University of Texas Rio Grande Valley

ScholarWorks @ UTRGV

Theses and Dissertations - UTB/UTPA

12-2013

The relational algebra toolkit: A user-friendly approach to
presenting and processing relational algebra queries on the web

Jeremy J. Miller
University of Texas-Pan American

Follow this and additional works at: https://scholarworks.utrgv.edu/leg_etd

6‘ Part of the Computer Sciences Commons

Recommended Citation

Miller, Jeremy J., "The relational algebra toolkit: A user-friendly approach to presenting and processing
relational algebra queries on the web" (2013). Theses and Dissertations - UTB/UTPA. 883.
https://scholarworks.utrgv.edu/leg_etd/883

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations - UTB/UTPA by an authorized administrator of ScholarWorks @ UTRGV. For
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/leg_etd
https://scholarworks.utrgv.edu/leg_etd?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/leg_etd/883?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

THE RELATIONAL ALGEBRA TOOLKIT:
A USER-FRIENDLY APPROACH TO
PRESENTING AND PROCESSING
RELATIONAL ALGEBRA QUERIES

ON THE WEB

A Thesis

by

JEREMY J. MILLER

Submitted to the Graduate School of
The University of Texas-Pan American
In partial fulfillment of the requirements for thegree of

MASTER OF SCIENCE

December 2013

Major Subject: Computer Science

THE RELATIONAL ALGEBRA TOOLKIT:
A USER-FRIENDLY APPROACH TO
PRESENTING AND PROCESSING
RELATIONAL ALGEBRA QUERIES
ON THE WEB
A Thesis

by
JEREMY J. MILLER

COMMITTEE MEMBERS

Dr. Artem Chebotko
Chair of Committee

Dr. Christine Reilly
Committee Member

Dr. Wendy Lawrence-Fowler
Committee Member

Dr. Xiang Lian
Committee Member

December 2013

Copyright 2013 Jeremy J. Miller
All Rights Reserved

ABSTRACT

Miller, Jeremy J., The Relational Algebra ToolétUser-Friendly Approach to Presenting and

Processing Relational Algebra Queries on the WWédster of Science (MS), December, 2013,

108 pp., 4 tables, 18 figures, 9 references, &stit
Relational algebra is the mathematical basis @itto express and optimize queries on
relational data. However, there exists no convemeay to directly use, express, store, render,
visualize, and execute relational algebra oveied. Educators and practitioners are limited to
creating relational algebra expressions using Teggoation editors which cannot execute them.
This work presents a solution to this issue: thiaftmal Algebra Toolkit (RAT).
Relational data and queries are represented usipgge-built XML vocabularies, to be both
machine-processable and serializable. Encodedaetdialgebra expressions can be rendered as
parenthetical expressions and as syntax trees)atad to SQL, reordered, and executed on
encoded data in a JavaScript-enabled Web browhkeselservices are invoked as prescribed by
the user, and the results are inserted into a Vlgb.@RAT has been used by a number of
universities internationally in undergraduate armbgate database courses, with favorable

student feedback.

DEDICATION

The completion of this thesis would not have bgessible without the quite literally
self-sacrificing commitment of my mother, Debi Mil| to ensuring that her children have the
best possible opportunities to succeed in whateragrmakes them happy. | can never thank you

enough for your love and support.

ACKNOWLEDGMENTS

I'd like to thank the Academy. The Science Acaderh$outh Texas, that is, for showing
me that even in a morass of intellectual apathg/fiile Lower Rio Grande Valley, there is always
an opportunity to make a difference in the educatibyoung minds. To that end, | would like to
also thank Dr. Artem Chebotko and UTPA'’s Departnadr@omputer Science for allowing me
to make my own small contributions to this fieldt teast of which is this thesis. The elevation
of this thesis from the rank of “senior design pab] would not have been possible without the
patient counsel of Dr. Chebotko.

Thanks must also be extended to Nathan Arnold arsséin Bakka, who developed
RAML, the original RAT website, RAML Edit, and thitial concepts that evolved into this
thesis. | would also like to thank Daniel Rebolad Peter J. Vasquez, Sr., for the development
of RDML. And of course Fadi Damaj, for his work the website and documentation.

| would also like to take this opportunity to thalllkcrosoft Corporation for taking six
years to catch up to Opera™ browser with regasgiipporting SVG, without whom the amount

of work required to implement Visualize would hadeen greatly reduced.

TABLE OF CONTENTS

Page

AB ST R A C T et a e e e e rnn s ii
DEDICATION . .ttt e e e e e e e e e e e e e e nnn e e e e e e ennanes v
ACKNOWLEDGMENTS ... rrmmr e e e e e e e s e e e e e e eennes v
TABLE OF CONTENTS eeeer e e e e e e e e Vi
LIST OF TABLES. ...ttt e e e e e e e rr e e e e e e rnn e e iX
LIST OF FIGURES.t e e ae e e e e e e ee e e e e eennes X
CHAPTER |. INTRODUCTION. ...ttt eens e e e eenenenans 1
Statement Of Problem...........cc.oviiiii i 2
EXIStING TECANIQUES.......eeiiiiiiiice s e e e e e e e e e e e e e eeeenneeeeeannnnes 2
CHAPTER Il. RELATED WORK ... 4
CHAPTER Ill. PROPOSED SOLUTION.uiiiiiiitie e e e 6
SYSEM ANCHITECIUIE.....vviiiii e 7

XML COr€. . 7

SEIVICES LAYEI....cciiiieeeeeeeeie ettt e e e e e e e e e e e e e eeeeaes 8
ManNAGEMENT LAYET......iiiiiiiiiie et s et e e et e e et e e e e e eennns 10

APPHCALION LAYcciieeeeeiieie i mmmme et e e e e e e e e 10

RAML.: Relational Algebra Markup Language.coooeeeeeeeeieiiieeeeiiiiiiiennenn 11
Schema and SPeCiIfiCatioN...............uuicieeee e 11

Vi

Relation and Attribute SPeCIfiers.........cceemuiriiiiiieieeieiieeeeeeeiiiiiins

B0o0lean CoONAItIONS. .. . e e e

Relational Algebra

OperationS............ueeciiiie e

A Note on Order Of OPEratioNS.............uceueuurrrrumiiiaireeee e ee e e eeeeeeeeeeeeeeananns

RAML Edit.........covveeeeeeeee.

RAML Font.......cccovvvvenene.

RDML: Relational Database Mar

Kup Language..........ooovvvviiiiiiiiiiiiineeeee e

Schema and SPecCifiCatioN..............uuuuuiiieeriee e

Relation Instance and Data TUupIes....... o ereeeeeeiiiiiiiiiinnneenn.

Relation Schema — Attributes and ConstraintSeee.....ccccoeevvennn....

Creating RDML DOCUMENES........uuuuuiieeeeeeeeiiiaaee e e e e e eeeeeeeeeeeeeesenennns

RATTAIL: RAT Automated Instruction Language....ccc...oooeeeeeeieiiieeeiiiiiiiiiinnn.

Service Descriptions...................

Validate.......cccoveeveevenan..n.

Execute.......c.cooeeviiiiiinnnnnn.
Management Layer.....................
Roles of RAT Manager....

Handling Service Outputs

12

13

15

19

20

21

23

23

24

25

27

28

31

31

32

33

35

35

36

37

40

40

42

CHAPTER IV: DEPLOYMENT AND EVALUATION.....cooiiiiie e 44

EXAMPIES OF USE.. .ot 45

V= 1[0 = [0 TR a7
CHAPTER V: CONCLUSIONS. ..ottt eeenan e e e 48

FULUIE WOTK. ... ettt e e e e e e e e e e e e e e e e eeeas 49
L o N [O PP 50
APPENDIX A: XML SCHEMA FOR RAML.....ciiiiiiiiicme et 52
APPENDIX B: XML SCHEMA FOR RDML......uiiiiiii e 60
APPENDIX C: XML SCHEMA FOR RATTAIL.....uiiiii e 64
APPENDIX D: ALGORITHMS FOR RAML VALIDATOR.....cciceiieeveieeee e 66
APPENDIX E: ALGORITHMS FOR RDML VALIDATOR.....cooteiii e 75
APPENDIX F: ALGORITHMS FOR RENDER........ccott et 85
APPENDIX G: ALGORITHMS FOR VISUALIZE.........cooeeii e 93
APPENDIX H: ALGORITHMS FOR TABULATE. ..ot 105
BIOGRAPHICAL SKETCH. ..ottt e e seneenaa e ees 108

viii

LIST OF TABLES

Page
Table 1: RAML FONt SYMBOIS.........ccooiii e 21
Table 2: Browser Support for Render, by Versian..............cccceeeviveevveiiviiiccsseens 33
Table 3: Browser Support for Visualize, by Versian...........cccccceeeeiiiieeeeeieeeeeeeeeeeeee, 35
Table 4: Tabulate OUIPUL SAMPIE.........cooiiiieeeeeeecrr s 35

LIST OF FIGURES

Figure 1: Layered ArchiteCture Of RATviceeemriii i et eeeeen e e e e

Figure 2: Flow of Data Between RAT Manager and BeB............ccccccvvveiiiieeieeeeeeeeeee,

Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Figure 8:

Figure 9: Joins
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:

Figure 18:

Root Element of RAML

Booleans
Projection and Selection

Attribute Renaming

Relation Assignment.......

RAML Relations and AHDULES. ...

Operations Without Boolean ConditiONSa.....eeeieiiieeeeeeeeieeeeeeeeeiiiievennnnens

Screenshot Of RAML Edit...... ..o

RDML Base Elements.....
RDML Schema Element..

RDML Foreign Key..........

RATTAIL Schema...........

Render Output Sample...

Visualize OUIPUL SAMPIE.........occeeeeeeeeeee e

Translate Output Sample

11

12

13

15

16

17

17

18

20

24

25

26

28

33

34

35

CHAPTER |

INTRODUCTION

Relational database management systems — herealfest RDBMSes — are based on the
principles laid out by Edgar Codd in his 1969 papet proposed a radically new paradigm for
the organization and management of data that heetéthe relational model [Codd 1969]. Part
of this model is the use of relational algebra aseans by which to request specific information
from such a database. To this day, relational afgebpart of the curricula for many educational
courses about relational databases. However, utlié&k&QL family of query languages that
were developed around the exact same principlesmiains frustratingly difficult for many
students, educators, and practitioners to work vetitional algebra directly on a computer.

Current relational database management systenteaigned such that users are meant to
use SQL to interface with a relational databaseh\Wispect to queries, relational algebra can be
used an alternative to the “SELECT” statementsQIf Ssince relational algebra is what
provides the procedural mathematical basis foofitenization of declarative SQL queries.
However, although relational algebra is used iralyrby relational database management

systems tmptimize SQL statements, users cannot uskréctly in place of SQL.

Statement of Problem
There is a need for a software framework thatalthe direct and convenient use of
relational algebra as an alternative to SQL. Suthraework must also address the difficulties

in expressing relational algebra on the Web.

Existing Techniques

It seems that to construct relational algebra@sgions, or to empirically verify relational
algebra expressions for correctness, or to acteakgute them on sample data, or to reorganize
them to produce results-equivalent expressionsjongnant technique is simply to work it out
by hand. This is tedious, error-prone, and lacksalegance of computing.

Existing techniques for thetgital representation of relational algebra expressinadiside the
use of TeX-based tools or equation editors, whethin the mathematical structure of the
expression content. However, TeX-based tools tylgibave a fairly steep learning curve, and
there are many different equation editors, each thiéir own underlying format.

One promising alternative is to encode relati@gébra expressions in HTML or MathML
using sub- and superscripts as well as fonts thfatel all the necessary symbols. This would
additionally allow them to be included in the conttef Web pages and certain word processing
documents. However, there are so many stylistieidihces between HTML programmers that it
is hardly a portable solution to do this manudiiathML — despite being a World Wide Web
Consortium Recommendation since 1998 [W3C Math \grksroup] — lacks widespread Web

browser support [Deveria 2013].

Furthermore, both HTML and MathML would require thse of a font that supports all the
necessary symbols for relational algebra operaldrs.symbols for outer joins, in particular, are
not implemented by any font that can be reasonaqbected to be already on the user platform
(e.g. Arial, Helvetica, Times). Fonts that attengoimplement as much of the Unicode standard
as possible (e.g. Code2000, FreeSerif) are eithractically large in file size or are not

licensed for commercial use.

CHAPTER Il

RELATED WORK

Many of the concepts that underlie the RAT frameware innovative, in the sense that |
was unable to find any existing implementationgheim. For instance, | could not find a
generally accepted XML vocabulary that capturesdidte definition language of relational
databases, nor one that encodes algebraic expressia way that emphasizes the operations
that are being encoded (rather than merely thenbsys).

This work was originally conceived out of a desode able to display relational algebra
expressions in a Web page, as one might find ow#impage of an educational course on
database design. Similarly, one of the originappses of MathML was to provide “much-
needed support” for incorporating mathematical eggpions (of all sorts) into Web pages
[MathML 1.0 Specification, 1998]. However, the omigtive Web browser support for MathML
is for so-called “presentation markup,” not “cortterarkup”; that is, one can design MathML
encodings that emphasize the operation being ed¢cbdé the browser may not interpret it as
the writer had intended. Furthermore, native Wealwiser support for MathML is not even
universal as of this writing.

The W3C Math Working Group recommends the usejoaBon editors that generate
MathML markup, which can then be embedded into XHT{drovided you are using Mozilla

Firefox®) or HTML5 and rendered by Web browsersisTik the kind of elegance to be desired

in a solution. However, not all equation editore MathML; some are based on LaTeX or
proprietary formats. All of these formats still tegp the existence of a font that will render all
the symbols that are part of the encoded expres$i@TeX Project Team, 2011]. | could not
find a suitable font that supported the outer pimbols of relational algebra, even though these
symbols have been defined by the Unicode standiacd 2002 [Unicode Consortium]. There
are, of course, specialized mathematical fonts atholout few freeware ones, and even fewer
that are good-looking at smaller font sizes. We &sind freeware fonts like Code2000 and
FreeSerif that attempt to support all the symbelned by Unicode; however, such fonts are on
the order of megabytes in size.

Although it may be possible to use MathML or LaTedUpled with a purpose-built font to
incorporate relational algebra into Web pages, @artainly not easy to find utilities that make it
easy to learn, teach, and actually work with refai algebra on a computer. These are the most

interesting features of the Relational Algebra Kkdol

CHAPTER Il

PROPOSED SOLUTION

In response to the problems and the limitationsxidting (partial) solutions as covered in
the previous two chapters, | present a novel smuiThe Relational Algebra Toolkit, hereafter
abbreviated RAT.

RAT consists mainly of a JavaScript-based HTML-precessor that invokes and handles
the results of various utility services based oerymovided workflow scripts. These services are
invoked on relational algebra expressions or retai data (or both) encoded in purpose-built
XML vocabularies. Also incorporated are a fontekational algebra expression editor that
creates the relevant XML encoding on-the-fly, arsdever-side XML database for user-driven

storage of particularly interesting XML documergterant to the usage of RAT.

System Architecture
RAT is a layered system. An XML core enables comication between a layer of utility
services and a managerial service that forms itslayer, with Web browsers forming the outer

shell and the execution platform for the systenr.d&graphical representation of this, see Fig. 1.

Internet Explorer®

Figure 1. Layered Architecture of RAT.
XML Core

Forming the coref the RAT are two markup languages and a scrigdnguage, each of
which can be extended as needed, being formalipettiising XML Schema. The first and
most fundamental of these is RAML (pronounced fidé@mel”) — the (R)elational (A)lgebra
(M)arkup (L)anguage — which encodes relational ladlgexpressions so that they have an

unambiguous order of operations, allowing for gindiorward evaluation.

Some of the services at the next layer requidicglal data upon which to operate. Such
data must be encoded in RDML, the (R)elational {B)ase (M)arkup (L)anguage. This
language is described in detalil

The third and final language is used to encodefhaw scripts that consist of requests to the
management layer to provide specific services (@utly) upon RAML or RDML documents.
This scripting language is known as RATTAIL, the€Rtional (A)lgebra (T)oolki(T)

(A)utomated (I)nstruction (L)anguage.

Services Layer

At the services layer is the collection of utilggrvices that truly differentiate RAT from
existing solutions. There is a sort of what-you-se@hat-you-get equation editor for relational
algebra expressions — known as RAML Edit — thatldis the RAML markup equivalent to the
parenthetical expression being constructed by slee in real-time.

Differing from the other services in that it is am to be explicitly server-side, RAT
Database is a repository of RAML and RDML documehés users found particularly helpful or
interesting and which they think might be of intr® other users.

