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LOG-OPTIMAL (d+ 2)-CONFIGURATIONS IN d–DIMENSIONS

PETER D. DRAGNEV AND OLEG R. MUSIN

Abstract. We enumerate and classify all stationary logarithmic configura-
tions of d + 2 points on the unit sphere in d–dimensions. In particular, we
show that the logarithmic energy attains its local minima at configurations
that consist of two orthogonal to each other regular simplexes of cardinality
m and n. The global minimum occurs when m = n if d is even and m = n+1
otherwise. This characterizes a new class of configurations that minimize the
logarithmic energy on Sd−1 for all d. The other two classes known in the lit-
erature, the regular simplex (d+1 points on Sd−1) and the cross-polytope (2d
points on Sd−1), are both universally optimal configurations.

1. Introduction and main result

Let X = {x1, . . . , xN} be a set of distinct points (unit vectors) on the unit sphere
S
d−1 in R

d. Configurations that minimize the logarithmic energy

(1)

Elog(X) :=
∑

1≤i �=j≤N

log
1

|xi − xj |
= −(1/2)

∑
1≤i �=j≤N

log(1−xi ·xj)−
N(N − 1) ln 2

2

are called log-optimal. More generally, a configuration is called h-optimal for a
potential interaction h : [−1, 1) → R, if it minimizes the h-energy

(2) Eh(X) :=
∑

1≤i �=j≤N

h(xi · xj).

The Newton potential (h(t) = (1−t)−d/2+1), and more generally the Riesz potential
(h(t) = (1 − t)−s/2) , as well as the Gaussian potential (h(t) = eαt, α > 0) have
been well studied in the literature (see [14]). The logarithmic potential − log(1− t)
is the limiting case of the Riesz potential as s → 0. All of these potentials are
absolutely monotone potentials, i.e. h(k)(t) ≥ 0, for all k = 1, 2, . . . . The regular
simplex (N = d + 1) and the cross-polytope (N = 2d) are the only known classes
of configurations that minimize the logarithmic energy for all d; actually, they
are universally optimal configurations, namely they minimize the energy for all
absolutely monotone potentials h (see [3, Table 1]). Another (infinite) class of

Received by the editors August 22, 2020, and, in revised form, February 22, 2022.
2020 Mathematics Subject Classification. Primary 74G05, 74G65; Secondary 31B15, 31C15.
Key words and phrases. Thomson’s problem, Riesz potential, logarithmic energy, optimal

configurations.
This paper is based upon work supported by the National Science Foundation under Grant

No. DMS-1439786 while the authors were in residence at the Institute for Computational and
Experimental Research in Mathematics in Providence, RI, during the Spring 2018 semester. The
research of the first author was supported, in part, by a Simons Foundation grant no. 282207,
and in part, by the U. S. National Science Foundation under grant DMS-1936543.

c©2023 by the author(s) under Creative Commons Attribution-NonCommercial 3.0 License (CC BY NC 3.0)

155

https://www.ams.org/btran/
https://www.ams.org/btran/
https://doi.org/10.1090/btran/118


156 PETER D. DRAGNEV AND OLEG R. MUSIN

universally optimal configurations is the so-called isotropic spaces, for which d =
q(q2 + q + 1) and N = (q + 1)(q3 + 1), where q is a power of a prime number.
All other known optimal configurations in the literature, even when the interacting
potential h is fixed, have particular values of the dimension d and the cardinality
N .

While the original problem of finding log-optimal configurations on the sphere,
sometimes referred to asWhyte’s problem (see [19]), was posed in 1952, few advances
have been made throughout the years. That the regular simplex is a log-optimal
configuration follows from the classical arithmetic-geometric mean inequality. Ko-
lushov and Yudin [7], using analytic methods derived in 1997 that the cross-polytope
(the 2d intersection points of the coordinate axes and the unit sphere) minimizes
the logarithmic energy. In 1996 Andreev [1] proved that the regular icosahedron is
a log-optimal configuration. Subsequently, in 2007 Cohn and Kumar [3] showed all
these to be universally optimal configurations (ones that minimize all absolutely
monotone potentials). The first non-universally optimal case of d + 2 points on
S
d−1 for d = 3 was resolved in 2002 (see [4]) and the cases d = 4 and d = 5 were

derived in 2016 (see [5]).
Note that all partial results have been focused on finding the global minima.

The goal of this article somewhat more general, namely to classify all local minima
for the logarithmic energy for the class of N = d + 2 points on S

d−1, d ≥ 2, and
in particular, determine the log-optimal energy configuration for this class. The
following is our main theorem.

