
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations - UTB/UTPA

12-2013

The relational algebra toolkit: A user-friendly approach to The relational algebra toolkit: A user-friendly approach to

presenting and processing relational algebra queries on the web presenting and processing relational algebra queries on the web

Jeremy J. Miller
University of Texas-Pan American

Follow this and additional works at: https://scholarworks.utrgv.edu/leg_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Miller, Jeremy J., "The relational algebra toolkit: A user-friendly approach to presenting and processing
relational algebra queries on the web" (2013). Theses and Dissertations - UTB/UTPA. 883.
https://scholarworks.utrgv.edu/leg_etd/883

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations - UTB/UTPA by an authorized administrator of ScholarWorks @ UTRGV. For
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/leg_etd
https://scholarworks.utrgv.edu/leg_etd?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/leg_etd/883?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

Major Subject: Computer Science

THE RELATIONAL ALGEBRA TOOLKIT:

A USER-FRIENDLY APPROACH TO

PRESENTING AND PROCESSING

RELATIONAL ALGEBRA QUERIES

ON THE WEB

A Thesis

by

JEREMY J. MILLER

Submitted to the Graduate School of
The University of Texas-Pan American

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2013

THE RELATIONAL ALGEBRA TOOLKIT:

A USER-FRIENDLY APPROACH TO

PRESENTING AND PROCESSING

RELATIONAL ALGEBRA QUERIES

ON THE WEB

A Thesis
by

JEREMY J. MILLER

COMMITTEE MEMBERS

Dr. Artem Chebotko
Chair of Committee

Dr. Christine Reilly
Committee Member

Dr. Wendy Lawrence-Fowler
Committee Member

Dr. Xiang Lian
Committee Member

December 2013

Copyright 2013 Jeremy J. Miller

All Rights Reserved

iii

ABSTRACT

Miller, Jeremy J., The Relational Algebra Toolkit: A User-Friendly Approach to Presenting and

Processing Relational Algebra Queries on the Web. Master of Science (MS), December, 2013,

108 pp., 4 tables, 18 figures, 9 references, 56 titles.

 Relational algebra is the mathematical basis of tools to express and optimize queries on

relational data. However, there exists no convenient way to directly use, express, store, render,

visualize, and execute relational algebra over the Web. Educators and practitioners are limited to

creating relational algebra expressions using TeX or equation editors which cannot execute them.

This work presents a solution to this issue: the Relational Algebra Toolkit (RAT).

Relational data and queries are represented using purpose-built XML vocabularies, to be both

machine-processable and serializable. Encoded relational algebra expressions can be rendered as

parenthetical expressions and as syntax trees, translated to SQL, reordered, and executed on

encoded data in a JavaScript-enabled Web browser. These services are invoked as prescribed by

the user, and the results are inserted into a Web page. RAT has been used by a number of

universities internationally in undergraduate and graduate database courses, with favorable

student feedback.

iv

DEDICATION

 The completion of this thesis would not have been possible without the quite literally

self-sacrificing commitment of my mother, Debi Miller, to ensuring that her children have the

best possible opportunities to succeed in whatever way makes them happy. I can never thank you

enough for your love and support.

v

ACKNOWLEDGMENTS

I’d like to thank the Academy. The Science Academy of South Texas, that is, for showing

me that even in a morass of intellectual apathy like the Lower Rio Grande Valley, there is always

an opportunity to make a difference in the education of young minds. To that end, I would like to

also thank Dr. Artem Chebotko and UTPA’s Department of Computer Science for allowing me

to make my own small contributions to this field, not least of which is this thesis. The elevation

of this thesis from the rank of “senior design project” would not have been possible without the

patient counsel of Dr. Chebotko.

Thanks must also be extended to Nathan Arnold and Hussein Bakka, who developed

RAML, the original RAT website, RAML Edit, and the initial concepts that evolved into this

thesis. I would also like to thank Daniel Rebollar and Peter J. Vasquez, Sr., for the development

of RDML. And of course Fadi Damaj, for his work on the website and documentation.

I would also like to take this opportunity to thank Microsoft Corporation for taking six

years to catch up to Opera™ browser with regard to supporting SVG, without whom the amount

of work required to implement Visualize would have been greatly reduced.

vi

TABLE OF CONTENTS

ABSTRACT...

DEDICATION...

ACKNOWLEDGMENTS...

TABLE OF CONTENTS...

LIST OF TABLES...

LIST OF FIGURES...

CHAPTER I. INTRODUCTION...

 Statement of Problem...

 Existing Techniques...

CHAPTER II. RELATED WORK..

CHAPTER III. PROPOSED SOLUTION...

 System Architecture...

 XML Core..

 Services Layer..

 Management Layer..

 Application Layer..

 RAML: Relational Algebra Markup Language...

 Schema and Specification..

Page

iii

iv

v

vi

ix

x

1

2

2

4

6

7

7

8

10

10

11

11

vii

 Relation and Attribute Specifiers...

 Boolean Conditions..

 Relational Algebra Operations...

 A Note on Order of Operations..

 RAML Edit..

 RAML Font..

 RDML: Relational Database Markup Language...

 Schema and Specification..

 Relation Instance and Data Tuples..

 Relation Schema – Attributes and Constraints..................................

 Creating RDML Documents..

 RATTAIL: RAT Automated Instruction Language..

 Service Descriptions..

 Validate..

 Render..

 Visualize..

 Tabulate..

 Translate...

 Reorder...

 Execute...

 Management Layer..

 Roles of RAT Manager..

 Handling Service Outputs..

12

13

15

19

20

21

23

23

24

25

27

28

31

31

32

33

35

35

36

37

40

40

42

viii

CHAPTER IV: DEPLOYMENT AND EVALUATION..

 Examples of Use..

 Evaluation..

CHAPTER V: CONCLUSIONS...

 Future Work...

REFERENCES..

APPENDIX A: XML SCHEMA FOR RAML..

APPENDIX B: XML SCHEMA FOR RDML..

APPENDIX C: XML SCHEMA FOR RATTAIL..

APPENDIX D: ALGORITHMS FOR RAML VALIDATOR..

APPENDIX E: ALGORITHMS FOR RDML VALIDATOR..

APPENDIX F: ALGORITHMS FOR RENDER..

APPENDIX G: ALGORITHMS FOR VISUALIZE...

APPENDIX H: ALGORITHMS FOR TABULATE...

BIOGRAPHICAL SKETCH...

44

45

47

48

49

50

52

60

64

66

75

85

93

105

108

ix

LIST OF TABLES

Table 1: RAML Font Symbols..

Table 2: Browser Support for Render, by Version..

Table 3: Browser Support for Visualize, by Version...

Table 4: Tabulate Output Sample..

Page

21

33

35

35

x

LIST OF FIGURES

Figure 1: Layered Architecture of RAT...

Figure 2: Flow of Data Between RAT Manager and Services..

Figure 3: Root Element of RAML...

Figure 4: RAML Relations and Attributes...

Figure 5: Booleans...

Figure 6: Projection and Selection...

Figure 7: Attribute Renaming..

Figure 8: Operations Without Boolean Conditions...

Figure 9: Joins..

Figure 10: Relation Assignment..

Figure 11: Screenshot of RAML Edit..

Figure 12: RDML Base Elements..

Figure 13: RDML Schema Element..

Figure 14: RDML Foreign Key...

Figure 15: RATTAIL Schema...

Figure 16: Render Output Sample...

Figure 17: Visualize Output Sample..

Figure 18: Translate Output Sample..

Page

7

9

11

12

13

15

16

17

17

18

20

24

25

26

28

33

34

35

1

CHAPTER I

INTRODUCTION

 Relational database management systems – hereafter called RDBMSes – are based on the

principles laid out by Edgar Codd in his 1969 paper that proposed a radically new paradigm for

the organization and management of data that he termed the relational model [Codd 1969]. Part

of this model is the use of relational algebra as a means by which to request specific information

from such a database. To this day, relational algebra is part of the curricula for many educational

courses about relational databases. However, unlike the SQL family of query languages that

were developed around the exact same principles, it remains frustratingly difficult for many

students, educators, and practitioners to work with relational algebra directly on a computer.

 Current relational database management systems are designed such that users are meant to

use SQL to interface with a relational database. With respect to queries, relational algebra can be

used an alternative to the “SELECT” statements of SQL, since relational algebra is what

provides the procedural mathematical basis for the optimization of declarative SQL queries.

However, although relational algebra is used internally by relational database management

systems to optimize SQL statements, users cannot use it directly in place of SQL.

2

Statement of Problem

 There is a need for a software framework that allows the direct and convenient use of

relational algebra as an alternative to SQL. Such a framework must also address the difficulties

in expressing relational algebra on the Web.

Existing Techniques

 It seems that to construct relational algebra expressions, or to empirically verify relational

algebra expressions for correctness, or to actually execute them on sample data, or to reorganize

them to produce results-equivalent expressions, the dominant technique is simply to work it out

by hand. This is tedious, error-prone, and lacks the elegance of computing.

 Existing techniques for the digital representation of relational algebra expressions include the

use of TeX-based tools or equation editors, which retain the mathematical structure of the

expression content. However, TeX-based tools typically have a fairly steep learning curve, and

there are many different equation editors, each with their own underlying format.

 One promising alternative is to encode relational algebra expressions in HTML or MathML

using sub- and superscripts as well as fonts that define all the necessary symbols. This would

additionally allow them to be included in the content of Web pages and certain word processing

documents. However, there are so many stylistic differences between HTML programmers that it

is hardly a portable solution to do this manually. MathML – despite being a World Wide Web

Consortium Recommendation since 1998 [W3C Math Working Group] – lacks widespread Web

browser support [Deveria 2013].

3

 Furthermore, both HTML and MathML would require the use of a font that supports all the

necessary symbols for relational algebra operators. The symbols for outer joins, in particular, are

not implemented by any font that can be reasonably expected to be already on the user platform

(e.g. Arial, Helvetica, Times). Fonts that attempt to implement as much of the Unicode standard

as possible (e.g. Code2000, FreeSerif) are either impractically large in file size or are not

licensed for commercial use.

4

CHAPTER II

RELATED WORK

 Many of the concepts that underlie the RAT framework are innovative, in the sense that I

was unable to find any existing implementations of them. For instance, I could not find a

generally accepted XML vocabulary that captures the data definition language of relational

databases, nor one that encodes algebraic expressions in a way that emphasizes the operations

that are being encoded (rather than merely their symbols).

 This work was originally conceived out of a desire to be able to display relational algebra

expressions in a Web page, as one might find on the webpage of an educational course on

database design. Similarly, one of the original purposes of MathML was to provide “much-

needed support” for incorporating mathematical expressions (of all sorts) into Web pages

[MathML 1.0 Specification, 1998]. However, the only native Web browser support for MathML

is for so-called “presentation markup,” not “content markup”; that is, one can design MathML

encodings that emphasize the operation being encoded, but the browser may not interpret it as

the writer had intended. Furthermore, native Web browser support for MathML is not even

universal as of this writing.

 The W3C Math Working Group recommends the use of equation editors that generate

MathML markup, which can then be embedded into XHTML (provided you are using Mozilla

Firefox®) or HTML5 and rendered by Web browsers. This is the kind of elegance to be desired

5

in a solution. However, not all equation editors use MathML; some are based on LaTeX or

proprietary formats. All of these formats still require the existence of a font that will render all

the symbols that are part of the encoded expressions [LaTeX Project Team, 2011]. I could not

find a suitable font that supported the outer join symbols of relational algebra, even though these

symbols have been defined by the Unicode standard since 2002 [Unicode Consortium]. There

are, of course, specialized mathematical fonts abound, but few freeware ones, and even fewer

that are good-looking at smaller font sizes. We also found freeware fonts like Code2000 and

FreeSerif that attempt to support all the symbols defined by Unicode; however, such fonts are on

the order of megabytes in size.

 Although it may be possible to use MathML or LaTeX coupled with a purpose-built font to

incorporate relational algebra into Web pages, it is certainly not easy to find utilities that make it

easy to learn, teach, and actually work with relational algebra on a computer. These are the most

interesting features of the Relational Algebra Toolkit.

6

CHAPTER III

PROPOSED SOLUTION

 In response to the problems and the limitations of existing (partial) solutions as covered in

the previous two chapters, I present a novel solution: The Relational Algebra Toolkit, hereafter

abbreviated RAT.

 RAT consists mainly of a JavaScript-based HTML pre-processor that invokes and handles

the results of various utility services based on user-provided workflow scripts. These services are

invoked on relational algebra expressions or relational data (or both) encoded in purpose-built

XML vocabularies. Also incorporated are a font, a relational algebra expression editor that

creates the relevant XML encoding on-the-fly, and a server-side XML database for user-driven

storage of particularly interesting XML documents relevant to the usage of RAT.

7

System Architecture

 RAT is a layered system. An XML core enables communication between a layer of utility

services and a managerial service that forms its own layer, with Web browsers forming the outer

shell and the execution platform for the system. For a graphical representation of this, see Fig. 1.

XML Core

 Forming the core of the RAT are two markup languages and a scripting language, each of

which can be extended as needed, being formally defined using XML Schema. The first and

most fundamental of these is RAML (pronounced like “camel”) – the (R)elational (A)lgebra

(M)arkup (L)anguage – which encodes relational algebra expressions so that they have an

unambiguous order of operations, allowing for straightforward evaluation.

Figure 1. Layered Architecture of RAT.

8

 Some of the services at the next layer require relational data upon which to operate. Such

data must be encoded in RDML, the (R)elational (D)atabase (M)arkup (L)anguage. This

language is described in detail

 The third and final language is used to encode workflow scripts that consist of requests to the

management layer to provide specific services (indirectly) upon RAML or RDML documents.

This scripting language is known as RATTAIL, the (R)elational (A)lgebra (T)oolki(T)

(A)utomated (I)nstruction (L)anguage.

Services Layer

 At the services layer is the collection of utility services that truly differentiate RAT from

existing solutions. There is a sort of what-you-see-is-what-you-get equation editor for relational

algebra expressions – known as RAML Edit – that displays the RAML markup equivalent to the

parenthetical expression being constructed by the user in real-time.

 Differing from the other services in that it is meant to be explicitly server-side, RAT

Database is a repository of RAML and RDML documents that users found particularly helpful or

interesting and which they think might be of interest to other users.

 Managed services. Both RAML Edit and RAT Database are special in that they do not

communicate with the management layer at all; users interact with them directly. The remaining

services can be thought of as stored procedures that are available for invocation by the

management layer upon request. These managed services provide the following functionalities:

9

• Validate RAML and RDML documents against their respective schemas

• Render a RAML document as a conventional parenthetical expression

• Visualize the order of operations in a RAML expression by rendering its syntax tree

• Tabulate an RDML document as an XHTML table

• Translate a RAML expression into an equivalent SQL statement

• Reorder a RAML expression to arrive at an equivalent expression that would produce the

same results but using a different order of operations

• Execute a RAML expression as a query over RDML-encoded relational data.

Figure 2. Flow of Data Between RAT Manager and Services.

10

Management Layer

 When a Web page that uses the RAT framework is loaded by a user agent (assumed to be a

Web browser), the management layer – whose sole occupant is a transparent, client-side servlet

named RAT Manager – is initialized. It seeks out references to RATTAIL documents in the

(X)HTML, fetches them using Ajax, and interprets them as a global workflow script. This script

consists of instructions that request specific services on specific RAML and RDML documents,

and which additionally specify (by id) a DOM element in the Web page that should be used to

store the results. For each instruction, RAT Manager fetches and parses the specified input

documents, passing them to the freshly dispatched services that were requested. When the

service completes, the results are passed back to RAT Manager, which then injects them into the

Web page at the specified DOM element. When all service requests have been satisfied, RAT

Manager terminates. Fig. 2 illustrates this relationship between RAT Manager and services.

Application Layer

 The outermost layer of the RAT framework consists of the user’s Web browser, along with

the RAT website and various tutorials and instructions that we have created for RAT users.