Managed servicesBoth RAML Edit and RAT Database are special irt thay do not
communicate with the management layer at all; useéesact with them directly. The remaining
services can be thought of as stored procedurearhavailable for invocation by the

management layer upon request. These managedeseprivide the following functionalities:

Validate RAML and RDML documents against their respectisieesnas

Render a RAML document as a conventional parentheticptession

Visualize the order of operations in a RAML expression bydering its syntax tree
Tabulate an RDML document as an XHTML table

Translate a RAML expression into an equivalent SQL statement

Reorder a RAML expression to arrive at an equivalent eggi@n that would produce the

same results but using a different order of openati

Execute a RAML expression as a query over RDML-encodedti@hal data.

Visualize

Service Layer
Management Layer

Figure 2. Flow of Data Between RAT Manager and Seices.

Management Layer

When a Web page that uses the RAT framework telddy a user agent (assumed to be a
Web browser), the management layer — whose solgacat is a transparent, client-side servlet
named RAT Manager — is initialized. It seeks ofgmences to RATTAIL documents in the
(X)HTML, fetches them using Ajax, and interpretsrtihhas a global workflow script. This script
consists of instructions that request specificises/on specific RAML and RDML documents,
and which additionally specify (hg) a DOM element in the Web page that should be tsed
store the results. For each instruction, RAT Manégiehes and parses the specified input
documents, passing them to the freshly dispatcbedces that were requested. When the
service completes, the results are passed backToMRnager, which then injects them into the
Web page at the specified DOM element. When alliserequests have been satisfied, RAT

Manager terminates. Fig. 2 illustrates this refaslip between RAT Manager and services.

Application Layer

The outermost layer of the RAT framework considtthe user’'s Web browser, along with
the RAT website and various tutorials and instargithat we have created for RAT users.
Conceptually, the application layer would also ure any user application that makes use of the

RAT framework in any way.

10

RAML.: Relational Algebra Markup Language

The Relational Algebra Markup Language is an XMlcafoulary that provides a means by
which to encode relational algebra expressionswaythat leaves the order of operations
unambiguous. A RAML document is a tree of nestddexpressions, the “leaf nodes” of which
represent relations (tables). The remaining nodek specify a relational algebra operation —
such as projection, selection, or join — along Wilparameters and sub-expression operands.

RAML was designed to be a faithful implementatafriedgar Codd’s original intent for
relational algebra [Codd 1990], lacking the aggtiegeand post-processing (“count”, “avg”,
“order by”, “group by...having”) clauses that are yaded by standard SQL. Every service in the
RAT framework is designed to handle relational bigeon an expression-by-expression basis,

each of which is implemented as a RAML document.

Schema and Specification

A copy of the XML Schema document that formallyide§ RAML can be found in
Appendix A. The following RAML markup example is@of the simplest possible relational
algebra expressions: a single relation.

<?xml version="1.0"?>
<raml xmIns="http://www.cs.panam.edu/2010/RAML">

<expression>

*
<relation> 1.
<name> St udent </name>
</relation> expression
</expression>
</raml> Figure 3. Root Element of RAML.

The root of a RAML document is a <raml> elemeng)(B), which has at least one child
<expression> element, each of which encapsulateicarelational algebra expression. The

11

schema supports multiple root-level <expressiomksch may be useful as an alternative to

keeping track of dozens of individual RAML docunmgent

attribute

0.1 1 0..1
Relation and Attribute Specifiers. As seen
name in Fig. 4, relations are encoded using the
1 0.1 <relation> tag. The schema allows flexible
name subscript naming of relations. The set of naming elements
superscript for a particular <relation> can only consist of a
Figure 4. RAML Relations and Attributes. <name> (required), optionally followed by a

<subscript> or a <superscript>. If both are to pectfied, the <subscript> must come before the
<superscript>. This allows encoding relations treate names like Ror R". The naming

elements are XML elements rather than elemenbatts to bypass the problem that user agents
do not need to honor the order in which an elemseaattributes are specified. (“Note that the
order of attribute specifications in a start-tagompty-element tag is not significant.” [XML 1.0
Specification])

Following the convention of having tag names bedescribing, attributes (of a relation
schema, not an XML element) that are referencedralational algebra expression are specified
with an <attribute> element (Fig. 4). RAML allowstsame naming flexibility with attributes as
it does with relations; its child elements are @uieed <name> followed optionally by a
<subscript> or <superscript>, or both. In additithg relation to which the attribute belongs can

optionally be specified, by preceding the <namethai<relation> sibling.

12

Boolean Conditions These are fundamental to joins and selectionsclaaty, it is required
that they be enclosed in a <boolean> element.wbigh noting that <boolean> is the most
complex element in the RAML schema. The followiegeral paragraphs are illustrated by Fig.
5. Two examples of Boolean expressions are shovenwbéhe one on the left represents “age is

at least 18,” and the one on the right means “fieshe is not ‘John’.”

<boolean> <boolean>

<gte/> <neq/>

<attribute> <attribute>

<name>age</name> <name>firstName</name >

</attribute> </attribute>

<number>18</number> <string>John</string>
</boolean> </boolean>

boolean
boolean 1

boolean 2.%
1 \ 1
not boolean ' boolean

1

boolean boolean
false

1 \ 1 \

attribute m attribute false

£

Figure 5. Booleans.

Boolean operators have their own elements. Theywadue-existence operator <is-not-
null/> and its complement <is-null/> are specifigdthe RAML schema. The familiar binary
value-comparison operators are represented asvi&ll@qual’ is <eq/>, “not equal” is <neq/>,

“less than” is <It/>, “less than or equal to” igedb, “greater than” is <gt/>", “greater than or

13

equal to” is <gte/>. None of these elements haxedentent or child elements; their operands
are encoded as their immediately following sibletgment(s).

The operands of a Boolean expression hawvediva tag names as well. The simplest are the
literal Boolean values <true/> and <false/>, ad aglthe universal placeholder <null/> which
signifies the absence of any particular value. Nuerend character-string values are encoded as
the text content of <number> and <string> elemeaetgectively. The RAML schema does not
restrict the length, format, or even content okthivo elements. The general idea with respect
to encoding literal values is to use <number> faracter data that can be parsed as a number,
<true/> and <false/> for Boolean values, and <gtrifor everything else. The previous
examples show that an attribute (of a relation s@)ecan be used as an operand as well; this
would be encoded with an <attribute> element.

Logical connectives are encoded as follows: digjon is <or/>, conjunction is <and/>, and
negation is <not/>. The <not/> element is unaryl d@must be followed by a <boolean>

element. <and/> and <or/> must be followed two orer<boolean>s, in the following style:

<boolean>
<and/> <boolean>
<boolean>. . .</boolean> <not/>
<boolean>. . .</boolean> <boolean>. . .</boo lean>
<boolean>. . .</boolean> </boolean>
</boolean>

Expressing a chained connective in this way —pi@ration-prefix notation — makes it less
likely that a complex Boolean expression will be@hed ambiguously or nonsensically. The
alternative would be to have an <and/> or <or/>nglet between each pair of adjacent
<boolean> operands. It is easier to reorder thdddmosub-expressions when they are immediate
sibling elements of each other. Most importanthythis form, the order of operations is explicit.

For instance, in the expression “(a #bb = c)VV ¢ = d,” the “or” clause is at a higher level in
14

the expression than the “and” clause. This meaatstie RAML-encoded version must be a

binary <or/> with one of its <boolean> operandstaonng a binary <and/>.

Relational Algebra Operations | have so far described how to encode literal \&@lue
specified attributes and relations, and Booleanmesgions. Now to the relational operations.

Projection of attributes is represented with tpeojection/> element (Fig. 6), which is
followed by at least two sibling elements. The fioae must be an <expression> element, and

the rest are all <attribute>s. This example prgjéice first and last names of all students:

<expression>
<projection/>
<attribute><name>firstName</name></attribute>
<attribute><name>lastName</name></attribute>
<expression>

<relation><name>Students</name></relation>

</expression>

</expression>

expression expression

1.* 1
h 4 \
projection BELGIVICEE expression boolean | | ==y

Figure 6. Projection and Selection.

Conditional selection or restriction of tupleslene with the <selection/> element, followed
by a required <boolean> element that defines tlezten condition, followed by another
<expression> (Fig. 6). The following example sedamtly those students for which the attribute

“age” has a numeric value of at least 21.

15

<expression>
<selection/>
<boolean><gte/>
<attribute>

<name>age</name>
</attribute>
<number>21</number>
</boolean>
<expression>
<relation>
<name>Students</name> 3
</relation> expression
</expre§S|0n> 1 . 1
</expression> 1.
Renaming of attributes in an intermediate attribute-pair
guery result is accomplished through the 2
, . . attribute
<renaming/> element (Fig. 7). It is followed by

- . Figure 7. Attribute Renaming.
at least two siblings, the last of which is an

<expression>. The others are all <attribute-paiements, each representing a one-to-one
mapping of attribute names. Each <attribute-paiement has two <attribute> child elements.

The following example renamésstName andlastName to fn andin.

<expression>
<renaming/>
<attribute-pair>
<attribute><name>firstName</name></attribute >
<attribute><name>fn</name></attribute>
</attribute-pair><attribute-pair>
<attribute><name>lastName</name></attribute>
<attribute><name>In</name></attribute>
</attribute-pair>
<expression>
<relation><name>Students</name></relation>
</expression>
</expression>

Most of the other relational operators have a comencoding format (Fig. 8): The
operation-specific element, followed by two or maexpression> elements. The specific
elements for these operations have self-descrilaiggames, and the currently supported ones

are <union/>, <intersection/>, <set-difference/giwsion/>, <cross-product/> (sometimes
16

called cross join or Cartesian product), <outewaf# (also called union-join), (left) <anti-

join/>, (left) <semi-join/>, (inner) <join/>, <lefbin/>, <right-join/>, and (outer) <full-join/>.

expression

1 \

e e . expression
cross-product || semi-join || anti-join || outer-union

intersection set-difference division

Figure 8. Operations Without Boolean Conditions.

The ability to chain multiple <expression> operaatlows the user to specify that there is
not meant to be any particular order in which tperand relations are used. In real-world
databases, where relations expand and contraatahake management system will not always
optimize a particular SQL statement the same wayyetime. The order of operands, in effect,
does not matter unless the writer of the SQL statdgrwants it to matter.

There is an additional aspect to the join operatibiat RAML addresses: a join condition

can be specified. The <join/>, <left-

expression

join/>, <right-join/>, and <full-join/> 1 0 1\
A

elements can all be encoded like the ' ;
. . . boolean | | expression
join || right-join

However, if an explicit join condition is specifiithen a <boolean> element must precede the

other operations, in which case they

. L Figure 9. Joins.
are interpreted asatural joins.

<expression> siblings, and in that case there oanle two <expression>s. Fig. 9 illustrates
this syntax. The following example requests alleéhg&ies in the relation Transcript for which

the professor is Alan Turing, assuming that a med€s name is stored in relation Professors.

17

<expression>
<join/>
<boolean><eq>
<attribute>
<relation><name>Professors</name></relati
<name>name</name>
</attribute>
<string>Alan Turing</string>
</boolean>
<expression>
<relation><name>Transcript</name></relation>
</expression><expression>
<relation><name>Professors</name></relation>
</expression>
</expression>

The last operation and element specified by

RAML is <assignment/> (Fig. 10), whereby the result

on>

expression

1 1

of a query or sub-query is assigned an identifier,

\ relation

making it appear to be an actual relation. If a RAM
document contains multiple root-level <expressign>s

any assignments made in one expression will not be

. 0.4 0.1

name ‘subsoript‘ superscript

Figure 10. Relation Assignment.

made available to subsequent expressions. Thismr®i8QL in that sub-query aliases used in

one SQL statement are only defined within thaest&nt; they cannot be used in later

statements. An example assignmeng €RR; U Ry”, is shown below.

<expression>
<assignment/>
<relation>
<name>R</name>₃
</relation>
<expression>
<union/>
<expression>
<relation><name>R</name>₁</relation>
</expression><expression>
<relation><name>R</name>₂</rel
</expression>
</expression>
</expression>

18

ation>

A Note on Order of Operations

It is worth noting that the order of operationsimmbiguous in a RAML-encoded

expression. This is not true of arithmetic expr@ssj which follow a near-universally accepted

but otherwise arbitrary order (parentheses, expaatean, multiplication and division, addition

and subtraction). Parenthesized clauses withirlgebeaic expression must be evaluated before

non-parenthesized clauses, so parentheses caedbéousxplicitly state an intended order of

operations. RAML expressions are forced to havexuticit order, because every clause and

sub-clause is an <expression> element, and thalb¥XML expression is a tree of nested

<expression> elements. For example, consider theessgion “AU B X C,” in which the order

of operations is ambiguous. This cannot be encaddaiguously, due to the way RAML is

defined. The only options are to explicitly encaidas “(A union B)}< C” or as

“A union (B C)". The encodings are shown below.

<expression>
<join />
<expression>
<union />
<expression>
<relation>
<name>A</name>
</relation>
</expression><expression>
<relation>
<name>B</name>
</relation>
</expression>
</expression><expression>
<relation>
<name>C</name>
</relation>
</expression>
</expression>

<expression>
<union />
<expression>
<relation>
<name>A</name>
</relation>
</expression><expression>
<join />
<expression>
<relation>
<name>B</name>
</relation>
</expression><expression>
<relation>
<name>C</name>
</relation>
</expression>
</expression>
</expression>

19

RAML Edit

Because the functionality of the RAT framework l@agn the correctness of its input, we
felt it well worth my time to develop an error-rgisint means of creating RAML documents.
Although one can use an XML editor or even a sintgkt editor to do this, such an approach is
highly prone to simple human error. To solve thistem, we created a relational algebra
expression editor in the style of MathType and Emmathematical equation editors, known as

RAML Edit. A screenshot of its use in Google ChrdMes shown in Fig. 11.

345 x Y [RAT Tutorial Howto? ['| RAT- Relational Algsbra~ x 7 ['] RAML Edicor x _

C [} ratcsipanam.eduRATZ ool raml_edit/1_0/ncex html
wa o >0 RAML EDIT

R Too p XM KD>XNKMXUDND - W =

R. R, RZ R H

Choose a relation.

Relational Algebra Expression

(T game(Professorb(re i (0 gepryzaTer (Professor))~ (pid (@ majormcs(Transcript_)

RAML Expression

Figure 11. Screenshot of RAML Edit.
Using RAML Edit, what you see is what you get, @rhis why it and similar equation

editors are known as WYSIWYG editors. Users hapeiat-and-click interface that all but
removes the possibility of making syntax errorse Dhly time that the user is allowed to freely
type anything is when specifying names of attrisuderelations, or when using string literals or

numbers as part of a Boolean expression. At aksicluring the use of RAML Edit, the
20

equivalent RAML markup of the expression being ¢artded is displayed in a frame that makes
up the bottom half of the interface. A working miype of RAML Edit has been deployed at
<http://rat.cs.panam.edu/RAT2/tools/raml_edit/In@&x.html>.

When the expression is complete, users are meaeldéct and copy the content of the
RAML markup frame, and then paste it in a text dMXeditor. There is a “Save as a file”
feature, but the deployed version of RAML Edit does actually implement it. This is because
the ability to save files to local storage is niddvaed if done through client-side scripting, as |
had originally intended. As it turns out, the &lilio do this has historically been a security

vulnerability [Dormann & Rafail, 2008].
A Logical AND
Logical OR
Logical NOT
Not Equal

Less or Equal
Greater or Equal
Projection
Selection
Renaming
Cross Product
Join

Semijoin
Antijoin

Left Outer Join
Right Outer Join
Full Outer Join
Union
Intersection

Set Difference
Outer Union
Division
Assignment

RAML Font

VA K 1<

One of the main obstacles inherent in expressilagoaal
algebra in Web pages (not to mention word procgssatuments)
is font support. | was unable to find a lightweidinteware font
that implemented the symbols for outer joins. Soriply decided
to develop my own and incorporate it into RAT. (4ally, it was
originally created by Hussein Bakka; | just updategdirhe RAML

Font is used to display the symbols shown in Table

T+@1Dc XXV XXX

The RAML Font is available as a TrueType font tisat

. .) Table 1.RAML Font Symbols.
configured to be installable. Interested partiey a@vnload the

font from <http://rat.cs.panam.edu/RAT2/fonts/rdtf#. Installing

21

the font will allow it to be rendered correctlypnactically all browsers, and it can also be used
in word processing documents.

Web pages that use RAT dot need to declare a ‘@font-face’ CSS style staterinth
would import the RAML Font. This is done at runtitog RAT Manager, which inserts all the
necessary style statements before doing anythgey €he Web browser will interpret the new
markup and download the font, if it is not alrednigally installed. Pages that use the RAML
Font but not the RAT framework should use the follg CSS:

@font-face {
font-family: "RAML Font";
src: url("http://rat.cs.panam.edu/RAT 2/fonts/taot?#iefix") format("eot"),
url("http://rat.cs.panam.edu/RAT2/fonts/ramMtformat("truetype™);

font-style: normal,
font-weight: normal,

22

RDML.: Relational Database Markup Language
The Relational Database Markup Language is an Xbitabulary for expressing the
structure, schema, and content of a relationabdata It corresponds roughly to the data
definition language of traditional RDBMSes, exctyat it is database-agnostic; it makes no
attempt to mimic the style of any particular RDBMERcause it is XML, it is designed to be
easy both for humans to read and for programsdogss. Because XML documents are well-

structured plain text files, large RDML documents highly compressible.