Theorem 1.1. Up to orthogonal transform, every local minimum of the logarith-
mic energy Elog(X) of d + 2 points on S

d−1 consists of two regular simplexes of
cardinality m ≥ n > 1, m+ n = d+ 2, such that these simplexes are orthogonal to
each other. The global minimum occurs when m = n if d is even and m = n + 1
otherwise.

The theorem is derived following a careful analysis of non-degenerate stationary
configurations. While inspired by [5], our approach in this article is new and allows
us to establish much stronger necessary conditions for stationarity (see Theorems
2.1 and 2.4). As pointed in Remark 2.2, the number of orthogonal simplexes in
Theorem 2.1 is two, a byproduct of Theorem 3.3. For degenerate stationary con-
figurations, Theorem 2.3 shows that the h-energy may be decreased whenever h is
strictly convex potential function, including in the logarithmic case.

Note that for d even the log-optimal configuration in Theorem 1.1 is a two-
distance set (see [11] and references therein) that is the two-design introduced by
Mimura [10]. We also draw the reader’s attention to a remarkable connection with
the classification of best packing configurations of d+ k, 1 ≤ k ≤ d points on S

d−1

found by Kuperberg in [8]. In particular, his classification implies that any best
packing configurations of d+ 2 points will split into two orthogonal simplexes, not
necessarily regular, but with minimal distance at least

√
2. It is easy to see that

the local minima above minimize the logarithmic energy among such best packing
configurations. Kuperberg-type theorems for two-distance sets are considered in
[11]. We finally point out the connection with Steven Smale’s seventh problem [17]
asking for generating in polynomial time nearly log-optimal configurations on S

2

for large N .
In the next section we classify the stationary configurations and deal with the

cases that don’t lead to local minima. In Section 3 we introduce some auxiliary
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results utilized in Section 4 to prove the results about stationary configurations
that are saddle points. The proof of the main theorem is presented in Section 5. In
Section 6 we derive the Morse index for all stationary configuration of five points
on S

2 and list some related open problems and future plans of research.

2. Stationary Configurations of d+ 2 points on S
d−1

In this section we completely classify the stationary configurations of d+2 points
on S

d−1. We call a configuration X non-degenerate if span(X) = R
d and degenerate

otherwise.

Theorem 2.1. Let N = d + 2 and X = {x1, . . . , xN} be a non-degenerate sta-
tionary logarithmic configuration on S

d−1. Suppose there is no point x ∈ X that is
equidistant to all other points in X. Then X can be split into two sets such that
these sets are vertices of two regular orthogonal simplexes with the centers of mass
in the center of S

d−1.

Remark 2.2. This theorem strengthens significantly the characterization theorem
[5, Theorem 1.5], which asserts that a stationary configuration is either degenerate;
has a vertex equidistant to all others; or that every vertex has a mirror related
partner, i.e. another vertex, such that the perpendicular bisector hyperplane of the
segment formed by the two vertices contains all other points of the configuration.
The mirror relation as an equivalence relation splits the points in a non-degenerate
stationary configuration that has no vertex equidistant to all other vertices into
equivalence classes that form regular simplexes. Theorem 2.1 states that these
simplexes are only two. This along, together with [5, Lemma 3.2] implies the global
minimum part of Theorem 1.1.

In the process of classifying all local minima for the energy, we need to eliminate
the other cases. We first consider degenerate stationary configurations. While there
are such configurations that are global minimizers of energy among all configura-
tions confined to their spanning subspace (say a regular pentagon on the Equator
of S2), the next theorem (a generalization of [5, Theorem 1.6]) shows that for any
strictly convex potential function h, the h-energy (see (2)) of a degenerate configu-
ration with cardinality N ≥ d+2 can be strictly decreased by a small perturbation,
and hence may not be a local minimum.

Theorem 2.3. Let X be a degenerate configuration, N ≥ d+2, and h : [−1, 1] → R

be a strictly convex potential function. Then there exists a continuous perturbation
that decreases the h-energy Eh(X).