Conceptually, the application layer would also include any user application that makes use of the

RAT framework in any way.

11

RAML: Relational Algebra Markup Language

 The Relational Algebra Markup Language is an XML vocabulary that provides a means by

which to encode relational algebra expressions in a way that leaves the order of operations

unambiguous. A RAML document is a tree of nested sub-expressions, the “leaf nodes” of which

represent relations (tables). The remaining nodes each specify a relational algebra operation –

such as projection, selection, or join – along with its parameters and sub-expression operands.

 RAML was designed to be a faithful implementation of Edgar Codd’s original intent for

relational algebra [Codd 1990], lacking the aggregation and post-processing (“count”, “avg”,

“order by”, “group by…having”) clauses that are provided by standard SQL. Every service in the

RAT framework is designed to handle relational algebra on an expression-by-expression basis,

each of which is implemented as a RAML document.

Schema and Specification

 A copy of the XML Schema document that formally defines RAML can be found in

Appendix A. The following RAML markup example is one of the simplest possible relational

algebra expressions: a single relation.

 <?xml version="1.0"?>
 <raml xmlns="http://www.cs.panam.edu/2010/RAML">
 <expression>
 <relation>
 <name> Student</name>
 </relation>
 </expression>
 </raml>

 The root of a RAML document is a <raml> element (Fig. 3), which has at least one child

<expression> element, each of which encapsulates a valid relational algebra expression. The

Figure 3. Root Element of RAML.

12

Figure 4. RAML Relations and Attributes.

schema supports multiple root-level <expression>s, which may be useful as an alternative to

keeping track of dozens of individual RAML documents.

 Relation and Attribute Specifiers. As seen

in Fig. 4, relations are encoded using the

<relation> tag. The schema allows flexible

naming of relations. The set of naming elements

for a particular <relation> can only consist of a

<name> (required), optionally followed by a

<subscript> or a <superscript>. If both are to be specified, the <subscript> must come before the

<superscript>. This allows encoding relations that have names like RA or R1. The naming

elements are XML elements rather than element attributes to bypass the problem that user agents

do not need to honor the order in which an element’s attributes are specified. (“Note that the

order of attribute specifications in a start-tag or empty-element tag is not significant.” [XML 1.0

Specification])

 Following the convention of having tag names be self-describing, attributes (of a relation

schema, not an XML element) that are referenced in a relational algebra expression are specified

with an <attribute> element (Fig. 4). RAML allows the same naming flexibility with attributes as

it does with relations; its child elements are a required <name> followed optionally by a

<subscript> or <superscript>, or both. In addition, the relation to which the attribute belongs can

optionally be specified, by preceding the <name> with a <relation> sibling.

13

Figure 5. Booleans.

 Boolean Conditions. These are fundamental to joins and selections. For clarity, it is required

that they be enclosed in a <boolean> element. It is worth noting that <boolean> is the most

complex element in the RAML schema. The following several paragraphs are illustrated by Fig.

5. Two examples of Boolean expressions are shown below; the one on the left represents “age is

at least 18,” and the one on the right means “first name is not ‘John’.”

 <boolean> <boolean>
 <gte/> <neq/>
 <attribute> <attribute>
 <name>age</name> <name>firstName</name >
 </attribute> </attribute>
 <number>18</number> <string>John</string>
 </boolean> </boolean>

 Boolean operators have their own elements. The unary value-existence operator <is-not-

null/> and its complement <is-null/> are specified by the RAML schema. The familiar binary

value-comparison operators are represented as follows: “equal” is <eq/>, “not equal” is <neq/>,

“less than” is <lt/>, “less than or equal to” is <lte/>, “greater than” is <gt/>”, “greater than or

14

equal to” is <gte/>. None of these elements have text content or child elements; their operands

are encoded as their immediately following sibling element(s).

 The operands of a Boolean expression have their own tag names as well. The simplest are the

literal Boolean values <true/> and <false/>, as well as the universal placeholder <null/> which

signifies the absence of any particular value. Numeric and character-string values are encoded as

the text content of <number> and <string> elements, respectively. The RAML schema does not

restrict the length, format, or even content of these two elements. The general idea with respect

to encoding literal values is to use <number> for character data that can be parsed as a number,

<true/> and <false/> for Boolean values, and <string> for everything else. The previous

examples show that an attribute (of a relation schema) can be used as an operand as well; this

would be encoded with an <attribute> element.

 Logical connectives are encoded as follows: disjunction is <or/>, conjunction is <and/>, and

negation is <not/>. The <not/> element is unary, and it must be followed by a <boolean>

element. <and/> and <or/> must be followed two or more <boolean>s, in the following style:

 <boolean>
 <and/> <boolean>
 <boolean>. . .</boolean> <not/>
 <boolean>. . .</boolean> <boolean>. . .</boo lean>
 <boolean>. . .</boolean> </boolean>
 </boolean>

 Expressing a chained connective in this way – in operation-prefix notation – makes it less

likely that a complex Boolean expression will be encoded ambiguously or nonsensically. The

alternative would be to have an <and/> or <or/> element between each pair of adjacent

<boolean> operands. It is easier to reorder the Boolean sub-expressions when they are immediate

sibling elements of each other. Most importantly, in this form, the order of operations is explicit.

For instance, in the expression “(a = b � b = c) � c = d,” the “or” clause is at a higher level in

15

Figure 6. Projection and Selection.

the expression than the “and” clause. This means that the RAML-encoded version must be a

binary <or/> with one of its <boolean> operands containing a binary <and/>.

 Relational Algebra Operations. I have so far described how to encode literal values,

specified attributes and relations, and Boolean expressions. Now to the relational operations.

 Projection of attributes is represented with the <projection/> element (Fig. 6), which is

followed by at least two sibling elements. The final one must be an <expression> element, and

the rest are all <attribute>s. This example projects the first and last names of all students:

 <expression>
 <projection/>
 <attribute><name>firstName</name></attribute>
 <attribute><name>lastName</name></attribute>
 <expression>
 <relation><name>Students</name></relation>
 </expression>
 </expression>

 Conditional selection or restriction of tuples is done with the <selection/> element, followed

by a required <boolean> element that defines the selection condition, followed by another

<expression> (Fig. 6). The following example selects only those students for which the attribute

“age” has a numeric value of at least 21.

16

Figure 7. Attribute Renaming.

 <expression>
 <selection/>
 <boolean><gte/>
 <attribute>
 <name>age</name>
 </attribute>
 <number>21</number>
 </boolean>
 <expression>
 <relation>
 <name>Students</name>
 </relation>
 </expression>
 </expression>

Renaming of attributes in an intermediate

query result is accomplished through the

<renaming/> element (Fig. 7). It is followed by

at least two siblings, the last of which is an

<expression>. The others are all <attribute-pair> elements, each representing a one-to-one

mapping of attribute names. Each <attribute-pair> element has two <attribute> child elements.

The following example renames firstName and lastName to fn and ln.

 <expression>
 <renaming/>
 <attribute-pair>
 <attribute><name>firstName</name></attribute >
 <attribute><name>fn</name></attribute>
 </attribute-pair><attribute-pair>
 <attribute><name>lastName</name></attribute>
 <attribute><name>ln</name></attribute>
 </attribute-pair>
 <expression>
 <relation><name>Students</name></relation>
 </expression>
 </expression>

 Most of the other relational operators have a common encoding format (Fig. 8): The

operation-specific element, followed by two or more <expression> elements. The specific

elements for these operations have self-describing tag names, and the currently supported ones

are <union/>, <intersection/>, <set-difference/>, <division/>, <cross-product/> (sometimes

17

Figure 8. Operations Without Boolean Conditions.

Figure 9. Joins.

called cross join or Cartesian product), <outer-union/> (also called union-join), (left) <anti-

join/>, (left) <semi-join/>, (inner) <join/>, <left-join/>, <right-join/>, and (outer) <full-join/>.

 The ability to chain multiple <expression> operands allows the user to specify that there is

not meant to be any particular order in which the operand relations are used. In real-world

databases, where relations expand and contract, a database management system will not always

optimize a particular SQL statement the same way every time. The order of operands, in effect,

does not matter unless the writer of the SQL statement wants it to matter.

There is an additional aspect to the join operations that RAML addresses: a join condition

can be specified. The <join/>, <left-

join/>, <right-join/>, and <full-join/>

elements can all be encoded like the

other operations, in which case they

are interpreted as natural joins.

However, if an explicit join condition is specified, then a <boolean> element must precede the

<expression> siblings, and in that case there can only be two <expression>s. Fig. 9 illustrates

this syntax. The following example requests all the entries in the relation Transcript for which

the professor is Alan Turing, assuming that a professor’s name is stored in relation Professors.

18

Figure 10. Relation Assignment.

 <expression>
 <join/>
 <boolean><eq>
 <attribute>
 <relation><name>Professors</name></relati on>
 <name>name</name>
 </attribute>
 <string>Alan Turing</string>
 </boolean>
 <expression>
 <relation><name>Transcript</name></relation>
 </expression><expression>
 <relation><name>Professors</name></relation>
 </expression>
 </expression>

 The last operation and element specified by

RAML is <assignment/> (Fig. 10), whereby the result

of a query or sub-query is assigned an identifier,

making it appear to be an actual relation. If a RAML

document contains multiple root-level <expression>s,

any assignments made in one expression will not be

made available to subsequent expressions. This mirrors SQL in that sub-query aliases used in

one SQL statement are only defined within that statement; they cannot be used in later

statements. An example assignment, “R3 � R1 ∪ R2”, is shown below.

 <expression>
 <assignment/>
 <relation>
 <name>R</name>₃
 </relation>
 <expression>
 <union/>
 <expression>
 <relation><name>R</name>₁</relation>
 </expression><expression>
 <relation><name>R</name>₂</rel ation>
 </expression>
 </expression>
 </expression>

19

A Note on Order of Operations

 It is worth noting that the order of operations is unambiguous in a RAML-encoded

expression. This is not true of arithmetic expressions, which follow a near-universally accepted

but otherwise arbitrary order (parentheses, exponentiation, multiplication and division, addition

and subtraction). Parenthesized clauses within an algebraic expression must be evaluated before

non-parenthesized clauses, so parentheses can be used to explicitly state an intended order of

operations. RAML expressions are forced to have an explicit order, because every clause and

sub-clause is an <expression> element, and the overall RAML expression is a tree of nested

<expression> elements. For example, consider the expression “A ∪ B � C,” in which the order

of operations is ambiguous. This cannot be encoded ambiguously, due to the way RAML is

defined. The only options are to explicitly encode it as “(A union B) � C” or as

“A union (B � C)”. The encodings are shown below.

 <expression> <expression>
 <join /> <union />
 <expression> <expression>
 <union /> <relation>
 <expression> <name>A</name>
 <relation> </relation>
 <name>A</name> </expression><expression>
 </relation> <join />
 </expression><expression> <expression>
 <relation> <relation>
 <name>B</name> <name>B</name>
 </relation> </relation>
 </expression> </expression><expression>
 </expression><expression> <relation>
 <relation> <name>C</name>
 <name>C</name> </relation>
 </relation> </expression>
 </expression> </expression>
 </expression> </expression>

20

Figure 11. Screenshot of RAML Edit.

RAML Edit

 Because the functionality of the RAT framework hinges on the correctness of its input, we

felt it well worth my time to develop an error-resistant means of creating RAML documents.

Although one can use an XML editor or even a simple text editor to do this, such an approach is

highly prone to simple human error. To solve this problem, we created a relational algebra

expression editor in the style of MathType and similar mathematical equation editors, known as

RAML Edit. A screenshot of its use in Google Chrome™ is shown in Fig. 11.

 Using RAML Edit, what you see is what you get, which is why it and similar equation

editors are known as WYSIWYG editors. Users have a point-and-click interface that all but

removes the possibility of making syntax errors. The only time that the user is allowed to freely

type anything is when specifying names of attributes or relations, or when using string literals or

numbers as part of a Boolean expression. At all times during the use of RAML Edit, the

21

equivalent RAML markup of the expression being constructed is displayed in a frame that makes

up the bottom half of the interface. A working prototype of RAML Edit has been deployed at

<http://rat.cs.panam.edu/RAT2/tools/raml_edit/1_0/index.html>.

 When the expression is complete, users are meant to select and copy the content of the

RAML markup frame, and then paste it in a text or XML editor. There is a “Save as a file”

feature, but the deployed version of RAML Edit does not actually implement it. This is because

the ability to save files to local storage is not allowed if done through client-side scripting, as I

had originally intended. As it turns out, the ability to do this has historically been a security

vulnerability [Dormann & Rafail, 2008].

RAML Font

 One of the main obstacles inherent in expressing relational

algebra in Web pages (not to mention word processing documents)

is font support. I was unable to find a lightweight, freeware font

that implemented the symbols for outer joins. So I simply decided

to develop my own and incorporate it into RAT. (Actually, it was

originally created by Hussein Bakka; I just updated it.) The RAML

Font is used to display the symbols shown in Table 1.

 The RAML Font is available as a TrueType font that is

configured to be installable. Interested parties may download the

font from <http://rat.cs.panam.edu/RAT2/fonts/raml.ttf>. Installing

Symbol Meaning
� Logical AND
� Logical OR

� Logical NOT

� Not Equal

� Less or Equal

	 Greater or Equal
Π Projection
Π Selection
Π Renaming
� Cross Product
� Join
� Semijoin
 Antijoin
� Left Outer Join
� Right Outer Join
� Full Outer Join
∪ Union
∩ Intersection
� Set Difference
� Outer Union
� Division
� Assignment

Table 1. RAML Font Symbols.

22

the font will allow it to be rendered correctly in practically all browsers, and it can also be used

in word processing documents.

 Web pages that use RAT do not need to declare a ‘@font-face’ CSS style statement which

would import the RAML Font. This is done at runtime by RAT Manager, which inserts all the

necessary style statements before doing anything else. The Web browser will interpret the new

markup and download the font, if it is not already locally installed. Pages that use the RAML

Font but not the RAT framework should use the following CSS:

 @font-face {
 font-family: "RAML Font";
 src: url("http://rat.cs.panam.edu/RAT2/fonts/raml.eot?#iefix") format("eot"),
 url("http://rat.cs.panam.edu/RAT2/fonts/raml.ttf") format("truetype");
 font-style: normal;
 font-weight: normal;
 }

23

RDML: Relational Database Markup Language

 The Relational Database Markup Language is an XML vocabulary for expressing the

structure, schema, and content of a relational database. It corresponds roughly to the data

definition language of traditional RDBMSes, except that it is database-agnostic; it makes no

attempt to mimic the style of any particular RDBMS. Because it is XML, it is designed to be

easy both for humans to read and for programs to process. Because XML documents are well-

structured plain text files, large RDML documents are highly compressible.

Schema and Specification

 A copy of the XML Schema document that formally defines RDML can be found in

Appendix B. Shown below is a very simple RDML document, describing a database named

University that contains a single relation, named Students, whose schema specifies two attributes

“name” (string) and “grade” (number) but contains no actual data tuples.

 <rdml xmlns="http://www.cs.panam.edu/2011/RDML">
 <database>
 <name>University</name>
 <relation>
 <name>Students</name>
 <schema>
 <attribute>
 <name>name</name>
 <domain>string</domain>
 </attribute>
 <attribute>
 <name>grade</name>
 <domain>number</domain>
 </attribute>
 </schema>
 </relation>
 </database>
 </rdml>

24

Figure 12. RDML Base Elements.

The root of an RDML document is an <rdml>

element, which has at least one <database> child

element. A <database> encapsulates a named

collection of relations, which is the

definition of a relational database. A

single <database> may have any number

of <relation> children, or none at all, which

signifies an empty database. It also has a

required <name> child.