Schema and Specification

A copy of the XML Schema document that formallyide§ RDML can be found in
Appendix B. Shown below is a very simple RDML do@&nt) describing a database named
University that contains a single relation, naméai8nts, whose schema specifies two attributes

“name” (string) and “grade” (number) but contaimsattual data tuples.

<rdml xmIns="http://www.cs.panam.edu/2011/RDML">
<database>
<name>University</name>
<relation>
<name>Students</name>
<schema>
<attribute>
<pame>name</name>
<domain>string</domain>
</attribute>
<attribute>
<name>grade</name>
<domain>number</domain>
</attribute>
</schema>
</relation>
</database>
</rdml>

23

The root of an RDML document is an <rdml>

element, which has at least one <database> child
element. A <database> encapsulates a named | ke

collection of relations, which is the

name relation

definition of a relational database. A
1 /1 1\
single <database> may have any number
subscript instance

of <relation> children, or none at all, which
superscript 1.*
signifies an empty database. It also has a m
required <name> child. Figure 12. RDML Base Elements. 1%
\ 4
As illustrated in Fig. 12, each relation is enabeéth a <relation> m

element, as in RAML, but <rdml:relation> is far maromplex than

<raml:relation>. Like the RAML version, an RDML <ation> requires its first child element to
be a <name>, optionally followed by a <subscriptd/ar <superscript>. This is where the
similarities end. The next child element must B&sehema> element, which is so complex that it
requires its own diagram (Fig. 13). The last chifc <relation> element is an optional (but

expected) <instance> element.

Relation Instance and Data TuplesThe <instance> element (Fig. 12) reflects the eris
of actual data in the relation. Each tuple in ation is specified with the <tuple> element, and
every <instance> must have at least one <tupldd;dhis requirement ensures that if an
<instance> exists, there is at least some realiddke relation. Each attribute of the relation

must be accounted for in every tuple, even thoaeththve no particular value or which are not

24

applicable to the real-world entity that the tupderesents. If there are five attributes specified
the <schema> element, then there must always befilld elements for every <tuple> in the
same relation. Each child element can be eithefadue> or <null/> element, corresponding to
either a data value or no content for a singlebaitie. A very simple example of an <instance> is

shown below.

<instance>
<tuple>
<value>John Smith</value>
<value>83.5</value>
</tuple><tuple>
<value>Jane Doe</value>
<null/>
</tuple>
</instance>

Relation Schema — Attributes and ConstraintsThe <schema> element roughly
corresponds to the “CREATE TABLE” statement in S@Q&fining the attributes and keys in the

relation. Its complex nature is illustrated in FI§.

» foreign-key

not-null candidate-key

subscript

attribute-name

superscript

0.1

subscript

Figure 13. RDML Schema Element. superscript

25

All of the <attribute> elements must be specitiedore anything else. Once again, there is
an element in RDML that shares a name with a RAMIent. They do correspond to each
other, but the RDML version is slightly more compl&ach <attribute> element must have a
<name> child, optionally followed by at most oneikscript> and at most one <superscript>, in
that order. However, <rdml:attribute> has anothement after the naming elements — a
required <domain>, which specifies the data typthefvalues for that attribute. Applications
that use RDML are free to define and enforce tbein set of data types.

After all the <attribute>s have been defined urtber<schema> element, its following
sibling elements all make references to them. Bistthe <not-null> elements, of which there
may be any number. Each one has exactly one <a#ritame> child (corresponding to one of
its preceding sibling <attribute>s), each of whinas exactly one <name> child, optionally
followed by a <subscript> and/or <superscript>. €het-null> elements are used to specify that
certain attributes must always correspond to aueraklement in

every tuple; never a <null/>. 0.*

The remaining elements all relate to [=liglelfiEREl= foreign-key

1 0.1 1

key constraints. First is <primary-key>,

subscript

of which there can be either zero or

. superscript
one. The <primary-key> element must have EJH

relation-name J attribute-name

least one <attribute-name> child, but may have more

Next comes <candidate-key>, which declares that a

specific set of attributes must have a unique et o St

superscript

<value>s (and/or <null>s, which are not allowed for
Figure 14. RDML Foreign Key.

any <primary-key> attribute) in every <tuple>.

26

There can be any number (or none) of <candidateskeya relation, and an <attribute> can
participate in more than one <candidate-key> a$ agelhe <primary-key> or a <not-null>. The
<candidate-key> element corresponds to the “UNIQUd&istraint of SQL.

Finally, there is <foreign-key> (Fig. 14), a setattributes in relation Rsuch that (1) every
corresponding set of values in'®<instance> must also be present in the <instant@another
relation R, and (2) these referenced value sets in R2 mustsuond to a set of attributes that
form a <candidate-key> or the <primary-key> of RZchema may specify any number of
<foreign-key>s. Each <foreign-key> of hypotheticghtion R specifies one or more of its own
attributes (via <attribute-name>s) and — isolatesidie of a <references> element — the full name
of another relation R(encapsulated in a <relation-name>) and one oerbR’s attributes.
These two sets of attributes must agree in bothbeupnespective value domains, and relative
order. The RDML Validator verifies that there i€ ttame number of <attribute-name>s as
previous sibling elements of the <references> aethre as child elements of the <references>.
It also verfies the existence of the referencedtbatie>s of R, the referenced <relation>FRand

the referenced <attribute>s of.Ffor more information, consult Appendix D.

Creating RDML Documents
Regrettably, there is no RDML Editor to complemBAML Edit. Currently, the only way
to create RDML documents is by using a text editor to at least avoid XML syntax errors if

not RDML schema errors — an XML editor.

27

RATTAIL: RAT Automated Instruction Language
The managed services provided through the RAT fraonieneed to be explicitly requested

by the user. These service requests are writtamiovel XML-based scripting language known

as RATTAIL, the (R)elational (A)lgebra (T)oolki(T) rattail
(A)utomated (I)nstruction (L)anguage. RATTAIL is 0.* —~ 0.*

a deterministic, sequential workflow-scripting };Strl\;’ction
language with a very small number of instructions. 1 01 01 N.0.1

It is formally defined using XML Schema.

A <rattail> element forms the root of a

Figure 15. RATTAIL Schema.

RATTAIL document. Its children are all <instructieelements. Each <instruction> element has
a requirechame attribute that refers unambiguously to one ofrttamaged services, and optional
input, database, andoutput attributes. Each instruction can have nested &hiidtruction>
elements as well, making RATTAIL a highly extensibIML-based scripting language that
could serve many other purposes outside of the R&mework. It is also the simplest by far of
the RAT languages (see Fig. 15). Its schema mdguwel in Appendix C.

The possible values for tlmame attribute of <instruction>s are restricted to fdate,”

“render,” “tabulate,” “visualize,” “reorder,” “traglate,” and “execute,” each corresponding to the
name of a managed service.

The value of thenput attribute must be a relative or absolute pathRAML or RDML
document. The “validate” instruction is speciathat the input attribute can refer to either a
RAML or RDML document, and RAT Manager will passatthe appropriate XML validation
service. The other instructions are designed t&kwaty with either RAML or RDML
specifically; “tabulate” requires RDML, whereas thibers require RAML. If thenput attribute

28

is omitted, RAT Manager will dispatch the requestedsice on every RAML document that is
referenced in the page in the following way:
<script type="application/raml+xml" src="sample.ram ["></script>

In the given example, “sample.raml” is a RAML downt, apparently located in the same
directory as the Web page. Assuming the instruatiomently being interpreted has the value
“render” for its name attribute, RAT Manager wilsdatch the Render service on that document.
If the instruction is “tabulate”, RAT Manger wilighatch the Tabulate service on all RDML
documents instead of all RAML documents; and ifitistruction is “validate”, it will dispatch
the RAML Validator on all RAML documents and the RID Validator on all RDML.

Only when the instruction is “execute” will RAT Mager pay attention to tlilatabase
attribute; otherwise it is ignored. It is a secaydaput for the Execute service, which requires
both RAML and RDML. Its value is a relative or ahge path to an RDML document. If it is
omitted and the instruction is “execute”, the instron will produce an error message.

Theoutput attribute is used to specify where the resulthefdervice request will be inserted
into the Web page. Its value should correspond thighd attribute of some element in the Web
page. The results will be wrapped in an HTML <peneént and then inserted as the immediately
following sibling node of the referenced elememiess the referenced element is a <div>, in
which case it will be inserted as its last childleolf there is no element found with i@hequal
to the value of theutput attribute, a new one will be created and given vakue as itsd.

The example below shows how to encode instructiomsplete with outputs.

<rattail xmIns="http://www.cs.panam.edu/2012/RATTA IL">
<instruction name="visualize" input="g.raml" out put="q_tree"/>
<instruction name="translate" input="g.raml" out put="q_sql"/>
<instruction name="execute" input="qg.raml" datab ase="db.rdml"

output="g_on_db"/>
</rattail>

29

As mentioned before, nested <instruction> elemargpermitted by the RATTAIL schema,
but RAT Manager will ignore them unless the parastruction is “reorder”. The Reorder
service manipulates the relational algebra itvegiuntil it arrives at a permutation that would
produce the same result if it were executed. Theltés a new RAML expression, but nothing
will be shown to the user unless further instrutsiare provided. In the following example,

“gl.raml” is Reordered, and the resulting RAML isriflered so that it can be seen.

<rattail>
<instruction name="reorder" input="ql.raml" outp ut="ql_reord">
<instruction name="render" output="ql_reord_te xt"/>
</instruction>
</rattail>

Suppose there are twenty equivalent permutatibfglaraml”. The results will be
embedded in twenty <p> elements whidseare “ql_reord_text_1,” “gl_reord_text 2,” and so
on. These twenty <p>s will be siblings of each gthed all will be the children of a new <div>
whoseid is “gl_reord”.

There can be multiples of any kind of instime in a single RATTAIL document, which
allows users to have service results be displayetbee than one location in the page.
Alternatively, one can have individual RATTAIL-reéncing <script> elements at each location
where they want the result to be displayed, andtomgitheoutput attribute. Without a value for

output, RAT Manager will insert the result as the immeeliafollowing sibling of the <script>.

30

Service Descriptions
The second of the four layers of the RAT framewsrkomprised of the individual services
being provided. In this section, each service scdbed in detail, except for the RAML Edit,

which was described on pp.20.

Validate

One of the challenges of working with XML is ensigrithat a particular sample of XML is
in accordance with a particular schema. RAT pravithés as a managed service, and the other
services simply assume that their input is vafid Wiser did not write their RAML using RAML
Edit, it may be worthwhile to request the Validagvice on it before using it as part of a
published Web page. For RDML documents, it is abvsiyggested that the Validate service be

requested at least once before scripting othercgerequests on it.

<rattail>
<instruction name="validate" input="g.raml" outp ut="qg_val"/>
<instruction name="validate" input="db.rdml" out put="db_val"/>
<instruction name="execute" input="qg.raml" datab ase="db.rdml"
output="g_on_db"/>
</rattail>

In the above example, “g.raml” is serviced with B¥eML Validator. If the results are an empty
string, then it was found to be valid; otherwides tesults are a detailed listing of the errors,
which will be inserted as text into the Web pagarriee element whosd is “q_valid”. RAT
Manager will flag “g.raml” as invalid input, andeglexecute” instruction will not be honored. In
place of service results, an error message willigglayed. The same would occur if “db.rdml”

were found to be invalid by the RDML Validator.

31

If the “validate” instructions were not used aiither the RAML or RDML input happened
to be invalid, then the “execute” instruction wothlave been attempted and likely would have
resulted in an error message that made less sedseas less helpful than the “validate” output
would have been.

The reason behind making Validate its own serig¢hreefold: in addition to being able to
provide more focused and helpful error messagésnatically validating all input to a service
would result in performance losses. Furthermorthafuser created their RAML documents
using RAML Edit, it would be pointless to validatéoecause RAML Edit is incapable of
producing invalid RAML.

Algorithms to support the RAML Validator can beif@ in Appendix D while those to

support the RDML Validator are in Appendix E

Render

Database educators and relational algebra pawtits want to be able to express relational
algebra on the Web. The most convenient way tddag to have the Web browser render them
as if they were part of the normal content of a \gage. Although this seems simple enough,
there are two major design issues: the inconsisi@mdling of superscripts and subscripts
between browsers, and the lackluster support fatioeal algebra symbols. CSS provides a fix
for the former, and the RAML Font provides supgdortthe latter (see pp.21-22).

When Render receives RAML as input, it transl#tesrelational algebra into a conventional
parenthetical expression. The intent is to produdaital version of what the user would most
likely come up with if they were to work it out @aper or a whiteboard. The result ends up

32

being valid XHTML 1.0 markup, which RAT Manager @mts into the Web page. The Web
browser then updates its rendering of the pageesimee HTML source has now changed. A

sample of what Render can output is shown in Fg. 1

Ttnamd ProfessoiX (
(Tpia(T pept = csci(Professor))) —1pid(o major = mat (Transcript<l Student)))

)

Figure 16. Render Output Sample.
| performed field testing to determine theeleof Web browser support for Render. For all

intents and purposes, Render enjoys universal supfable 3 summarizes the results. The

algorithms to support Render can be found in AppeRd

Browser Without installing font | With font installed
Google Chrome™ 4.0 or later All versions
Internet Explorer® 6 or later 6 or later
Mozilla Firefox® 3.5 or later 1.0 or later

Apple Safari® 3.1 or later 3.1 or later
Opera™ browser 10.0 or later 8.0 or later

Table 2. Browser Support for Render, by Version.

Visualize

Relational algebra expressions can be very dlffiowvisually analyze, even at moderate
complexity. Fortunately, it is fairly straightforwchito decompose them into syntax trees — as is
the case with any algebraic expression — whichrareh less visually crowded and, for complex
expressions, easier to read. Visualize allowss&uto view any relational algebra expression in

this less-cryptic form.

33

When Visualize receives RAML as input, it constsuSG vector graphics and returns them
in a form that can be dynamically embedded intoeb\fage. | used vector graphics instead of
raster (bitmap) graphics because vector graphepenfectly scalable — they can be shrunk or
expanded with zero blurring or loss of visual imh@tion. | used SVG in particular because it is
the de facto standard for vector graphics on the.We

Depending on the Web browser T

MNames

being used, support for SVG embedded |

in an (X)HTML <object> as a A
UTF-8-encoded data URI

Professors -
may be limited or nonexistent. //\
If support is limited, the trees rendered by T o
the browser might not correctly use the I |

D. ’ T D. F AAATED
RAML Font. There is also an algorithmic Dwﬂ’ﬂlﬁ“ =T 3";"J“|= BT
issue that is unrelated to the browser: oo T D
The overall width of the tree /\
Figure 17. Visualize Output Sample. .

depends upon how the display Transcript ~ Students

width of each node is calculated. If the calculat®not very sophisticated, some trees will be
far wider than they need to be. Nevertheless, yhtastic breakdown illustrated by these trees
will still be correct. Table 4 summarizes the brewsupport for Visualize, with the focus on

results being consistent. The algorithms behindi&ligze may be found in Appendix G.

34

Browser Without installing font | With font installed
Google Chrome™ 4.0 or later 4.0 or later
Internet Explorer® 9 or later 9 or later
Mozilla Firefox® not supported 3.0 or later

Apple Safari® 3.1 or later 3.1 or later
Opera™ browser 10.0 or later 9.0 or later

Table 3. Browser Support for Visualize, by Version.

Tabulate CoUrses
Users of RDBMSes have come cid title area
3333 Data Structures & Algorithms DB
to expect their data to be presented 3342 Internet Programming WEB

, 4333 Database Design & Implementation DB

6312 Advanced Internet Programming WEB
service will accept an RDML 6315 Applied Database Systems DB
6333 | Advanced Database Design & Implém DB

as a table. To that end, the Tabulat

document as input and render all th

) Table 4. Tabulate Output Sample.
<relation> elements as XHTML

<table>s. Because styling is expected to be highpendent on the user, | decided to leave the

styling of the output relatively bland and neutidble 3 shows a sample result from Tabulate.

SELECT Name
Translate FROM Professor P
WHERE Department = 'CSCI'

In order to better illustrate the connection AND NOT EXISTS (

SELECT Pid
. FROM Transcript T, Student
between relational algebra and SQL, RAT WHERE Major = 'MATH'

_ _ - AND T.Pid = P.Pid
provides a service called Translate which, given a);

RAML expression, constructs an SQL statement Figure 18.Translate Output Sample.