Next, we focus on configurations that are not degenerate, but have a vertex, say
the North Pole xN , that is equidistant to all other vertices xj . We shall denote such
configurations with {1, N − 1}. Then the vertices {x1, . . . , xN−1} are lying on a
hyperplane in the Southern hyper-hemisphere at height −1/(N −1). By projecting
these vertices to the Equatorial hyperplane and normalizing to become unit vectors,
we reduce the configuration to d + 1 points on Sd−2 that form a non-degenerate
stationary (w.r.t logarithmic energy) configuration. This configuration may have a
vertex that is equidistant to all others, we shall denote such a case as {1, 1, N − 2}.
As for four points on S

1 the only stationary configuration is the two orthogonal
simplexes split (diagonals of a square), this process will stop with two orthogonal
simplexes case. Theorem 2.4 sheds light on this case.
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Theorem 2.4. A non-degenerate stationary log-energy configuration of type {1, 1,
. . . , k, l}, where 1 + 1 + · · · + k + l = d+ 2 is a saddle point. Moreover, there is a
continuous perturbation that decreases the logarithmic energy of the {1, k, l} part of
the configuration to either {k+ 1, l} or {k, l+ 1}. Subsequently, with a sequence of
such perturbations, one can reach a local minimum as described in Theorem 1.1.

3. Auxiliary results

Utilizing Lagrange multipliers to the constrained minimization of (1) we show
that for any stationary configuration X the following vector equations (also referred
to in the literature as force equations) hold true∑

j �=i

xi − xj

ri,j
= λixi i = 1, . . . , N,

where rij := 1 − xi · xj . Taking inner product of both sides with xi one obtains
λi = N − 1, i = 1, . . . , N . Therefore,

(3)
∑
j �=i

xi − xj

ri,j
= (N − 1) xi, i = 1, . . . , N.

Summing (3) implies that the centroid of a stationary configuration X lies at
the origin and that for all i = 1, . . . , N we have

(4)
∑
j

rij = N.

Let

B = (bij) , bij :=
1

rij
, bii := N − 1−

∑
j �=i

bij ,

A = (aij) , where aij := c− bij , c :=
N − 1

N
.

Lemma 3.1. Let X = {x1, . . . , xN} be a stationary logarithmic configuration on
S
d−1 that is non-degenerate (span(X) = R

d). Then

rank(A) ≤ N − d− 1,
N∑
j=1

aij = 0, i = 1, . . . , N.

Proof. Let X := [x1, . . . , xN ]T . The force equations (3) imply that

N∑
j=1

bijxj = 0,
N∑
j=1

bij = N − 1.

In other words, BX = 0 and B1 = (N − 1)1, where 1 denotes the N -dimensional
column-vector of ones. As X is non-degenerate, we have rank X = d. Therefore,
the column-vectors of X are linearly independent. As 1 is eigenvector of B with
an eigenvalue of N − 1 it is linearly independent to the columns of X (eigenvectors
with eigenvalue 0). The lemma follows from the rank-nullity theorem applied to
A[X,1] = 0. �

Lemma 3.2 elaborates on the case when N = d+ 2.
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Lemma 3.2. Let N = d+2 and X = {x1, . . . , xN} be a non-degenerate stationary
logarithmic configuration on S

d−1. Without loss of generality we may assume that
a1i ≥ 0 for i = 1, . . . k and a1i < 0 for i = k + 1, . . . N . Let

ai =
√
aii, i = 1, . . . k; ai = −√

aii, i = k + 1, . . . N.

Then

aij = ai aj , a1 + . . .+ aN = 0,

c− aiaj ≥
1

2
, for all i �= j,

(5)
∑
j �=i

1

c− aiaj
= N, i = 1, . . . , N.

Proof. We first observe that if N = d+ 2, then rank(A) = 1. Indeed, rank(A) = 0
yields that all mutual distances are equal, which is impossible.

Since A is a symmetric matrix of rank one, aij = ai aj for all i, j. Lemma 3.1
implies that for all i we have∑

j

aij = ai(a1 + . . .+ aN ) = 0.

Since all ai cannot be 0, we have a1 + . . .+ aN = 0.
By definitions we have aij = c− 1/rij , i.e.

rij =
1

c− aij
=

1

c− aiaj
, i �= j.

Since rij ≤ 2, we have

c− aiaj ≥
1

2
.

It is easy to see that (4) implies (5). �

Note that if ai = 0 then the i-th row and i-th column in the matrix A are zero.
Therefore, xi is equidistant to all other points xj and

rij =
N

N − 1
, j = 1, . . . , i− 1, i+ 1, . . . , N.

Thus, if a configuration has no point that is equidistant to all others, then ai �= 0
for all i = 1, . . . , N .

Theorem 3.3 is the main in this section.

Theorem 3.3. Let a1, . . . , aN be real numbers that satisfy the following assump-
tions

a1 ≥ . . . ≥ ak > 0 > ak+1 ≥ . . . ≥ aN , a1 + . . . ,+aN = 0,∑
j �=i

1

c− aiaj
= N, i = 1, . . . , N, c− aiaj > 0, for all i �= j, where c :=

N − 1

N
.