 As illustrated in Fig. 12, each relation is encoded with a <relation>

element, as in RAML, but <rdml:relation> is far more complex than

<raml:relation>. Like the RAML version, an RDML <relation> requires its first child element to

be a <name>, optionally followed by a <subscript> and/or <superscript>. This is where the

similarities end. The next child element must be a <schema> element, which is so complex that it

requires its own diagram (Fig. 13). The last child of a <relation> element is an optional (but

expected) <instance> element.

 Relation Instance and Data Tuples. The <instance> element (Fig. 12) reflects the existence

of actual data in the relation. Each tuple in the relation is specified with the <tuple> element, and

every <instance> must have at least one <tuple> child; this requirement ensures that if an

<instance> exists, there is at least some real data in the relation. Each attribute of the relation

must be accounted for in every tuple, even those that have no particular value or which are not

25

Figure 13. RDML Schema Element.

applicable to the real-world entity that the tuple represents. If there are five attributes specified in

the <schema> element, then there must always be five child elements for every <tuple> in the

same relation. Each child element can be either a <value> or <null/> element, corresponding to

either a data value or no content for a single attribute. A very simple example of an <instance> is

shown below.

 <instance>
 <tuple>
 <value>John Smith</value>
 <value>83.5</value>
 </tuple><tuple>
 <value>Jane Doe</value>
 <null/>
 </tuple>
 </instance>

 Relation Schema – Attributes and Constraints. The <schema> element roughly

corresponds to the “CREATE TABLE” statement in SQL, defining the attributes and keys in the

relation. Its complex nature is illustrated in Fig. 13.

26

Figure 14. RDML Foreign Key.

 All of the <attribute> elements must be specified before anything else. Once again, there is

an element in RDML that shares a name with a RAML element. They do correspond to each

other, but the RDML version is slightly more complex. Each <attribute> element must have a

<name> child, optionally followed by at most one <subscript> and at most one <superscript>, in

that order. However, <rdml:attribute> has another element after the naming elements – a

required <domain>, which specifies the data type of the values for that attribute. Applications

that use RDML are free to define and enforce their own set of data types.

 After all the <attribute>s have been defined under the <schema> element, its following

sibling elements all make references to them. First are the <not-null> elements, of which there

may be any number. Each one has exactly one <attribute-name> child (corresponding to one of

its preceding sibling <attribute>s), each of which has exactly one <name> child, optionally

followed by a <subscript> and/or <superscript>. The <not-null> elements are used to specify that

certain attributes must always correspond to a <value> element in

every tuple; never a <null/>.

 The remaining elements all relate to

key constraints. First is <primary-key>,

of which there can be either zero or

one. The <primary-key> element must have at

least one <attribute-name> child, but may have more.

 Next comes <candidate-key>, which declares that a

specific set of attributes must have a unique set of

<value>s (and/or <null>s, which are not allowed for

any <primary-key> attribute) in every <tuple>.

27

There can be any number (or none) of <candidate-key>s in a relation, and an <attribute> can

participate in more than one <candidate-key> as well as the <primary-key> or a <not-null>. The

<candidate-key> element corresponds to the “UNIQUE” constraint of SQL.

Finally, there is <foreign-key> (Fig. 14), a set of attributes in relation R1 such that (1) every

corresponding set of values in R1’s <instance> must also be present in the <instance> of another

relation R2, and (2) these referenced value sets in R2 must correspond to a set of attributes that

form a <candidate-key> or the <primary-key> of R2. A schema may specify any number of

<foreign-key>s. Each <foreign-key> of hypothetical relation R1 specifies one or more of its own

attributes (via <attribute-name>s) and – isolated inside of a <references> element – the full name

of another relation R2 (encapsulated in a <relation-name>) and one or more of R2’s attributes.

These two sets of attributes must agree in both number, respective value domains, and relative

order. The RDML Validator verifies that there is the same number of <attribute-name>s as

previous sibling elements of the <references> as there are as child elements of the <references>.

It also verfies the existence of the referenced<attribute>s of R1, the referenced <relation> R2, and

the referenced <attribute>s of R2. For more information, consult Appendix D.

Creating RDML Documents

 Regrettably, there is no RDML Editor to complement RAML Edit. Currently, the only way

to create RDML documents is by using a text editor or – to at least avoid XML syntax errors if

not RDML schema errors – an XML editor.

28

Figure 15. RATTAIL Schema.

RATTAIL: RAT Automated Instruction Language

 The managed services provided through the RAT framework need to be explicitly requested

by the user. These service requests are written in a novel XML-based scripting language known

as RATTAIL, the (R)elational (A)lgebra (T)oolki(T)

(A)utomated (I)nstruction (L)anguage. RATTAIL is

a deterministic, sequential workflow-scripting

language with a very small number of instructions.

It is formally defined using XML Schema.

 A <rattail> element forms the root of a

RATTAIL document. Its children are all <instruction> elements. Each <instruction> element has

a required name attribute that refers unambiguously to one of the managed services, and optional

input, database, and output attributes. Each instruction can have nested child <instruction>

elements as well, making RATTAIL a highly extensible XML-based scripting language that

could serve many other purposes outside of the RAT framework. It is also the simplest by far of

the RAT languages (see Fig. 15). Its schema may be found in Appendix C.

The possible values for the name attribute of <instruction>s are restricted to “validate,”

“render,” “tabulate,” “visualize,” “reorder,” “translate,” and “execute,” each corresponding to the

name of a managed service.

The value of the input attribute must be a relative or absolute path to a RAML or RDML

document. The “validate” instruction is special in that the input attribute can refer to either a

RAML or RDML document, and RAT Manager will pass it to the appropriate XML validation

service. The other instructions are designed to work only with either RAML or RDML

specifically; “tabulate” requires RDML, whereas the others require RAML. If the input attribute

29

is omitted, RAT Manager will dispatch the requested service on every RAML document that is

referenced in the page in the following way:

 <script type="application/raml+xml" src="sample.ram l"></script>

 In the given example, “sample.raml” is a RAML document, apparently located in the same

directory as the Web page. Assuming the instruction currently being interpreted has the value

“render” for its name attribute, RAT Manager will dispatch the Render service on that document.

If the instruction is “tabulate”, RAT Manger will dispatch the Tabulate service on all RDML

documents instead of all RAML documents; and if the instruction is “validate”, it will dispatch

the RAML Validator on all RAML documents and the RDML Validator on all RDML.

 Only when the instruction is “execute” will RAT Manager pay attention to the database

attribute; otherwise it is ignored. It is a secondary input for the Execute service, which requires

both RAML and RDML. Its value is a relative or absolute path to an RDML document. If it is

omitted and the instruction is “execute”, the instruction will produce an error message.

 The output attribute is used to specify where the results of the service request will be inserted

into the Web page. Its value should correspond with the id attribute of some element in the Web

page. The results will be wrapped in an HTML <p> element and then inserted as the immediately

following sibling node of the referenced element, unless the referenced element is a <div>, in

which case it will be inserted as its last child node. If there is no element found with an id equal

to the value of the output attribute, a new one will be created and given that value as its id.

The example below shows how to encode instructions, complete with outputs.

 <rattail xmlns="http://www.cs.panam.edu/2012/RATTA IL">
 <instruction name="visualize" input="q.raml" out put="q_tree"/>
 <instruction name="translate" input="q.raml" out put="q_sql"/>
 <instruction name="execute" input="q.raml" datab ase="db.rdml"
 output="q_on_db"/>
 </rattail>

30

 As mentioned before, nested <instruction> elements are permitted by the RATTAIL schema,

but RAT Manager will ignore them unless the parent instruction is “reorder”. The Reorder

service manipulates the relational algebra it is given until it arrives at a permutation that would

produce the same result if it were executed. The result is a new RAML expression, but nothing

will be shown to the user unless further instructions are provided. In the following example,

“q1.raml” is Reordered, and the resulting RAML is Rendered so that it can be seen.

 <rattail>
 <instruction name="reorder" input="q1.raml" outp ut="q1_reord">
 <instruction name="render" output="q1_reord_te xt"/>
 </instruction>
 </rattail>

 Suppose there are twenty equivalent permutations of “q1.raml”. The results will be

embedded in twenty <p> elements whose ids are “q1_reord_text_1,” “q1_reord_text_2,” and so

on. These twenty <p>s will be siblings of each other, and all will be the children of a new <div>

whose id is “q1_reord”.

 There can be multiples of any kind of instruction in a single RATTAIL document, which

allows users to have service results be displayed at more than one location in the page.

Alternatively, one can have individual RATTAIL-referencing <script> elements at each location

where they want the result to be displayed, and omitting the output attribute. Without a value for

output, RAT Manager will insert the result as the immediately following sibling of the <script>.

31

Service Descriptions

 The second of the four layers of the RAT framework is comprised of the individual services

being provided. In this section, each service is described in detail, except for the RAML Edit,

which was described on pp.20.

Validate

 One of the challenges of working with XML is ensuring that a particular sample of XML is

in accordance with a particular schema. RAT provides this as a managed service, and the other

services simply assume that their input is valid. If a user did not write their RAML using RAML

Edit, it may be worthwhile to request the Validate service on it before using it as part of a

published Web page. For RDML documents, it is always suggested that the Validate service be

requested at least once before scripting other service requests on it.

 <rattail>
 <instruction name="validate" input="q.raml" outp ut="q_val"/>
 <instruction name="validate" input="db.rdml" out put="db_val"/>
 <instruction name="execute" input="q.raml" datab ase="db.rdml"
 output="q_on_db"/>
 </rattail>

In the above example, “q.raml” is serviced with the RAML Validator. If the results are an empty

string, then it was found to be valid; otherwise, the results are a detailed listing of the errors,

which will be inserted as text into the Web page near the element whose id is “q_valid”. RAT

Manager will flag “q.raml” as invalid input, and the “execute” instruction will not be honored. In

place of service results, an error message will be displayed. The same would occur if “db.rdml”

were found to be invalid by the RDML Validator.

32

 If the “validate” instructions were not used and either the RAML or RDML input happened

to be invalid, then the “execute” instruction would have been attempted and likely would have

resulted in an error message that made less sense and was less helpful than the “validate” output

would have been.

 The reason behind making Validate its own service is threefold: in addition to being able to

provide more focused and helpful error messages, automatically validating all input to a service

would result in performance losses. Furthermore, if the user created their RAML documents

using RAML Edit, it would be pointless to validate it because RAML Edit is incapable of

producing invalid RAML.

 Algorithms to support the RAML Validator can be found in Appendix D while those to

support the RDML Validator are in Appendix E

Render

 Database educators and relational algebra practitioners want to be able to express relational

algebra on the Web. The most convenient way to do this is to have the Web browser render them

as if they were part of the normal content of a Web page. Although this seems simple enough,

there are two major design issues: the inconsistent handling of superscripts and subscripts

between browsers, and the lackluster support for relational algebra symbols. CSS provides a fix

for the former, and the RAML Font provides support for the latter (see pp.21-22).

 When Render receives RAML as input, it translates the relational algebra into a conventional

parenthetical expression. The intent is to produce a digital version of what the user would most

likely come up with if they were to work it out on paper or a whiteboard. The result ends up

33

being valid XHTML 1.0 markup, which RAT Manager inserts into the Web page. The Web

browser then updates its rendering of the page, since the HTML source has now changed. A

sample of what Render can output is shown in Fig. 16.

 I performed field testing to determine the level of Web browser support for Render. For all

intents and purposes, Render enjoys universal support. Table 3 summarizes the results. The

algorithms to support Render can be found in Appendix F.

Browser Without installing font With font installed
Google Chrome™ 4.0 or later All versions
Internet Explorer® 6 or later 6 or later
Mozilla Firefox® 3.5 or later 1.0 or later

Apple Safari® 3.1 or later 3.1 or later
Opera™ browser 10.0 or later 8.0 or later

Visualize

 Relational algebra expressions can be very difficult to visually analyze, even at moderate

complexity. Fortunately, it is fairly straightforward to decompose them into syntax trees – as is

the case with any algebraic expression – which are much less visually crowded and, for complex

expressions, easier to read. Visualize allows its users to view any relational algebra expression in

this less-cryptic form.

�Name(Professor � (
(�Pid(�Dept = 'CSCI' (Professor))) − (�Pid(�Major = 'MATH' (Transcript � Student)))

))

Figure 16. Render Output Sample.

Table 2. Browser Support for Render, by Version.

34

Figure 17. Visualize Output Sample.

When Visualize receives RAML as input, it constructs SVG vector graphics and returns them

in a form that can be dynamically embedded into a Web page. I used vector graphics instead of

raster (bitmap) graphics because vector graphics are perfectly scalable – they can be shrunk or

expanded with zero blurring or loss of visual information. I used SVG in particular because it is

the de facto standard for vector graphics on the Web.

 Depending on the Web browser

being used, support for SVG embedded

in an (X)HTML <object> as a

UTF-8-encoded data URI

may be limited or nonexistent.

If support is limited, the trees rendered by

the browser might not correctly use the

RAML Font. There is also an algorithmic

issue that is unrelated to the browser:

The overall width of the tree

depends upon how the display

width of each node is calculated. If the calculation is not very sophisticated, some trees will be

far wider than they need to be. Nevertheless, the syntactic breakdown illustrated by these trees

will still be correct. Table 4 summarizes the browser support for Visualize, with the focus on

results being consistent. The algorithms behind Visualize may be found in Appendix G.

35

SELECT Name
FROM Professor P
WHERE Department = 'CSCI'
 AND NOT EXISTS (
 SELECT Pid
 FROM Transcript T, Student
 WHERE Major = 'MATH'
 AND T.Pid = P.Pid
);

Figure 18. Translate Output Sample.

Browser Without installing font With font installed
Google Chrome™ 4.0 or later 4.0 or later
Internet Explorer® 9 or later 9 or later
Mozilla Firefox® not supported 3.0 or later

Apple Safari® 3.1 or later 3.1 or later
Opera™ browser 10.0 or later 9.0 or later

Tabulate

 Users of RDBMSes have come

to expect their data to be presented

as a table. To that end, the Tabulate

service will accept an RDML

document as input and render all the

<relation> elements as XHTML

<table>s. Because styling is expected to be highly dependent on the user, I decided to leave the

styling of the output relatively bland and neutral. Table 3 shows a sample result from Tabulate.

Translate

 In order to better illustrate the connection

between relational algebra and SQL, RAT

provides a service called Translate which, given a

RAML expression, constructs an SQL statement

Courses

cid title area

3333 Data Structures & Algorithms DB

3342 Internet Programming WEB

4333 Database Design & Implementation DB

6312 Advanced Internet Programming WEB

6315 Applied Database Systems DB

6333 Advanced Database Design & Implem DB

Table 4. Tabulate Output Sample.

Table 3. Browser Support for Visualize, by Version.

36

that would give equivalent results. The relative order of the tuples in the result is not significant,

and may vary between RDBMSes. A sample of Translate output is shown in Fig. 18.

 Although the resulting SQL may not be optimal for any particular RDBMS, it follows a long-

standing version of the ISO standard for SQL. Furthermore, RDBMSes will attempt to optimize

the query anyway, which (to my amusement) would end up being done through manipulation of

the underlying relational algebra.

 Translate makes no attempt to optimize the query before returning a result. The main purpose

of these services is to provide the tools to make teaching and learning relational algebra an easier

undertaking. The ability to detect an inefficient query is certainly part of this. It is entirely up to

the user to determine whether or not their query is optimal, although if they use Reorder they will

likely have a much easier time doing so.

 The algorithms for Translate have not yet been developed.

Reorder

 One of the more tedious parts of optimizing queries by hand is coming up with permutations

of that query that produce the same results. The reason for doing this is because two queries that

produce the same results will require different amounts of computation and time to execute. This

is what Reorder does as a service to its users, except that it produces all equivalent permutations.

 Given a RAML expression, Reorder will manipulate the relational algebra until it arrives at a

permutation that would produce results identical to those of the original expression if it were

executed. It will keep doing this until it has exhausted all possibilities for manipulation.

