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ABSTRACT

Keenan, Alexandra B., Exponential Replication of Patterns in the Signal Tile Assembly Model

and Experimental Non-Deterministic Assembly of Lines in the Probabilistic Tile Assembly

Model. Master of Science (MS), May, 2014, 51 pp., 2 tables, 20 figures, references, 41 titles.
We introduce the problem of self-replication of rectangular two-dimensional patterns in
the practically motivated Signal Tile Assembly Model (STAM) [23], which is an ex- tension of
the aTAM.. In the first part of this thesis, we construct an exponential pattern replicator that
replicates a two-dimensional input pattern over some fixed alphabet of size ¢ with O(o) tile
types, O(¢) unique glues, and a signal complexity of O(1). In the second part of this thesis, we
use a non-deterministic model of tile assembly to significantly reduce the tile complexity of
specified-length linear assemblies, which are a particularly important substructure for building

more complicated nanostructures.
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CHAPTER I

INTRODUCTION

In May of 1959, physicist Richard Feynman gave a speech entitled, There's Plenty of Room at
the Bottom which outlined his vision, 'that we could arrange atoms one-by-one, just as we want
them [3]." Much of the nano-technology community that emerged in the subsequent decades after
Feynman's conceptual description of the field focused on mechanical devices and silicon-based
electronics, and the evolution-honed efficiency of Nature's self-assembling nano machines was
neglected. In 1992, Eric Drexler first described the role that biology and biochemistry might play

in nano-scale information storage and computation [14]:

Most experimental research in molecular electronics has focused on the development
of molecules that exhibit useful electronic properties in thin films or in microscale ag-
gregates; some proposals, however, have focused on the construction of computational
devices in which individual molecules or moieties would serve as signal carrying and

switching elements.

In the years since, DNA gained favor as the molecule of choice in molecular computation and
nano-technology for its predictable interactions with other DNA molecules, its simple reaction ki-
netics, and its ability to store vast amounts of information. Seminal works by Seeman and Robinson
toward designing a self-assembling nanoscale biochip [28], combined with Drexel's novel approach
to molecular computation mark a shift in nano-technology strategy during the late 1980s and early
1990s toward investigating biological and chemical grounds for molecular scale computing.

A few years after Nadrian Seeman and colleagues built the world's first nanoscale structure--

a cube made out of DNA [6], Leonard Adleman performed his first DNA computing experiment:



solving an instance of the Hamiltonian Path Problem in which 1014 operations were executed in one
second, faster than the super-computers of the day [2]. This seminal paper describes Adleman's first
DNA computing experiment which solved an 8-vertex instance of the Hamiltonian Path Problem
in which 1014 operations were executed in one second, faster than the super-computers of the day.
Soon after this announcement, the media and scientists alike were heralding the end of silicon-based
computers in favor of molecular computers. However, the excitement of the earlier, headier days
of molecular computation subsided as the inherent limitations of DNA computing came to light.
The goal of most DNA computing laboratories now is not to compete with silicon-based elec-
tronics, but to mimic the sorts of information processing which may occur in cells via dynamic
biomolecular interactions [40]. Thus, the two branches, DNA nanotechnology and DNA com-
puting evolved symbiotically, with many researchers working in both fields. However, it was
Erik Winfree that first established a direct link between the two paradigms by suggesting that that
branched DNA molecules could undergo self-assembly in a programmable way, thus performing
computation as part of their growth process [39]. It was this idea that led to the combination of
computational geometry, DNA nanotechnology, and DNA computing into the rich field known
as algorithmic self-assembly. Algorithmic self-assembly has its foundations in Wang tiles, which
are a formal system modeled by square tiles with a color on each of their four sides [37]. Two
Wang tiles may be arranged side-by-side in two dimensional space such that abutting edges on two
adjacent tiles have matching colors. They may tile the plane in this way, creating shapes and/or pat-
terns. This abstract notion can be realized in reality via the use of branched DNA molecules called
DNA tiles with branches that may attach to other tiles via hybridization to branches on surrounding
tiles with complementary nucleotide bases. In this way, structures of predictable tile composition
can self-assemble in solution. Winfree realized that the manner in which these DNA tiles assem-
ble is algorithmic and observed that the Chomsky Hierarchy of languages emerges naturally in
self-assembling structures. The progression from regular to context-free to recursively enumerable

languages is mirrored by the progression of computational power from linear DNA tiles to den-



drimer tiles to two-dimensional DNA self-assembling structures [39]. Linear DNA self-assembly,
that is, self-assembly beginning with oligonucleotides or duplex molecules with sticky ends, is
capable of generating regular languages. Dendrimer self-assembly is self-assembly of duplexes,
hairpins, and 3-armed junctions with sticky ends, all of which generate context-free languages.
Two-dimensional self-assembly, DNA self-assembly into a planar lattice structure, is capable of

Turing universal computation [39].

I.I Abstract Tile Assembly Model

In order to visualize and generate DNA tile sets, an abstract model of two-dimensional self-
assembly was developed by Winfree and is known as the abstract Tile Assembly Model (aTAM).
A tile is expressed as a square with labeled edges. Adjacent squares may attach to one another if
their abutting edges have matching labels and the strength of the bond is adequate. Whether a bond
is adequately strong depends on a parameter called temperature, which is a characteristic of the
environment in which the self-assembly is taking place. If the bond strength is equal to or greater
than the temperature of the system, then the bond will form. For example, if the temperature of the
system is 2, then a single bond may form only if it has strength 2 or greater. This can be extended to
include multiple bonds between tiles, where the sum of the strengths of the bonds must be equal to
or greater than the temperature of the system [39]. A tile self-assembly system begins with infinitely
many copies of certain tiles, each with some specified label, also known as a glue, on each of its four
sides. One tile type is different from another tile type if it has some other glue types or configuration
of glues. A tile set consists of all the tile types available in the system. In general, tile self-assembly
begins with a seed tile, the tile that nucleates the aggregation of other tiles in the tile set. Tiles
may transform horizontally or vertically to attach to the seed or growing aggregate. Tiles may not
flip or rotate [39]. An interesting phenomenon dubbed cooperativity, occurs in two-dimensional
assembly systems when the temperature is at least two. This characteristic is manifested when two

binding sites of a tile act together when binding to the aggregate. For example, if a tile has one



glue of strength 1 on its East face and one glue of strength 1 on its West face, these two glues
may act simultaneously in binding to the aggregate such that the total strength with which the
tile is bound to the aggregate is strength two [39]. The most studied consideration for any tile
self-assembly system is the tile complexity required to build a given pattern or shape. The tile
complexity is often defined differently in different models, but in the aTAM it is defined as the
number of tile types in the system. This is of practical importance, because each tile type requires
significant experimental characterization and development in the laboratory. Glue complexity is
also important and is defined as greatest number of glues on a given side of a given tile. This is also
important to consider because each glue requires significant experimentation to identify potential
cross-reactions with other glues in the system that could result in a tile binding to the aggregate in
an erroneous manner. An obvious upper bound for tile complexity for any tile shape would be the
area of the shape. More specifically, a shape with area n would require at most O(n) tile types to
construct, with each tile type occupying a unique coordinate within the shape. Indeed, this does
describe the tight asymptotic behavior for some cases, as an nx1 line does require O(n) tile types.

However, because it is possible to build computation into the construction, oftentimes fewer tile

logn

loglogn) tile types because a base-n log

types will suffice. For example, an nxzn square requires O(
counter may be embedded into the growing assembly [29]. The aTAM at temperature 2 is capable
of Turing universal computation, and it is believed the cooperativity phenomenon is responsible
for this [20]. It has also been shown that aTAM at temperature 2 is intrinsically universal, that is,
there exists a single tile set that can be used to simulate any other arbitrary aTAM system [12]. It

has been conjectured that at temperature 1, Turing universal computation in aTAM is impossible,

and some progress has been made toward proving this but it is still an open problem [13].

I.II Extensions to the aTAM

Since Winfree's thesis was published, a rich spectrum of research in algorithmic DNA self-

assembly has arisen and now includes several models of self-assembly. A subset of the models



most relevant to this thesis will be reviewed in this section. First, the signal tile assembly model
(STAM) is the model used in replication of patterns discussed in Chapter II. The experimental work
in Chapter III relies heavily on the theoretical work performed by [5] in developing the probabilistic
tile assembly model (pTAM) described in Section LILI, the concentration programming model

described in Section L.IL.IV, and the staged assembly model described in Section LILII.

LILI Probabilistic Tile Assembly Model

The probabilistic tile assembly model (pTAM) utilizes randomized assembly to construct 1zn
rectangles, or rulers, much more efficiently [5]. These rulers can then be used to guide the assembly
of a variety of complex shapes. Recall that in the aTAM, rulers may be assembled with O(n)
tile types. This bound is asymptotically tight, which begs the question why the theoretic limit of

O( lol;lgo -, ) cannot be reached. One possible answer lies in the deterministic nature of the aTAM. The

aTAM is deterministic in the sense that only one tile may attach to a given position in a partially
formed assembly. The pTAM is non-deterministic in the sense that it allows for the possibility
of more than one tile attaching in a given place to the partially formed assembly. It leverages this
possibility to construct rulers with fewer tile types than what is required in the aTAM. In the pTAM,
rulers may be assembled with a tile set of O(logn) tile types that have only one glue per side. With
two glues per side, it is possible to achieve the theoretic lower bound of O(logn /loglogn) tile types.