Then

a1 = · · · = ak, ak+1 = · · · = aN .

First we prove two technical lemmas.
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Lemma 3.4. Suppose a1, . . . , aN are as in Theorem 3.3. Then for all i = 1, . . . , N
we have

(6) Ti :=
∑
j �=i

c− a2j
c− aiaj

= N − 2.

Proof. Let

Qi :=
∑
j �=i

1

c− aiaj
.

Then by the assumption Qi = N for all i.
Let

Ri :=
∑
j �=i

aj
c− aiaj

.

Since ai �= 0, we obtain from

N − 1 =
∑
j �=i

c− aiaj
c− aiaj

= cQi − aiRi = N − 1− aiRi,

that Ri = 0. Along with ai = −(a1 + · · · + ai−1 + ai+1 + · · · + aN ) we derive the
following equality

ai = (c− a2i )
∑
j �=i

aj
c− aiaj

−
∑
j �=i

aj = ai
∑
j �=i

a2j − ajai

c− aiaj
.

As ai �= 0 this yields

(7) Si :=
∑
j �=i

a2j − ajai

c− aiaj
= 1,

and subsequently

N − 2 =
∑
j �=i

c− aiaj
c− aiaj

− Si =
∑
j �=i

c− a2j
c− aiaj

= Ti

�

Lemma 3.5. Suppose a1, . . . , aN are as in Theorem 3.3. Then

|ai| <
√
c, i = 1, . . . , N.

Proof. Let i > 1. By (7) we have

1 =
∑
j �=i

a2j − aiaj

c− aiaj
=

a21 − aia1
c− aia1

+
∑

2≤j �=i

a2j − aiaj

c− aiaj
.

Then ∑
2≤j �=i

a2j − aiaj

c− aiaj
=

c− a21
c− aia1

, i = 2, . . . , N.

Therefore,

N∑
i=2

∑
2≤j �=i

a2j − aiaj

c− aiaj
=

N∑
i>j=2

(ai − aj)
2

c− aiaj
= (c− a21)

N∑
i=2

1

c− aia1
= (c− a21)Q1.
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Since Q1 = N and by the assumption c− aiaj > 0, we have

(8) c− a21 =
1

N

N∑
i>j=2

(ai − aj)
2

c− aiaj
> 0.

We may assume that |a1| ≥ |ai| for all i. Thus, (8) implies that c− a2i > 0. �

Proof of Theorem 3.3. Let

F (t) :=

N∑
j=1

c− a2j
c− taj

.

Then Lemma 3.4 implies that for all i = 1, . . . , N

(9) F (ai) = N − 1.

Since

F ′′(t) = 2
∑
j

(
c− a2j

)
a2j

(c− taj)3
,

by Lemma 3.5 we have F ′′(t) > 0 for t ∈ (−
√
c,
√
c). Hence F (t) is a convex function

in this interval. Therefore, the equation F (t) = N − 1 has at most two solutions.
By assumptions we have ai > 0 for i = 1, . . . , k and ai < 0, for i = k + 1, . . . , N .
Thus, (9) yields that all positive ai are equal and all negative ai are equal too.

4. Stationary Configurations – Proofs

We are now in a position to prove the classification result Theorem 2.1.

Proof of Theorem 2.1. As there is no point that is equidistant from all others we
have ai �= 0 for all i = 1, . . . , N Theorem 3.3 yields

a := a1 = . . . = ak > 0 > ak+1 = . . . = aN =: b,

where ka+ (N − k)b = 0. As

a(x1 + · · ·+ xk) + b(xk+1 + · · ·+ xN ) = 0 and x1 + · · ·+ xN = 0,

we obtain that x1 + · · · + xk = 0 = xk+1 + · · · + xN . Moreover, using (7) we
easily obtain that a2 = (N − k)/(kN), b2 = k/((N − k)N), and ab = −1/N . This
yields that xi · xj = −1/(k − 1) for 1 ≤ i < j ≤ k, xi · xj = −1/(N − k − 1) for
k + 1 ≤ i < j ≤ N , and xi · xj = 0 for 1 ≤ i ≤ k < j ≤ N . This proves the
theorem. �

We next derive that degenerate stationary configurations may not be local min-
ima of the h-energy for convex potential interaction h.

We shall first introduce Lemma 4.1.