37

 Uniquely among RAT services, Reorder returns an array of RAML documents (actually, they

are parsed DOM objects). Depending on the child instructions of the “reorder” instruction, these

RAML permutations will each be piped to Render, Visualize, or Translate, or a combination of

them. An example of a RATTAIL script that requests services on the permutations as well as the

original permutation is shown below.

 <rattail>
 <instruction name="visualize" output="original_ tree"/>
 <instruction name="reorder" output="permuted_tr ees">
 <instruction name="visualize" output="equiva lent_tree"/>
 </instruction>
 </rattail>

 The results of the above example will be organized in a hierarchy of XHTML <div>

elements. If there are, say, three equivalent permutations of the given RAML, the results will

look like this:

 <div id="original_tree">. . .</div>
 <div id="permuted_trees">
 <div id="equivalent_tree_1">. . .</div>
 <div id="equivalent_tree_2">. . .</div>
 <div id="equivalent_tree_3">. . .</div>
 </div>

 The algorithms for Reorder have not yet been developed.

Execute

 Without a doubt the most interesting service is Execute, which evaluates a given RAML-

encoded relational algebra query upon RDML-encoded relational data. The resulting relation is

encoded as a new RDML database and automatically piped to the Tabulate service, whose results

are passed back to RAT Manager.

38

 Execute is unique in terms of its RATTAIL request, as it is the only instruction that requires

a database attribute:

 <rattail>
 <instruction name="execute" input="query.raml"
 database="students.rdml"
 output="query_on_students"/>
 </rattail>

 Execute is a two-stage XML interpreter that takes advantage of the fact that JavaScript has a

meta-interpreter built into it – the eval() function. First, a modified depth-first search of the

<expression> hierarchy of the given RAML input is done in order to construct a complex

JavaScript function call whose parameters are the results of other function calls, each of which

may branch into yet more function calls. The root-level function call is used as the right-hand

side of an assignment statement to a variable that is declared in the code for this translation

process (rather than being declared in the assignment statement). Once the RAML-to-function-

call translation is complete, the assignment statement is passed as an argument to the eval()

function. This executes the statement in a JavaScript interpreter. When complete, the value

assigned to the local variable is retained, and we have our result, which is an RDML <relation>.

 The functions that are called in the translated JavaScript are defined within the scope of the

Execute service, and are invoked from within eval(). Each of these functions evaluates a

relational algebra operation, receiving RDML as input and returning new (or transformed, in the

case of selection, projection, renaming, or assignment) RDML as output.

 The most basic of these functions is load(), which receives the string-serialized naming

elements of a <raml:relation> as additional input and looks for a corresponding <rdml:relation>

in its RDML input. If a match is found, load() returns a deep clone of the <instance> child of the

matching <rdml:relation>. The set of naming elements (<name>, <subscript>, <superscript>)

must be identical in both relative order and respective text content. For example, the RAML

39

(left) and RDML (right) markup segments shown below do NOT refer to the same relation

because the contents of their <superscript>s are not identical:

 <expression> <relation>
 <relation> <name>R</name>
 <name>R</name> <subscript>1</subscript>
 <subscript>1</subscript> <superscript> a</superscript>
 <superscript> A</superscript> <schema>. . .</schema>
 </relation> <instance>. . .</instance>
 </expression> </relation>

 Regarding operations that can specify Boolean expressions as additional input (selections and

non-natural joins), a similar check is performed whenever a <raml:attribute> is specified. The

<schema> of the RDML input is first checked for the existence of an <rdml:attribute> with an

identical set of naming elements. If none is found, the operation fails.

 Chained operations like “A � B � C” are given an explicit order in the first stage; in this

case, “join(join(load(A), load(B), null), load(C), null)”, where A and B are joined first, and the

result is then joined with C. The third operand to join() in this example would generally be a

string-serialized RAML <boolean> element, representing the join condition. Since the example

is a chain of natural joins, there is no explicit condition.

40

Management Layer

Roles of RAT Manager

 RAT is a service-oriented architecture – a central coordinating process waits for requests (in

the case of RAT, it actively looks for them) and processes them. Each request specifies one of a

collection of independent modular services. The coordinator is known as RAT Manager.

 RAT Manager has several major duties: Setting up the runtime environment for the managed

services, fetching all referenced documents, interpreting user-provided scripts, dispatching

services as requested, and embedding the results into the Web page.

 When a Web browser loads a Web page that utilizes RAT, RAT Manager is automatically

invoked. The first thing that must be done is to make sure that the browser renders the results

consistently. RAT Manager does this by creating a <style> element that defines a ‘@font-face’

to import the RAML Font:

 @font-face {
 font-family: "RAML Font";
 src: url("http://rat.cs.panam.edu/RAT2/fonts/raml.eot?#iefix") format("eot"),
 url("http://rat.cs.panam.edu/RAT2/fonts/raml.ttf") format("truetype");
 font-style: normal;
 font-weight: normal;
 }

 Additional style rules are also included in this <style> element, mostly related to the

positioning and relative font size of subscripts and superscripts. RAT Manager then inserts the

<style> element into the <head> of the page.

 jQuery. Because the jQuery framework is vital to the proper functioning of RAT, users who

are designing a Web page that uses RAT must also import the jQuery framework, and it must be

imported before “rat.js” is imported. The general idea is shown below.

41

 <head>
 ...
 <script type="text/javascript" src="jquery-1.9.1.m in.js">
 </script>
 ...
 <script type="text/javascript" src="rat.js"></scri pt>
 ...
 </head>

 There is no need to import the most recent version of jQuery. In fact, I recommend version

1.9.1, as this is the version that was used during all of the testing of the deployed prototype.

Also, I do not recommend users to “upgrade” to jQuery 2.x unless they do not mind its lack of

support for Internet Explorer® versions 6 through 8 [jQuery Foundation, 2013].

 Next, RAT Manager looks for service requests. This is accomplished through the use of

jQuery. All service requests must be located in RATTAIL documents, which must be referenced

in the Web page via (X)HTML <script> elements exactly as follows, except for the underlined

portion, which should be the URI of an existing RATTAIL document:

<script type="application/rattail+xml" src="sample. rattail ">
</script>

 RAT Manager seeks out all such <script> elements and caches the values of src (relative or

absolute paths to RATTAIL documents) so that it can fetch and parse them.

 While looking for RATTAIL documents, RAT Manager also caches the locations of all

RAML and RDML documents that are referenced “stand-alone” as follows:

 <script type="application/raml+xml" src="query.ram l "></script>

 <script type="application/rdml+xml" src="db.rdml "></script>

 Through the use of Ajax, RAT Manager will have the Web browser attempt to fetch all the

referenced RATTAIL documents. The “stand-alone” RAML and RDML documents are not

fetched unless RAT Manager encounters an instruction that does not specify any particular input

document, in which case the instruction is applied to all the RAML documents (or, if the

42

instruction is “tabulate”, to all the RDML documents). Although Ajax is typically used for

communicating transparently with a server, it may be possible – depending on the security

features of the Web browser being used – to fetch documents stored locally on the user’s own

computer, without needing to publish their Web page on an HTTP server. By design, the

managed services of the RAT framework do not require active Internet access; they merely use

the Web browser as an execution platform.

Handling Service Outputs

 Once all the RATTAIL documents have been fetched and returned as parsed XML, RAT

Manager will begin interpreting the scripts, instruction by instruction. For each instruction, when

the requested service ever a service completes, its results are passed back to RAT Manager. RAT

Manager then looks for the element in the Web page whose id equals the value of the

instruction’s output attribute. If it is found and is a <div> element, the results will be inserted as

its last child node. If it was found but not a <div>, the results will be inserted as its immediately

following sibling node. If it was not found at all, RAT Manager will create a new <div>, assign it

the specified id, inject the results into it, and insert the new <div> as the immediately following

sibling node of whichever <script type="application/rattail+xml"> element referenced the

RATTAIL document that contained this instruction.

 In any case, the results of the service request will be inserted into the Web page, and the

browser will then automatically re-render the modified portions, making the results visible to the

user almost immediately. RAT Manager will patiently wait for each instruction to finish before

43

dispatching the next one. This behavior may change in future visions of RAT, so as to benefit

from parallel processing and perhaps out-of-order execution.

 <instruction name="execute"
 input="query.raml" database="student s.rdml"
 output="query_on_students"/>

 The above instruction would be interpreted by fetching “query.raml” and “students.rdml”,

then dispatching the Execute service using both as input. If either of the two documents do not

happen to be valid against their respective schemas, the execution may fail. Once the service is

finished, the result is passed back to RAT Manager. Since the service is Execute, the result is

automatically piped to the Tabulate service, and its results are then injected into the DOM

element in the Web page whose id equals “query_on_students”.

 What are the postconditions of a Web page that uses RAT, after RAT Manager is done? First,

the Web page can now use the RAML Font, whether or not there were any service requests in the

page. This is of particular benefit to users who are only interested in the Render service. Second,

all RATTAIL documents – provided they were properly referenced and were not invalid – have

been processed, and the Web page now incorporates relational algebra in its content.

 The Web page can now be saved in its current state as a new page, to avoid having RAT

Manager re-process everything every time the page is loaded.

44

CHAPTER IV

DEPLOYMENT AND EVALUATION

 Over the course of three and a half years, a partial implementation of RAT was developed

with the intention of using it as an instructional aid for college database courses. As of this

writing, RAT Manager, RAML Edit, the RAML and RDML Validators, and the services Render,

Visualize, and Tabulate have been fully implemented. This implementation has been deployed

and can be found at <http://rat.cs.panam.edu/RAT2/index.html>.

 At present, the most feasible application of the Relational Algebra Toolkit is education.

Working with relational algebra should not be substantially more time-consuming or frustrating

than working with SQL, which I currently believe to be the case. To that end, the active

deployment of RAT has been utilized in the curriculum for the graduate- and undergraduate-

level Database Design and Development courses at the University of Texas – Pan American

since Fall 2010, when taught by Dr. Artem Chebotko or Dr. Christine Reilly. There has also been

correspondence related to RAT from professors in other universities internationally – the USA,

Germany, and Malaysia, as of this writing.

45

Examples of Use

 This section briefly describes two suggested uses of the RAT framework. The RAT website

<http://rat.cs.panam.edu/RAT2/index.html> provides more information, as well as tutorials with

a large number of examples.

 The first step, common to most use cases, is to incorporate “rat.js” into a Web page. All of

the managed RAT services – Validate, Render, Tabulate, Visualize, Reorder, Translate, and

Execute – are distributed along with RAT Manager in this single JavaScript file.

 One possible use of RAT is to have relational algebra expressions become part of the content

of a Web page, as might occur when coordinating an educational course on databases. The

suggested course of action, then, is:

1. Incorporate “rat.js” into the Web page as a <script>,

2. Use RAML Edit to obtain RAML encodings of the expression(s) in question,

3. Create XML documents out of the RAML encodings using a text or XML editor and

simply copying and pasting,

4. Wherever you want each particular expression to appear in the page, place the following

XHTML markup, one for each RAML document, replacing “DOCUMENT_PATH” with

the path to the respective RAML document that encodes the expression:

 <script type= "application/raml+xml" src="DOCUMENT_PATH"></script>

 This is the simplest use case for RAT, as it does not even require the use of RATTAIL script.

In the absence of RATTAIL scripts, RAT Manager will fallback to invoking the Render service

on all the referenced RAML documents.

 Another, more interesting use case involves the Execute service. The first three steps are the

same as in the previous example, but then it becomes more complicated:

46

4. Create the RDML encoding of the intended sample data using a text editor.

5. Anywhere in the <body> of the page, place the following XHTML markup, one for each

RAML document, replacing “DOCUMENT_PATH” with the path to the document:

 <script type="application/raml+xml" src="DOCUMENT_P ATH"></script>

6. Do the same for each RDML document, using the following template:

 <script type="application/rdml+xml" src="DOCUMENT_P ATH"></script>

7. Wherever you want the result to appear in the page, place an empty <div> element with a

unique value for its id attribute.

8. Create an XML document containing the following RATTAIL script, replacing the

values of the input, database, and output attributes with their intended values:

 <?xml version="1.0" encoding="UTF-8"?>
 <rattail xmlns="http://www.cs.panam.edu/2012/R ATTAIL">
 <instruction name="execute" input="PATH_TO _RAML_DOCUMENT"
 database="PATH_TO_RDML_DOCUME NT"
 output="ID_CHOSEN_IN_STEP_7"/ >
 </rattail>

9. Anywhere in the <body> of the page, place the following XHTML markup, replacing

“DOC_PATH” with the path to the RATTAIL document created in step 8:

 <script type="application/rattail+xml" src="DO C_PATH"></script>

 The results of the Execute service will be passed to Tabulate, and an XHTML table

containing the results will be inserted into the <div> that was created in step 7.

47

Evaluation

 In the undergraduate-level course in Fall 2013, Dr. Chebotko delivered a survey to the

students to ascertain whether or not it was worthwhile to incorporate RAT into the curriculum.

Out of 32 respondents, 26 had used RAT on an assignment. 16 respondents strongly agreed that

“overall, the Relational Algebra Toolkit is a useful tool for learning relational algebra” (an

additional 9 also agreed, though not strongly). With regard to specific services, 17 respondents

strongly agreed that Visualize “helped [them] better understand [their] relational algebra

expressions” (an additional 8 also agreed, though not strongly); and 17 respondents strongly

agreed that RAML Edit “helped [them] learn relational algebra by only allowing [them] to enter

expressions that contain correct syntax” (an additional 7 also agreed, though not strongly).

 Furthermore, having used RAML Edit, 13 respondents strongly disagreed that they “prefer to

write relational algebra expressions by hand (on paper) as opposed to composing them using

RAML Edit.” An additional 4 respondents also disagreed, though not strongly, and only 1

respondent agreed, though not strongly. The remaining 8 respondents had a neutral opinion.

48

CHAPTER V

CONCLUSIONS

 Inferring from my problem statement, I intend RAT to provide a means by which to directly

and conveniently use relational algebra as an alternative to SQL. I have received correspondence

from universities in the USA, Germany, and Malaysia that indicate RAT is being used

internationally in college database courses. The deployed partial implementation of RAT does

not incorporate the Execute, Translate, or Reorder services, so it remains to be seen whether or

not they would improve the capability of RAT to solve the overall problem.

 Nevertheless, given the survey results and the unsolicited interest in RAT from professors in

universities that I had never even heard of beforehand, I deem RAT to be empirically proven

useful in educational courses that cover relational algebra.

49

Future Work

 The algorithms for the Execute service have been developed and may be found in Appendix

H. However, they have not been implemented, let alone deployed on the RAT website. The

algorithms for the Translate and Reorder services have not yet been developed. Complete

implementation of the RAT framework would, I believe, more directly address the problem that

relational algebra cannot be worked with as conveniently as SQL.

 Apart from the managed services, RAT Database also needs to be implemented. Its inclusion

on the RAT website would encourage communication and contribution from users, which would

lead to a greater volume of constructive feedback, and ultimately the overall improvement of the

entire RAT framework. It would be a user-account-controlled repository of RAML and RDML

documents, perhaps even lesson plans for educational courses.

 Given the empirical success of RAML Edit, I also feel that it would be greatly beneficial to

develop similar editors for the creation of RDML and RATTAIL markup. Particularly important

to learning the concepts of relational algebra is RAML Edit’s refusal to let users create invalid

relational algebra expressions. Survey respondents and former classmates who have used RAT

have commented that this feature is either frustrating or enlightening, more often the latter.

 Finally, I believe that RAML and RDML should support semantic content, specifically in the

form of RDF-style annotations. This would provide viewers of a RAML document with a plain-

English explanation of what the relational algebra expression is actually doing.

50

REFERENCES

Codd, E.F. (1969). Derivability, redundancy, and consistency of relations stored in large data
 banks. IBM Research Report, San Jose, California, RJ599: 1969.

Codd, E.F. (1990). The relational model for database management. Boston: Addison-Wesley.

