.10). Moreover, with the same parameters, the system enters periodic fictive feeding (Fig. 2.11).
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Figure 2.10: One rasp with SO removed from the network. We applied constant current of 10 nA

to N1m. In addition simultaneously apply constant current of 3 nA. This allowed the system to

generate a rasp and enter periodic behavior. The vertical axis is voltage measured in millivolts and

on the horizontal axis we have a total time of 3 seconds. Blue represents N1M, black N2v, and red

N3t.

Figure 2.11: Periodic behavior with SO removed from the network. Again, we applied 10 nA of

constant current to N1M and 3 nA to N2v. Each neuron and their corresponding phase is visible.
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CHAPTER III

APPLICATION

3.1 Parkinson’s Disease and Rotenone

Parkinson’s Disease (PD) is a neurological disorder that affects over one million people in

North America alone [3]. It is characterized by involuntary motor tremors and bradykinesia. Loss

of dopaminergic neurons in an area of the brain known as the substantia nigra compacta ultimately

leads to PD. Despite intensive investigation, the cause is not well understood.

The toxin, Rotenone, is known to damage dopamine cells in a variety of organisms. Vehovsky

et al. have proposed the use of Rotenone in Lymnaea stagnalis as a model for studying PD [5]. It

would be useful to correlate the loss of dopamine with the deficit in motor behavior. Because the

CPG does not contain any dopaminergic neurons, finding this correlation is not so obvious. On the

other hand, there is a small number of dopamine neurons found in the buccal ganglia. We believe

that damage to one of these dopaminergic neurons may extrinsically modulate the network.

3.2 Experiment

We sought to investigate Rotenone’s effect on feeding behavior in the snail. Our initial

assumption was simply that that Rotenone would change the duration of the rasp. We then conducted

simple feeding experiments on both control and treated groups.

3.2.1 Treatment

The snails underwent an acute rotenone treatment. An acute treatment consists of a 48 hour

exposure of the snails in vivo. We kept the treated group in 1 liter containers that were filled with

650 mL of 0.05 µM rotenone solution. The control group was kept in 1 liter containers that were
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filled with 650 mL of pond snail water.

3.2.2 Behavioral Tests

Tests were done immediately after an acute treatment. Snails were placed in a transparent

rectangular container filled with 200 mL of a 100 mM sucrose solution. The pond snails were then

observed for 3 minutes after their first rasp. While observing, I kept a marker of the beginning of

each rasp. Since sucrose is a ’strong’ stimulus, we observe that ∆IRI (IRI = Inter Rasp Interval) was

zero during the first minute. From this observation, we used the difference between rasp markers to

provide an estimate of each rasp duration. On average, the typical duration of a tri-phasic feeding

cycle is about 3 seconds [1]. Contrary to that number, our results give a shorter average of rasp

duration (Fig. 3.2).

3.3 Results

Our results indicate that Rotenone protracts the feeding cycle. A direct consequence of this

result is a decrease in feeding rate. Using a sample size of nine snails per group, we get a 23.084

percent decrease in rasps per minute during the first minute (Fig. 3.3).

The histogram shows a shift in rasp duration. The control group has more than fifty percent

of its rasp duration in the two to three second bins. While the treated group has more than fifty

percent in the three to four second bins (Fig. 3.1).

3.4 Experiment to Model

Since the numerical simulation emulates feeding behavior with no inter-rasp interval, we

attempted to match the model with experimental results. In our hypothesis, we use the fact that SO

reacts to sensory stimulus, like sucrose, to change the frequency of rasps [4]. We targeted SO as a

possible neuron that is being affected by damage to dopamine cells in the buccal ganglia. Using that

hypothesis, we decided to fix all current parameters at zero, except for the constant current being

fed into SO.

The result of this experiment, was a change in constant current to SO. Constant current

of 10.5 nA yielded about 21 rasps per minute (Fig. 3.4). This resembled the average number of
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Figure 3.1: Histogram of rasp duration. Blue represents control while red denotes rotenone. In the

vertical bar, we are measuring how many times an event occurs in a certain interval. The horizontal

axis is time and bin intervals of size 0.5 of a second.

rasps in healthy snails. We then changed the current parameter to 9.2 nA to yield about 17 rasps

per minute (Fig. 3.5). This resembled the average number of rasps in rotenone treated snails. One

important observation is that this choice of parameter is not unique and tuning the model to match

experimental data can be done using other parameter choices.
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Figure 3.2: Average rasp duration in sucrose. Both the control and treated group had a sample size

of nine snails (n = 9). The vertical axis is average rasp duration. The results were, Control = 2.7658

ms and Rotenone = 3.424 ms, with P < 0.05.
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Figure 3.3: Average number of rasps during the first minute. Both the control and treated group

had a sample size of nine snails (n = 9). This image is directly related to Fig. (3.2). This data was

statistically significant, P < 0.05.
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Figure 3.4: We fixed a constant current to SO of 10.5 nA, while all other current were fixed at

zero. This produced about 21 rasps to match the avgerage number of raps in the healthy group.

The vertical axis is voltage measured in millivolts, while the horizontal axis is time measured in

milliseconds for a total of one minute.
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Figure 3.5: We fixed a constant current to SO of 9.2 nA, while all other current were fixed at zero.

This produced about 17 rasps to match the avgerage number of raps in the rotenone treated group.

The vertical axis is voltage measured in millivolts, while the horizontal axis is time measured in

milliseconds for a total of one minute.
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CHAPTER IV

CONCLUSION

In conclusion, we were able to implement a numerical algorithm to solve the nonlinear

system describing feeding in Lymnaea stagnalis. The simulation faithfully replicated qualitative

features seen in physiological recordings. Furthermore, we investigated some of the basic properties

of the system. In particular, the systems sensitivity to current parameters. We showed that with a

particular set of currents, the solution of the system enters periodic behavior. In addition, we applied

the model to laboratory work on Parkinson’s disease. This application allowed us to postulate a

possible mechanism of Rotenone’s affect on the feeding system.

This project has led to an array of future explorations. For example, we would like to search

for dopamine receptors on CPG neurons. This would further justify the fact that dopamine damage

leads to a deficit in motor behavior. I will also attempt to record neural activity from Rotenone

treated CPG neurons. Mathematically, we would like to explore other properties of the model using

tools like Fourier analysis and dynamical systems.
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