To achieve a tile complexity of O(logn) two tile subsets are used that may bind to the growing
ruler. One subset is a set of counter tiles, of which there are p tiles where each tile may be designated
as Ty, o, ..., Tp_1, Tp. The other subset contains reset tiles, of which there are also p tiles designated
asry,7re, ..., Tp—1, p. If areset tile binds to the growing assembly, then the assembly is reset back to
binding z;. It is only after all the counter tiles (; through z,) bind consecutively that the assembly
terminates. If we consider a reset tile binding to be heads and a counter tile binding to be tails,
then the aforementioned event occurring would be equivalent to flipping p heads in a row. Thus,
the expected length of the line will be much longer than the number of tiles required to build it. In

fact the expected length of the line is 2p, so the tile complexity is O(logn) where n is the length of



the line [5].

It should be noted, however, that rulers developed using this technique have an expected length
but this length cannot be guaranteed because of the nature of the non-deterministic self-assembly
process in this model. The set of terminal assemblies will have more than one shape using this
model with a small probability of formation of each erroneous terminal assembly possibility. The
probabilistic model described in [5] describes an elegant solution to the construction of a line in
fewer tile types.

Some work has been done using other probabilistic models for the efficient construction of poly-
gons. Most of these approaches have included varying the concentrations of available tile types to
achieve exact shapes with high probability [10,19]. While not a nondeterministic method, it should
also be mentioned here that temperature programming, the raising and lowering of the temperature
as the self-assembly process proceeds, can also result in in approximations of sufficiently scaled-up

shapes with few tile types [33].

LILIT Staged Self-Assembly

Of all of the tile assembly models developed, the staged self-assembly model is perhaps most
conducive to the success of the experimentalist attempting to build complex shapes or scaffolds in
the laboratory. In this model, assemblies are constructed in stages, with only a few tiles in the tiles
set available to the attach to the assembly at a given time [8]. This is accomplished by starting a
seed with only a strategic few of the tile types in the set available to it. When all possible binding
instances have occurred, the experimentalist may add the next batch of tile types to the system
in order to continue the assembly process. It is also possible to start two separate assemblies in
two separate test tubes and then mix them together at some later point in the assembly process to
achieve the desired effect. This helps to reduce the tile types and glue types required to construct
a given assembly at the expense of the operations that the experimenter must perform during the
assembly process. In reality, given a reasonable number of mixing and/or separating reactions,

this approach is very practical because it drastically minimizes the time which the experimenter



must spend on the construction of a particular assembly system because the most lengthy process
is actually developing tile types. The model is also beneficial because it is difficult to design a large
number of glues that attract only in pairs, as there is a limit to the number of sufficiently different
ATGC sequences that can be achieved on a short piece of DNA. To achieve efficient staged self-
assembly, the goal is to minimize both tile types and experimenter operations. The developers of
this model show that any patterned shape can be constructed with a constant number of glues in
O(logn) steps [8]. This model was also used to design a shape replicating system in [1]. Given an
input shape, the self-assembly system replicates that shape either into a specific number of copies
or an unbounded number of copies. This scheme takes advantage of the fact that tiles systems can
be synthesized with DNA or RNA, both of which would theoretically behave the same way. The
replication scheme utilizes a stage in which RNAse is added to the batch. RNAse is an enzyme
that rapidly degrades RNA. Shape replication is achieved by first surrounding the input shape to
be replicated with RNA tiles in a series of stages. These RNA tiles are then surrounded by layers
of DNA tiles. RNAse is then added to the batch which dissolves the RNA tiles, releasing the input
shape and leaving a template through which the shape may be replicated. In the next stage, the
RNAse enzyme is disabled and a new layer of RNA tiles lines the negative-shape template. DNA
tiles may then fill in the form of the shape. RNAse is added once more, which dissolves the RNA
tiles and releases the shape replica. This may be repeated the desired number of times in order to
achieve the desired number of replications. Alternatively, a new template may be created for each
new replica generated, creating an exponential replication scheme which allows for the unbounded
generation of replicates. Under this model, the authors show that genus-0 shapes may be replicated
infinitely many times using O(1) tiles types and O(1) stages. Replicating a precise number of

copies of a shape requires O(1) tiles types and O(logn) stages.

LILIII Signal Tile Assembly Model
First described in [23], the Signal Tile Assembly Model (STAM) is a powerful model of tile

self-assembly in which activation, via binding, of a glue on an individual tile may turn other glues



either on or off elsewhere on the tile. In this way, signals may be propagated across distances
and assemblies may be broken apart (Figure I.1). Additionally, certain glues may only be made
available after a desired event occurs, giving control over the assembly sequence that was not
achievable in passive tile models such as aTAM and staged self-assembly. One limitation of the
STAM is that the signals are asynchronous, meaning that once a signal has been activated, it can
only be guaranteed to be propagated at some point in the future. The designer cannot depend on
the signal being propagated immediately [23]. This limitation is due to the physical realization of
the signals.

glue latent »on glue on>off
g o3
2) aHa_>). 2) aHa_.

signal propagation across assembly

o Lk ¥ -
2) aHa , ).

Figure I.1: STAM schematic.

Queued DNA strand displacement reactions on tile monomers provide a plausible physical basis
for the signaling cascades used in the STAM. A DNA strand-displacement reaction occurs when
two strands with at least partial Watson-Crick complementarity hybridize, displacing one or more
pre-hybridized strands in the process [40]. Such reactions can be set up in sequence, resulting in a
cascade (Figure 1.2).

Using the STAM, it is possible to assemble a 1zn line with O(1) tile types and signal com-

plexity O(logn). The authors also presented a Turing machine simulation that operated without
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Figure 1.2: The DNA strand with nucleotide regions a, b, and ¢ displaces the strand with regions
a, b, and d by hybridizing to abc. The strand with nucleotide regions a, b, and d is then free to
perpetuate the hybridization cascade.

making a copy of the entire row representing the tape at each step, but which instead uses only a
constant number of new tiles per step. This was new in the tile self-assembly model, as all pre-
vious constructions kept the tape history in the growing assembly. The model is also capable of
strictly assembling a discrete self-similar fractal, something which was shown to be impossible
in the aTAM. Specifically, the authors presented a strict construction of the Sierpinski triangle, a
self-similar fractal which can only be approximated in the aTAM.

Complexity in the STAM is represented as both the number of tile types and with a parameter
known as signal complexity. Signal complexity is measured as the maximum number of signals
on a side of any tile in the tile set. Using the STAM, it is possible to assemble a 1xn line with
a O(1) tile types and signal complexity O(logn). The model developers also presented a Turing
machine simulation that operated without making a copy of the entire row representing the tape
at each step, but which instead uses only a constant number of new tiles per step. This was new
in the tile self-assembly model, as all previous constructions kept the tape history in the growing
assembly. The authors also presented a strict construction of the Sierpinski triangle, a self-similar

fractal which can only be approximated in the aTAM.

LILIV Concentration Programming
Tile concentration programming is a non-deterministic extension to the TAM where more than

one tile type is capable of binding to a given position on a growing assembly. Concentration pro-



gramming utilizes differing tile type concentrations to determine probabilities that a given tile will
bind to a position where multiple tile types could bind [11, 19]. By programming relative con-
centrations of tile types, it is possible to probabilistically assemble lines with lengths over some

distribution but with expected length L with very few tile types.

LILV Single Phase

In its simplest form, construction of a linear assembly with some expected length using con-
centration programming requires three tile types: a seed .S, a growth tile (¢, and a termination tile
T'. Assembly initiation begins with the seed tile. Growth is unidirectional with G' and 7 tiles com-
peting to attach to the growing assembly (Figure 1.3). The binding of a G tile continues the growth
of the line eastward while the binding of a 7’ tile halts line growth and terminates the assembly,
meaning no more tiles may attach. When G tile types are assigned a concentration of 1 — p and T’
tiles are assigned a concentration of p, assembly lengths fall over a geometric distribution described
by P(¢) = (1 — p)*~2p where the expected assembly length L = 713.

F\

| | |G,

\+
T

| |G,|Gy Gy |Gy |T,

Figure I.3: Top: Tiles involved in assmembly with arrows indicating binding possibilities. Bottom:
Possible assembly.

LILVI Multiple Phases
To produce linear assemblies with lengths more tightly concentrated around L, multiple phases
of growth and termination tiles are required: SG171G5T5...GiT. This assembly mechanism can

generate all strings described by the regular expression

10
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Figure 1.4: These distrubtions demonstrate the tightening of assembly lengths around some ex-
pected length L with an increasing number of stages. Here, p and r were set for each assembly
system to provide for an expected length of 10 tiles.

I1G11(G12G1 1) T1Go1(G22G2, 1) Th...G 1 (G oGt )T

Tiles GG; and T; compete with one another at a given stage i to bind to the growing linear as-
sembly. The binding of 7; signals a transition to stage ¢ + 1 in which tile G, and T}, would then
compete to bind to the assembly. Tile G; has a concentration of p — 1 and tile 7} has a concentration

p which generates assemblies of expected length L = % with lengths falling over the negative bi-

{—1

nomial distribution P(¢|k, p) = (,~;)p"(1 — p)*~*~'. Increasing k, the number of stages, tightens

the distribution around L (Figure 1.4).