35

that would give equivalent results. The relativdesrof the tuples in the result is not significant,
and may vary between RDBMSes. A sample of Translatut is shown in Fig. 18.

Although the resulting SQL may not be optimal &ory particular RDBMS, it follows a long-
standing version of the 1ISO standard for SQL. Ferrtiore, RDBMSes will attempt to optimize
the query anyway, which (to my amusement) would gmtdeing done through manipulation of
the underlying relational algebra.

Translate makes no attempt to optimize the quefgrb returning a result. The main purpose
of these services is to provide the tools to makehing and learning relational algebra an easier
undertaking. The ability to detect an inefficienteqy is certainly part of this. It is entirely up t
the user to determine whether or not their quepptsnal, although if they use Reorder they will
likely have a much easier time doing so.

The algorithms for Translate have not yet beereligped.

Reorder
One of the more tedious parts of optimizing quebgsand is coming up with permutations
of that query that produce the same results. Thsorefor doing this is because two queries that
produce the same results will require different ans of computation and time to execute. This
is what Reorder does as a service to its usergpéxicat it produceall equivalent permutations.
Given a RAML expression, Reorder will manipuldtie telational algebra until it arrives at a
permutation that would produce results identicahtuse of the original expression if it were

executed. It will keep doing this until it has exbted all possibilities for manipulation.

36

Uniquely among RAT services, Reorder returns aayasf RAML documents (actually, they
are parsed DOM objects). Depending on the chilttucions of the “reorder” instruction, these
RAML permutations will each be piped to Render,0lze, or Translate, or a combination of
them. An example of a RATTAIL script that requestsvices on the permutations as well as the

original permutation is shown below.

<rattail>
<instruction name="visualize" output="original_ tree"/>
<instruction name="reorder" output="permuted_tr ees">
<instruction name="visualize" output="equiva lent_tree"/>
</instruction>
</rattail>

The results of the above example will be organipeal hierarchy of XHTML <div>
elements. If there are, say, three equivalent pttions of the given RAML, the results will

look like this:

<div id="original_tree">. . .</div>

<div id="permuted_trees">
<div id="equivalent_tree_1">. . .</div>
<div id="equivalent_tree_2">. . .</div>
<div id="equivalent_tree_3">. . .</div>

</div>

The algorithms for Reorder have not yet been dpes.

Execute

Without a doubt the most interesting service isdtie, which evaluates a given RAML-
encoded relational algebra query upon RDML-encad&dional data. The resulting relation is
encoded as a new RDML database and automaticaigdpo the Tabulate service, whose results

are passed back to RAT Manager.

37

Execute is unique in terms of its RATTAIL reques,it is the only instruction that requires

adatabase attribute:

<rattail>
<instruction name="execute" input="query.raml"
database="students.rdml|"
output="query_on_students"/>
</rattail>

Execute is a two-stage XML interpreter that takégantage of the fact that JavaScript has a
meta-interpreter built into it — thewal () function. First, a modified depth-first searchtiod
<expression> hierarchy of the given RAML input ané in order to construct a complex
JavaScript function call whose parameters aredbelts of other function calls, each of which
may branch into yet more function calls. The rael function call is used as the right-hand
side of an assignment statement to a variabldagtdsclared in the code for this translation
process (rather than being declared in the assighst&ement). Once the RAML-to-function-
call translation is complete, the assignment statens passed as an argument toetrad()
function. This executes the statement in a JavaSaterpreter. When complete, the value
assigned to the local variable is retained, andhavwe our result, which is an RDML <relation>.

The functions that are called in the translata@3aript are defined within the scope of the
Execute service, and are invoked from witlwal (). Each of these functions evaluates a
relational algebra operation, receiving RDML asunh@nd returning new (or transformed, in the
case of selection, projection, renaming, or assegntirRDML as output.

The most basic of these functionsaad(), which receives the string-serialized naming
elements of a <raml:relation> as additional injud bboks for a corresponding <rdml:relation>
in its RDML input. If a match is foundopad() returns a deep clone of the <instance> child of the
matching <rdml:relation>. The set of naming elermgrhame>, <subscript>, <superscript>)

must be identical in both relative order and respedext content. For example, the RAML
38

(left) and RDML (right) markup segments shown bebimNOT refer to the same relation

because the contents of their <superscript>s drelantical:

<expression> <relation>
<relation> <name>R</name>
<name>R</name> <subscript>1</subscript>
<subscript>1</subscript> <superscript> a</superscript>
<superscript> A</superscript> <schema>. . .</schema>
</relation> <instance>. . .</instance>
</expression> </relation>

Regarding operations that can specify Booleanesgions as additional input (selections and

non-natural joins), a similar check is performedewdver a <raml:attribute> is specified. The

<schema> of the RDML input is first checked for gxstence of an <rdml:attribute> with an

identical set of naming elements. If none is fouhe,operation fails.

Chained operations like “Pd B D} C” are given an explicit order in the first stagethis

case, join(join(load(A), load(B), null), load(C), null)”, where A and B are joined first, andgth

result is then joined with C. The third operandldim() in this example would generally be a

string-serialized RAML <boolean> element, represgnthe join condition. Since the example

is a chain ohatural joins, there is no explicit condition.

39

Management Layer
Roles of RAT Manager

RAT is a service-oriented architecture — a ceroakdinating process waits for requests (in
the case of RAT, it actively looks for them) andgesses them. Each request specifies one of a
collection of independent modular services. Thedioator is known as RAT Manager.

RAT Manager has several major duties: Settinghepgeintime environment for the managed
services, fetching all referenced documents, imétipg user-provided scripts, dispatching
services as requested, and embedding the restutha\Web page.

When a Web browser loads a Web page th&egiRAT, RAT Manager is automatically
invoked. The first thing that must be done is tkenaure that the browser renders the results
consistently. RAT Manager does this by creatingtgle> element that defines a ‘@font-face’
to import the RAML Font:

@font-face {
font-family: "RAML Font";
src: url("http://rat.cs.panam.edu/RAT 2/fonts/taot?#iefix") format("eot"),
url("http://rat.cs.panam.edu/RAT2/fonts/ramMtformat("truetype™);

font-style: normal,
font-weight: normal,

}

Additional style rules are also included in th&ye> element, mostly related to the
positioning and relative font size of subscriptd anperscripts. RAT Manager then inserts the
<style> element into the <head> of the page.

jQuery. Because the jQuery framework is vitalite proper functioning of RAT, users who
are designing a Web page that uses RAT must algortrthe jQuery framework, and it must be

imported before “rat.js” is imported. The geneds®a is shown below.

40

<head>

<script type="text/javascript" src="jquery-1.9.1.m in.js">
</script>

<script type="text/javascript" src="rat.js"></scri pt>
</head>

There is no need to import the most recent versigQuery. In fact, | recommend version
1.9.1, as this is the version that was used dwaiingf the testing of the deployed prototype.
Also, I do not recommend users to “upgrade” to jQuex unless they do not mind its lack of
support for Internet Explorer® versions 6 througl@iery Foundation, 2013].

Next, RAT Manager looks for service requestss is accomplished through the use of
jQuery. All service requests must be located in RAIL documents, which must be referenced
in the Web page via (X)HTML <script> elememigctly as follows, except for the underlined

portion, which should be the URI of an existing RIBNIL document:

<script type="application/rattail+xml" src="sample. rattail ">
</script>

RAT Manager seeks out all such <script> elemendscaches the values &t (relative or
absolute paths to RATTAIL documents) so that it fdoh and parse them.
While looking for RATTAIL documents, RAT Managedsa caches the locations of all

RAML and RDML documents that are referenced “staluhe” as follows:

<script type="application/raml+xml" src="query.ram | "></script>

<script type="application/rdml+xml" src="db.rdml "></script>
Through the use of Ajax, RAT Manager will have Web browser attempt to fetch all the
referenced RATTAIL documents. The “stand-alone” RARhd RDML documents are not
fetched unless RAT Manager encounters an instruttiat does not specify any particular input

document, in which case the instruction is appicedll the RAML documents (or, if the
41

instruction is “tabulate”, to all the RDML documehtAlthough Ajax is typically used for
communicating transparently with a server, it maybssible — depending on the security
features of the Web browser being used — to fetcighents stored locally on the user’s own
computer, without needing to publish their Web pagan HTTP server. By design, the
managed services of the RAT framework do not reqadtive Internet access; they merely use

the Web browser as an execution platform.

Handling Service Outputs

Once all the RATTAIL documents have beenHettand returned as parsed XML, RAT
Manager will begin interpreting the scripts, instran by instruction. For each instruction, when
the requested service ever a service completagsitdts are passed back to RAT Manager. RAT
Manager then looks for the element in the Web pdgaseid equals the value of the
instruction’soutput attribute. If it is found and is a <div> elemethte results will be inserted as
its last child node. If it was found but not a <elithe results will be inserted as its immediately
following sibling node. If it was not found at aRAT Manager will create a new <div>, assign it
the specified id, inject the results into it, andart the new <div> as the immediately following
sibling node of whichever <script type="applicafi@ttail+xml"> element referenced the
RATTAIL document that contained this instruction.

In any case, the results of the service requdkbwinserted into the Web page, and the
browser will then automatically re-render the mmifportions, making the results visible to the

user almost immediately. RAT Manager will patientlgit for each instruction to finish before

42

dispatching the next one. This behavior may chamfeture visions of RAT, so as to benefit

from parallel processing and perhaps out-of-ordecetion.

<instruction name="execute"
input="query.raml" database="student s.rdml"
output="query_on_students"/>

The above instruction would be interpreted byHetg “query.raml” and “students.rdml”,
then dispatching the Execute service using bothmg. If either of the two documents do not
happen to be valid against their respective schethaexecution may fail. Once the service is
finished, the result is passed back to RAT Managice the service is Execute, the result is
automatically piped to the Tabulate service, agddasults are then injected into the DOM
element in the Web page whaseequals “query_on_students”.

What are the postconditions of a Web pageubes RAT, after RAT Manager is done? First,
the Web page can now use the RAML Font, whetheobthere were any service requests in the
page. This is of particular benefit to users wheanly interested in the Render service. Second,
all RATTAIL documents — provided they were propesyerenced and were not invalid — have
been processed, and the Web page now incorpoedéti®nal algebra in its content.

The Web page can now be saved in its current ataéenew page, to avoid having RAT

Manager re-process everything every time the pagmaded.

43

CHAPTER IV

DEPLOYMENT AND EVALUATION

Over the course of three and a half years, agbamiplementation of RAT was developed
with the intention of using it as an instructioa& for college database courses. As of this
writing, RAT Manager, RAML Edit, the RAML and RDMValidators, and the services Render,
Visualize, and Tabulate have been fully implementdds implementation has been deployed
and can be found at <http://rat.cs.panam.edu/RA@2K.htmI>.

At present, the most feasible application of tleéalRonal Algebra Toolkit is education.
Working with relational algebra should not be sahsally more time-consuming or frustrating
than working with SQL, which | currently believelbe the case. To that end, the active
deployment of RAT has been utilized in the curnicalfor the graduate- and undergraduate-
level Database Design and Development course® afniversity of Texas — Pan American
since Fall 2010, when taught by Dr. Artem Chebaik®r. Christine Reilly. There has also been
correspondence related to RAT from professorsheratiniversities internationally — the USA,

Germany, and Malaysia, as of this writing.

44

Examples of Use

This section briefly describes two suggested uséseoRAT framework. The RAT website

<http://rat.cs.panam.edu/RAT2/index.htmI> providesre information, as well as tutorials with

a large number of examples.

The first step, common to most use cases, isctrfporate “rat.js” into a Web page. All of

the managed RAT services — Validate, Render, TédyWNasualize, Reorder, Translate, and

Execute — are distributed along with RAT Managethis single JavaScript file.

One possible use of RAT is to have relational lmlgexpressions become part of the content

of a Web page, as might occur when coordinatingdarcational course on databases. The

suggested course of action, then, is:

1.

2.

Incorporate “rat.js” into the Web page as a <sexipt

Use RAML Edit to obtain RAML encodings of the exgg®n(s) in question,

Create XML documents out of the RAML encodings gsartext or XML editor and
simply copying and pasting,

Wherever you want each particular expression t@apim the page, place the following
XHTML markup, one for each RAML document, replacitlOCUMENT_PATH” with

the path to the respective RAML document that easdbe expression:

<script type= " application/raml+xml" src="DOCUMENT_PATH"></script>

This is the simplest use case for RAT, as it dagsven require the use of RATTAIL script.

In the absence of RATTAIL scripts, RAT Manager Malllback to invoking the Render service

on all the referenced RAML documents.

Another, more interesting use case involves theckte service. The first three steps are the

same as in the previous example, but then it besonuge complicated:

45

4. Create the RDML encoding of the intended sampla daing a text editor.
5. Anywhere in the <body> of the page, place the foitlg XHTML markup, one for each

RAML document, replacing “DOCUMENT_PATH” with theath to the document:
<script type="application/raml+xml" src="DOCUMENT _P ATH"></script>
6. Do the same for each RDML document, using the ¥ahg template:
<script type="application/rdml+xml" src="DOCUMENT_P ATH"></script>

7. Wherever you want the result to appear in the pplgee an empty <div> element with a
unique value for itsd attribute.
8. Create an XML document containing the following RIPAIL script, replacing the

values of thenput, database, andoutput attributes with their intended values:

<?xml version="1.0" encoding="UTF-8"?>

<rattail xmIns="http://www.cs.panam.edu/2012/R ATTAIL">
<instruction name="execute" input="PATH_TO _RAML_DOCUMENT"
database="PATH_TO_RDML_DOCUME NT"
output="ID_CHOSEN_IN_STEP_7"/ >
</rattail>

9. Anywhere in the <body> of the page, place the foilg XHTML markup, replacing

“DOC_PATH” with the path to the RATTAIL documenteated in step 8:

<script type="application/rattail+xml" src="DO C_PATH"></script>
The results of the Execute service will be passelhbulate, and an XHTML table

containing the results will be inserted into thevsdhat was created in step 7.

46

Evaluation

In the undergraduate-level course in Fall 2013 @rebotko delivered a survey to the
students to ascertain whether or not it was wortleath incorporate RAT into the curriculum.
Out of 32 respondents, 26 had used RAT on an assigh 16 respondents strongly agreed that
“overall, the Relational Algebra Toolkit is a uskfool for learning relational algebra” (an
additional 9 also agreed, though not strongly).WWgard to specific services, 17 respondents
strongly agreed that Visualize “helped [them] brettederstand [their] relational algebra
expressions” (an additional 8 also agreed, thouglstnongly); and 17 respondents strongly
agreed that RAML Edit “helped [them] learn relatbalgebra by only allowing [them] to enter
expressions that contain correct syntax” (an aoluiti 7 also agreed, though not strongly).

Furthermore, having used RAML Edit, 13 respondstrsnglydisagreed that they “prefer to
write relational algebra expressions by hand (gepaas opposed to composing them using
RAML Edit.” An additional 4 respondents also disaenl, though not strongly, and only 1

respondent agreed, though not strongly. The remgi®irespondents had a neutral opinion.

47

CHAPTER V

CONCLUSIONS

Inferring from my problem statement, | intend R&Tprovide a means by which dorectly
andconveniently use relational algebis an alternative to SQL. | have received correspondence
from universities in the USA, Germany, and Malayhiat indicate RAT is being used
internationally in college database courses. Thoged partial implementation of RAT does
not incorporate the Execute, Translate, or Remériices, so it remains to be seen whether or
not they would improve the capability of RAT toselthe overall problem.

Nevertheless, given the survey results and thelgited interest in RAT from professors in
universities that | had never even heard of befamdh| deem RAT to be empirically proven

useful in educational courses that cover relatiatgebra.

48

Future Work

The algorithms for the Execute service have beseldped and may be found in Appendix
H. However, they have not been implemented, latalteployed on the RAT website. The
algorithms for the Translate and Reorder serviea® mot yet been developed. Complete
implementation of the RAT framework would, | belegeymore directly address the problem that
relational algebra cannot be worked with as coremty as SQL.

Apart from the managed services, RAT Databaserasds to be implemented. Its inclusion
on the RAT website would encourage communicatiahamtribution from users, which would
lead to a greater volume of constructive feedbank, ultimately the overall improvement of the
entire RAT framework. It would be a user-accounttcolled repository of RAML and RDML
documents, perhaps even lesson plans for educhtioneses.

Given the empirical success of RAML Edit, | algelfthat it would be greatly beneficial to
develop similar editors for the creation of RDMLJERATTAIL markup. Particularly important
to learning the concepts of relational algebraAdvR Edit’s refusal to let users create invalid
relational algebra expressions. Survey respondemtgormer classmates who have used RAT
have commented that this feature is either frusgair enlightening, more often the latter.