Deveria, A. (2008). Can I use.... Retrieved 4 Dec. 2013 from http://caniuse.com/#feat=mathml

Dormann, W. & Rafail, J. (2008, Feb. 14). Securing your web browser. Carnegie Mellon
 University Software Engineering Institute. Retrieved 10 Sept. 2013 from
 http://www.cert.org/tech_tips/securing_browser/

jQuery Foundation (2013, January). Browser support | jQuery. The jQuery Foundation.
 Retrieved 4 Dec. 2013 from http://jquery.com/browser-support/

LaTeX Project Team (2011, July 31). LaTeX 2e for authors. Retrieved 4 Dec. 2013 from
 http://www.latex-project.org/guides/usrguide.pdf

Unicode Consortium (2002, March). Miscellaneous Mathematical Symbols-A. The Unicode
 Standard, Version 3.2.0, defined by: The Unicode Standard, Version 3.0 as amended
 by the Unicode Standard Annex #28: Unicode 3.2. Retrieved 10 Nov. 2011 from
 http://www.unicode.org/charts/PDF/Unicode-3.2/

World Wide Web Consortium (2008, Nov. 26). Extensible Markup Language (XML) 1.0 (fifth
 edition). World Wide Web Consortium. Retrieved 10 Sept. 2013 from
 http://www.w3.org/TR/xml/#sec-starttags

W3C Math Working Group (1998, April 7). Mathematical Markup Language (MathML) 1.0
 specification. World Wide Web Consortium. Retrieved 4 Dec. 2013 from
 http://www.w3.org/TR/1998/REC-MathML-19980407/

51

APPENDIX A

52

APPENDIX A

XML SCHEMA FOR RAML

<xs:schema targetNamespace="http://www.cs.panam.edu /2010/RAML"
 xmlns="http://www.cs.panam.edu/2010/RAML "
 xmlns:xs="http://www.w3.org/2001/XMLSche ma"
 elementFormDefault="qualified">

 <xs:complexType name="emptytype">
 <xs:restriction base="xs:string">
 <xs:maxLength value="0"/>
 </xs:restriction>
 </xs:complexType>

 <xs:complexType name="relationtype">
 <xs:sequence>
 <xs:choice>
 <xs:element name="name" type="xs:st ring"/>
 <xs:element name="nm" type="xs:stri ng"/>
 </xs:choice>
 <xs:choice minOccurs="0" maxOccurs="1">
 <xs:element name="subscript" type=" xs:string"/>
 <xs:element name="sub" type="xs:str ing"/>
 </xs:choice>
 <xs:choice minOccurs="0" maxOccurs="1">
 <xs:element name="superscript" type ="xs:string"/>
 <xs:element name="sup" type="xs:str ing"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="attrtype">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="1">
 <xs:element name="relation" type="r elationtype"/>
 <xs:element name="r" type="relation type"/>
 </xs:choice>
 <xs:choice>
 <xs:element name="name" type="xs:st ring"/>
 <xs:element name="nm" type="xs:stri ng"/>
 </xs:choice>
 <xs:choice minOccurs="0" maxOccurs="1">
 <xs:element name="subscript" type=" xs:string"/>
 <xs:element name="sub" type="xs:str ing"/>
 </xs:choice>

53

 <xs:choice minOccurs="0" maxOccurs="1">
 <xs:element name="superscript" type ="xs:string"/>
 <xs:element name="sup" type="xs:str ing"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="attribute-pairtype">
 <xs:sequence>
 <xs:choice minOccurs="2" maxOccurs="2">
 <xs:element name="attribute" type=" attrtype"/>
 <xs:element name="a" type="attrtype "/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="booleantype">
 <xs:choice>
 <xs:choice>
 <xs:element name="true" type="empty type"/>
 <xs:element name="t" type="emptytyp e"/>
 <xs:element name="false" type="empt ytype"/>
 <xs:element name="f" type="emptytyp e"/>
 </xs:choice>
 <xs:sequence>
 <xs:choice>
 <xs:element name="lt" type="emp tytype"/>
 <xs:element name="lte" type="em ptytype"/>
 <xs:element name="gt" type="emp tytype"/>
 <xs:element name="gte" type="em ptytype"/>
 <xs:element name="eq" type="emp tytype"/>
 <xs:element name="neq" type="em ptytype"/>
 </xs:choice>
 <xs:choice minOccurs="2" maxOccurs= "2">
 <xs:element name="number" type= "xs:double"/>
 <xs:element name="num" type="xs :double"/>
 <xs:element name="string" type= "xs:string"/>
 <xs:element name="str" type="xs :string"/>
 <xs:element name="attribute" ty pe="attrtype"/>
 <xs:element name="a" type="attr type"/>
 <xs:element name="true" type="e mptytype"/>
 <xs:element name="t" type="empt ytype"/>
 <xs:element name="false" type=" emptytype"/>
 <xs:element name="f" type="empt ytype"/>
 <xs:element name="null" type="e mptytype"/>
 <xs:element name="n" type="empt ytype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:choice>
 <xs:element name="is-null" type ="emptytype"/>
 <xs:element name="isn" type="em ptytype"/>
 <xs:element name="is-not-null" type="emptytype"/>
 <xs:element name="isnn" type="e mptytype"/>
 </xs:choice>

54

 <xs:choice>
 <xs:element name="number" type= "xs:double"/>
 <xs:element name="num" type="xs :double"/>
 <xs:element name="string" type= "xs:string"/>
 <xs:element name="str" type="xs :string"/>
 <xs:element name="attribute" ty pe="attrtype"/>
 <xs:element name="a" type="attr type"/>
 <xs:element name="true" type="e mptytype"/>
 <xs:element name="t" type="empt ytype"/>
 <xs:element name="false" type=" emptytype"/>
 <xs:element name="f" type="empt ytype"/>
 <xs:element name="null" type="e mptytype"/>
 <xs:element name="n" type="empt ytype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:element name="not" type="emptyt ype"/>
 <xs:choice>
 <xs:element name="boolean" type ="booleantype"/>
 <xs:element name="bn" type="boo leantype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:choice>
 <xs:element name="or" type="emp tytype"/>
 <xs:element name="and" type="em ptytype"/>
 </xs:choice>
 <xs:choice minOccurs="2" maxOccurs= "unbounded">
 <xs:element name="boolean" type ="booleantype"/>
 <xs:element name="bn" type="boo leantype"/>
 </xs:choice>
 </xs:sequence>
 </xs:choice>
 </xs:complexType>

 <xs:complexType name="exprtype">
 <xs:choice>
 <xs:choice>
 <xs:element name="relation" type="r elationtype"/>
 <xs:element name="r" type="relation type"/>
 </xs:choice>
 <xs:sequence>
 <xs:choice>
 <xs:element name="projection" t ype="emptytype"/>
 <xs:element name="pn" type="emp tytype"/>
 </xs:choice>
 <xs:choice minOccurs="1" maxOccurs= "unbounded">
 <xs:element name="attribute" ty pe="attrtype"/>
 <xs:element name="a" type="attr type"/>
 </xs:choice>
 <xs:choice>
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>
 </xs:sequence>

55

 <xs:sequence>
 <xs:choice>
 <xs:element name="selection" ty pe="emptytype"/>
 <xs:element name="sn" type="emp tytype"/>
 </xs:choice>
 <xs:choice>
 <xs:element name="boolean" type ="booleantype"/>
 <xs:element name="bn" type="boo leantype"/>
 </xs:choice>
 <xs:choice>
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:choice>
 <xs:element name="renaming" typ e="emptytype"/>
 <xs:element name="rg" type="emp tytype"/>
 </xs:choice>
 <xs:choice minOccurs="1" maxOccurs= "unbounded">
 <xs:element name="attribute-pai r"

 type="attribute-pairtype"/>
 <xs:element name="ap" type="att ribute-pairtype"/>
 </xs:choice>
 <xs:choice>
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:choice>
 <xs:element name="cross-product " type="emptytype"/>
 <xs:element name="cp" type="emp tytype"/>
 </xs:choice>
 <xs:choice minOccurs="2" maxOccurs= "unbounded">
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:choice>
 <xs:element name="join" type="e mptytype"/>
 <xs:element name="jn" type="emp tytype"/>
 </xs:choice>
 <xs:choice minOccurs="0" maxOccurs= "1">
 <xs:element name="boolean" type ="booleantype"/>
 <xs:element name="bn" type="boo leantype"/>
 </xs:choice>
 <xs:choice minOccurs="2" maxOccurs= "unbounded">
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:choice>

56

 <xs:element name="semi-join" ty pe="emptytype"/>
 <xs:element name="sj" type="emp tytype"/>
 </xs:choice>
 <xs:choice minOccurs="2" maxOccurs= "unbounded">
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:choice>
 <xs:element name="anti-join" ty pe="emptytype"/>
 <xs:element name="aj" type="emp tytype"/>
 </xs:choice>
 <xs:choice minOccurs="2" maxOccurs= "unbounded">
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:choice>
 <xs:element name="left-join" ty pe="emptytype"/>
 <xs:element name="lj" type="emp tytype"/>
 </xs:choice>
 <xs:choice minOccurs="0" maxOccurs= "1">
 <xs:element name="boolean" type ="booleantype"/>
 <xs:element name="bn" type="boo leantype"/>
 </xs:choice>
 <xs:choice minOccurs="2" maxOccurs= "unbounded">
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:choice>
 <xs:element name="right-join" t ype="emptytype"/>
 <xs:element name="rj" type="emp tytype"/>
 </xs:choice>
 <xs:choice minOccurs="0" maxOccurs= "1">
 <xs:element name="boolean" type ="booleantype"/>
 <xs:element name="bn" type="boo leantype"/>
 </xs:choice>
 <xs:choice minOccurs="2" maxOccurs= "unbounded">
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:choice>
 <xs:element name="full-join" ty pe="emptytype"/>
 <xs:element name="fj" type="emp tytype"/>
 </xs:choice>
 <xs:choice minOccurs="0" maxOccurs= "1">
 <xs:element name="boolean" type ="booleantype"/>
 <xs:element name="bn" type="boo leantype"/>
 </xs:choice>

57

 <xs:choice minOccurs="2" maxOccurs= "unbounded">
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:choice>
 <xs:element name="union" type=" emptytype"/>
 <xs:element name="un" type="emp tytype"/>
 </xs:choice>
 <xs:choice minOccurs="2" maxOccurs= "unbounded">
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:choice>
 <xs:element name="intersection" type="emptytype"/>
 <xs:element name="in" type="emp tytype"/>
 </xs:choice>
 <xs:choice minOccurs="2" maxOccurs= "unbounded">
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:choice>
 <xs:element name="set-differenc e"

 type="emptytype"/>
 <xs:element name="sd" type="emp tytype"/>
 </xs:choice>
 <xs:choice minOccurs="2" maxOccurs= "unbounded">
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:choice>
 <xs:element name="outer-union" type="emptytype"/>
 <xs:element name="ou" type="emp tytype"/>
 </xs:choice>
 <xs:choice minOccurs="2" maxOccurs= "unbounded">
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:choice>
 <xs:element name="division" typ e="emptytype"/>
 <xs:element name="dn" type="emp tytype"/>
 </xs:choice>
 <xs:choice minOccurs="2" maxOccurs= "unbounded">
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>

58

 </xs:sequence>
 <xs:sequence>
 <xs:choice>
 <xs:element name="assignment" t ype="emptytype"/>
 <xs:element name="at" type="emp tytype"/>
 </xs:choice>
 <xs:choice>
 <xs:element name="relation" typ e="relationtype"/>
 <xs:element name="r" type="rela tiontype"/>
 </xs:choice>
 <xs:choice>
 <xs:element name="expression" t ype="exprtype"/>
 <xs:element name="exp" type="ex prtype"/>
 </xs:choice>
 </xs:sequence>
 </xs:choice>
 </xs:complexType>

 <xs:complexType name="ramltype">
 <xs:sequence>
 <xs:choice minOccurs="1" maxOccurs="unb ounded">
 <xs:element name="expression" type= "exprtype"/>
 <xs:element name="exp" type="exprty pe"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="raml" type="ramltype"/>

</xs:schema>

59

APPENDIX B

60

APPENDIX B

XML SCHEMA FOR RDML

<xs:schema targetNamespace="http://www.cs.panam.edu /2011/RDML"
 xmlns="http://www.cs.panam.edu/2011/RDML "
 xmlns:xs="http://www.w3.org/2001/XMLSche ma"
 elementFormDefault="qualified">

 <xs:simpleType name="emptytype">
 <xs:restriction base="xs:string">
 <xs:maxLength value="0"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="tupletype">
 <xs:choice minOccurs="1" maxOccurs="unbound ed">
 <xs:element name="value" type="xs:strin g"/>
 <xs:element name="null" type="emptytype "/>
 </xs:choice>
 </xs:complexType>

 <xs:complexType name="instancetype">
 <xs:sequence>
 <xs:element name="tuple" type="tupletyp e"
 minOccurs="1" maxOccurs="un bounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:group name="namegrp">
 <xs:sequence>
 <xs:element name="name" type="xs:string "/>
 <xs:element name="subscript" type="xs:s tring"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="superscript" type="xs :string"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:group>

 <xs:complexType name="attrtype">
 <xs:sequence>
 <xs:group ref="namegrp"/>
 <xs:element name="domain" type="xs:stri ng"/>
 </xs:sequence>
 </xs:complexType>

61

 <xs:complexType name="reftype">
 <xs:group ref="namegrp"/>
 </xs:complexType>

 <xs:complexType name="foreign-keytype">
 <xs:sequence>
 <xs:element name="attribute-name" type= "reftype"
 minOccurs="1" maxOccurs="un bounded"/>
 <xs:element name="references">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="relation- name"
 type="reftype"/ >
 <xs:element name="attribute -name"
 type="reftype" minOccurs="1"
 maxOccurs="unbo unded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="schematype">
 <xs:sequence>
 <xs:element name="attribute" type="attr type"
 minOccurs="1" maxOccurs="un bounded"/>
 <xs:element name="not-null"
 minOccurs="0" maxOccurs="un bounded">
 <xs:complexType>
 <xs:element name="attribute-nam e" type="reftype"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="primary-key" minOccur s="0" maxOccurs="1">
 <xs:complexType>
 <xs:element name="attribute-nam e" type="reftype"
 minOccurs="1" maxOc curs="unbounded"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="candidate-key"
 minOccurs="0" maxOccurs="un bounded">
 <xs:complexType>
 <xs:element name="attribute-nam e" type="reftype"
 minOccurs="1" maxOc curs="unbounded"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="foreign-key" type="fo reign-keytype"
 minOccurs="0" maxOccurs="un bounded"/>
 </xs:sequence>
 </xs:complexType>

62

 <xs:complexType name="relationtype">
 <xs:sequence>
 <xs:group ref="namegrp"/>
 <xs:element name="schema" type="schemat ype"/>
 <xs:element name="instance" type="insta ncetype"
 maxOccurs="1" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="databasetype">
 <xs:sequence>
 <xs:element name="name" type="xs:string "/>
 <xs:element name="relation" type="relat iontype"
 minOccurs="0" maxOccurs="un bounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="rdmltype">
 <xs:sequence>
 <xs:element name="database" type="datab asetype"
 minOccurs="1" maxOccurs="un bounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="rdml" type="rdmltype"/>

</xs:schema>

63

APPENDIX C

64

APPENDIX C

XML SCHEMA FOR RATTAIL

<xs:schema xmlns="http://www.cs.panam.edu/2012/RATT AIL"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.cs.panam.edu/2012/RATT AIL"
 elementFormDefault="qualified"
 attributeFormDefault="qualified">

 <xs:annotation><xs:documentation>
RATTAIL – (R)elational (A)lgebra (T)oolki(T)
 (A)utomated (I)nstruction (L)anguage
 </xs:documentation></xs:annotation>