N\
| |« |G,
\* ~
T, | —|G;
\¢ ~
T, | —|G3

\;
LE

Figure 1.5: Tiles involved in a 3-stage linear assembly example with arrows indicating binding
possibilities.
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LIII Contents and Contributions
A version of Chapter Il appears in: Keenan, A, Schweller, R, and Zhong, X. Exponential Pattern
Replication in the Signal Tile Assembly Model. Proceedings of the 19th International Meeting on
DNA Computing (DNA19), Arizona State University, Tempe, AZ, September 22-27, 2013.
Robert Schweller wrote the definitions in this paper and Xingsi Zhong made contributions to the
2D replication constructions. The experiments in Chapter III were designed by me and performed

by myself, Robert Schweller, David Chavez, Leslie Sweet and Cameron Chalk.
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CHAPTER II

EXPONENTIAL REPLICATION IN THE STAM

Artificial self-replicating systems have been the subject of various investigations since John von
Neumann first outlined a detailed conceptual proposal for a non-biological self-replicating sys-
tem [21]. Following Watson and Crick's seminal paper in 1953 [38], L.S. Penrose used DNA

as inspiration in designating the necessary features of a self-replicating system [26]. Gunter von
Kiedrowski, who demonstrated the first enzyme-free abiotic replication system in 1986 [36], de-
scribes a model that can be used to conceptualize template-directed self-replication [24]. In this
model, minimal template-directed self-replicating systems consist of an autocatalytic template molecule,
and two or more substrate molecules that bind the template molecule and join together to form an-
other template molecule. To date, simple self-replicating systems have been demonstrated in the
laboratory with nucleic acids, peptides, and other small organic molecules [25,35,36,41].

Given that substrate molecules must come together without outside guidance to replicate the
template, a template-directed self-replicating system is necessarily a self-assembling system. Self-
assembly has long been nature's method of choice for building complex structures, large and small.
How did such complex self-assembly schemes come to be? What kind of autonomous chemical
systems can self-replicate and evolve? Among evolutionary biologists, there is a perspective that
the problem of the origin of life is a problem of information processing. In theoretical computer
science, the Tile Assembly Model (TAM) has become the most commonly used model to describe
various self-assembly processes [39]. Many model variants have been described since Erik Winfree
first introduced the TAM, however models that are most relevant to self-replicating systems are

those that allow for assembly breakage. These include the enzyme staged assembly model [1],
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the temperature programming model [18], the signal tile assembly model [22,23], and the use of
negative glues [27].

Replication of arbitrary 0-genus shapes has been shown within the staged assembly model
with the use of RNAse enzymes [1]. Replication and evolution of combinatorial “genomes' via
crystal-like growth and breakage have also been demonstrated in the laboratory using DNA tile
monomers [30]. Under this replication mechanism, a DNA crystal ribbon has a sequence of infor-
mation, or ‘genome’, in each row. Upon chance breakage, the daughter crystal continues to grow
and copy the ‘genome’ of the mother crystal. It was further shown that the fidelity of the replica-
tion process is sufficiently high for Darwinian evolution. Such simple, enzyme-free systems are of
particular importance to the study of the origins of life. Several decades ago, Graham Cairns-Smith
proposed that life began with clay. Clay is composed of tiny layered crystals that may have a variety
of patterns of atoms or molecules in a layer. This pattern can be viewed as a sort of genome that is
copied through the layers as the crystal grows. If a portion of the crystal broke off from the parent,
this new crystal would continue to copy the same pattern as it grew. If some layer patterns grew
faster than others, then those particular patterns would be selected for. As an example, patterns
that allowed the crystal to stick to the riverbed better might be selected for because clay crystals
grow in an aqueous environment. Crystals that tended to be unable to stick to the riverbed would
flow downriver and eventually end up on a sand bank and disintegrating. The clay hypothesis con-
tends that perhaps organic molecules began adhering to the clay and being replicated along with
the patterns. Perhaps they conferred some advantage to clay layer reproduction. Perhaps, then,
the organic molecules began to behave more autonomously and reproduce themselves. Recently,
industry has been using clay crystals as catalysts for a variety of organic reactions, which raises
interesting possibilities, as the absence of enzymes in early RNA or DNA worlds has presented a
conundrum for scientists studying the origins of life. Schulman et al studied the possibility of the
Cairns-Smith clay hypothesis via the use of DNA tile assembly. Because clay crystals grow so

slowly, the clay hypothesis was never given much thought by experimentalists because it simply
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could not be studied under any reasonable time scale in a laboratory. However, with the advent
of self-assembling DNA tiles, the possibility of the crystal pattern replication and breakage model
could be studied on a more reasonable time scale. Schulman and Winfree constructed, zig-zag rib-
bon crystals with a sequence of information in each row. They showed that in theory crystals that
can compute and can undergo open-ended evolution as they try to produce more and more complex
'genomes’' to take advantage of available growth resources. This mechanism was simple enough
to observe in the laboratory. This work suggests that the concept of a self-replicating chemistry
is closely related to the concept of a chemistry that can store information and compute. It is only
by clearly understanding how chemical systems can transfer and process information that we can
hope to understand how self-replication and evolution can occur, and by implication, understand
how life might have begun.

A template-directed method of exponential self-replication within the tile assembly system,
where the child molecule detaches from and is identical to the parent (as is found in biological
systems), has not yet been described. Here, we present a theoretical basis for template-directed
exponential self-replication in the practically motivated Signal Tile Assembly Model (STAM), and
in doing so partially address an open question presented by Abel and colleagues [1]. Specifically,
we consider the problem of self-replication of rectangular two-dimensional patterns in the STAM.
The STAM is a powerful model of tile self-assembly in which activation, via binding, of a glue
on an individual tile may turn other glues either on or off elsewhere on the tile [23]. In this way,
signals may be propagated across distances greater than a single tile and assemblies may be bro-
ken apart. DNA strand displacement reactions provide a plausible physical basis for the signaling
cascades used in the STAM. DNA strand displacement occurs when two DNA strands with at least
partial complementarity hybridize with each other, which can displace pre-hybridized strands. In
the STAM, these reactions may be queued to result in a cascade that ultimately turns a glue 'on'
by releasing a pre-hybridized strand. Conversely these queued reactions could turn a glue 'off' by

binding a free strand, thus making it unavailable to interact with other glues.
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An important objective of nanotechnology is to manufacture things inexpensively, thus the
prospect of self-replicating materials with useful patterns or functions is enticing. Additionally,
an enzyme-free self-replicator that can support and autonomously replicate an information-bearing
genome could provide the basis for a model of Darwinian evolution. Because true Darwinian se-
lection necessitates exponential population growth [34], and this rate of growth is also desirable
for low-cost manufacturing of nanoscale devices, we approach this problem with the goal of expo-
nential growth in mind.

The Signal Tile Assembly Model of [23] is briefly defined formally in Section IL.I, followed
by our formal definition of exponential replication. We first present a 2D signal tile system that
replicates a linear pattern and then extend this mechanism to present our main result in Section
ILIIL: there exists a single, general purpose 2D signal tile system that exponentially replicates
any rectangular 2D pattern (Theorem 1). This is followed by a discussion of replication of linear
assemblies in 1D space and 2D assemblies in 3D space, however we omit a detailed analysis of

these systems due to space limitations.

II.I Definitions

ILLI Basic Definitions

Multisets. A multiset is an ordered pair (S, m) where S is a subset of some universe set U and
m is a function from U to N J{oco} with the property that m(z) > 1 forall x € S and m(x) =0
forall z ¢ S. A multiset models a collection of items in which there are a positive number of
copies m(x) of each element z in the collection (called the multiplicity of x). For a multi-set
A = (S,m) and x € S, we will use notation A(z) = m(x) to refer to the multiplicity of item
z, and [A] £ Y _sm(a) to refer to the size of A. For multisets B = (b,m) and A = (a,n),
define B | J A to be the multiset (a | Jb, m) where m/(x) = m(z) + n(x). If m(z) > n(z) for all
x € U, then define B — A to be the multiset (v, m/(x)) where b’ = {z € bjm(z) — n(z) > 1}

and m/(z) = m(x) — n(x). We use standard set notation {ay, . .., a,} to denote multi-sets with the
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multiplicity of an item a being inferred by the number of ¢ such that a; = a.

Patterns. Let ¢ be a set of labels that contains at least one particular label null € ¢ which
conceptually denotes a blank, non-existent label. Informally, a 2D pattern is defined to be a mapping
of 2D coordinates to elements of ¢. Further, as these patterns will denote patterns on the surface
of free floating tile assemblies, we add that patterns are equal up to translation. Formally, a 2D
pattern over set ¢ is any set { fa, a,(2,y)|As, A, € Z} where f : Z* — ¢, and fa, a, (2, y) =
f(x + A,y + Ay). In this paper we focus on the the class of rectangular patterns in which the
null label occurs at all positions outside of a rectangular box, with positions within the box labeled

arbitrarily with non null labels.

ILIII Signal Tile Model

In this section we define the signal tile assembly model (STAM) by defining the concepts of an
active tile consisting of a unit square with glue slots along the faces of the tile, as well as assemblies
which consist of a collection of active tiles positioned on the integer lattice. We further define
a set of three reactions (break reactions, combination reactions, and glue-flip reactions) which
define how a set of assemblies can change over time. Figure I1.1 represents each of these concepts
pictorially to help clarify the following technical definitions. Please see [23] for a more detailed
presentation of the STAM.