Finally, | believe that RAML and RDML should suppsemantic content, specifically in the
form of RDF-style annotations. This would providewers of a RAML document with a plain-

English explanation of what the relational algeéxpression is actually doing.

49

REFERENCES
Codd, E.F. (1969Derivability, redundancy, and consistency of relations stored in large data
banks. IBM Research Report, San Jose, California, RJ5969.
Codd, E.F. (1990)he relational model for database management. Boston: Addison-Wesley.
Deveria, A. (2008)Can | use.... Retrieved 4 Dec. 2013 from http://caniuse.condtdmathml
Dormann, W. & Rafail, J. (2008, Feb. 1&pcuring your web browser. Carnegie Mellon
University Software Engineering Institute. Retedvl0 Sept. 2013 from

http://www.cert.org/tech_tips/securing_browser/

jQuery Foundation (2013, Januargyowser support | jQuery. The jQuery Foundation.
Retrieved 4 Dec. 2013 from http://jquery.com/brewsupport/

LaTeX Project Team (2011, July 3LaTeX 2efor authors. Retrieved 4 Dec. 2013 from
http://www.latex-project.org/guides/usrguide.pdf

Unicode Consortium (2002, Marchiliscellaneous Mathematical Symbols-A. The Unicode

Standard, Version 3.2.0, defined by: The Unico@m@ard, Version 3.0 as amended

by theUnicode Standard Annex #28: Unicode 3.2. Retrieved 10 Nov. 2011 from
http://www.unicode.org/charts/PDF/Unicode-3.2/

World Wide Web Consortium (2008, Nov. 2&xtensible Markup Language (XML) 1.0 (fifth
edition). World Wide Web Consortium. Retrieved 10 Sept.26tm
http://www.w3.0org/TR/xml/#sec-starttags

W3C Math Working Group (1998, April 7Mathematical Markup Language (MathML) 1.0

specification. World Wide Web Consortium. Retrieved 4 Dec. 268
http://www.w3.0rg/TR/1998/REC-MathML-19980407/

50

APPENDIX A

51

APPENDIX A

XML SCHEMA FOR RAML

<xs:schema targetNamespace="http://www.cs.panam.edu /2010/RAML"
xmlns="http://www.cs.panam.edu/2010/RAML "
xmins:xs="http://www.w3.0rg/2001/XMLSche ma"

elementFormDefault="qualified">

<xs:complexType name="emptytype">
<xs:restriction base="xs:string">
<xs:maxLength value="0"/>
</xs:restriction>
</xs:complexType>

<xs:complexType name="relationtype">
<xs:.sequence>
<xs:choice>
<xs:element name="name" type="xs:st
<xs:element name="nm" type="xs:stri
</xs:choice>
<xs:choice minOccurs="0" maxOccurs="1">
<xs:element name="subscript" type="
<xs:element name="sub" type="xs:str
</xs:choice>
<xs:choice minOccurs="0" maxOccurs="1">
<xs:element name="superscript" type
<xs:element name="sup" type="xs:str
</xs:choice>
</xs:sequence>
</xs:complexType>

<xs:complexType name="attrtype">
<xs:.sequence>

<xs:choice minOccurs="0" maxOccurs="1">
<xs:element name="relation" type="r
<xs:element name="r" type="relation

</xs:choice>

<xs:choice>
<xs:element name="name" type="xs:st
<xs:element name="nm" type="xs:stri

</xs:choice>

<xs:choice minOccurs="0" maxOccurs="1">
<xs:element name="subscript" type="
<xs:element name="sub" type="xs:str

</xs:choice>

ring"/>
ng"/>

xs:string"/>
ing"/>

="xs:string"/>
ing"/>

elationtype"/>
type"/>

ring"/>
ng"/>

xs:string"/>
ing"/>

<xs:choice minOccurs="0" maxOccurs="1">
<xs:element name="superscript" type
<xs:element name="sup" type="xs:str
</xs:choice>
</xs:sequence>
</xs:complexType>

<xs:complexType name="attribute-pairtype">
<xs:.sequence>
<xs:choice minOccurs="2" maxOccurs="2">
<xs:element name="attribute" type="
<xs:element name="a" type="attrtype
</xs:choice>
</xs:sequence>
</xs:complexType>

<xs:complexType name="booleantype">
<xs:choice>
<xs:choice>
<xs:element name="true" type="empty
<xs:element name="t" type="emptytyp
<xs:element name="false" type="empt
<xs:element name="f" type="emptytyp
</xs:choice>
<xs:sequence>
<xs:choice>
<xs:element name="[t" type="emp
<xs:element name="lte" type="em
<xs:element name="gt" type="emp
<xs:element name="gte" type="em
<xs:element name="eq" type="emp
<xs:element name="neq" type="em
</xs:choice>
<xs:choice minOccurs="2" maxOccurs=
<xs:element name="number" type=
<xs:element name="num" type="xs
<xs:element name="string" type=
<xs:element name="str" type="xs
<xs:element name="attribute" ty
<xs:element name="a" type="attr
<xs:element name="true" type="e
<xs:element name="t" type="empt
<xs:element name="false" type="
<xs:element name="f" type="empt
<xs:element name="null" type="e
<xs:element name="n" type="empt
</xs:choice>
</xs:sequence>
<xs:.sequence>
<xs:choice>
<xs:element name="is-null" type
<xs:element name="isn" type="em
<xs:element name="is-not-null"
<xs:element name="isnn" type="e
</xs:choice>

53

="xs:string"/>
ing"/>

attrtype"/>
II/>

type"/>
e"/>
ytype"/>
e"/>

tytype"/>
ptytype"/>
tytype"/>
ptytype"/>
tytype"/>
ptytype"/>

"2">
"xs:double"/>
:double"/>
"xs:string"/>
:string"/>
pe="attrtype"/>
type"/>
mptytype"/>
ytype"/>
emptytype"/>
ytype"/>
mptytype"/>
ytype“/>

="emptytype"/>
ptytype"/>
type="emptytype"/>
mptytype"/>

<xs:choice>

<xs:element name="number" type= "xs:double"/>
<xs:element name="num" type="xs :double"/>
<xs:element name="string" type= "xs:string"/>
<xs:element name="str" type="xs :string"/>
<xs:element name="attribute" ty pe="attrtype"/>
<xs:element name="a" type="attr type"/>
<xs:element name="true" type="e mptytype"/>
<xs:element name="t" type="empt ytype"/>
<xs:element name="false" type=" emptytype"/>
<xs:element name="f" type="empt ytype"/>
<xs:element name="null" type="e mptytype"/>
<xs:element name="n" type="empt ytype"/>
</xs:choice>
</xs:sequence>
<xs:sequence>
<xs:element name="not" type="emptyt ype"/>

<xs:choice>
<xs:element name="boolean" type
<xs:element name="bn" type="boo
</xs:choice>
</xs:sequence>
<xs:.sequence>
<xs:choice>
<xs:element name="or" type="emp
<xs:element name="and" type="em
</xs:choice>
<xs:choice minOccurs="2" maxOccurs=
<xs:element name="boolean" type
<xs:element name="bn" type="boo
</xs:choice>
</xs:sequence>

="booleantype"/>
leantype"/>

tytype"/>
ptytype"/>

"unbounded">
="booleantype"/>
leantype"/>

</xs:choice>
</xs:complexType>

<xs:complexType name="exprtype">

<xs:choice>
<xs:choice>
<xs:element name="relation" type="r
<xs:element name="r" type="relation
</xs:choice>
<xs:sequence>
<xs:choice>
<xs:element name="projection” t

<xs:element name="pn" type="emp

</xs:choice>

<xs:choice minOccurs="1" maxOccurs=

<xs:element name="attribute" ty
<xs:element name="a" type="attr
</xs:choice>
<xs:choice>
<xs:element name="expression" t
<xs:element name="exp" type="ex
</xs:choice>
</xs:sequence>

elationtype"/>
type"/>

ype="emptytype"/>
tytype"/>

"unbounded">
pe="attrtype"/>
type"/>

ype="exprtype"/>
prtype"/>

<xs:sequence>
<xs:choice>
<xs:element name="selection" ty
<xs:element name="sn" type="emp
</xs:choice>
<xs:choice>
<xs:element name="boolean" type
<xs:element name="bn" type="boo
</xs:choice>
<xs:choice>
<xs:element name="expression" t
<xs:element name="exp" type="ex
</xs:choice>
</xs:sequence>
<xs:sequence>
<xs:choice>
<xs:element name="renaming" typ
<xs:element name="rg" type="emp
</xs:choice>
<xs:choice minOccurs="1" maxOccurs=
<xs:element name="attribute-pai

type="attribute-pairtype"/>

<xs:element name="ap" type="att
</xs:choice>
<xs:choice>
<xs:element name="expression" t
<xs:element name="exp" type="ex
</xs:choice>
</xs:sequence>
<xs:sequence>
<xs:choice>
<xs:.element name="cross-product
<xs:element name="cp" type="emp
</xs:choice>
<xs:choice minOccurs="2" maxOccurs=
<xs:element name="expression" t
<xs:element name="exp" type="ex
</xs:choice>
</xs:sequence>
<xs:sequence>
<xs:choice>
<xs:element name="join" type="e
<xs:element name="jn" type="emp
</xs:choice>
<xs:choice minOccurs="0" maxOccurs=
<xs:element name="boolean" type
<xs:element name="bn" type="boo
</xs:choice>
<xs:choice minOccurs="2" maxOccurs=
<xs:element name="expression" t
<xs:element name="exp" type="ex
</xs:choice>
</xs:sequence>
<xs:sequence>
<xs:choice>

55

pe="emptytype"/>
tytype"/>

="booleantype"/>
leantype"/>

ype="exprtype"/>
prtype"/>

e="emptytype"/>
tytype"/>

"unbounded">
"

ribute-pairtype"/>

ype="exprtype"/>
prtype"/>

" type="emptytype"/>

tytype"/>

"unbounded">
ype="exprtype"/>
prtype"/>

mptytype"/>
tytype"/>

">
="booleantype"/>
leantype"/>

"unbounded">
ype="exprtype"/>
prtype"/>

<xs:element name="semi-join" ty
<xs:element name="sj" type="emp
</xs:choice>
<xs:choice minOccurs="2" maxOccurs=
<xs:element name="expression" t
<xs:element name="exp" type="ex
</xs:choice>
</xs:sequence>
<xs:.sequence>
<xs:choice>
<xs:element name="anti-join" ty
<xs:.element name="aj" type="emp
</xs:choice>
<xs:choice minOccurs="2" maxOccurs=
<xs:element name="expression" t
<xs:element name="exp" type="ex
</xs:choice>
</xs:sequence>
<xs:.sequence>
<xs:choice>
<xs:element name="left-join" ty
<xs:element name="|j" type="emp
</xs:choice>
<xs:choice minOccurs="0" maxOccurs=
<xs:element name="boolean" type
<xs:element name="bn" type="boo
</xs:choice>
<xs:choice minOccurs="2" maxOccurs=
<xs:element name="expression" t
<xs:element name="exp" type="ex
</xs:choice>
</xs:sequence>
<xs:.sequence>
<xs:choice>
<xs:element name="right-join" t
<xs:element name="rj" type="emp
</xs:choice>
<xs:choice minOccurs="0" maxOccurs=
<xs:element name="boolean" type
<xs:element name="bn" type="boo
</xs:choice>
<xs:choice minOccurs="2" maxOccurs=
<xs:element name="expression" t
<xs:element name="exp" type="ex
</xs:choice>
</xs:sequence>
<xs:sequence>
<xs:choice>
<xs:element name="full-join" ty
<xs:element name="fj" type="emp
</xs:choice>
<xs:choice minOccurs="0" maxOccurs=
<xs:element name="boolean" type
<xs:element name="bn" type="boo
</xs:choice>

56

pe="emptytype"/>
tytype"/>

"unbounded">
ype="exprtype"/>
prtype"/>

pe="emptytype"/>
tytype"/>

"unbounded">
ype="exprtype"/>
prtype"/>

pe="emptytype"/>
tytype"/>

"1">
="booleantype"/>
leantype"/>

"unbounded">
ype="exprtype"/>
prtype"/>

ype="emptytype"/>
tytype"/>

"1">
="booleantype"/>
leantype"/>

"unbounded">
ype="exprtype"/>
prtype"/>

pe="emptytype"/>
tytype"/>

TS

="booleantype"/>
leantype"/>

<xs:choice minOccurs="2" maxOccurs=
<xs:element name="expression" t
<xs:element name="exp" type="ex
</xs:choice>
</xs:sequence>
<xs:sequence>
<xs:choice>
<xs:element name="union" type="
<xs:element name="un" type="emp
</xs:choice>
<xs:choice minOccurs="2" maxOccurs=
<xs:element name="expression" t
<xs:element name="exp" type="ex
</xs:choice>
</xs:sequence>
<xs:sequence>
<xs:choice>
<xs:element name="intersection"
<xs:element name="in" type="emp
</xs:choice>
<xs:choice minOccurs="2" maxOccurs=
<xs:element name="expression" t
<xs:element name="exp" type="ex
</xs:choice>
</xs:sequence>
<xs:sequence>
<xs:choice>
<xs:element name="set-differenc
type="emptytype"/>
<xs:element name="sd" type="emp
</xs:choice>
<xs:choice minOccurs="2" maxOccurs=
<xs:element name="expression" t
<xs:element name="exp" type="ex
</xs:choice>
</xs:sequence>
<xs:sequence>
<xs:choice>
<xs:element name="outer-union"
<xs:element name="ou" type="emp
</xs:choice>
<xs:choice minOccurs="2" maxOccurs=
<xs:element name="expression" t
<xs:element name="exp" type="ex
</xs:choice>
</xs:sequence>
<xs:sequence>
<xs:choice>
<xs:element name="division" typ
<xs:element name="dn" type="emp
</xs:choice>
<xs:choice minOccurs="2" maxOccurs=
<xs:element name="expression" t
<xs:element name="exp" type="ex
</xs:choice>

57

"unbounded">
ype="exprtype"/>
prtype"/>

emptytype"/>
tytype"/>

"unbounded">
ype="exprtype"/>
prtype"/>

type="emptytype"/>
tytype"/>

"unbounded">
ype="exprtype"/>
prtype"/>

e
tytype"/>

"unbounded">
ype="exprtype"/>
prtype"/>

type="emptytype"/>
tytype"/>

"unbounded">
ype="exprtype"/>
prtype"/>

e="emptytype"/>
tytype"/>

"unbounded">
ype="exprtype"/>
prtype"/>

</xs:sequence>
<xs:sequence>

<xs:choice>
<xs:element name="assignment" t ype="emptytype"/>
<xs:element name="at" type="emp tytype"/>
</xs:choice>
<xs:choice>
<xs:element name="relation" typ e="relationtype"/>
<xs:element name="r" type="rela tiontype"/>
</xs:choice>
<xs:choice>
<xs:element name="expression" t ype="exprtype"/>
<xs:element name="exp" type="ex prtype"/>

</xs:choice>
</xs:sequence>
</xs:choice>
</xs:complexType>

<xs:complexType name="ramltype">
<xs:sequence>

<xs:choice minOccurs="1" maxOccurs="unb ounded">
<xs:element name="expression" type= "exprtype"/>
<xs:element name="exp" type="exprty pe"/>

</xs:choice>
</xs:sequence>
</xs:complexType>
<xs:element name="raml" type="ramltype"/>

</xs:schema>

58

APPENDIX B

59

APPENDIX B

XML SCHEMA FOR RDML

<xs:schema targetNamespace="http://www.cs.panam.edu /2011/RDML"
xmins="http://www.cs.panam.edu/2011/RDML "
xmins:xs="http://www.w3.0rg/2001/XMLSche ma"

elementFormDefault="qualified">

<xs:simpleType name="emptytype">
<xs:restriction base="xs:string">
<xs:maxLength value="0"/>
</xs:restriction>
</xs:simpleType>

<xs:complexType name="tupletype">

<xs:choice minOccurs="1" maxOccurs="unbound

<xs:element name="value" type="xs:strin
<xs:element name="null" type="emptytype
</xs:choice>
</xs:complexType>

<xs:complexType name="instancetype">
<xs:.sequence>
<xs:element name="tuple" type="tupletyp
minOccurs="1" maxOccurs="un
</xs:sequence>
</xs:complexType>

<xs:group name="namegrp">
<xs:.sequence>
<xs:element name="name" type="xs:string
<xs:element name="subscript" type="xs:s
minOccurs="0" maxOccurs="1"
<xs:element name="superscript" type="xs
minOccurs="0" maxOccurs="1"
</xs:sequence>
</xs:group>