 <xs:complexType name="instrtype">
 <xs:attribute name="name" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="validate"/>
 <xs:enumeration value="render"/>
 <xs:enumeration value="visualize"/>
 <xs:enumeration value="reorder"/>
 <xs:enumeration value="translate"/>
 <xs:enumeration value="execute"/>
 <xs:enumeration value="data-render"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="input" type="xs:anyURI"
 use="optional"/>
 <xs:attribute name="database" type="xs:anyURI"
 use="optional"/>
 <xs:attribute name="output" type="xs:ID" use="opt ional"/>
 </xs:complexType>

 <xs:complexType name="scripttype">
 <xs:sequence>
 <xs:element name="instruction" type="instrtype"
 minOccurs="0" maxOccurs="unbounded"/ >
 </xs:sequence>
 </xs:complexType>

 <xs:element name="rattail" type="scripttype"/>

</xs:schema>

65

APPENDIX D

66

APPENDIX D

ALGORITHMS FOR RAML VALIDATOR

algorithm RAML Validator
input (src): DOM element (a parsed RAML document)
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src is a <raml> element then
 error_string = “”
 for each child element kid of src do
 error_string += validate_expression(kid)
 end for each
 end if
 return “\nRoot element must be <raml>.”
end

algorithm validate_expression
input (src): DOM element
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src is not an <expression> element then
 return “\nExpected <expression> in place of ‘” + tag name of src + “’.”
 end if
 firstborn = first child element of src
 if firstborn does not exist then
 return “\n(expression): Requires a child element.”
 end if
 switch the element type of firstborn:
 case <relation>:
 return validate_relation_raml(firstborn)
 case <join>, <left-join>, <right-join>, <full-join>:
 return validate_op_conditional(src)
 case <cross-product>, <union>, <intersection>, <set-difference>, <division>,
 <semi-join>, <anti-join>, <outer-union>:
 return validate_op_unconditional(src)
 case <selection>: return validate_selection(src)

67

 case <projection>: return validate_projection(src)
 case <renaming>: return validate_renaming(src)
 case <assignment>: return validate_assignment(src)
 case else:
 return “\n(expression): Invalid child element ‘” + tag name of firstborn + “’.”
 end switch
 end if
end

algorithm validate_relation_raml
input (src): DOM element whose tag name is “relation” or “r”
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src has no child elements or if first child element is not a <name> then
 return “\n(relation): First child must be <name>.”
 end if
 return validate_name(child elements of src)
end

algorithm validate_name
input (src): array of DOM elements, the first of which has tag name “name” or “nm”
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 next_index = 1
 if src contains more than one element then
 if src[1] is a <subscript> then
 if src contains more than two elements then
 next_index = 2
 else
 return “”
 end if
 end if
 if src[next_index] is a <superscript> then
 if src contains more than (next_index+1) elements then
 return “(“ + tag name of src[next_index] + “): Cannot be followed by a ‘”
 + tag name of src[next_index+1] + “’.”
 end if
 return “”
 end if
 end if
 return “”
end

68

algorithm validate_assignment
input (src): DOM element with tag name “expression” or “exp”
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src has more than 3 child elements then
 return “\n(assignment): Siblings must be a <relation> and an <expression>.”
 end if
 error_string = validate_relation(second child element of src)
 error_string += validate_expression(third child element of src)
 return error_string
end

algorithm validate_selection
input (src): DOM element with tag name “expression” or “exp”
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src has more than 3 child elements then
 return “\n(selection): Siblings must be a <boolean> and an <expression>.”
 end if
 error_string = validate_boolean(second child element of src)
 error_string += validate_expression(third child element of src)
 return error_string
end

algorithm validate_projection
input (src): DOM element with tag name “expression” or “exp”
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src has fewer than 3 child elements then
 return “\n(projection): Siblings must be <attribute>s and an <expression>.”
 end if
 error_string = “”
 for each child element att of src except the first and last ones do
 if att is not an <attribute> then
 return error_string + “\n(projection): Expected <attribute> in place of ‘”
 + tag name of att + “’.”
 end if
 error_string += validate_attribute(att)
 end for each
 if last child element of src is not an <expression> then
 error_string += “(projection): Last child must be an <expression>.”
 else

69

 error_string += validate_expression(last child element of src)
 end if
 return error_string
end

algorithm validate_renaming
input (src): DOM element with tag name “expression” or “exp”
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src has fewer than 3 child elements then
 return “\n(renaming): Siblings must be <attribute-pair>s and an <expression>.”
 end if
 error_string = “”
 for each child element attpair of src except the first and last ones do
 if attpair is not an <attribute-pair> then
 return error_string + “\n(renaming): Expected <attribute-pair> in place of ‘”
 + tag name of attpair + “’.”
 end if
 error_string += validate_attribute_pair(att)
 end for each
 if last child element of src is not an <expression> then
 error_string += “(renaming): Last child must be an <expression>.”
 else
 error_string += validate_expression(last child element of src)
 end if
 return error_string
end

algorithm validate_attribute_pair
input (src): DOM element with tag name “attribute-pair” or “ap”
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src does not have exactly 2 child elements then
 return “\n(attribute-pair): Must have exactly two <attribute> children.”
 end if
 error_string = validate_attribute(first child element of src)
 error_string += validate_attribute(second child element of src)
 return error_string
end

70

algorithm validate_attribute
input (src): DOM element
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src is not an <attribute> then
 return “\n(” + tag name of src + “): Expected <attribute>.”
 else if src does not have at least one child element then
 return “\n(attribute): Requires a <name>.”
 end if
 error_string = “”
 kids = child elements of src
 if kids[0] is a <relation> then
 error_string += validate_relation(kids[0])
 kids = all child elements of src except the first one
 end if
 if kids is empty or if kids[0] is not a <name> then
 error_string += “\n(attribute): Requires a <name>.”
 else
 error_string += validate_name(kids)
 end if
 return error_string
end

algorithm validate_op_unconditional
input (src): DOM element with tag name “expression” or “exp”
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src has fewer than 3 child elements then
 return “\n(” + tag name of first child of src + “): Requires at least 2 <expression>s.”
 end if
 error_string = “”
 for each child element expr of src except the first one do
 if expr is not an <expression> then
 return “\n(” + tag name of first child of src
 + “): Siblings must all be <expression>s.”
 end if
 error_string += validate_expression(expr)
 end for each
 return error_string
end

71

algorithm validate_op_conditional
input (src): DOM element with tag name “expression” or “exp”
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src has fewer than 3 child elements then
 return “\n(” + tag name of first child element of src
 + “): Requires at least two <expression>s.”
 end if
 error_string = “”
 offset = 2
 if second element child of src is a <boolean> then
 error_string += validate_boolean(second child element of src)
 if src has fewer than (offset + 2) child elements then
 return error_string + “\n(” + tag name of first child element of src
 + “): Requires at least two <expression>s.”
 end if
 else
 offset = 1
 end if
 for i from offset to number of child elements of src do
 if the i-th child element of src is not an <expression> then
 return “\n(” + tag name of first child element of src
 + “): Siblings must all be <expression>s.”
 end if
 error_string += validate_expression(expr)
 end for
end

algorithm validate_simple_boolean
input (src): DOM element with tag name “true”, “false”, “null”, “string”, “number”, “attribute”
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src has child elements then
 return “\n(” + tag name of src + “): Cannot have child elements.”
 end if
 switch tag name of src:
 case <true>, <false>, <null>, <string>, <number>:
 return “”
 case <attribute>: return validate_attribute(src)
 case else:
 return “\n(” + tag name of src
 + “): Expected <true>, <false>, <null>, <string>, <number>, or <attribute>.”
 end switch

72

 return error_string
end

algorithm validate_boolean
input (src): DOM element
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src is not a <boolean> then
 return “\n(” + tag name of src + “): Expected <boolean>.”
 end if
 firstborn = first child element of src
 switch number of child elements of src:
 case 1:
 if firstborn is not a <true>, <false>, or <null> then
 return “\n(boolean): Invalid <boolean> beginning with ‘”
 + tag name of firstborn + “’.”
 else
 return validate_simple_boolean(firstborn)
 end if
 case 2:
 if firstborn is a <not> then
 if second child element of src is not a <boolean> then
 return “\n(not): Sibling must be a <boolean>.”
 else
 return validate_boolean(second child element of src)
 end if
 else if firstborn is an <is-null> or <is-not-null> then
 error_string = validate_simple_boolean(second child element of src)
 if error_string is not empty then
 return “\n(” + tag name of firstborn
 + “): Expected <attribute> in place of ‘”
 + tag name of second child element of src + “’.”
 else
 return “”
 end if
 else
 return “\n(boolean): Invalid <boolean> beginning with ‘”
 + tag name of firstborn + “’.”
 end if
 case 3:
 if firstborn is <eq>, <neq>, <lt>, <lte>, <gt>, or <gte> then
 error_string = validate_simple_boolean(second child element of src)
 error_string += validate_simple_boolean(third child element of src)
 else if firstborn is <and> or <or> then

73

 error_string = validate_boolean(second child element of src)
 error_string += validate _boolean(third child element of src)
 else
 error_string = “\n(boolean): Invalid <boolean> beginning with ‘”
 + tag name of firstborn + “’.”
 end if
 return error_string
 case else:
 if firstborn is <and> or <or> then
 error_string = “”
 for each child element kid of src except the first one do
 error_string += validate _boolean(kid)
 end for
 else
 error_string = “\n(boolean): Invalid <boolean> beginning with ‘”
 + tag name of firstborn + “’.”
 end if
 return error_string
 end switch
 return error_string
end

74

APPENDIX E

75

APPENDIX E

ALGORITHMS FOR RDML VALIDATOR

algorithm RDML Validator
input (src): DOM element (a parsed RDML document)
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src is an <rdml> element then
 error_string = “”
 for each child element kid of src do
 error_string += validate_database(kid)
 end for each
 end if
 return “\nRoot element must be <rdml>.”
end

algorithm validate_database
input (src): DOM element
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src is not a <database> element then
 return “\nExpected <database> in place of ‘” + tag name of src + “’.”
 else if src has no child elements or if first child element is not a <name> then
 return “\n(database): Requires a <name>.”
 end if
 error_string = “”
 relation_names = empty array
 for each child element kid of src except the first one do
 error_string += validate_relation_attribute(kid, false, relation_names)
 end for each
end

76

algorithm validate_relation_attribute
input (src): DOM element whose tag name is “relation” or “attribute”
input (isAttrNotReln): Boolean flag; true if src is an “attribute”, false if it is a “relation”
input (familyNames): array of the names of all <relation>s encountered so far in this <database>,
 or of all the <attribute>s encountered so far in this <schema>. On exit, will contain another
 element, but only if the name of src is unique.
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if !isAttrNotReln and if src is not a <relation> then
 return “\nExpected <relation> in place of ‘” + tag name of src + “’.”
 end if
 // If we are validating an attribute, by precondition we already know src is an <attribute>.
 if isAttrNotReln then
 this_name = “attribute”
 this_needs = “domain”
 else
 this_name = “relation”
 this_needs = “schema”
 end if

 // Locate the <domain> or <schema> sibling.
 if src has fewer than 2 child elements then
 return “\n(” + this_name + “): Requires a <name> and a <” + this_needs + “>.”
 else if first child element of src is not a <name> then
 return “\n(” + this_name + “): First child must be <name>.”
 end if

 if src has more than 2 child elements then
 if second child element of src is a <subscript> then
 if src has more than 3 child elements then
 if third child element of src is a <superscript> then
 need_index = 4
 else need_index = 3
 end if
 end if
 else if second child element of src is a <superscript> then
 need_index = 3
 else need_index = 2
 end if
 else need_index = 2
 end if

77

 if this_needs != tag name of need_index-th child element of src then
 return “\n(” + this_name + “): Children must be: <name> (required), <subscript> ”
 + “(optional), <superscript> (optional), <” + this_needs + “> (required).”
 end if
 // At this point we know where the required <schema> or <domain> are.
 if !isAttrNotReln then
 error_string = validate_schema(need_index-th child element of src)
 if src has more than need_index child elements then
 error_string += validate_instance((need_index+1)-th child element of src)
 end if
 if error_string is not empty then
 return error_string
 end if
 end if

 // Serialize the full name of this <relation> or <attribute>.
 namingElem = first child element of src
 myName = “<name>” + text content of namingElem + “</name>”
 for i from 0 to need_index do
 namingElem = next sibling element of namingElem
 myName += “<” + tag name of namingElem + “>”
 myName += text content of namingElem
 myName += “</” + tag name of namingElem + “>”
 end for

 // Ensure that the full name is not already present in familyNames.
 for each string cand in familyNames do
 if myName = cand then
 return “\nFound duplicate ” + this_name + “ name ” + myName + “!”
 end if
 end for each
 // This name does not exist in familyNames, so it is valid.
 Push myName onto familyNames
end

algorithm validate_instance
input (src): DOM element
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src is not an <instance> then
 return “\n(relation): Expected <instance> in place of ‘” + tag name of src + “’.”
 else if src does not have child elements then
 return “\n(instance): Must have at least one <tuple> child.”
 end if

78

 for each child element tup of src do
 if tup is not a <tuple> then
 return “(instance): Children must all be <tuple>s.”
 end if
 for each child element val of tup do
 if val is not a <value> or <null> then
 return “\n(tuple): Children can only be <value> or <null>.
 end if
 end for each
 end for each
 return error_string
end

algorithm validate_schema
input (src): DOM element whose tag name is “schema”
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 child = first element child of src
 error_string = “”
 // First handle the attributes.

attNames = empty array
 while child is an <attribute> do
 error_string += validate_relation_attribute(child, true, attNames)
 child = next element sibling of child
 end while
 if child is same node as first element child of src then
 return “\n(schema): Requires at least one <attribute>.”
 else if child is null then
 return error_string
 end if

 // Now handle the <not-null>s.
 while child is a <not-null> do
 error_string += validate_constraint(child, attNames)
 child = next element sibling of child
 end while

if child is null then
 return error_string
 end if

 // Now handle the <not-null>s.
 while child is a <not-null> do
 error_string += validate_constraint(child, attNames)
 child = next element sibling of child

end while

79

// Now handle the <primary-key>, if any.
if child is a <primary-key> then
 error_string += validate_constraint(child, attNames)
 child = next element sibling of child
end if
if child is null then

 return error_string
 end if

 // Now handle the <candidate-key>s.
 while child is a <candidate-key> do
 error_string += validate_constraint(child, attNames)
 child = next element sibling of child

end while
if child is null then

 return error_string
 end if

 // Now handle the <foreign-key>s.
 while child is a <foreign-key> do
 error_string += validate_foreign_key(child, attNames)
 child = next element sibling of child

end while

if child is not null then
 return “\n(schema): Extra elements found after <foreign-key>s.”
end if

end

algorithm validate_attrOrReln_name
input (src): DOM element
input (isAttrNotReln): Boolean flag; true if src is an “attribute-name”, false if a “relation-name”
output: A serialized version of the <attribute-name> or <relation-name>, if valid.
 If not valid, output is an empty string.
begin
 if src has no child elements or if first child element of src is not a <name> then
 return “”
 end if
 fullName = “<name>” + text content of first child element of src + “</name>”
 if src has more than 1 child element then
 if second child element of src is a <superscript> then
 if src has more than 2 child elements then
 return “”
 end if

80

 fullName += “<superscript>” + text content of second child element of src
 + “</superscript>”
 else if second child element of src is a <subscript> then
 fullName += “<subscript>” + text content of second child element of src
 + “</subscript>”
 if src has more than 2 child elements then
 if third child element of src is not a <superscript>
 or if src has more than 3 child elements then
 return “”
 end if
 fullName += “<superscript>” + text content of third child element of src
 + “</superscript>”
 end if
 else
 return “”
 end if
 end if
 return fullName
end

algorithm validate_constraint
input (src): DOM element with tag name “not-null”, “primary-key”, “candidate-key”
input (validNames): array of the names of all <attributes>s declared in this <schema>.
 This function will make no changes to the array.
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src has no child elements then
 return “\n(” + tag name of src + “): Requires an <attribute-name>.”
 else if src is a <not-null> and if src has more than 1 child element then
 return “\n(not-null): Can only be applied to one attribute at a time.”
 end if

 for each child element attref of src do
 if attref is not an <attribute-name> do
 return “\n(” + tag name of src + “): Children must all be <attribute-names>.”
 end if
 myName = validate_attOrReln_name(attref, true)
 if myName is empty then
 return “\n(”+ tag name of src + “): Invalid <attribute-name> child.”
 end if
 // Check validNames for the existence of myName
 found = false
 for each string name in validNames do
 if name = myName then
 found = true

81

 break for each
 end if
 end for each
 if !found then
 return “\n(” + tag name of src + “): Referenced attribute ”
 + myName + “ not found in <schema>.”
 end if
 end for each
 return error_string
end

algorithm validate_foreign_key
input (src): DOM element with tag name “foreign-key”
input (validNames): array of the names of all <attributes>s declared in this <schema>.
 This function will make no changes to the array.
output: A string listing the syntax errors in src. The string will be empty if src is valid.
begin
 if src has fewer than 2 child elements then
 return “\n(foreign-key): Requires at least one <attribute-name> and a <references>.”
 end if
 error_string = “”
 for each child element kid of src do
 if kid is an <attribute-name> then
 break for each
 end if
 attName = validate_attOrReln_name(kid, true)
 if attName is empty then
 // Validation failed
 error_string += “\n(foreign-key): Invalid <attribute-name> child.”
 else
 // Search for the existence of the named <attribute>.
 found = false
 for each string name in validNames do
 if name = attName then
 found = true
 break for each
 end if
 end for each
 if !found then
 error_string += “\n(foreign-key): Referenced attribute ”
 + attName + “ not found in <schema>.”
 break for each
 end if
 end if
 end for each

82

 if error_string is not empty then
 return error_string
 end if
 // All referencING attributes exist in the schema.