Glue Slots. Glue slots are the signal tile equivalent of glues in the standard tile assembly model
with the added functionality of being able to be in one of three states, on, off, or latent, as well as
having a queued command of on, off, or -, denoting if the glue is queued to be turned on, turned
off, or has not been queued to change state. Formally, we denote a glue slot as an ordered triple
(9,5,q) € X x {on,off,latent} x {on, off, —} where X is some given set of labels referred to as
the glue type alphabet. For a given glue slot z = (g, s, ¢), we define the fype of z to be g, the state
of x to be s, and the queued action of = to be q.

Active Tiles. An active tile is a 4-sided unit square with each edge having a sequence of glue

slots g1, . . . g, for some positive integer r, as well as an additional label taken from a set of symbols
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Combination reaction Glue-flip off reaction Break reaction

Figure I1.1: This sequence (a-f) demonstrates the reaction types, glue states, and queued commands
defined in the STAM.

¢. For simplicity of the model, we further require that the glue type of each g; on each tile face is
the same (although state and queued commands may be different), and that the glue type of g; is
distinct from the glue type of g; if i # j. For an active tile ¢, let ¢;; denote the glue slot g; on face
d of active tile ¢.

Finally, an active tile ¢ has an associated signal function f(d, i) which assigns to each glue slot
1 on each tile side d a corresponding set of triples consisting of a glue slot, a side, and a command,
which together denote which glue slots of each tile face should be turned on or off in the event that
slot 7 on face d becomes bonded. Formally, each active tile ¢ has an associated signal function f :
{north, south, east, west} x{1,...r} — P({north, east, south, west} x{1,...r}x{on,of f}).
For the remainder of this paper we will use the term tile and active tile interchangeably.

Assemblies. An assembly is a set of active tiles whose centers are located at integer coordinates,
and no two tiles in the set are at the same location. For an assembly A, define the weighted graph
G4 = (V, E)suchthat V = A, and for any pair of tiles a, b € V, the weight of edge (a, b) is defined
to be 0 if @ and b do not have an overlapping face, and if a and b have overlapping faces d, and
dp, the weight is defined to be |{i : state(aq, ;) = state(bg, ;) = on}|. That is, the weight of two
adjacent tiles is the total number of matching glue types from a and b's overlapping edges that are

both in state on. Conceptually, each such pair of equal, on glues represents a bond between a and
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b and thus increases the bonding strength between the tiles by 1 unit. For a positive integer 7, an
assembly A is said to be 7-stable if the min-cut of the bond graph G 4 is at least 7. For an assembly
A, there is an associated pattern p(A) defined by mapping the labels of each tile to corresponding
lattice positions, and mapping the null label to lattice positions corresponding to locations not
covered by the assembly.

Reactions. A reaction is an ordered pair of multi-sets of assemblies. Conceptually, a reaction
(A, B) represents the assemblies of multi-set A replacing themselves with the assemblies in multi-
set B. For a reaction r = (A, B), let 3, denote the multi-set A, and r,; denote the multi-set B.
For a set of reactions R, let Rin = |J,cp 7in and Rowe = U, Tout-

A reaction (A, B) is said to be valid for a given temperature 7 if it is either a break, combination,

or glue-flip reaction as defined below:

* Break reaction. A reaction (A = {a}, B = {b1,bs}) with |A| = 1 and |B| = 2 is said to be
a break reaction if the bond graph of a has a cut of strength less than 7 that separates a into

assemblies b; and bs.

« Combination reaction. A reaction (A = {aj,as}, B = {b}) with |[A] = 2 and |B| = 1 is
said to be a combination reaction if a; and ay are combinable into assembly b (see definition

below).

* Glue-flip reaction. A reaction (A = {a}, B = {b}) with |A| = 1 and |B| = 1 is said to be
a glue-flip reaction if assembly b can be obtained from assembly a by changing the state of
a single glue slot x in b to either on from latent if x has queued command on, or off from
on or latent if X has queued command off. Note that transitions among latent, on, and
off form an acyclic graph with sink state of f, implying glues states can be adjusted at most

twice. This models the *'fire once" property of signals.

Two assemblies a; and a, are said to be combinable if a; and as can be translated such that

a, and as have no overlapping tile bodies, but have at least 7 on, matching glues connecting tiles
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from a, to tiles from ay. Given this translated pair of assemblies, consider the product assembly b
to be the assemblies a; and a, merged with the queued commands for each glue slot set according
to the specifications of the glue functions for each tile with newly bonded on glues along the cut
between a; and a,. In this case we say a; and ay are combinable into assembly b. See Figure II.1
for example reactions and [23] for a more detailed presentation of the model.

Batches. A batch is a multi-set of assemblies, ie, a set of assemblies such that each assembly
has a positive or infinite multiplicity. A batch B is said to be T-transitional to a batch B’ if the
application of one of the break, combination, or transition rules at temperature 7 can be applied to
B to get B'. A batch sequence for some temperature 7 is any sequence of batches (ay, . .. a,) such
that a; is T-transitional to a;; for each ¢ from 1 to r» — 1.

Signal Tile System. A signal tile system is an ordered pair (B, 7) where B is a batch referred
to as the initial seed batch, and 7 is a positive integer referred to as the temperature of the system.
Any batch B’ is said to be producible by (B, 7) if there exists a batch sequence (By, . .., B,) with
respect to temperature 7 such that B’ = B, and B = By, i.e., B’ is reachable from B by a sequence

of 7-transitions.

ILLIII Exponential Replication

Our first primary definition towards the concept of exponential replication defines a transition
between batches in which multiple reactions may occur in parallel to complete the transition. By
counting the number of such parallelized transitions we are able to define the number of time steps
taken for one batch to transform into another, and in turn can define the concept of exponential
replication.

However, to avoid reliance on highly unlikely reactions, we parameterize our definition with
a positive integer ¢ which dictates that any feasible combination reaction should involve at least
one combinate with at least multiplicity c. By doing so, our exponential replication definition will
be able to exclude systems that might rely on the highly unlikely combination of low concentra-

tion combinates (but will still consider such reactions in a worst-case scenario by requiring the
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subsequent monotonicity requirement). The following definition formalizes this concept.
(T, ¢)-transitional distance. We say a batch B is (7, ¢)-transitional to a batch B’, with notation
B —, . B',ifthere exists a set of reactions R = COMBO | BREAK | J FLIP, where COMBO, BREAK,

and FLIP partition R into the combination, break, and flip type reactions, such that:

1. B— Ri,isdefinedand B’ = B — Riy + Rout.

2. Foreach ({z,y},{z}) € COMBO, the multiplicity of either x or y in B — Rj, is at least c.

Further, we use notation B —>tT7C B’ if there exists a sequence (B, ..., B;) such that B; = B,
B, = B',and B; —, . B;;; fori from 1 to t — 1. We define the (7, ¢)-transitional distance from B
to B’ to be the smallest positive integer ¢ such that B —% . B’.

Our next primary concept used to define exponential replication is the concept of monotonicity
which requires that a sequence of batches (regardless of how likely) has the property that each sub-
sequent batch in the sequence is at least as close (in terms of (7, ¢)-transition distance) to becoming
an element of a given goal set of batches as any previous batch in the sequence.

Monotonicity. Let B be a batch of assemblies, 7 a positive integer, and G a set of (goal) batches.
We say B grows monotonically towards G at temperature 7 if for all temperature 7 batch sequences
(B,...,B),if B = g forsome g € G, then B’ —>§'7C g' forsome ¢’ € Gand t' <t.

Note that ¢’ in the above definition may differ from g. This means that B is not required to
grow steadily towards any particular element of GG, but simply must make steady progress towards
becoming an element of G.

We now apply the concepts of (7, ¢)-transition distance and monotonicity to define exponential
replication of patterns. Informally, an STAM system is said to replicate the pattern of an assembly a
if it is always guaranteed to have a logarithmic (in n) sequence of feasible transitions that will create
at least n copies of a shape with a's pattern for any integer n. Further, to ensure that the system
makes steady progress towards the goal of n copies, we further require the property of monotonicity
which states that the number of transitions needed to attain the goal of n copies never increases,

regardless of the sequence of reactions.
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Exponential Replication. Let B} denote the set of all batches which contain an n or higher
multiplicity assembly with pattern p. A system 7' = (B, 7) exponentially replicates the pattern of

assembly a if for all positive integers n and c:

1. BU{a} =% B forsome B’ € B}, and t = O(poly(|a|) log(cn)).

2. B grows monotonically towards B;L(a).

Given the concept of a system replicating a specific assembly, we now denote a system as a
general exponential replicator if it replicates all patterns given some reasonable format that maps
patterns to input assemblies. Let M denote a mapping from rectangular patterns over some alphabet
¢ to assemblies with the property that for any rectangular pattern w over ¢, it must be that 1)
w = p(M(w)) (The assembly representing pattern w must actually have pattern w), 2) all tiles in
M (w) with the same non-null label are the same active tile up to translation, and 3) the number of
tiles in M (w) is at most an additive constant larger than the size of w. Such a mapping is said to be
a valid format mapping over ¢. We now define what constitutes an exponential pattern replicator
system.

Exponential Replicator. A system 7" = (B, 7) is an exponential pattern replicator for patterns
over ¢ if there exists a valid format mapping M over ¢ such that for any rectangular pattern w over

¢, T = (B, 7) exponentially replicates M (w).