<xs:complexType name="attrtype">
<xs:.sequence>
<xs:group ref="namegrp"/>
<xs:element name="domain" type="xs:stri
</xs:sequence>
</xs:complexType>

ed">
g'/>
||/>

e
bounded"/>

">
tring"
/>
:string”
/>

ng"/>

<xs:complexType name="reftype">
<xs:group ref="namegrp"/>
</xs:complexType>

<xs:complexType name="foreign-keytype">
<xs:.sequence>
<xs:element name="attribute-name" type=
minOccurs="1" maxOccurs="un
<xs:element name="references">
<xs:complexType>
<xs:.sequence>
<xs:element name="relation-
type="reftype"/
<xs:element name="attribute
type="reftype"
maxOccurs="unbo
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

<xs:complexType name="schematype">
<xs:.sequence>
<xs:element name="attribute" type="attr
minOccurs="1" maxOccurs="un
<xs:element name="not-null"
minOccurs="0" maxOccurs="un
<xs:complexType>
<xs:element name="attribute-nam
</xs:complexType>
</xs:element>
<xs:element name="primary-key" minOccur
<xs:complexType>
<xs:element name="attribute-nam
minOccurs="1" maxOc
</xs:complexType>
</xs:element>
<xs:element name="candidate-key"
minOccurs="0" maxOccurs="un
<xs:complexType>
<xs:element name="attribute-nam
minOccurs="1" maxOc
</xs:complexType>
</xs:element>
<xs:element name="foreign-key" type="fo
minOccurs="0" maxOccurs="un
</xs:sequence>
</xs:complexType>

"reftype”
bounded"/>

name"

>

-name"
minOccurs="1"
unded"/>

type"
bounded"/>

bounded">

e" type="reftype"/>

s="0" maxOccurs="1">

e" type="reftype"
curs="unbounded"/>

bounded">
e" type="reftype"

curs="unbounded"/>

reign-keytype"
bounded"/>

<xs:complexType name="relationtype">
<xs:.sequence>
<xs:group ref="namegrp"/>
<xs:element name="schema" type="schemat
<xs:element name="instance" type="insta
maxOccurs="1" minOccurs="0"
</xs:sequence>
</xs:complexType>

<xs:complexType name="databasetype">
<xs:sequence>
<xs:element name="name" type="xs:string
<xs:element name="relation" type="relat
minOccurs="0" maxOccurs="un
</xs:sequence>
</xs:complexType>

<xs:complexType name="rdmltype">
<xs:sequence>
<xs:element name="database" type="datab
minOccurs="1" maxOccurs="un
</xs:sequence>
</xs:complexType>

<xs:element name="rdml" type="rdmltype"/>

</xs:schema>

62

ype"/>
ncetype"
/>

">
iontype"
bounded"/>

asetype"
bounded"/>

APPENDIX C

63

APPENDIX C

XML SCHEMA FOR RATTAIL

<xs:schema xmlns="http://www.cs.panam.edu/2012/RATT AIL"
xmins:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.cs.panam.edu/2012/RATT AIL"
elementFormDefault="qualified"
attributeFormDefault="qualified">

<xs:annotation><xs:documentation>
RATTAIL - (R)elational (A)lgebra (T)oolki(T)
(A)utomated (l)nstruction (L)anguage
</xs:documentation></xs:annotation>

<xs:complexType name="instrtype">
<xs:attribute name="name" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="validate"/>
<xs:enumeration value="render"/>
<xs:enumeration value="visualize"/>
<xs:enumeration value="reorder"/>
<xs:enumeration value="translate"/>
<xs:enumeration value="execute"/>
<xs:enumeration value="data-render"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="input" type="xs:anyURI"
use="optional"/>
<xs:attribute name="database" type="xs:anyURI"
use="optional"/>
<xs:attribute name="output" type="xs:ID" use="opt ional"/>
</xs:complexType>

<xs:.complexType name="scripttype">
<xs:.sequence>
<xs:element name="instruction" type="instrtype"
minOccurs="0" maxOccurs="unbounded"/ >
</xs:sequence>
</xs:complexType>

<xs:element name="rattail" type="scripttype"/>

</xs:schema>

64

APPENDIX D

65

APPENDIX D

ALGORITHMS FOR RAML VALIDATOR

algorithm RAML Validator
input (src): DOM element (a parsed RAML document)
output: A string listing the syntax errors gnc. The string will be empty érc is valid.

begin
if srcis a <raml> elemerthen
error_string =*"
for each child elemenkid of src do
error_string +=validate_expression(kid)
end for each
end if
return “\nRoot element must be <raml>.”
end

algorithm validate_expression
input (src): DOM element
output: A string listing the syntax errors énc. The string will be empty érc is valid.

begin
if srcis not an <expression> eleméién
return “\nExpected <expression> in place of " + tag naoherc + “.”
endif
firstborn = first child element oérc
if firstborn does not exighen
return “\n(expression): Requires a child element.”
endif
switch the element type dirstborn:
case<relation>:
return validate _relation_rami(firstborn)
case<join>, <left-join>, <right-join>, <full-join>:
return validate op_conditional (src)
case<cross-product>, <union>, <intersection>, <setedénce>, <division>,
<semi-join>, <anti-join>, <outer-union>:
return validate_op_unconditional (src)
case<selection>: return validate selection(src)

66

case<projection>. return validate projection(src)
case<renaming>: return validate renaming(src)
case<assignment>: return validate assignment(src)
case else
return “\n(expression): Invalid child element ** + tagma offirstborn + “.”
end switch
endif
end

algorithm validate_relation_raml
input (src): DOM element whose tag name is “relation” or “r”
output: A string listing the syntax errors @nc. The string will be empty érc is valid.
begin

if src has no child elements if first child element is not a <namé»en

return “\n(relation): First child must be <name>.”
endif
return validate_name(child elements o$rc)

end

algorithm validate_name
input (src): array of DOM elements, the first of which has tegne “name” or “nm”
output: A string listing the syntax errors gnc. The string will be empty érc is valid.
begin
next_index =1
if src contains more than one elemémn
if src[1] is a <subscriptthen
if src contains more than two elemetiien
next_index = 2
else
return
endif
endif
if src[next_index] is a <superscriptthen
if src contains more thaméxt_index+1) elementshen
return “(* + tag name ofrc[next_index] + “): Cannot be followed by a
+ tag name afrc[next_index+1] + *“.”

end if
return “’
end if
end if
return “’
end

67

algorithm validate_assignment
input (src): DOM element with tag name “expression” or “exp”
output: A string listing the syntax errors gnc. The string will be empty érc is valid.

begin
if src has more than 3 child elemetten
return “\n(assignment): Siblings must be a <relation> anc&kexpression>.”
endif
error_string = validate_relation(second child element sfc)
error_string +=validate_expression(third child element o$rc)
return error_string
end

algorithm validate_selection
input (src): DOM element with tag name “expression” or “exp”
output: A string listing the syntax errors gnc. The string will be empty érc is valid.

begin
if src has more than 3 child elemetitien
return “\n(selection): Siblings must be a <boolean> an&eaexpression>.”
endif
error_string = validate_boolean(second child element afc)
error_string +=validate_expression(third child element o$rc)
return error_string
end

algorithm validate_projection
input (src): DOM element with tag name “expression” or “exp”
output: A string listing the syntax errors @nc. The string will be empty érc is valid.

begin

if src has fewer than 3 child elemeriten

return “\n(projection): Siblings must be <attribute>s ard<expression>.”
end if
error_string =
for each child elementtt of src except the first and last onds

if att is not an <attributethen

return error_string + “\n(projection): Expected <attribute> in plade’o
+ tag name adtt + “.”

endif

error_string += validate_attribute(att)
end for each
if last child element adrc is not an <expressiorthen

error_string += “(projection): Last child must be an <expressid
else

68

error_string +=validate_expression(last child element adrc)
end if
return error_string
end

algorithm validate_renaming
input (src): DOM element with tag name “expression” or “exp”
output: A string listing the syntax errors @nc. The string will be empty érc is valid.

begin

if src has fewer than 3 child elemeriten

return “\n(renaming): Siblings must be <attribute-paiersgl an <expression>.”
end if
error_string =
for each child elementttpair of src except the first and last onds

if attpair is not an <attribute-pairthen

return error_string + “\n(renaming): Expected <attribute-pair> in paaf

+ tag name ddttpair + .

endif
error_string +=validate_attribute pair(att)
end for each
if last child element adrc is not an <expressiorthen
error_string += “(renaming): Last child must be an <expressidn>

else
error_string +=validate_expression(last child element adrc)
end if
return error_string
end

algorithm validate_attribute_pair
input (src): DOM element with tag name “attribute-pair” or “ap”
output: A string listing the syntax errors anc. The string will be empty érc is valid.

begin
if src does not have exactly 2 child elemeihisn
return “\n(attribute-pair): Must have exactly two <atwile> children.”
endif
error_string = validate_attribute(first child element oérc)
error_string +=validate_attribute(second child element sfc)
return error_string
end

69

algorithm validate_attribute
input (src): DOM element
output: A string listing the syntax errors gnc. The string will be empty érc is valid.

begin

end

if srcis not an <attributethen
return “\n(” + tag name ofrc + “): Expected <attribute>.”
elseif src does not have at least one child elentleai
return “\n(attribute): Requires a <name>.”
end if
error_string = *”
kids = child elements adrc
if kidg0] is a <relation>then
error_string +=validate _relation(kidg[0])
kids = all child elements odrc except the first one
end if
if kids is emptyor if kidg[0] is not a <namethen
error_string += “\n(attribute): Requires a <name>.”
else
error_string +=validate_name(kids)
endif
return error_string

algorithm validate_op_unconditional
input (src): DOM element with tag name “expression” or “exp”
output: A string listing the syntax errors énc. The string will be empty érc is valid.

begin

end

if src has fewer than 3 child elemerit&n

return “\n(” + tag name of first child ofrc + “): Requires at least 2 <expression>s.”
end if
error_string = *”
for each child elemenexpr of src except the first ondo

if expr is not an <expressiorthen

return “\n(” + tag name of first child orc
+ “): Siblings must all be <expression>s.”

end if

error_string +=validate_expression(expr)
end for each
return error_string

70

algorithm validate_op_conditional
input (src): DOM element with tag name “expression” or “exp”
output: A string listing the syntax errors gnc. The string will be empty érc is valid.

begin

end

if src has fewer than 3 child elemenit&n
return “\n(” + tag name of first child element sifc
+“): Requires at least two <expression>s.”

endif
error_string = *”
offset = 2

if second element child efc is a <booleanthen
error_string +=validate_boolean(second child element sfc)
if src has fewer tharoffset + 2) child elementthen
return error_string + “\n(” + tag name of first child element sfc
+“): Requires at least two <expression>s.”
endif
else
offset =1
end if
for i from offset to number of child elements effc do
if thei-th child element o$rc is not an <expressiorthen
return “\n(” + tag name of first child element sifc
+ “): Siblings must all be <expression>s.”

end if
error_string += validate_expression(expr)
end for

algorithm validate_simple_boolean
input (src): DOM element with tag name “true”, “false”, “null*string”, “number”, “attribute”
output: A string listing the syntax errors anc. The string will be empty érc is valid.

begin

if src has child elementhen
return “\n(” + tag name ofrc + “): Cannot have child elements.”
endif
switch tag name ofrc:
case<true>, <false>, <null>, <string>, <number>:
return
case<attribute>: return validate attribute(src)
case else:
return “\n(” + tag name ofrc
+“): Expected <true>, <false>, <null>, Fstj>, <number>, or <attribute>.”
end switch

71

return error_string
end

algorithm validate_boolean
input (src): DOM element
output: A string listing the syntax errors @nc. The string will be empty érc is valid.

begin

if srcis not a <booleanthen

return “\n(” + tag name ofrc + “): Expected <boolean>.”
endif
firstborn = first child element o$rc
switch number of child elements efc:

casel:

if firstborn is not a <true>, <false>, or <nulthen
return “\n(boolean): Invalid <boolean> beginning with
+ tag name dirstborn + *.”

else
return validate_simple_boolean(firstborn)
endif
case2:
if firstborn is a <not>then
if second child element sfc is not a <booleanthen
return “\n(not): Sibling must be a <boolean>.”
else
return validate boolean(second child element sfc)
end if
elseif firstborn is an <is-null> or <is-not-nullthen
error_string = validate_simple_boolean(second child element afc)
if error_string is not emptythen
return “\n(” + tag name ofirstborn
+ “): Expected <attribute> in place of
+ tag name of second child elemensrof+ “.”

else
return
end if
else
return “\n(boolean): Invalid <boolean> beginning with
+ tag name dfrstborn + “.”

end if
case3:
if firstborn is <eg>, <neq>, <It>, <lte>, <gt>, or <gtéren
error_string = validate_simple_boolean(second child element afc)
error_string +=validate_simple_boolean(third child element o$rc)
elseif firstborn is <and> or <orxhen

72

error_string = validate_boolean(second child element sfc)
error_string +=validate _boolean(third child element oérc)
else
error_string = “\n(boolean): Invalid <boolean> beginning with *
+ tag name dirstborn + *.”
end if
return error_string
case else:
if firstborn is <and> or <orxhen
error_string=""
for each child elemenkid of src except the first ondo
error_string +=validate _boolean(kid)
end for
else
error_string = “\n(boolean): Invalid <boolean> beginning with °
+ tag name dirstborn + *.”
endif
return error_string
end switch
return error_string
end

73

APPENDIX E

74

APPENDIX E

ALGORITHMS FOR RDML VALIDATOR

algorithm RDML Validator
input (src): DOM element (a parsed RDML document)
output: A string listing the syntax errors gnc. The string will be empty érc is valid.

begin
if srcis an <rdml> elemenhen
error_string =*"
for each child elemenkid of src do
error_string += validate database(kid)
end for each
end if
return “\nRoot element must be <rdml>.”
end

algorithm validate_database
input (src): DOM element
output: A string listing the syntax errors anc. The string will be empty érc is valid.

begin
if srcis not a <database> elemémen
return “\nExpected <database> in place of *’ + tag namsof+ “.”
else ifsrc has no child elements if first child element is not a <namé¥en
return “\n(database): Requires a <name>.”
endif
error_string=""
relation_names = empty array
for each child elemenkid of src except the first ondo
error_string +=validate relation_attribute(kid, false, relation_names)
end for each
end

75

algorithm validate_relation_attribute

input (src): DOM element whose tag name is “relation” or “dititie”

input (isAttrNotReln): Boolean flag; true ifrc is an “attribute”, false if it is a “relation”

input (familyNames): array of the names of all <relation>s encourte@ far in this <database>,
or of all the <attribute>s encountered so ffiathis <schema>. On exit, will contain another
element, but only if the name @t is unique.

output: A string listing the syntax errors énc. The string will be empty érc is valid.

begin
if lisAttrNotReln and if srcis not a <relationthen
return “\nExpected <relation> in place of ’ + tag nanfesc + “.”
endif
/I If we are validating an attribute, by precorahtwe already knowrc is an <attribute>.
if iSAttrNotReln then
this_name = “attribute”
this_needs = “domain”
else
this_name = “relation”
this_needs = “schema”
endif

/I Locate the <domain> or <schema> sibling.
if src has fewer than 2 child elememiten
return “\n(” + this_name + “): Requires a <name> and a <ths needs + “>.”
elseif first child element ofrc is not a <namethen
return “\n(” + this_name + “): First child must be <name>.”
endif

if src has more than 2 child elemetiten
if second child element afc is a <subscriptthen
if src has more than 3 child elemetiten
if third child element o$rc is a <superscriptthen

need_index = 4
elseneed index =3
endif
endif
else ifsecond child element sfc is a <superscriptthen
need index = 3
elseneed index = 2
endif
elseneed_index = 2

end if

76

if this_needs != tag name oheed_index-th child element o$rc then
return “\n(” + this_name + “): Children must be: <name> (required), <sulpger”
+ “(optional), <superscript> (optional), <"this needs + “> (required).”
endif
/I At this point we know where the required <sclaemor <domain> are.
if lisAttrNotReln then
error_string = validate_schema(need_index-th child element o$rc)
if src has more thaneed_index child elementshen
error_string +=validate_instance((need_index+1)-th child element adrc)
endif
if error_string is not emptythen
return error_string
end if
endif

/I Serialize the full name of this <relation> attibute>.
namingElem = first child element o$rc
myName = “<name>" + text content ofamingElem + “</name>"
for i from Oto need_index do
namingElem = next sibling element afamingElem
myName += “<” + tag name ohamingElem + “>”
myName += text content ohamingElem
myName += “</” + tag name ohamingElem + “>”
end for

/I Ensure that the full name is not already presefamilyNames.
for each stringcand in familyNames do
if myName = cand then
return “\nFound duplicate ” this_name + “ name ” +myName + “!”
end if
end for each
/I This name does not existfemilyNames, so it is valid.
PushmyName ontofamilyNames
end

algorithm validate_instance
input (src): DOM element
output: A string listing the syntax errors anc. The string will be empty érc is valid.