 // Now process the <references>.
 references = last child element of src
 if references is not a <references> then
 return “\n(foreign-key): Last child must be a <references>.”
 else if first element child of references is not a <relation-name> then
 return “\n(references): First child must be a <relation-name>.”
 end if
 refRelName = validate_attOrReln_name(first element child of references, false)
 if refRelName is empty then
 return “\n(references): Invalid <relation-name> child.”
 end if

 // Locate the referenced relation.
 remoteRelation = null
 for each <relation> child reln of the <database> great-grandparent of src do
 relnName = serialization of the naming elements of reln
 // relnName has a value like “<name>R</name><subscript>1</subscript>”
 if relnName = refRelName then
 remoteRelation = reln
 break for each
 end if
 end for each
 if remoteRelation is null then
 return “\n(foreign-key): Referenced relation ” + refRelName
 + “ could not be found in ancestor <database>.”
 end if

 // Now obtain the <attribute> children of the referenced relation.
 remoteSchema = first (and hopefully only) <schema> child of remoteRelation
 remoteAtts = all <attribute> child elements of remoteRelation

 // Iterate through the referencED attribute children of the <references>.
 for each child element attr of references except the first one do
 if attr is not an <attribute-name> then
 return “\n(references): Children must be a <relation-name> ”
 + “followed by one or more <attribute-name>s.”
 else
 refAttName = validate_attOrReln_name(attr, true)
 if refAttName is empty then
 return “\n(references): Invalid <attribute-name> child.”

83

 end if

 // Locate the referenced attribute in the referenced relation.
 found = false
 for each <attribute> child remAtt of remoteSchema do
 remAttName = serialization of the naming elements of remAtt
 // remAttName has a value like “<name>title</name>”
 if remAttName = refAttName then
 found = true
 break for each
 end if
 end for each
 if !found then
 return “\n(foreign-key): Referenced attribute ” + refAttName
 + “ could not be found in referenced <relation>.”
 end if
 end if
 end for each
 return “”
end

84

APPENDIX F

85

APPENDIX F

ALGORITHMS FOR RENDER

algorithm Render
input (src): DOM element
output: A string that can be parsed as XHTML.
begin
 res = null
 try do
 // Call the root-level subprocedure.
 res = rend_root(src)
 end try
 catch any error do
 res = “Render failed: ” + thrown error message
 end catch
 return res
end

algorithm rend_root
input (src): DOM element, expected to have tag name “raml”
output: A string that can be parsed as XHTML.
begin
 str = ‘�’ // Placeholder error-indicating character
 if src has any <expression> child elements do
 str = rend_expression(first <expression> child element of src, false)
 for each remaining <expression> child kid of src do
 str += “

”
 str += rend_expression(kid, false)
 end for each
 end if
 return str
end

86

algorithm rend_expression
input (src): DOM element, expected to have tag name “expression”
input (parenthesize): Integer flag; if the first child element is a <relation>, or if parenthesize is
 0, the output will not be enclosed in parenthesis; otherwise, output will be enclosed in parens.
output: A string that can be parsed as XHTML.
begin
 firstborn = first child element of src
 if firstborn does not exist then
 return “()”
 end if
 res = “”
 switch the element type of firstborn:
 case <relation>:
 res = rend_relation(firstborn)
 case <join>, <left-join>, <right-join>, <full-join>:
 res = rend_conditional(src)
 case <cross-product>, <union>, <intersection>, <set-difference>, <division>,
 <semi-join>, <anti-join>, <outer-union>:
 res = rend_unconditional(src)
 case <selection>: res = validate_selection(src)
 case <projection>: res = validate_projection(src)
 case <renaming>: res = validate_renaming(src)
 case <assignment>: res = validate_assignment(src)
 case else:
 res = ‘�’ // Placeholder error-indicating character
 end switch
 if firstborn is not a <relation> then
 if parenthesize != 0 then
 return “(“ + res + “)”
 end if
 end if
 return res
end

algorithm rend_projection
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.
begin
 if src has at least one <attribute> child element then
 res = “�<sub>” // Unicode 0x03C0
 res += rend_attribute(first <attribute> child of src)

87

 for each remaining <attribute> child element attr of src do
 res += “, ” + rend_attribute(attr)
 end for each
 res += “</sub>”
 end if
 res += rend_expression(first <expression> child of src, 1)
 return res
end

algorithm rend_renaming
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.
begin
 if src has at least one <attribute-pair> child element then
 res = “�<sub>” // Unicode 0x03C1
 res += rend_attribute_pair(first <attribute-pair> child of src)

 for each remaining <attribute-pair> child element attpair of src do
 res += “, ” + rend_attribute_pair(attpair)
 end for each
 res += “</sub>”
 end if
 res += rend_expression(first <expression> child of src, 1)
 return res
end

algorithm rend_attribute_pair
input (src): DOM element with tag name “attribute-pair”
output: A string that can be parsed as XHTML.
begin
 res = rend_attribute(first <attribute> child element of src)
 res += “�” // Unicode 0x2192
 res += rend_attribute(second <attribute> child element of src)
 return res
end

algorithm rend_assignment
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.
begin
 res = “(“ + rend_relation(first <relation> child of src)
 res += “ � ” // Unicode 0x2190

88

 res += rend_expression(first <expression> child of src, 0) + “)”
 return res
end

algorithm rend_relation
input (src): DOM element with tag name “relation”
output: A string that can be parsed as XHTML.
begin
 return rend_name(child elements of src)
end

algorithm rend_attribute
input (src): DOM element with tag name “attribute”
output: A string that can be parsed as XHTML.
begin
 res = “”
 if the first child element of src is a <relation> then
 res += rend_relation(first child element of src)
 kids = all but the first child element of src
 else
 kids = child elements of src
 end if
 res += rend_name(kids)
 return res
end

algorithm rend_name
input (src): array of DOM elements
output: A string that can be parsed as XHTML.
begin
 res = “”
 for each element elem in src do
 txt = text content of elem
 switch element type of elem:
 case <name>: res += txt
 case <subscript>: res += “_{” + txt + “}”
 case <superscript>: res += “^{” + txt + “}”
 case else:
 return res
 end switch
 end for each
 return res
end

89

algorithm rend_unconditional
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.
begin
 switch element type of first element child of src:
 case <union>: joiner = “ ∪ ” // Unicode 0x22C3, 0x222A
 case <intersection> joiner = “ ∩ ” // Unicode 0x22C2, 0x2229
 case <set-difference> joiner = “ � ” // Unicode 0x2212
 case <cross-product> joiner = “ � ” // Unicode 0xD7, 0x2A09, 0x2A2F
 case <division> joiner = “ � ” // Unicode 0xF7
 case <outer-union> joiner = “ � ” // Unicode 0x2A04, 0x228E
 case <anti-join> joiner = “ ” // Unicode 0x25B7
 case <semi-join> joiner = “ � ” // Unicode 0x22C9
 end switch
 res = rend_expression(first <expression> child of src, 1)
 for each remaining <expression> child operand of src do
 res += joiner + rend_expression(operand, 1)
 end for each
 return res
end

algorithm rend_conditional
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.
begin
 switch element type of first element child of src:
 case <join>: joiner = “ � ” // Unicode 0x22C8, 0x2A1D
 case <left-join> joiner = “ � ” // Unicode 0x27D5
 case <right-join> joiner = “ � ” // Unicode 0x27D6
 case <full-join> joiner = “ � ” // Unicode 0x27D7
 end switch
 res = rend_expression(first <expression> child of src, 1)

 // If a boolean condition exists, ignore all but the first two operands.
 if src has a <boolean> child element then
 res += joiner + “<sub>”
 + rend_boolean(first <boolean> child of src) + “</sub>”
 res += rend_expression(second <expression> child of src, 1)
 else
 for each remaining <expression> child operand of src do
 res += joiner + rend_expression(operand, 1)
 end for each

90

 end if
 return res
end

algorithm rend_selection
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.
begin
 if src has a <boolean> child element then
 res = “�<sub>” // Unicode 0x03C3
 res += rend_boolean(first <boolean> child of src)
 res += “</sub>”
 end if
 res += rend_expression(first <expression> child of src, 1)
end

algorithm rend_simple_boolean
input (src): DOM element with tag name “true”, “false”, “null”, “string”, “number”, “attribute”
output: A string that can be parsed as XHTML.
begin
 switch element type of src:
 case <attribute>: return rend_attribute(src)
 case <string>: return ‘"’ + text content of src + ‘"’
 case <number>: return text content of src
 case <true>: return “true”
 case <false>: return “false”
 case <null>: return “null”
 end switch
 return ‘�’ // Placeholder error-indicating character
end

algorithm rend_boolean
input (src): DOM element
output: A string that can be parsed as XHTML.
begin
 if src is not a <boolean> then
 return “”
 end if
 firstborn = first child element of src
 switch element type of firstborn:
 case <true>, <false>, <null>:
 return rend_simple_boolean(firstborn)

91

 case <not>:
 res = “�(” // Unicode 0x00AC
 res += rend_boolean(first <boolean> child of firstborn)
 res += “)”
 return res
 case <is-null>, <is-not-null>:
 res = rend_simple_boolean(next element sibling of firstborn)
 if firstborn is an <is-null> then
 res += “ is null”
 else
 res += “ is not null”
 end if
 return res
 case <eq>, <neq>, <lt>, <gt>, <lte>, <gte>:
 res = rend_simple_boolean(first following element sibling of firstborn)
 switch element type of firstborn:
 case <eq>: res += “ = ”
 case <neq>: res += “ � ” // Unicode 0x2260
 case <lt>: res += “ < ”
 case <lte>: res += “ � ” // Unicode 0x2264
 case <gt>: res += “ > ”
 case <gte>: res += “ 	 ” // Unicode 0x2265
 end switch
 res += rend_simple_boolean(second following sibling of firstborn)
 return res
 case <and>, <or>:
 if firstborn is an <and> then
 joiner = “ � ” // Unicode 0x2227, 0x22C0
 else
 joiner = “ � ” // Unicode 0x2228, 0x22C1
 end if
 bln1 = first <boolean> sibling element of firstborn
 res = viz_boolean(bln1)
 if first child element of bln1 is an <and> or <or> then
 res = ‘(’ + res + ‘)’
 end if
 for each remaining <boolean> sibling clause of firstborn do
 strClause = viz_boolean(clause)
 if first child element of clause is an <and> or <or> then
 strClause = ‘(’ + strClause + ‘)’
 end if
 res += joiner + strClause
 end for each
 return res

92

APPENDIX G

93

APPENDIX G

ALGORITHMS FOR VISUALIZE

algorithm Visualize
input (src): DOM element
output: A string that can be parsed as XHTML.
begin
 res = null
 try do
 // Call the root-level subprocedure.
 res = viz_root(src)
 end try
 catch any error do
 throw error “(Visualize) RAML-to-SVG failed: ” + caught error message
 end catch

 // STEP 2: The <text> elements need to be positioned within the SVG image.
 rootNode = result of parsing an XML DOM-tree object out of res
 rootNode = rootNode.documentElement
 try do
 position = viz_positionText(rootNode, 10, 20, 0)
 width = position[0]
 height = position[1]
 end try
 catch any error do
 throw error “(Visualize) Node label positioning failed: ” + caught error
 end catch
 // Some of the rightmost and/or bottommost parts of the tree might not display.
 // Provide extra padding below and to the right.
 width += 25
 height += 10

 // STEP 3: The <line> elements need to be positioned within the SVG image.
 try do
 viz_positionLines(rootNode)
 end try

94

 catch any error do
 throw error “(Visualize) Line positioning failed: ” + caught error
 end catch

 // STEP 4: The SVG image needs to be encapsulated and given style information.
 // Note the absence of a <!DOCTYPE>. The SVG Working Group condemns them
 // because their use encourage DTD-based markup validation, which is known to
 // give false negatives in addition to being namespace-unaware.
 svgHead = “<?xml version="1.0" encoding="UTF-8" standalone="ye s"?> ”
 + “<svg xmlns="http:// www.w3.org/2000/svg" ”
 + “version="1.1" baseProfile="basic" ”
 + “width=" ” + width + “px" height=" ” + height + “px"> ”
 + “<defs><style type="text/css"><![CDATA[”
 + “@font-face { font-family:"RAML Font" ”
 + “src:url("http:// rat.cs.panam.edu/RAT2/fonts/raml.t tf") ”
 + “ format("truetype") } ”
 + “text{ text-anchor: middle; font-size: 20px; ”
 + “font-family: "RAML Font","Times New Roman",serif; } ”
 + “tspan { font-size:60% } ”
 + “line { stroke:black } ”
 + “]]></style></defs> ”

 // STEP 5: Serialize the completed SVG document to a UTF-8-encoded string.
 // NOTE: encodeURIComponent is defined in the ECMAScript standard. It converts all
 // characters that have any kind of special meaning in a URI (
 svgStr = result of serializing rootNode to a string
 svgUtf = svgHead + svgStr + “</svg>”
 svgUtf = encodeURIComponent(svgUtf)

 // STEP 6: Wrap up the results in serialized XHTML.
 svgHtml = “<object type="image/svg+xml" width=" ” + width
 + “" height=" ” + height + “" data="image/svg+xml;charset=UTF-8, ”
 + svgUtf + “"></object> ”
 return svgHtml
end

algorithm viz_root
input (src): DOM element, expected to have tag name “raml”
output: A string that can be parsed as XHTML.
begin
 str = ‘�’ // Placeholder error-indicating character
 if src has any <expression> child elements do
 str = viz_expression(first <expression> child element of src, true)
 // Visualize does not support multiple root-level <expression>s