ILII Replication of Linear Patterns
In this section, we focus on the replication of a linear assembly in two-dimensional space as
a simplified version of the extended mechanism presented in Section ILIII. In this replication
scheme, which occurs at temperature 1, some pre-formed linear patterned template assembly R is
added to the replicating tile set 7" to compose the initial seed batch (Figure 11.2). In general, the
mechanism described follows the simple model outlined by von Kiedrowski et al. for template-

directed self-replication. However, our scheme has a difference in that two types of products are
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formed: terminal replicates (tr) and non-terminal replicates (ntr). While the pattern of each type
of replicate is identical to that of the parent, each replicate type serves a different function. Non-
terminal replicates may catalyze the formation of more product while terminal replicates serve
as an inert final product and may not catalyze the formation of more product. Each non-terminal

replicate may serve as a template for the formation of another n#r and a ¢ concurrently.

a) st lsta thyst @ thyst tht t
Start b Label, bmb Label, bmb Lavel, bp Term
st a, a; a; t
b) st' a' t Cc)st k.I1 ;
I —*
Start b= Label, bldb Term Start b b‘J Label,, b« bj Term

J_Wb

st st a, a

.

Figure 11.2: The initial seed batch for replication of a 1xn patterned template. a) General form
of template to be replicated R b) Tiles involved in formation of non-terminal replicates. c) Tiles
involved in formation of terminal replicates.

Upon addition of R to the replicating tile set, tiles involved in non-terminal replicate formation
(white) may attach to the north face glues of the template: «, st, and t. Simultaneously, tiles
involved in terminal replicate formation (orange) may attach to the south face glues of the template:
a;, st, and t (Figure I1.3a). Upon binding, b glues are activated on the west face of each Label,, and
Term ntr or tr tiles. On ntr and tr Start tiles, b glues are activated on the east face upon binding to
the template. Note that the template has no active signals. After binding of the Start tile, a signal
is propagated from west to east along the newly forming replicate via the b glues. When a Label
tile has bound the b glues on both its east and west faces, it may detach from the parent template
(Figure 11.3b). Following complete detachment of the replicates from the parent template (Figure
I1.3¢), the terminal replicate is inert and may not undergo any further binding events. The non-
terminal replicate, however, can continue to catalyze the formation of product. The non-terminal

replicate has south face a; glues exposed, allowing it to immediately serve as a template for the
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Figure I1.3: a) The ntr (white) and # (orange) bind to the template assembly (blue) via label glues
a;, a;, st, and t. b) b glues are activated on the west face of the n#r and # Label and T'erm tiles.
The b blue on the Start tile is activated on the east side, which propagates a signal through the
newly forming replicate to detach from the parent. ¢)The newly-formed terminal replicate (orange)
and non-terminal replicate (white) are completely detached from the parent template assembly. d)
North face label glues on an ntr template assembly are activated only upon binding of #r tiles to the
south face of the template assembly.
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formation of a next-generation ferminal replicate(Figure 11.3d). Note that upon detachment, the
north face label glues: a;, st, and ¢ of the non-terminal replicate are latent and are activated only
upon the binding of # tile to the south face of the n#r. This was designed so that ntr aggregates
do not form, which would hinder the formation of terminal replicates. Following activation of the
north face label glues, the ntr may serve as a template for the next-generation n#rs and trs via the

same mechanism as the original template assembly R.

ILIII Replication of 2D Patterns in Two Dimensions

We first informally discuss the mechanism for replication of 2D patterns in two dimensions
with the tileset shown in Figure I1.4. The replication process described here can be summarized in
three phases. In the first phase, template disassembly, a template R containing some pattern over
some alphabet ¢ is combined with the tile set that can replicate R. Initially, an inverted staircase
cooperatively grows along the west face of R. The effect of this tile growth is that each row of the
original assembly R has a unique number of tiles appended to its west side. These appendages are
used in reassembly later in the replication process. As the inverted staircase structure grows, rows
of the original template are signaled to detach from each other. In Phase 2, the detached rows of
the input assembly are available to serve as templates for the formation of non-terminal replicates.
As described in Section ILII, two types of replicate products are formed: terminal replicates (tr)
and non-terminal replicates (ntr). Non-terminal replicates may catalyze the formation of more
product while ferminal replicates serve as a final product and may not catalyze the formation of
more product. After formation, this first generation of non-terminal replicates detach from the
parent and enter Phase 3. In Phase 3, each non-terminal replicate may serve as a template for the
formation of another ntr and a #r concurrently. The ¢ detaches from the parent upon completion
and assembles, along with other terminal replicates, into a copy of R. Also during Phase 3, when
the new non-terminal replicate is fully formed, it may detach from the parent and begin producing

replicates.
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We now present a more detailed synopsis of the replication mechanism. The 12 active tile types
which comprise 7" are depicted in Figure I1.4d-f. Note that the input pattern itself is not included in
T'. The input pattern to be replicated is of the form shown in Figure I1.4c, and this, together with 7',
comprises the initial seed batch. The pattern is mapped onto this input via the composition of the
Label signal tiles. Figure I1.4a shows the tile types for a binary alphabet, while Figure I1.4b shows

the tile type for some a; of alphabet ¢ which consists of elements a1, as, . .. ag.
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Figure I1.4: a) Input assemby tile types for a binary alphabet b) The tile type for some a; of al-
phabet ¢ which consists of elements a1, as, . .. a4 ¢) General form of template to be replicated 12
d) Tiles involved in inverted staircase construction and disassembly of the original template. ¢)
Tiles involved in formation of non-terminal replicates. f) Tiles involved in formation of terminal
replicates.

Template disassembly and First Generation of Replicates. Upon addition of the template as-
sembly R to the replicating tile set 7', an inverted staircase forms on the west side of R (Fig. II.5a).
Concurrently, an end cap attaches to the east side of . Note that while the east-side end caps are

attaching to R, it is possible that an n#r tile type (white) found in Fig. II.4e may attach to the north
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side of an end cap, blocking the attachment of an endcap to a row. This does not adversely affect
replication, because given a temperature of 2, the template will still disassemble and the end cap
may attach to rows lacking end caps following this event. Also, given that the north face label glues
a;; of the northernmost template row are exposed, it is possible for this row to begin replicating im-
mediately. In fact, this is necessary for the row immediately below the northernmost row to detach.
Any row s of R may release the row below it by turning off its south face glues (Fig. I1.5b). This
can occur only if the row above s has activated the b glue on the westernmost tile of s. A signal is

then propagated from west to east in row s via glue r and all south-face glues of s are turned off.

a)

row 4

row 3

row 2

row 1

b)

row 3

Figure IL.5: a) Growth of inverted staircase along the west face of R and a cap on the east face of
R. b) Row 1 is released after the b glue is activated on the westernmost tile of Row 2.

Following R disassembly, label glues a; are exposed on the north face of each row of the input
assembly. Tiles involved in n#r formation (white) may attach along the north face of the template
row (blue/green) (Fig. 1I.6a). Following attachment, west face b glues are turned on. Once the

westernmost Label tile has attached, appendage tiles may cooperatively attach, sending a signal
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via b glues from west to east and turning on r glues. (Fig. 11.6b). After the westernmost appendage
tile has attached, a signal is propagated from west to east via glue r queueing label glues a; on the
south face of the new ntr to turn of f, thus detaching the n#r from its parent (Fig. II1.6c). Label
glues a; are also queued on. These glues serve to generate a terminal replicate () on the south
face of the ntr (Fig. 11.6d). Following the detachment of the n#r and the parent template, the parent
template is available to generate another ntr, while the first-generation ntr is immediately available

to generate a 7. Exponential Replication and Reassembly After the formation of the first-generation
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Figure I1.6: The above sequence outlines details of the production of non-terminal replicates. For
clarity, glues turned off and signals previously executed are not shown.

ntr, replication is free to proceed exponentially. Glues on the south face of the n#r may bind label
tiles from the #r tile set (Fig. 11.7a). Upon binding, b glues are turned on on the west face of the
tr label tiles, allowing for the binding of appendage tiles on the western side of the growing

assembly. Upon binding of the first appendage tile (Fig. 11.7b), a signal is propagated through the
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tr via glue b and r glues on the west faces of the #r tiles. After the next appendage tile binds, the y
glue on the tile adjacent to it is activated, which activates two g glues on the north and south faces
of the easternmost appendage tile (Fig. I1.7c). These g glues will assist in proper reassembly of
each row into a correct copy of the template R. Also note that upon binding a #r tile, label glues a;,
on the north face of the n#r are turned on. This allows for synthesis of a new n#r on the north side

a)

.
T
' a

- ns as .
I'a' I'a' I'a' I'a' It
Label,; Tabel, Label, Label,; Label,,
I = - I =
I I lud - =
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- - o rir i e b
b ke b bib beb o -
d e e | | a; |'a/ | a | a : | t

<)
|
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Label, Label,; Label,; Label, Label,

Figure I1.7: The above sequence shows details of the formation of terminal replicates. For clarity,
glues turned off and signals executed during template disassembly are not shown.

of the parent n¢r while a new #r is being formed on the south face. The synthesis of a new ntr from
a parent ntr is not described in detail here, as it is very similar to the process described in Figure
I1.6. Upon attachment of the westernmost appendage tile, a north face g glue of the #r is turned

on as well as a south face g glue on the tile immediately adjacent to it. Additionally, a signal is

29



propagated from west to east along the #r via glue r and the north face glues of the # are turned off.
The tr then detaches from the parent ntr (Fig. 11.7d) and is available for reassembly into a copy of
the original template R while the parent ntr is available to produce a new n#r on its north face and
a new fr on its south face. The alignment of g glues enables the proper reassembly of the ferminal
replicates into a copy of R (Fig. IL.8).