begin
if srcis not an <instancethen
return “\n(relation): Expected <instance> in place of-‘tag name ofrc + *.”
elseif src does not have child elemerit®n
return “\n(instance): Must have at least one <tuple>cthil
endif
77

for each child elementup of src do
if tup is not a <tuplexhen
return “(instance): Children must all be <tuple>s.”
end if
for eachchild elemenval of tup do
if val is not a <value> or <nullthen
return “\n(tuple): Children can only be <value> or <null>
endif
end for each
end for each
return error_string
end

algorithm validate_schema
input (src): DOM element whose tag name is “schema”
output: A string listing the syntax errors snc. The string will be empty érc is valid.

begin
child = first element child o$rc
error_string=""
/I First handle the attributes.
attNames = empty array
while child is an <attributexlo
error_string +=validate_relation_attribute(child, true, attNames)
child = next element sibling ahild
endwhile
if child is same node as first element childsafthen
return “\n(schema): Requires at least one <attribute>.”
elseif child is nullthen
return error_string
endif

/I Now handle the <not-null>s.

while child is a <not-null>do
error_string +=validate_constraint(child, attNames)
child = next element sibling ahild

endwhile

if child is nullthen
return error_string

end if

/I Now handle the <not-null>s.

while child is a <not-null>do
error_string +=validate_constraint(child, attNames)
child = next element sibling athild

end while

78

/l Now handle the <primary-key>, if any.

if child is a <primary-keythen
error_string +=validate_constraint(child, attNames)
child = next element sibling athild

end if

if child is nullthen
return error_string

endif

/ Now handle the <candidate-key>s.

while child is a <candidate-keydo
error_string +=validate_constraint(child, attNames)
child = next element sibling ahild

endwhile

if child is nullthen
return error_string

end if

/I Now handle the <foreign-key>s.

while child is a <foreign-key=o
error_string +=validate foreign_key(child, attNames)
child = next element sibling athild

end while

if child is not nullthen
return “\n(schema): Extra elements found after <foreigys.”
endif
end

algorithm validate_attrOrReln_name
input (src): DOM element
input (isAttrNotReln): Boolean flag; true iérc is an “attribute-name”, false if a “relation-name”
output: A serialized version of the <attribute-name> aglation-name>, if valid.
If not valid, output is an empty string.

begin
if src has no child elements if first child element ofrc is not a <namethen
return *’
endif
fullName = “<name>" + text content of first child elemeritsoc + “</name>"
if src has more than 1 child eleméhen
if second child element sfc is a <superscriptthen
if src has more than 2 child elemethgn
return *’
endif
79

fullName += “<superscript>" + text content of second claldment ofsrc
+ “</superscript>"
else if £cond child element afc is a <subscriptthen
fullName += “<subscript>" + text content of second chilémlent ofsrc
+ “</subscript>"
if src has more than 2 child elemetitien
if third child element oérc is not a <superscript>
or if src has more than 3 child elemethgn
return
end if
fullName += “<superscript>" + text content of third chilteenent ofsrc
+ “</superscript>"
endif
else
return
endif
endif
return fullName

algorithm validate_constraint

input (src): DOM element with tag name “not-null”, “primary-kKeycandidate-key”

input (validNames): array of the names of all <attributes>s declanetthis <schema>.
This function will make no changes to the array

output: A string listing the syntax errors énc. The string will be empty érc is valid.

begin

if src has no child elementken
return “\n(” + tag name ofrc + “): Requires an <attribute-name>.”
elseif srcis a <not-null>and if src has more than 1 child elemehéen
return “\n(not-null): Can only be applied to one attribwt a time.”
endif

for each child elementttref of src do
if attref is not an <attribute-name> do

return “\n(” + tag name ofrc + “): Children must all be <attribute-names>.”

endif
myName = validate_attOrReln_name(attref, true)
if myName is emptythen

return “\n("+ tag name ofrc + “): Invalid <attribute-name> child.”
endif
/I CheckvalidNames for the existence afiyName
found = false
for each stringnamein validNames do

if name = myName then

found = true
80

break for each
endif
end for each
if found then
return “\n(” + tag name obrc + “): Referenced attribute ”
+myName + “ not found in <schema>.”
endif
end for each
return error_string
end

algorithm validate foreign_key
input (src): DOM element with tag name “foreign-key”
input (validNames): array of the names of all <attributes>s declametthis <schema>.
This function will make no changes to the array
output: A string listing the syntax errors gnc. The string will be empty érc is valid.
begin
if src has fewer than 2 child elemertiten
return “\n(foreign-key): Requires at least oné&rfaute-name> and a <references>.”
end if
error_string = *”
for each child elemenkid of src do
if kid is an <attribute-namethen
break for each
end if
attName = validate_attOrReln_name(kid, true)
if attName is emptythen
/I Validation failed
error_string += “\n(foreign-key): Invalid <attribute-name> cthit

else
/I Search for the existence of the named <aitiib.
found =false
for each stringname in validNames do
if name = attName then
found =true
break for each
endif
end for each
if found then
error_string += “\n(foreign-key): Referenced attribute ”
+attName + “ not found in <schema>.”
break for each
endif
end if
end for each
81

if error_string is not emptythen
return error_string
end if
Il All referencING attributes exist in the schema.

Il Now process the <references>.
references = last child element airc
if referencesis not a <referenceghen
return “\n(foreign-key): Last child must be a <refererreés
else iffirst element child ofeferences is not a <relation-namethen
return “\n(references): First child must be a <relatiame>.”
end if
refRelName = validate_attOrReln_name(first element child of eferences, false)
if refRelName is emptythen
return “\n(references): Invalid <relation-name> child.”
end if

/I Locate the referenced relation.
remoteRelation = null
for each <relation> childreln of the <database> great-grandparersrotio
relnName = serialization of the naming elementgdh
I/l relnName has a value like “<name>R</name><ijts 1</subscript>"
if relnName = refRelName then
remoteRelation = reln
break for each
end if
end for each
if remoteRelation is nullthen
return “\n(foreign-key): Referenced relation "refRelName
+ “ could not be found in ancestor <database>.”
endif

/I Now obtain the <attribute> children of the refieced relation.
remoteSchema = first (and hopefully only) <schema> child refnoteRelation
remoteAtts = all <attribute> child elements ofmoteRel ation

/I lterate through the referencED attribute claidof the <references>.
for each child elementttr of references except the first ondo
if attr is not an <attribute-namehen
return “\n(references): Children must be a <relation-narhe
+ “followed by one or more <attribute-name>s.”
else
refAttName = validate_attOrReln_name(attr, true)
if refAttName is emptythen
return “\n(references): Invalid <attribute-name> child.”

82

end if

/I Locate the referenced attribute in the referdmedation.

found = false

for each<attribute> childremAtt of remoteSchema do
remAttName = serialization of the naming elementg ehAtt
/l remAttName has a value like “<name>titlees”
if remAttName = refAttName then

found = true
break for each
end if

end for each
if 'found then
return “\n(foreign-key): Referenced attribute "réfAttName
+ “ could not be found in referenced <relatidn
endif
end if
end for each
return *”
end

83

APPENDIX F

84

APPENDIX F

ALGORITHMS FOR RENDER

algorithm Render
input (src): DOM element
output: A string that can be parsed as XHTML.

begin
res =null
try do

/l Call the root-level subprocedure.
res =rend_root(src)
end try
catch any errordo
res = “Render failed: ” + thrown error message
end catch
return res
end

algorithm rend_root
input (src): DOM element, expected to have tag name “raml”
output: A string that can be parsed as XHTML.

begin
str = ‘€@’ // Placeholder error-indicating character
if src has any <expression> child elemeahts
str = rend_expression(first <expression> child element sfc, false)
for each remaining <expression> childd of src do
str += “

”
str +=rend_expression(kid, false)
end for each
end if
return str
end

85

algorithm rend_expression
input (src): DOM element, expected to have tag name “expression
input (parenthesize): Integer flag; if the first child element is a <agbn>, or ifparenthesize is
0, the output will not be enclosed in pareniegtherwise, output will be enclosed in parens.
output: A string that can be parsed as XHTML.
begin
firstborn = first child element o$rc
if firstborn does not exighen
return “()”
endif
res=
switch the element type dirstborn:
case<relation>:
res =rend_relation(firstborn)
case<join>, <left-join>, <right-join>, <full-join>:
res =rend_conditional (src)
case<cross-product>, <union>, <intersection>, <setedénce>, <division>,
<semi-join>, <anti-join>, <outer-union>:
res =rend_unconditional (src)
case<selection>: res=validate selection(src)
case<projection>: res=validate projection(src)
case<renaming>: res=validate renaming(src)
case<assignment>: res = validate_assignment(src)
case else
res = ‘@’ // Placeholder error-indicating character
end switch
if firstborn is not a <relationthen
if parenthesize = 0 then
return “(* + res+)"
end if
end if
return res
end

algorithm rend_projection
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.
begin
if src has at least one <attribute> child elentben
res = “r<sub>" // Unicode 0x03CO
res +=rend_attribute(first <attribute> child ofrc)

86

for eachremaining <attribute> child elemeattr of src do
res+="," + rend_attribute(attr)

end for each

res += “</sub>"

end if
res +=rend_expression(first <expression> child adrc, 1)
return res

end

algorithm rend_renaming
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.

begin
if src has at least one <attribute-pair> child elenikan
res = “p<sub>" // Unicode 0x03C1
res +=rend_attribute pair(first <attribute-pair> child o$rc)

for each remaining <attribute-pair> child elemeattpair of src do
res+="," + rend_attribute_pair(attpair)

end for each

res+= “</sub>"

end if
res +=rend_expression(first <expression> child afrc, 1)
return res

end

algorithm rend_attribute pair
input (src): DOM element with tag name “attribute-pair”
output: A string that can be parsed as XHTML.

begin
res =rend_attribute(first <attribute> child element afc)
res+= “—" /[Unicode 0x2192
res +=rend_attribute(second <attribute> child elementw€)
return res

end

algorithm rend_assignment
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.

begin
res="“(* + rend_relation(first <relation> child ofsrc)
res+="“<«—"// Unicode 0x2190

87

res +=rend_expression(first <expression> child afrc, 0) + “)”
return res
end

algorithm rend_relation
input (src): DOM element with tag name “relation”
output: A string that can be parsed as XHTML.

begin
return rend_name(child elements o$rc)
end

algorithm rend_attribute
input (src): DOM element with tag name “attribute”
output: A string that can be parsed as XHTML.

begin
res=""
if the first child element afrc is a <relationxthen
res +=rend_relation(first child element oérc)
kids = all but the first child element sfc
else
kids = child elements odrc
end if
res +=rend_name(kids)
return res
end

algorithm rend_name
input (src): array of DOM elements
output: A string that can be parsed as XHTML.

begin
res=""
for eachelemenglemin src do
txt = text content oflem
switch element type oélem:
case<name>: res +=txt
case<subscript>: res+=“_{" +txt + “}"
case<superscript>: res+=“^{" +txt + “}"
case else
return res
end switch
end for each
return res
end
88

algorithm rend_unconditional
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.

begin

end

switch element type of first element child st:
case<union>: joiner =“U” /[Unicode 0x22C3, 0x222A
case<intersection> joiner =“N” // Unicode 0x22C2, 0x2229
case<set-difference>joiner =“ =" // Unicode 0x2212
case<cross-product>joiner =“ x” [/ Unicode 0xD7, 0x2A09, 0x2A2F
case<division> joiner =“ =" /[Unicode OxF7
case<outer-union> joiner =“®¥” [/ Unicode 0x2A04, 0x228E
case<anti-join> joiner =“P>" [/ Unicode 0x25B7

case<semi-join> joiner =“ X" /[Unicode 0x22C9
end switch
res = rend_expression(first <expression> child adrc, 1)
for eachremaining <expression> chitgberand of src do
res+=joiner +rend_expression(operand, 1)
end for each
return res

algorithm rend_conditional
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.

begin

switch element type of first element child st:
case<join>: joiner =“P” [/ Unicode 0x22C8, 0x2A1D
case<left-join> joiner =“” /[Unicode 0x27D5
case<right-join> joiner =“MX” [/ Unicode 0x27D6
case<full-join> joiner =“X” /[Unicode 0x27D7

end switch

res = rend_expression(first <expression> child adrc, 1)

/I If a boolean condition exists, ignore all bl first two operands.
if src has a <boolean> child elemehén
res+=joiner + “<sub>"
+rend_boolean(first <boolean> child o$rc) + “</sub>”"
res +=rend_expression(second <expression> child et, 1)
else
for each remaining <expression> chitgberand of src do
res +=joiner +rend_expression(operand, 1)
end for each

89

end if
return res
end

algorithm rend_selection
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.

begin
if src has a <boolean> child elemehén
res = “o<sub>" // Unicode 0x03C3
res +=rend_boolean(first <boolean> child o$rc)
res += “</sub>"
end if
res +=rend_expression(first <expression> child adrc, 1)
end

algorithm rend_simple_boolean
input (src): DOM element with tag name “true”, “
output: A string that can be parsed as XHTML.

false”, “null"string”, “number”, “attribute”

begin
switch element type aoérc:
case<attribute>: return rend_attribute(src)

case<string>: return " + text content ofsrc + **
case<number>: return text content ofrc
case<true>: return “true”
case<false>: return “false”
case<null>: return “null”

end switch

return ‘€’ // Placeholder error-indicating character

end

algorithm rend_boolean
input (src): DOM element
output: A string that can be parsed as XHTML.

begin
if srcis not a <booleanthen
return *’
endif
firstborn = first child element o$rc
switch element type ofirstborn:
case<true>, <false>, <null>:
return rend_simple_boolean(firstborn)

90

case<not>:
res="“"'(" // Unicode 0xO0AC
res +=rend_boolean(first <boolean> child ofirstborn)
res+=")"
return res
case<is-null>, <is-not-null>:
res =rend_simple_boolean(next element sibling dfrstborn)
if firstborn is an <is-null>then
res+="is null”
else
res+="is not null”
end if
return res
case<eq>, <neq>, <It>, <gt>, <lte>, <gte>:
res =rend_simple_boolean(first following element sibling ofirstborn)
switch element type ofirstborn:

case<eq>: res+="“="

case<neqg>. res+="#"// Unicode 0x2260

case<l|t>: res+="<”

case<l|te>: res+="<"// Unicode 0x2264

case<gt>: res+="“>"

case<gte>: res+="“2>"// Unicode 0x2265
end switch
res +=rend_simple_boolean(second following sibling dfirstborn)
return res

case<and>, <or>:

if firstborn is an <andxhen
joiner =“ A "/l Unicode 0x2227, 0x22CO0

else
joiner = vV " [/ Unicode 0x2228, 0x22C1

end if

binl = first <boolean> sibling element &fstborn

res =viz_boolean(blnl)

if first child element oblnl is an <and> or <orthen
res=‘C+res+’)

end if

for eachremaining <boolean> siblingause of firstborn do
strClause = viz_boolean(clause)
if first child element o€lause is an <and> or <orthen

strClause = ‘(" + strClause +)’

end if
res+=joiner + strClause

end for each

return res

91

APPENDIX G

92

APPENDIX G

ALGORITHMS FOR VISUALIZE

algorithm Visualize
input (src): DOM element
output: A string that can be parsed as XHTML.

begin
res =null
try do

Il Call the root-level subprocedure.

res=viz_root(src)
end try
catch any errordo

throw error “(Visualize) RAML-to-SVG failed: ” + caught erranessage
end catch

Il STEP 2: The <text> elements need to be positianithin the SVG image.
rootNode = result of parsing an XML DOM-tree object outre$
rootNode = rootNode.documentElement
try do
position = viz_positionText(rootNode, 10, 20, 0)
width = position[0]
height = position[1]
end try
catchany errordo
throw error “(Visualize) Node label positioning failed: ” + aght error
end catch
/l Some of the rightmost and/or bottommost parth® tree might not display.
/I Provide extra padding below and to the right.
width += 25
height += 10

/l STEP 3: The <line> elements need to be postiamithin the SVG image.
try do

viz_positionLines(rootNode)
end try

93

end

catch any errordo
throw error “(Visualize) Line positioning failed: ” + caughtrer
end catch

/[STEP 4: The SVG image needs to be encapsudaigdiven style information.
/I Note the absence of a <IDOCTYPE>. The SVG WagKsroup condemns them
I/l because their use encourage DTD-based maddigation, which is known to
/I give false negatives in addition to beingueapace-unaware.

svgHead = “<?xml version="1.0" encoding="UTF-8" standalone="ye s"?> "
+ “<svg xmins="http:// www.w3.0rg/2000/svg" "
+ Version="1.1" baseProfile="basic" ?
+ fvidth=""" + width + “px" height=" " + height + “px"> "

+ “<defs><style type="text/css"><![CDATA[
+ “@font-face { font-family:"RAML Font" K

+ “srcurl("http:// rat.cs.panam.edu/RAT2/fonts/raml.t tfy 7
+ “format("truetype") } K

+ “text{ text-anchor: middle; font-size: 20px; K

+ font-family: "RAML Font","Times New Roman",serif; } K

+ “tspan { font-size:60% }
+ “line { stroke:black } K
+ “I></style></defs> K

/l STEP 5: Serialize the completed SVG document ti' F-8-encoded string.