95

 end if
 return str
end

algorithm viz_expression
input (src): DOM element, expected to have tag name “expression”
input (isRoot): Boolean flag;
output: A string that can be parsed as XHTML.
begin
 firstborn = first child element of src
 if firstborn does not exist then
 return “()”
 end if
 res = “<g><text>”
 switch the element type of firstborn:
 case <relation>:
 res = viz_relation(firstborn) + “</text>”
 case <join>, <left-join>, <right-join>, <full-join>:
 res = viz_conditional(src)
 case <cross-product>, <union>, <intersection>, <set-difference>, <division>,
 <semi-join>, <anti-join>, <outer-union>:
 res = viz_unconditional(src)
 case <selection>: res = validate_selection(src)
 case <projection>: res = validate_projection(src)
 case <renaming>: res = validate_renaming(src)
 case <assignment>: res = validate_assignment(src)
 case else:
 res = ‘�</text>’ // Placeholder error-indicating character
 end switch
 if !isRoot then
 res += “<line />”
 end if
 res += “</g>”
 return res
end

algorithm viz_projection
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.
begin
 if src has at least one <attribute> child element then
 res = “�<tspan dy="0.4em">” // Unicode 0x03C0
 res += viz_attribute(first <attribute> child of src)

96

 for each remaining <attribute> child element attr of src do
 res += “, ” + viz_attribute(attr)
 end for each
 res += “</tspan></text>”
 end if
 res += viz_expression(first <expression> child of src, false)
 return res
end

algorithm viz_renaming
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.
begin
 if src has at least one <attribute-pair> child element then
 res = “�<tspan dy="0.4em">” // Unicode 0x03C1
 res += viz_attribute_pair(first <attribute-pair> child of src)

 for each remaining <attribute-pair> child element attpair of src do
 res += “, ” + viz_attribute_pair(attpair)
 end for each
 res += “</tspan></text>”
 end if
 res += viz_expression(first <expression> child of src, false)
 return res
end

algorithm viz_attribute_pair
input (src): DOM element with tag name “attribute-pair”
output: A string that can be parsed as XHTML.
begin
 res = viz_attribute(first <attribute> child element of src)
 res += “�” // Unicode 0x2192
 res += viz_attribute(second <attribute> child element of src)
 return res
end

algorithm viz_assignment
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.
begin
 res = “(“ + viz_relation(first <relation> child of src)
 res += “ � ” // Unicode 0x2190

97

 res += viz_expression(first <expression> child of src, false) + “)”
 return res
end

algorithm viz_relation
input (src): DOM element with tag name “relation”
output: A string that can be parsed as XHTML.
begin
 return viz_name(child elements of src)
end

algorithm viz_attribute
input (src): DOM element with tag name “attribute”
output: A string that can be parsed as XHTML.
begin
 res = “”
 if the first child element of src is a <relation> then
 res += viz_relation(first child element of src)
 kids = all but the first child element of src
 else
 kids = child elements of src
 end if
 res += viz_name(kids)
 return res
end

algorithm viz_name
input (src): array of DOM elements
output: A string that can be parsed as XHTML.
begin
 res = “”
 for each element elem in src do
 txt = text content of elem
 switch element type of elem:
 case <name>: res += txt
 case <subscript>: res += “<tspan dy="0.4em">” + txt + “</tspan>”
 case <superscript>: res += “<tspan dy="0.4em">” + txt + “</tspan>”
 case else:
 return res
 end switch
 end for each
 return res
end

98

algorithm viz_unconditional
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.
begin
 switch element type of first element child of src:

 case <union>: res = “∪</text>” // Unicode 0x22C3, 0x222A
 case <intersection> res = “∩</text>” // Unicode 0x22C2, 0x2229
 case <set-difference> res = “�</text>” // Unicode 0x2212
 case <cross-product> res = “�</text>” // Unicode 0xD7, 0x2A09, 0x2A2F
 case <division> res = “�</text>” // Unicode 0xF7
 case <outer-union> res = “�</text>” // Unicode 0x2A04, 0x228E
 case <anti-join> res = “</text>” // Unicode 0x25B7
 case <semi-join> res = “�</text>” // Unicode 0x22C9
 end switch
 for each <expression> child operand of src do
 res += viz_expression(operand, false)
 end for each
 return res
end

algorithm viz_conditional
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.
begin
 switch element type of first element child of src:
 case <join>: res = “�” // Unicode 0x22C8, 0x2A1D
 case <left-join> res = “�” // Unicode 0x27D5
 case <right-join> res = “�” // Unicode 0x27D6
 case <full-join> res = “�” // Unicode 0x27D7
 end switch
 // If a boolean condition exists, ignore all but the first two operands.
 if src has a <boolean> child element then
 res += “<tspan dy="0.4em">”
 + viz_boolean(first <boolean> child of src) + “</tspan>”
 end if
 res += “</text>”
 for each <expression> child operand of src do
 res += joiner + viz_expression(operand, false)
 end for each
 return res
end

99

algorithm viz_selection
input (src): DOM element with tag name “expression”
output: A string that can be parsed as XHTML.
begin
 if src has a <boolean> child element then
 res = “�<tspan dy="0.4em">” // Unicode 0x03C3
 res += viz_boolean(first <boolean> child of src)
 res += “</tspan>”
 end if
 res += viz_expression(first <expression> child of src, false)
 return res
end

algorithm viz_simple_boolean
input (src): DOM element with tag name “true”, “false”, “null”, “string”, “number”, “attribute”
output: A string that can be parsed as XHTML.
begin
 switch element type of src:
 case <attribute>: return viz_attribute(src)
 case <string>: return ‘"’ + text content of src + ‘"’
 case <number>: return text content of src
 case <true>: return “true”
 case <false>: return “false”
 case <null>: return “null”
 end switch
 return ‘�’ // Placeholder error-indicating character
end

algorithm viz_boolean
input (src): DOM element
output: A string that can be parsed as XHTML.
begin
 if src is not a <boolean> then
 return “”
 end if
 firstborn = first child element of src

 switch element type of firstborn:
 case <true>, <false>, <null>:
 return viz_simple_boolean(firstborn)
 case <not>:
 res = “�(” // Unicode 0x00AC

100

 res += viz_boolean(first <boolean> child of firstborn)
 res += “)”
 return res
 case <is-null>, <is-not-null>:
 res = viz_simple_boolean(next element sibling of firstborn)
 if firstborn is an <is-null> then
 res += “ is null”
 else
 res += “ is not null”
 end if
 return res
 case <eq>, <neq>, <lt>, <gt>, <lte>, <gte>:
 res = viz_simple_boolean(first following element sibling of firstborn)
 switch element type of firstborn:
 case <eq>: res += “ = ”
 case <neq>: res += “ � ” // Unicode 0x2260
 case <lt>: res += “ < ”
 case <lte>: res += “ � ” // Unicode 0x2264
 case <gt>: res += “ > ”
 case <gte>: res += “ 	 ” // Unicode 0x2265
 end switch
 res += viz_simple_boolean(second following sibling of firstborn)
 return res
 case <and>, <or>:
 if firstborn is an <and> then
 joiner = “ � ” // Unicode 0x2227, 0x22C0
 else
 joiner = “ � ” // Unicode 0x2228, 0x22C1
 end if
 bln1 = first <boolean> sibling element of firstborn
 res = viz_boolean(bln1)
 if first child element of bln1 is an <and> or <or> then
 res = ‘(’ + res + ‘)’
 end if
 for each remaining <boolean> sibling clause of firstborn do
 strClause = viz_boolean(clause)
 if first child element of clause is an <and> or <or> then
 strClause = ‘(’ + strClause + ‘)’
 end if
 res += joiner + strClause
 end for each
 return res
 end switch
 return “”
end

101

algorithm viz_positionText
input (thisG): An SVG <g> element
input (myX, myY): Starting values for the ‘x’ and ‘y’ attributes being assigned to the
 <text> child of thisG
input (parentWidth): Minimum value for the amount of horizontal space that will be used
 to display this node’s text label
input (oldHeight): Minimum amount of vertical space needed to display all of this node’s
 child nodes
output (childrenWidth): Amount of horizontal space needed to properly display the entire
 sub-expression tree rooted at thisG
output (newHeight): Amount of vertical space needed for the same reason
begin
 newHeight = 0
 txt = first <text> child element of thisG
 thisWidth = amount of horizontal space needed to render txt
 // NOTE: Implementation of the above line may be very difficult to do well,
 // due to the fact that Times New Roman is not a monospace font.

 if parentWidth > thisWidth then
 thisWidth = parentWidth
 end if

 // Recurse into each <g> child sub-tree to determine the amount
 // of horizontal space needed to display them all.
 childrenWidth = 0
 for each <g> child element subtree of thisG do
 // Each child node’s text label is at least 40 pixels below this one.
 // The 60 is intentional; it includes the 20 pixels of the text label’s height.
 ret = viz_positionText(subtree, myX + childrenWidth,
 myY + 60, thisWidth)
 childrenWidth += ret[0]
 if newHeight < ret[1] then
 newHeight = ret[1]
 end if
 end for each

 // Assign the necessary attributes to position thisG’s text label.
 if childrenWidth = 0 then
 // This is a leaf node.
 myX += thisWidth / 2
 childrenWidth = thisWidth
 else
 // Get the horizontal midpoint coordinates of the text labels of
 // both the leftmost and rightmost <g> child elements.

102

 lefty = first <text> child of the first <g> child of thisG
 righty = first <text> child of the last <g> child of thisG
 myX = (value of ‘x’ attribute of lefty) + (value of ‘x’ attribute of righty) / 2
 end if

 // Keep track of the height needed to fully display the tree.
 if myY > newHeight then
 newHeight = myY
 end if
 Set ‘x’ attribute of txt to be myX + “px”
 Set ‘y’ attribute of txt to be myY + “px”

 // Return the width and height needed to properly display
 // this node and all its child nodes.
 return [childrenWidth, newHeight]
end

algorithm viz_positionLines
input (thisG): An SVG <g> element
output: Nothing
begin
 thisText = first <text> child of thisG
 thisLine = first <line> child of thisLine

 // Give starting positions to the <line> of each <g> child.
 // They will all have the same starting position.
 // The 10 is for vertical space between a line and text label.
 myX = (‘x’ attribute of thisText)
 myY = (‘y’ attribute of thisText) + 10 // font size / 2

 // If thisG’s text label includes a subscript, we need to
 // make sure that the line below thisG’s text does not
 // overlap onto the subscript.
 // We will also need to raise the line above thisG’s text
 // label if it contains a superscript.
 hasSuperscript = false
 for each <tspan> child element tsp of thisText do
 // If the ‘dy’ attribute is positive, it’s a subscript.
 // Otherwise, it’s a superscript.
 if tsp has a ‘dy’ attribute then
 val = integer parsed out of the value of the ‘dy’ attribute of tsp
 if val < 0 then
 hasSuperscript = true
 else

103

 myY += 5 //font size / 4
 end if
 end if
 end for each

 myKids = all <g> child elements of thisG
 // Give the same starting position (bottom-center of thisG’s
 // text label) to the <line> of every child <g> element.
 for each element subG of myKids do
 childLine = first <line> child of subG
 Set ‘x1’ attribute of childLine to myX + “px”
 Set ‘y1’ attribute of childLine to myY + “px”
 end for each

 //Give thisG’s own <line> child an ending position.
 if the parent node of thisG is a <g> element then
 // thisG “connects with” its parent’s <line>
 myY = (value of ‘y’ attribute of thisText) – 20;
 // If there is a superscript, we might need to subtract some.
 if hasSuperscript then
 myY -= 5 // font size / 4
 end if
 // ‘y2’ is the ‘y’ attribute of thisG’s <text> child, minus its height
 // ‘x2’ is the same as ‘x1’
 Set ‘x2’ attribute of thisLine to myX + “px”
 Set ‘y2’ attribute of thisLine to myY + “px”
 end if
 // Recurse into the <g> children of thisG so we can finish positioning their lines.
 for each element subG of myKids do
 viz_positionLines(subG)
 end for each
end

104

APPENDIX H

105

APPENDIX H

ALGORITHMS FOR TABULATE

algorithm Tabulate
input (src): DOM element with tag name “rdml”
output: A string that can be parsed as XHTML.
begin
 res = tabulate_database(first <database> child element of src)
 for each remaining <database> child element db of src do
 res += “<hr />”
 res += tabulate_database(db)
 end for each
 return res
end

algorithm tabulate_database
input (src): DOM element with tag name “database”
output: A string that can be parsed as XHTML.
begin
 wrapper = new XHTML <div> element
 if src has no child elements then
 return wrapper
 end if
 if src has a <name> child element then
 label = new XHTML <h2> element
 Set text content of label to be the text content of the <name> element
 Append label as a child element of wrapper
 end if
 for each <relation> child element reln of src do
 reldiv = new XHTML <div> element
 res = tabulate_relation(reln)
 if res is a DOM element then
 Append res as a child element of reldiv
 else //Something went wrong; res is an error string
 Set text content of relvid to be res
 end if

106

 Append reldiv as a child element of wrapper
 end for each
 return wrapper
end

algorithm tabulate_relation
input (src): RDML DOM element with tag name “relation”
output: A string that can be parsed as XHTML.
begin
 table = new XHTML <table> element
 table.className = “rdml_relation”
 thead = new XHTML <thead> element
 tbody = new XHTML <tbody> element
 Append thead as a child element of table
 Append tbody as a child element of table

 //Table name header
 row = new XHTML <tr> element
 cell = new XHTML <th> element
 name = tabulate_name(child elements of src)
 Set text content of cell to be name

 schema = first <schema> child element of src
 atts = all <attribute> child elements of schema
 Set value of “colspan” attribute of cell to be number of elements in atts
 Append cell as a child element of row
 Append row as a child element of thead

 //Column headers
 row = new XHTML <tr> element
 for each element att in atts do
 cell = new XHTML <th> element
 name = tabulate_name(child elements of att)
 Set text content of cell to be name
 Append cell as a child element of row
 end for each
 Append row as a child element of thead

 //Rows of data values
 instance = first <instance> child element of src
 for each <tuple> child element tup of instance do
 row = new XHTML <tr> element

107

 for each child element val of tup do
 cell = new XHTML <td> element
 if val is a <value> then
 Set text content of cell to be the text content of val
 else if val is a <null> then
 Set text content of cell to be “null”
 else
 Set text content of cell to be “”
 end if
 Append cell as a child element of row
 end for each
 Append row as a child element of tbody
 end for each
 return table
end

algorithm tabulate_name
input (src): array of DOM elements
output: A string that can be parsed as XHTML.
begin
 name = “unnamed”
 if the first element of src is a <name> then
 name = text content of first element of src
 if the second element kid2 of src is a <superscript> then
 name += “^{” + text content of kid2 + “}”
 else if kid2 is a <subscript> then
 name += “_{” + text content of kid2 + “}”
 if the third child element kid3 of src is a <superscript> then
 name += “^{” + text content of kid3 + “}”
 end if
 end if
 end if
 return name
end

108

BIOGRAPHICAL SKETCH

 Jeremy J. Miller earned his Bachelor of Science degree in Computer Science from the

University of Texas – Pan American in 2011, and his Master of Science degree in Computer

Science from the same university in 2013, graduating summa cum laude both times.

 While pursuing his Master of Science degree, Mr. Miller worked for two years as an

instructor of the university’s entry-level computer literacy course, as well as being research

assistant to Dr. Artem Chebotko in the Department of Computer Science. He interned at IBM in

the summer of 2013, and became a professional software engineer the following year.

 Mr. Miller has presented his research at the Hispanic Engineering, Science, and

Technology (HESTEC) conference. His thesis, The Relational Algebra Toolkit: A User-Friendly

Approach to Presenting and Processing Relational Algebra Queries on the Web, was supervised

by Dr. Artem Chebotko and based on three years of contributions to the RAT project.

 Those interested in contacting Mr. Miller may reach him at his permanent e-mail address:

jeremy.millerscitech@gmail.com.

	The relational algebra toolkit: A user-friendly approach to presenting and processing relational algebra queries on the web
	Recommended Citation

	Microsoft Word - 253474_supp_undefined_2E06E3A6-62D1-11E3-BE8D-2241EF8616FA.doc