The detachment of the inverted staircase is not described here. If a signal cascade were designed
such that upon the complete assembly of a copy of the original template pattern, the inverted stair-
case detached, it would be considered a waste product. The number of these waste assemblies
would grow proportionally to the number of replicates of R. Similarly, if the replication process
were somehow halted, and the copies of R harvested, the ntrs might also be considered waste.

These, too, would have grown proportionally to the copies of R.

Theorem 1. For any alphabet ¢, there exists an exponential pattern replicator system [' = (7', 2)
for patterns over ¢. Furthermore, the seed batch 7" consists of O(¢) distinct singleton active tile

types with a total of O(¢) unique glues.

Proof. To prove this we argue that the STAM system (7', 2) defined by the tileset T depicted in
Figure I1.4b-c is an exponential pattern replicator. The valid format mapping M for the system is
depicted in Figure I1.4a.

We now argue that for any w x £ pattern P, the assembly Ap = M (P) derived by applying
the format mapping described in Figure I1.4a to pattern P is exponentially replicated by (7', 2).
First, by Lemma 5, the system satisfies the monotonicity requirement of the exponential replica-
tion. We therefore focus on the remaining requirement that for any positive integers n and c, the
(T, ¢)-transition distance from 7' J Ap to some batch with at least n copies of an assembly with
pattern P is O(log (n + ¢)). To show this, we construct a (7, ¢)-transitional sequence of batches
(T'\U{Apr}. - -, BecanBreaks - - - » BnReplicateRows: - - - » BnFinalRows, - - - » BnPatterns) With the prop-
erty that batch B jcqn Brear: cOntains 1 non-terminal replicate of each row of the initial input assembly

Ap, By Replicaterows cONtains at least n.4-c copies of the non-terminal replicate assembly for each row
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Figure 11.8: Terminal replicates reassemble into a copy of R.

of the input assembly, B, rinairows cONtains at least n + ¢ terminal replicates of each assembly row,
and finally B, paerns cOntains at least n copies of an assembly with pattern P. The construction
for each segment of this sequence is depicted in Lemmas 1, 2, 3, and 4. From these Lemmas we
get that the desired sequence of batches can be constructed with length at most O(log (n + ¢)).

O

Lemma 1. For any w X ¢ rectangular patterned input assembly P, let the batch B, = T'( J A,. For
some sequence (B, Byi1, - . . BecanBreak)» the (7, ¢) transitional distance from B, t0 Bejeanpreak 18
O(¢ + wl) where Beeanpreak contains at least one non-terminal replicate of each row within the

input assembly.

Proof. We first consider the cooperative binding of inverted staircase tiles. The entire inverted

(6+1)(¢+2)

5 — 3 combination reactions. Therefore, the (7, ¢)

staircase forms cooperatively in x =
transitional distance for the formation of the inverted staircase is x. For each row, signals must
traverse west-to-east and then east-to-west across the entire row for the row beneath to completely

detach. The number of glue-flip reactions required over the entire input assembly P for detachment

(04+1)(€+2)

5—— —3). We then end up with input assembly

of all rows from on anotheris 2(({—1)(w—1)+
rows with no other tiles attached. It follows from the analysis in case 1 that O(w + {) transition
steps are sufficient to generate clean non-terminal replicates.

Therefore, from any batch By, there exists a O(w{ + ¢?) (7, ¢) transitional distance to batch

BeieanBreak, Where batch B jeanprear cOntains a clean non-terminal replicate of each row of the
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input assembly .

]

Lemma 2. Consider that batch Bj, contains one clean non-terminal replicate of each input assem-
bly row. Then there exists a (7, ¢) transitional distance of O((¢ + w)log (n + ¢)) for the batch
transition sequence (B, Bi11, - . - Brepiicate Rows) Such that Brepjicate Rows contains n + ¢ copies of

non-terminal replicates of each input assembly row.

Proof. For any newly-assembled ntr to generate an identical offspring ntr, it must first bind termi-
nal replicate tiles in order to activate its north-face glues which serve as templates to bind ntr tiles.
This is a one-time activation event, after which an ntfr may generate unbounded copies of identical
ntrs. For any newly generated ntr, at most w + ¢ 4 2 combination reactions and 2w + ¢ + 4 glue-flip
reactions must occur to activate the north-face glues on the parent ntr. Once an ntr has been acti-
vated, ntr label tiles and the easternmost cap tile bind in w + 1 combination reactions. Following
these combination reactions, a series of at most 8w + 7¢ + 4 glue-flip and combination reactions
are required to fully connect the newly-formed n#r and detach it from the parent input assembly
row. In total, there is a 12w + 9¢+ 11, or O(¢ + w) (7, ¢) transitional distance ntr exist for each ntr
in a batch to be activated and generate an identical ntr. Thus, after every O(¢ + w) transitions, the
population of ntrs doubles. Therefore, there is a O((¢ + w) log (n + ¢)) (7, ¢) transitional distance

to achieve n + c copies of a non-terminal replicates of each input assembly row. [

Lemma 3. Consider that batch Bj, has n clean non-terminal replicates of each row of the input
assembly. There exists a batch sequence (B, Byy1, ... B,) with a (7, ¢) transitional distance of
O(w + ¢) from By, to Brinairows Where batch Bri,airows contains n + ¢ terminal replicates of each

Tow.

Proof. Terminal replicate label tiles, the easternmost capping tile, and the tag tiles must bind with a
non-terminal assembly in at most w-+/¢+2 combination reactions. Following these tile attachments,

8w + 7¢ + 5 glue-flip and combination reactions are required to fully connect the newly-formed
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tr and detach it from the parent ntr. Therefore, 9w + 8¢ + 7 parallel reactions exist to produce n

terminal replicates from n non-terminal replicates. [

Lemma 4. Consider that batch By, has n+c terminal replicates of each row. There exists a batch se-
quence ( By, Byi1, - - - Bupatterns) With a (7, ¢) transitional distance of O(¢) where batch B, patierns

contains n identical assemblies a where P(a) is identical to the input assembly.

Proof. Upon detachment from the parent, terminal replicates have g glues oriented such that they
may attach to the correct neighbors within the patterned assembly. For these terminal replicates to
combine into assembly that has an identical pattern to the input assembly, £ rows must attach to one
another in ¢ — 1 combination reactions. Therefore, O({) parallel batch transitions exist for batch

B, to transition to batch B, patterns- ]

Lemma 5. Consider the seed batch B, where B, = T'(J A,. B, grows monotonically toward G

where GG contains at least n copies of an assembly with pattern P

Proof. For any valid batch sequence (B,, B, . .., By), letthe (7, ¢) transitional distance from batch
By to B, be x where B, contains n identical assemblies a where P(a) is identical to the initial input
pattern. For some batch sequence (B, Bi11, - - ., By), let the (7, ¢) transition distance from B to
B, be y. We transition By and B, to the nearest 'perfect' batches P, and P, respectively, where
the ntrs that comprise P, and P, have no tiles attached to their north or south faces. This means
that during the transition from By to Py or from B, to P, any partially formed trs or ntrs on the
ntr templates are completed and detach. Therefore, batches P, and P, will be comprised of some
number of completed trs (some may be combined with one another to form copies of a or partial
copies of a) and ntrs with no other tiles attached. Of these ntrs, there are two classes: passive
ntrs and active ntrs. Passive ntrs have no more active signals and may serve as a template for the
formation of a tr and an ntr concurrently, which form independently of each other. Active ntrs
are those that have just been released from their parent ntr and have not yet served as a template.

These must first serve as a template for a tr. Upon formation of this first child tr, the active ntr
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will become passive. Because, an ntr must first serve as a template for at least one tr before an ntr,
for any perfect batch F;, the number of trs in the batch must be at least as great as the number of
passive ntrs. The (7, ¢) transitional distance from (B;, B;y1, ..., P;) is O(¢ + w).

Because B, can transition into 5By, the numbers of passive ntrs, active ntrs, and trs must each
be at least as large in P, as in P, when P, # P,. Therefore, when P, # P,, x < y, thus satisfying
the monotonic growth requirement.

When P, = P,, we consider the transition (By, Byy1, ..., Pk, ..., Pk + 1). Because By may
transition into By, B, can mimic the path of By, from P, = P, to Pk + 1 in at most as many steps

as By,.

IL.IV  Future Work

The results of this paper provide several directions for future work. One interesting problem is
the replication of shapes in the STAM, or more specifically, patterned shapes. One might imagine a
mechanism similar to the one presented in this paper but where the growth of the inverted staircase
is preceded by a "‘rectangularization" of the shape to be replicated. The replication of a cuboid
is conceivable by extending the mechanism of template disassembly and reassembly presented in
Section ILIII to three dimensions where layers of the cuboid might be separated, replicated, and the
replicates reassembled. Precise replication of a certain number of copies could also be possible, as
was considered in [1].