/Il NOTE: encodeURIComponent is defined in the ECMAScript standard. It convextts
/I characters that have any kind of specialmmggin a URI (

svgStr = result of serializingootNode to a string

svgUtf = svgHead + svgStr + “</svg>"

svgUtf = encodeURI Component(svgUtf)

/[STEP 6: Wrap up the results in serialized XHTML

svgHtml = “<object type="image/svg+xml" width=" " + width
+ “height=" 7 + height + “" data="image/svg+xml;charset=UTF-8, ”

+ svgUtf + “"></object>
return svgHtml

algorithm viz_root
input (src): DOM element, expected to have tag name “raml”
output: A string that can be parsed as XHTML.

begin

str = ‘€’ // Placeholder error-indicating character

if src has any <expression> child elemeahbs
str = viz_expression(first <expression> child element sfc, true)
/Il Visualize does not support multiple root-le¥elkpression>s

94

end

end if
return str

algorithm viz_expression

input (src): DOM element, expected to have tag name “expression
input (isRoot): Boolean flag;

output: A string that can be parsed as XHTML.

begin

end

firstborn = first child element oérc
if firstborn does not exighen
return “()”
end if
res = “<g><text>"
switch the element type dirstborn:
case<relation>:
res =viz_relation(firstborn) + “</text>"
case<join>, <left-join>, <right-join>, <full-join>:
res =viz_conditional (src)
case<cross-product>, <union>, <intersection>, <setedénce>, <division>,
<semi-join>, <anti-join>, <outer-union>:
res = viz_unconditional (src)
case<selection>: res=validate selection(src)
case<projection>: res = validate projection(src)
case<renaming>. res=validate renaming(src)
case<assignment>: res = validate assignment(src)
case else
res = ‘@</text>' // Placeholder error-indicating character
end switch
if lisRoot then
res += “<line />”
end if
res += “</g>"
return res

algorithm viz_projection
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.

begin

if src has at least one <attribute> child elentben
res = “r<tspan dy="0.4em">" // Unicode 0x03CO
res +=viz_attribute(first <attribute> child ofrc)

95

for eachremaining <attribute> child elemeattr of src do
res+="," + viz_attribute(attr)

end for each

res += “</tspan></text>"

end if
res +=viz_expression(first <expression> child ddrc, false)
return res

end

algorithm viz_renaming
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.

begin
if src has at least one <attribute-pair> child elentkah
res = “p<tspan dy="0.4em">" // Unicode 0x03C1
res +=viz_attribute pair(first <attribute-pair> child o$rc)

for each remaining <attribute-pair> child elemeattpair of src do
res+="," + viz_attribute pair(attpair)
end for each

res += “</tspan></text>"

end if
res +=viz_expression(first <expression> child ddrc, false)
return res

end

algorithm viz_attribute_pair
input (src): DOM element with tag name “attribute-pair”
output: A string that can be parsed as XHTML.

begin
res =viz_attribute(first <attribute> child element @fc)
res+= “—" /[Unicode 0x2192
res +=viz_attribute(second <attribute> child elementsot)
return res

end

algorithm viz_assignment
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.

begin
res="“(* + viz_relation(first <relation> child ofsrc)
res+= "< "// Unicode 0x2190

96

res +=viz_expression(first <expression> child afrc, false) + “)”
return res
end

algorithm viz_relation
input (src): DOM element with tag name “relation”
output: A string that can be parsed as XHTML.

begin
return viz_name(child elements o$rc)
end

algorithm viz_attribute
input (src): DOM element with tag name “attribute”
output: A string that can be parsed as XHTML.

begin

res=

if the first child element afrc is a <relationxthen
res +=viz_relation(first child element oérc)
kids = all but the first child element sfc

else
kids = child elements odrc

end if

res +=viz_name(kids)

return res

end

algorithm viz_name
input (src): array of DOM elements
output: A string that can be parsed as XHTML.

begin
res=
for eachelemenglemin src do
txt = text content oélem
switch element type oélem:
case<name>: res +=txt
case<subscript>: res+= “<tspan dy="0.4em">" #xt + “</tspan>"
case<superscript>: res += “<tspan dy="0.4em">" #xt + “</tspan>"
case else
return res
end switch
end for each
return res
end

97

algorithm viz_unconditional
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.

begin
switch element type of first element child st:

end

case<union>: res = “U</text>" // Unicode 0x22C3, 0x222A
case<intersection> res="N</text>" // Unicode 0x22C2, 0x2229
case<set-difference>res = “—</text>" // Unicode 0x2212
case<cross-product>res = “x</text>" // Unicode 0xD7, 0x2A09, 0x2A2F

case<division> res = “<+</text>" // Unicode OxF7
case<outer-union> res = “W</text>" // Unicode 0x2A04, 0x228E
case<anti-join> res = “P></text>" // Unicode 0x25B7

case<semi-join> res = “X</text>" // Unicode 0x22C9

end switch
for each <expression> childperand of src do

res +=viz_expression(operand, false)

end for each
return res

algorithm viz_conditional
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.

begin
switch element type of first element child st:

end

case<join>: res="“M" // Unicode 0x22C8, O0x2A1D
case<left-join> res="2" // Unicode 0x27D5
case<right-join> res=“X" // Unicode 0x27D6
case<full-join> res=">"// Unicode 0x27D7

end switch
/I If a boolean condition exists, ignore all bl first two operands.
if src has a <boolean> child elemehén

res += “<tspan dy="0.4em">"
+Vviz_boolean(first <boolean> child o$rc) + “</tspan>"

end if
res += “</text>"
for each <expression> childperand of src do

res +=joiner + viz_expression(operand, false)

end for each
return res

98

algorithm viz_selection
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.

begin
if src has a <boolean> child elemehén
res = “o<tspan dy="0.4em">" /[Unicode 0x03C3
res +=viz_boolean(first <boolean> child oérc)
res += “</tspan>"

end if
res +=viz_expression(first <expression> child afrc, false)
return res

end

algorithm viz_simple_boolean
input (src): DOM element with tag name “true”, “false”, “null”string”, “number”, “attribute”
output: A string that can be parsed as XHTML.

begin
switch element type aoérc:
case<attribute>: return viz_attribute(src)

case<string>: return "’ + text content ofsrc + **
case<number>: return text content ofrc
case<true>: return “true”
case<false>: return “false”
case<null>: return “null”

end switch

return ‘€’ // Placeholder error-indicating character

end

algorithm viz_boolean
input (src): DOM element
output: A string that can be parsed as XHTML.

begin
if srcis not a <booleanthen
return *”
endif
firstborn = first child element o$rc

switch element type ofirstborn:
case<true>, <false>, <null>:
return viz_simple_boolean(firstborn)
case<not>:
res="“"(" // Unicode 0xO0AC

99

res +=viz_boolean(first <boolean> child ofirstborn)
res+=")"
return res

case<is-null>, <is-not-null>:
res =viz_simple_boolean(next element sibling dfrstborn)
if firstborn is an <is-null>then

res+="is null”’
else

res+="is not null”
end if
return res

case<eq>, <neg>, <It>, <gt>, <lte>, <gte>:
res =viz_simple_boolean(first following element sibling ofirstborn)
switch element type ofirstborn:

case<eq>: res+=*%="
case<neg>:. res+="“#"// Unicode 0x2260
case<lIt>: res+="“<”
case<lte>: res+="<"// Unicode 0x2264
case<gt>: res+="“>"
case<gte>: res+="2=>"// Unicode 0x2265
end switch
res +=viz_simple_boolean(second following sibling dfirstborn)
return res

case<and>, <or>:

if firstborn is an <and>hen
joiner =“ A "/l Unicode 0x2227, 0x22CO0

else
joiner =“ VvV "/l Unicode 0x2228, 0x22C1

end if

binl = first <boolean> sibling element &fstborn

res = viz_boolean(blnl)

if first child element oblnl is an <and> or <orthen
res=‘C+res+’)

end if

for eachremaining <boolean> siblingause of firstborn do
strClause = viz_boolean(clause)
if first child element o€lause is an <and> or <orthen

strClause = ‘(" + strClause + ‘)’

end if
res+=joiner + strClause

end for each

return res

end switch
return
end

100

algorithm viz_positionText

input (thisG): An SVG <g> element

input (myX, myY): Starting values for the *x’ and ‘y’ attributeging assigned to the
<text> child othisG

input (parentWidth): Minimum value for the amount of horizontal spalcat will be used
to display this node’s text label

input (oldHeight): Minimum amount of vertical space needed to @digalll of this node’s
child nodes

output (childrenWidth): Amount of horizontal space needed to properpldiy the entire
sub-expression tree rootedltasG

output (newHeight): Amount of vertical space needed for the samsaea

begin
newHeight = 0
txt = first <text> child element dhisG
thiswidth = amount of horizontal space needed to rebder
/[NOTE: Implementation of the above line may leeydifficult to do well,
/I due to the fact that Times New Roman is netogospace font.

if parentWidth > thisWidth then
thiswidth = parentWidth
end if

/I Recurse into each <g> child sub-tree to deteenthhe amount
/I of horizontal space needed to display thdm al
childrenWidth = 0
for each <g> child elemensubtree of thisG do
I/l Each child node’s text label is at least 4¢efs below this one.
/I The 60 is intentional; it includes the 20 psxef the text label’s height.
ret =viz_positionText(subtree, myX + childrenWidth,
myY + 60,thiswidth)
childrenWidth +=ret[0]
if newHeight <ret[1] then
newHeight =ret[1]
end if
end for each

/I Assign the necessary attributes to positiosG’s text label.
if childrenWidth = Othen
/Il This is a leaf node.
myX +=thisWidth / 2
childrenWidth = thiswidth
else
/I Get the horizontal midpoint coordinates of tévet labels of
/I both the leftmost and rightmost <g> childreents.

101

lefty = first <text> child of the first <g> child ahisG

righty = first <text> child of the last <g> child ¢isG

myX = (value of ‘X’ attribute ofefty) + (value of ‘x’ attribute ofighty) / 2
end if

Il Keep track of the height needed to fully digpdae tree.
if myY >newHeight then
newHeight = myY
end if
Set ‘X’ attribute oftxt to bemyX + “px”
Set 'y’ attribute ottxt to bemyY + “px”

/I Return the width and height needed to propeidplay
/I this node and all its child nodes.
return [childrenWidth, newHeight]

end

algorithm viz_positionLines
input (thisG): An SVG <g> element
output: Nothing

begin
thisText = first <text> child ofthisG
thisLine = first <line> child ofthisLine

/I Give starting positions to the <line> of eagjr<child.

/I They will all have the same starting position.

/I The 10 is for vertical space between a line textl label.
myX = (‘x’ attribute ofthisText)

myY = (‘y’ attribute ofthisText) + 10 // font size / 2

I If thisG’s text label includes a subscript, meed to
/' make sure that the line below thisG’s tes¢sl not
/I overlap onto the subscript.
/' We will also need to raise the line above thsstext
/I label if it contains a superscript.
hasSuperscript = false
for each <tspan> child elemensgp of thisText do
/I If the ‘dy’ attribute is positive, it's a sutrgpt.
/Il Otherwise, it's a superscript.
if tsp has a ‘dy’ attributéhen
val = integer parsed out of the value of the ‘dy’iktite oftsp
if val < Othen
hasSuperscript = true
else

102

myY+=5 //font size /4
end if
end if
end for each

myKids = all <g> child elements d@hisG
/I Give the same starting position (bottom-cenfehisG’s
/I text label) to the <line> of every child <gtement.
for each elementsubG of myKids do

childLine = first <line> child ofsubG

Set 'x1’ attribute othildLine to myX + “px”

Set 'y1’ attribute othildLine to myY + “px”
end for each

//Give thisG’s own <line> child an ending position
if the parent node olisG is a <g> elemerthen
/I thisG “connects with” its parent’s <line>
myY = (value of ‘y’ attribute othisText) — 20;
/I If there is a superscript, we might need totsact some.
if hasSuperscript then
myY -=5// font size / 4
end if
Il 'y2’ is the 'y’ attribute of thisG’s <text> ¢lil, minus its height
Il 'x2’ is the same as x1’
Set ‘X2’ attribute othisLine to myX + “px”
Set 'y2’ attribute othisLine to myY + “px”
end if
/I Recurse into the <g> children of thisG so we ftaish positioning their lines.
for each elementsubG of myKids do
viz_positionLines(subG)
end for each
end

103

APPENDIX H

104

APPENDIX H

ALGORITHMS FOR TABULATE

algorithm Tabulate
input (src): DOM element with tag name “rdml”
output: A string that can be parsed as XHTML.

begin
res = tabulate_database(first <database> child elementwt)
for eachremaining <database> child elemdhtof src do
res += “<hr />”
res +=tabulate _database(db)
end for each
return res
end

algorithm tabulate_database
input (src): DOM element with tag name “database”
output: A string that can be parsed as XHTML.

begin
wrapper = new XHTML <div> element
if src has no child elementken
return wrapper
end if
if src has a <name> child elemeéhen
label = new XHTML <h2> element
Set text content dabel to be the text content of the <name> element
Appendlabel as a child element efrapper
end if
for each <relation> child elementn of src do
reldiv=new XHTML <div> element
res =tabulate relation(reln)
if resis a DOM elementhen
Appendres as a child element oéldiv
else//Something went wronggs is an error string
Set text content aflvid to beres
end if
105

Appendreldiv as a child element @irapper
end for each
return wrapper
end

algorithm tabulate_relation
input (src): RDML DOM element with tag name “relation”
output: A string that can be parsed as XHTML.

begin
table = new XHTML <table> element
table.className = “rdml_relation”
thead = new XHTML <thead> element
tbody = new XHTML <tbody> element
Appendthead as a child element ¢éble
Appendtbody as a child element ¢éble

[[Table name header

row = new XHTML <tr> element

cell = new XHTML <th> element

name = tabulate_name(child elements o$rc)
Set text content afell to bename

schema = first <schema> child element giic

atts = all <attribute> child elements sthema

Set value of “colspan” attribute ofll to be number of elementsatts
Appendcell as a child element obw

Appendrow as a child element ofiead

/IColumn headers

row = new XHTML <tr> element

for each elementtt in atts do
cel = new XHTML <th> element
name = tabulate_name(child elements oétt)
Set text content afell to bename
Appendcell as a child element obw

end for each

Appendrow as a child element dfiead

/IRows of data values

instance = first <instance> child element sfc

for each <tuple> child elementup of instance do
row = new XHTML <tr> element

106

for each child elemental of tup do
cell = new XHTML <td> element
if val is a <valuexhen
Set text content @kll to be the text content oél
else ifval is a <null>then
Set text content @kll to be “null"
else
Set text content agll to be "
end if
Appendcell as a child element obw
end for each
Appendrow as a child element dbody
end for each
return table
end

algorithm tabulate_name
input (src): array of DOM elements
output: A string that can be parsed as XHTML.

begin
name = “unnamed"
if the first element adrc is a <namehen
name = text content of first element sfc
if the second elemekhitd2 of src is a <superscriptthen
name += “^{" + text content dfid2 + “}"
else ifkid2 is a <subscriptthen
name += “_{" + text content dfid2 + “}"
if the third child elemerkid3 of src is a <superscriptthen
name += “^{" + text content dfid3 + “}"
end if
end if
end if
return name
end

107

BIOGRAPHICAL SKETCH

Jeremy J. Miller earned his Bachelor of Scienggeein Computer Science from the
University of Texas — Pan American in 2011, and\héster of Science degree in Computer
Science from the same university in 2013, gradgatinlmma cum laude both times.

While pursuing his Master of Science degree, MitleMworked for two years as an
instructor of the university’s entry-level compuliéeracy course, as well as being research
assistant to Dr. Artem Chebotko in the Departmé@amputer Science. He interned at IBM in
the summer of 2013, and became a professional a@tengineer the following year.

Mr. Miller has presented his research at the HigpEngineering, Science, and
Technology (HESTEC) conference. His the$ise Relational Algebra Toolkit: A User-Friendly
Approach to Presenting and Processing Relational Algebra Queries on the Web, was supervised
by Dr. Artem Chebotko and based on three yearsmtiributions to the RAT project.

Those interested in contacting Mr. Miller may te&em at his permanent e-mail address:

jeremy.millerscitech@gmail.com.

108

	The relational algebra toolkit: A user-friendly approach to presenting and processing relational algebra queries on the web
	Recommended Citation

	Microsoft Word - 253474_supp_undefined_2E06E3A6-62D1-11E3-BE8D-2241EF8616FA.doc