Another direction for future work is studying the extent to which staged self-assembly systems
can be simulated by non-staged active self-assembly systems such as the signal tile model. In [7]
efficient staged algorithms are developed to assemble linear structures, while a signal tile system
achieves a similar result in [23]. Shape replication through stages and RNA based tiles are used
to replicate general shapes in [1], while this paper and future work suggests similar results may

be obtained with signal tiles. Can the complexity of the mixing algorithm of a staged assembly
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algorithm be encoded into a signal tile system of similar complexity? As a first step towards such a
simulation we might consider the case of 1D assemblies. Can the efficient construction of labeled
linear assemblies through staging shown in [8] be efficiently simulated with a signal tile system?
A final direction for future work involves the simulation of the signal tile model through a pas-
sive model of self-assembly such as the abstract or two-handed tile assembly model [4]. Recent
work has shown how restricted classes of signal tile systems can be simulated by passive 3D sys-
tems [?]. The ability for signal tile systems to perform fuel-efficient computation was shown to be
achievable within passive 2D tile assembly given the added power of negative force glues [?]. Is it

possible to simulate any signal tile system with the use of negative glues? Can this be done in 2D?
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CHAPTER III

GROWING NON-DETERMINISTIC LINEAR ASSEMBLIES

DNA tile self-assembly describes the process by which small tiles comprised of DNA come together
spontaneously via local interactions to create larger, more complex nanostructures. Information
about the size, shape and pattern of the structure to be assembled by these tiles is programmed into
the tiles themselves so that no outside guidance is needed. A significant challenge in the design of
these promising self-assembling systems is minimizing the number of tile types required to uniquely
assemble a given construct. This minimization of tile complexity is the most studied problem in
DNA tile self-assembly, and is crucial to the ability to program complex molecular self-assembling
systems because the total number of tile types largely determines the cost of implementation. A
given tile type requires significant characterization before use, and must be tested with other tiles in
the set for unintended interactions and hybridizations. Furthermore, there is a fundamental limit to
the number of tiles that can be constructed with DNA sequences of a fixed length. Compared to the
breadth of theoretical work related to tile complexity reduction for a target assembly, experimental
work on the topic is scarce. Therefore, experimentally exploring methods to mitigate this challenge
represents a valuable contribution to the basic construction and characterization of a modular DNA
self-assembly toolkit.

Broadly, this project aims to test the effectiveness of and improve upon two theoretical models
that could significantly reduce the tile complexity of target shapes. In DNA nanoscience, one par-
ticularly important construction is the ruler, a linear assembly of a specified length that is composed
of unit tiles. These rulers can be used as nanoscale beams and struts, or to define the boundaries

of a growing assembly. Rulers can also serve as nucleation sites for more complex structures
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because they can encode the binary description for two-dimensional shapes. In deterministic tile
self-assembly, tile complexity for any length n line is O(n) which is also the matching upper bound
for the size of any tile set in deterministic tile self-assembly. Thus, it becomes impractical if not im-
possible to form large specified-length linear assemblies in deterministic tile assembly. This project
aims to construct large linear assemblies with sub-linear-sized tile sets using non-deterministic tile
self-assembly systems.

Current experimental work in DNA tile assembly is deterministic in the sense that only one tile
type may attach to a given position in a partially formed assembly. One possibility to address the tile
type reduction problem is to allow for non-determinism during the course of the assembly process.
The Probabilistic Tile Assembly Model (pTAM ) and the concentration programming model are
non-deterministic in the sense that they allow for the possibility of more than one tile type attaching
in a given place to the partially formed assembly. This non-determinism during assembly simply
allows for the construction of a assemblies with some distribution of sizes and/or shapes. Using
different techniques, these distributions can be tightened around some expected assembly = while
using fewer tile types that would be required to deterministically assemble x. This work presents
an advancement in the ability to efficiently build linear assemblies non-deterministically with very
few tile types. We attempt to achieve linear assemblies of some expect length L within some tight
distribution of assemblies. This first step toward minimizing tile complexity using the methods
described in this thesis can later be extended into the self-assembly of complex shapes with greater
efficiency.

While there are many DNA tile implementations in use, we propose to begin with the simplest of
DNA tile implementations-- the oligomer. These oligos are be programmed to non-deterministically
self-assemble into a nicked double helix (our linear assembly) of some expected length L with some
tight distribution. Both mechanisms to be used to accomplish this require that assembly begins with
some initiator, or seed tile and that the linear assemblies grow unidirectionally. We enforce these

constrictions by utilizing a hybrid chain reaction first described by Dirks and Pierce and summa-
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rized in Section IIL.I.

III.I Hybridization Chain Reaction
To enforce the notion that assembly begins at some seed tile and grows unidirectionally to form
a linear assembly, we utilize a hybridization chain reaction, first described and implemented by [9].
In this mechanism, a mixture of stable DNA monomeric hairpin tiles assemble into a nicked double
helix of alternating fragments only upon exposure to some linear DNA fragment, or seed. A simple

example of this process is shown in Figure III.1.

Tile set: , A ) A’
5L 3! 3t 5.000000000 C 5! 30000000000 )B
B A B' A' c' A
I G, G,

Assembly process:
1)

A
5 B A 3 30
3|OQCQQCOQCQQCO 5| 5| 000000000 )B
B' A [¢ A c A'
2)
B A C' Al B A 3
3|00.00.00.00.00.00.00.00.‘ 5|
B' A C A , A
3| 000000000 C
B' A'
3)
5.B A c' Al B A
3|00..0..0..0..0..0..0..0..0..0..0..0..0 5:
B' A' [¢ A B' Al [¢ A

Figure II1.1: Basic HCR System. Tile Set: Secondary structure of DNA tiles /, G; and G5. Assem-
bly Process: 1) Initiator tile / binds to the toehold on tile G; and forces the hairpin open, exposing
region C' on tile G;. 2) The toehold of tile (G5 may then bind region C on tile G, forcing tile G4
open and exposing region B. 3) The toehold of tile (G; may then bind to region B on tile G5, forcing
tile G; open. Steps two and three are repeated as the resulting nicked double helix grows.

IILII Concentration Programming
HLILI Single Phase

Experimental implementation of this scheme using HCRs requires the use of four distinct hair-

pin tile types which we designate I, G 1, 1 2, and T} with glues assigned such that non-deterministic
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assembly of any sequence of tiles described by the regular expression /G (G2G1)*T is possible
(Figure I11.2). The seed tile I has some very small concentration compared to p and ¢, the con-
centrations of the growth tile G; » and the terminating tile 77, respectively. Growth tile GG; has

concentration p + q. Please see Section IIL.IV for technical details on implementation.

| ‘Gl,l‘_Gl,z‘ G1,1

i

I 1G11G12G11G12G11[G12G11| T

Figure II1.2: Top: Tiles involved in assembly with arrows indicating binding possibilities. Bottom:
Possible assembly.

HLILII Multiple Phase

Experimental implementation of this scheme using HCRs requires the use of an initiator tile
I, and three tile types for each stage i: two growth tiles (G; ; and G 2, and a terminating tile for
the stage 7;. The concentration m of tile type [ is very small compared to p and ¢, which are
the concentrations of 7; and G, o, respectively. Please see Section IIL.IV for technical details on

implementation.

IILIII Randomized Self-Assembly
As an alternative to programming the relative concentrations of tile types to influence the proba-
bility of binding, another non-deterministic self-assembly scheme for construction of linear assem-
blies with very few tile types was described by [5]. In its simplest form, this mechanism involves
the use of a seed tile, reset tiles Ry R,...R,_1, and terminating tiles 7,75...T,,. Each reset tile R;
deterministically binds tile 77 while each terminating tile 7; where ¢« < n may bind either 7, or

R; 1. The binding of all terminating tiles in a contiguous sequence 775...7}, results in the termina-

39



tion of the assembly. This process is akin to flipping a biased coin until n contiguous heads appear.

The expected length L of the linear assembly (the expected number of Bernoulli trials), before the

consecutive binding of 775..T,, termination tiles (consecutively flipping n heads) is L = 1;,{’(}
when we assign p as the concentration of 7; and ¢ as the concentration of R;.

For implementation using HCR, this mechanism would require an initiator tile /, termination
tiles pT1pTs....pT,, reset tiles Ry Rs...R,,_1, and spacer tiles 51, S5....5,,. Reset tiles R; and spacer
tiles .S;,1 compete to bind to the exposed east side glue of 7; tiles. If spacer tile .S;. 1 binds, then ter-
minating tile p7; 1, deterministically binds to the east side of S;, ;. If R; binds, then terminating tile
pT7 deterministically binds to the east side of I?; and the process of accumulating contiguous ter-

mination tiles begins again (Figure II1.3). This approach was not addressed in this thesis, however

tiles were designed for this approach and can be seen in Figure IIL.5.

I [PpT1 s S2|PTo | S3|PT3 7| Sa |PT4g | S5 |PTs

\Rl \Rz \R3pT1\ Ry

I |pTq Sz |PT2 Ry |pTy| Ry|pTy| Sz |PTo| S |PT5| Sa |PT4| Ss [PTs
| |

contiguous "successes" lead to assembly termination

pTy pT,y pT,

Figure II1.3: Pre-attached tiles represent tiles that deterministically bind together during the assem-
bly process. Arrows represent binding possibilities.

LIV Initial Experiments
IILIV.I Tile Design and Preparation
Please see Figures III.4 and IIL.5 for tile sequences. These 48-bp sequences were designed
to minimize sequence symmetry and to maximize the probability of adopting the target secondary
structure at equilibrium. The sequence of the hybridized stem of all hairpin tiles was taken from [9],
as were tiles I, G ; and (i1 2. The toeholds and hairpin loop sequences of the remaining tiles were

generated randomly and then assessed for the desired characteristics (i.e. minimizing non-specific
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binding).

Concentration Programming Tile Set

I 5’ -AGTCTAGGATTCGGCGTG =37

Gi,1 5/- CACGCCGAATCCTAGACTCAAAGTAGTCTAGGATTCGGCGTG-3 '
Gi,2 5/ -AGTCTAGGATTCGGCGTG CACGCCGAATCCTAGACTACTTTG-3'
T; 5/ -AGTCTAGGATTCGGCGTG CACGCCGAATCCTAGACTACTTTG-3'
Gz,1 5=~ CACGCCGAATCCTAGACTTGAGCAAGTCTAGGATTCGGCGTG-3 '
Gz,2 5/ -AGTCTAGGATTCGGCGTG CACGCCGAATCCTAGACTTGCTCA-3"
T 5/ -AGTCTAGGATTCGGCGTG CACGCCGAATCCTAGACTTGCTCA-3"
G3,1 5= CACGCCGAATCCTAGACTCGTTACAGTCTAGGATTCGGCGTG-3 '
G3,2 5/ -AGTCTAGGATTCGGCGTG CACGCCGAATCCTAGACTGTAACG-3'
T3 5’ -AGTCTAGGATTCGGCGTGCAGACTCACGCCGAATCCTAGACTGTAACG-3 "'

Figure I11.4: Tile sequences for the concentration programming implementation with up to 3 stages.

HLIV.II Materials and Methods

HPLC purified oligo sequences I, G1 1, G1,2, and T} were purchased from Integrated DNA
Technologies (Coralville, IA) and diluted in water to 100m M. As per [9], concentrated DNA tile
stock solutions were diluted in reaction buffer to a final concentration of 50mM NayH PO, and
0.5NaCl(pH6.8). Before mixing tile types together, samples were heated to 95 °C for 1 minute and
then allowed to cool to room temperature for 1 hour. For reactions 1 — 6, which served to replicate
experiments from [9], 9uL of each species was combined. For reactions 7 — 10 and A — H, 7TuL
of each species was combined. For reactions I — M, 4L if each species was combined. In all
cases, tiles were combined in an order such that the tile that the initiator binds was added last.
Reactions were incubated at room temperature for 24 hours before analysis of reaction products on

a 2% agarose gel.

HLIVIII Results
Replication of the work of Dirks et al. is show in reactions 1 — 6 in Figure III.6 and an initial

experiment with single-phase concentration programming is shown in reactions 7 — 10 in Figure
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II1.6. Further experiments with single-phase concentration programming are shown in reactions

A — H and results from two-phase concentration programming are show in reactions H — M in

Figure I11.7.
Probabilistic Assembly Tile Set

I 5’ -AGTCTAGGATTCGGCGTG -3

PT1(Gy,1) 5'- CACGCCGAATCCTAGACTCAAAGTAGTCTAGGATTCGGCGTG-3 '
S2(Ti1) 5/ -AGTCTAGGATTCGGCGTG CACGCCGAATCCTAGACTACTTTG-3'
PT2(Gz,1) 5'- CACGCCGAATCCTAGACTTGAGCAAGTCTAGGATTCGGCGTG-3 '
S3(T2) 5/ -AGTCTAGGATTCGGCGTGTGTGTCCACGCCGAATCCTAGACTTGCTCA-3 "
PT3(Gs3,1) 5'-GACACACACGCCGAATCCTAGACTCGTTACAGTCTAGGATTCGGCGTG-3’
S4(Ts3) 5’ -AGTCTAGGATTCGGCGTG CACGCCGAATCCTAGACTGTAACG-3"
pT4 5= CACGCCGAATCCTAGACTTGACTGAGTCTAGGATTCGGCGTG-3 '
S5 5’ -AGTCTAGGATTCGGCGTGGGTTCACACGCCGAATCCTAGACTCAGTCA-3"
pT5 5’ =-TGAACCCACGCCGAATCCTAGACTTTCGTCAGTCTAGGATTCGGCGTG-3"
Rl 5'-AGTCTAGGATTCGGCGTG CACGCCGAATCCTAGACTACTTTG-3 '

R2 5'-AGTCTAGGATTCGGCGTG CACGCCGAATCCTAGACTTGCTCA-3 '

R3 5'-AGTCTAGGATTCGGCGTG CACGCCGAATCCTAGACTGTAACG-3 '

R4 5'-AGTCTAGGATTCGGCGTG CACGCCGAATCCTAGACTCAGTCA-3 '

Figure II1.5: Tile sequences for the probabilistic assembly implementation.

Figure I11.6: Results of reactions 1-10. Please see Table I1I.1 for reaction contents.
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Table I1I.1: Reaction Contents Experiment 1
I G1,1 G1,2 T1
Reaction 1 0.0uM  1uM  1puM  OpM
Reaction2  0.1puM  1uM  1pM  OpuM
Reaction3  0.32uM 1uM  1puM  OpuM
Reaction4  1.0uM  1puM  1pM  OpuM
Reaction5  3.2uM  1puM  1puM  OpuM
Reaction 6 10.0puM 1uM  1pM  OpM
Reaction7  OuM 10puM  10puM  10puM
Reaction8  0.1uM  10pM 10pM  10puM
Reaction9  0.1puM  10puM 10uM  SuM
Reaction 10 0.1puM  10uM  5S5udM  10uM

B C D EF G H I J KLM

Figure II1.7: Results of reactions A-M. Please see Table I11.2 for reaction contents.

HLIV.IV Discussion

Replication of the work of Dirks et al. in reactions was successful. In reactions 7, A, and I we
saw some nucleation and growth where there should have been none due to a lack of initiator. How-
ever, this is not seen in reaction / where the concentrations of tiles GG 1, G1 2, and T were lower,
which suggests that the high concentrations of growth and/or termination tiles initiated unintended
growth. This may be mitigated in future experiments by working with lower tile concentrations.
However, the ratio of growth and termination tiles to initiator tiles must remain high in order to
approximate constant tile concentrations over time.

Experiment 1 indicates that the addition of tile 7} to the reactions does halt growth, and re-
actions A-H in Experiment 2 indicate that decreasing the concentration of 77 results in longer
assemblies for single-phase concentration programming. The results for two-phase concentration

programming (reactions I-M in Experiment 2) remain inconclusive. Lowering tile concentrations
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Table I11.2: Reaction Contents Experiment 2

1 G1,1 G1,2 T1 G2,1 G2,2 T2
Reaction A 0.0uM  S5uM  SuM SuM ouM  OuM  OuM
Reaction B  0.1uM  buM  duM SuM OouM  OuM  OuM
Reaction C  0.1uM  buM 5SuM 2.5uM  OuM  OuM  OuM
ReactionD 0.1puM  5uM  5uM 1uM OuM  OuM  OuM
Reaction E  0.1uM  5uM  2.5uM  S5uM OouM  OuM  OuM
ReactionF  0.1uM  S5uM  2.5uM  2.5uM  OuM  OudM  OuM
Reaction G 0.05uM  bduM  SuM M OuM  OuM  OpuM
Reaction H 0.0uM  1puM 1puM luM OuM  OuM  OuM
Reactionl  0.0uM  5uM  5S5uM ouM ouM  buM  duM
Reaction]  0.1uM  buM 5duM  4uM  dSuM  duM  4AuM
Reaction K 0.1uM  S5uM  S5uM 3uM suM  dSuM  3uM
Reaction L  0.1uM  buM  dubMl 2uM  duM  dSuM  2uM
Reaction M  0.1uM  buM 5SuM luM  buM  S5uM  1uM

so that unintended nucleation and growth does not occur may produce results more concurrent with

theoretical results.

III.V  Future Work

The results in Figure I11.6 and Figure II1.7 serve as a starting point in supporting the theoretical
work in [19]. Due to time constraints, we were unable to perform further experiments at publi-
cation of this thesis. Optimization of experimental conditions is required to alleviate many of the
concerns outlined in IILLIV.IV. The mathematically predicted behavior of the each relies on the
assumption that tile type concentrations are 'fixed' as self-assembly proceeds. In reality, however,
concentrations of each tile type will diminish over time. One solution to this is to start with very
high tile type concentrations, however this was found to encourage nonspecific tile interactions.

Once experimental conditions are optimized, further work may involve increasing the number
of phases in concentration programming, as well as working with the randomized tile assembly
scheme outline in Section IIL.III. Each model of assembly addressed here has potential drawbacks
and problems that will need to be addressed. In both non-deterministic models, differences in glue

strength (the strength of the hybridization between complementary strands) among different glue
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types could skew the probabilities that a given tile will bind over another. Good design of ?glues?
can largely alleviate this problem.

Construction of specified length rulers is important to the construction of more complicated
nanostructures. Due to the inefficiency of constructing these rulers in the standard tile assembly
model, continuation of this work could result in an advancement in the ability to efficiently build
these linear assemblies with very few tile types. This first step toward minimizing tile complexity
using the methods described here might later be extended into self-assembly of complex shapes

with greater efficiency.
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