Lemma 4.1. Let h : [−1, 1] → R be a strictly convex function and let a, b ∈ R be
such that |a|+ |b| ≤ 1, b �= 0. Then the function

F (t) := h(a+ bt) + h(a− bt)

is strictly decreasing for t ∈ [−1, 0] and strictly increasing for t ∈ [0, 1].
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Proof. Since F (t) is even, we consider only t ∈ [0, 1]. Let 0 ≤ t1 < t2 ≤ 1. Define

α :=
t1 + t2
2t2

, β :=
t2 − t1
2t2

.

Clearly, α, β > 0 and α+ β = 1. Observe that

a+ bt1 = α(a+ bt2) + β(a− bt2), a− bt1 = β(a+ bt2) + α(a− bt2).

Using the strict convexity of h and that a+ bt2 �= a− bt2 (b �= 0) we obtain

(10) h(a+bt1) < αh(a+bt2)+βh(a−bt2), h(a−bt1) < βh(a+bt2)+αh(a−bt2).

Adding the two inequalities in (10) we derive the lemma. �

Proof of Theorem 2.3. As X is degenerate, we may assume without loss of general-
ity that the Equatorial hyperplane contains X, or X ⊂ {xd = 0}. Since N ≥ d+2,
X is not a regular simplex and therefore there are at least two adjacent edges of
distinct length, say |x3 − x1| �= |x3 − x2|, or equivalently x1 · x3 �= x2 · x3. Without
loss of generality assume

x1 = (r,
√
1− r2, 0, . . . , 0), x2 = (r,−

√
1− r2, 0, . . . , 0),

xj = (cj1, cj2, cj3, . . . , 0), j = 3, . . . , N,

where at least c32 �= 0. Form the configuration X̃ with the first two points perturbed

x̃1 = (r,
√
1− r2 cos θ, 0, . . . ,

√
1− r2 sin θ),

x̃2 = (r,−
√
1− r2 cos θ, 0, . . . ,−

√
1− r2 sin θ).

Observe that

x̃1 · xj = cj1r + cj2
√
1− r2 cos θ, x̃2 · xj = cj1r − cj2

√
1− r2 cos θ.

We now apply Lemma 4.1 with a = cj,1r, b = cj2
√
1− r2, and t = cos θ to conclude

that for all j such that cj2 �= 0 (this is not empty as c32 �= 0)

h(x̃1 · xj) + h(x̃2 · xj) < h(x1 · xj) + h(x2 · xj).

Obviously if cj2 = 0 we have equality in the above inequality. This implies that

Eh(X̃) < Eh(X) for all 0 < θ < π. �

Proof of Theorem 2.4. Theorem 2.1 shows that non-degenerate stationary config-
uration X must either split into two orthogonal regular simplexes X = Xm ∪ Xn

with m+ n = d+ 2, or have a vertex that is equidistant to all other vertices. The
first case will be dealt with in Section 5.

Suppose that the second case holds. As in the discussion before the formulation
of the theorem, suppose xN · xi = −1/(N − 1) for all i = 1, . . . , N − 1. For all

i = 1, . . . , N − 1 denote xi = (yi,−1/(N − 1)) and let zi := (N − 1)yi/
√
N(N − 2).

Then {zi}N−1
i=1 ⊂ S

d−2 satisfy similar force equations as (3).
As {xi} is non-degenerate, so is {zi}. Thus, we have reduced the problem’s

dimension. The process will stop and at the last step we shall obtain two orthogonal
simplexes.

So, without loss of generality we may assume the process has stopped after one
step, namely we have a configuration of the type {1, k,m}, where one of the points
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p := (0k−1, 0m−1, 1) is equidistant to all others, and these other points form two
regular orthogonal simplexes

Y := {(
√
1− 1/(k +m)2 yi, 0m−1,−1/(k +m))},

Z := {(0k−1,
√
1− 1/(k +m)2 zj ,−1/(k +m))}

with k and m points respectively (here 1 + k + m = d + 2). We perturb the

configuration X := {p, Y, Z} to X̃t := {p, Ỹt, Z̃t}, where

Ỹt =
{(√

1− (mt+ 1/(k +m))2 yi, 0m−1,−1/(k +m)−mt
)}k

i=1

and

Z̃t =
{(

0k−1,
√
1− (kt− 1/(k +m))2 zj ,−1/(k +m) + kt

)}m
j=1

.

The logarithmic energy of the perturbed configuration as a function of t is given by

Elog(Xt) =
k(k + 1)

2
log

(
1

1 + 1
k+m +mt

)
+

k(k − 1)

2
log

(
1

1− 1
k+m −mt

· k

k − 1

)

+
m(m+ 1)

2
log

(
1

1 + 1
k+m − kt

)
(11)

+
m(m− 1)

2
log

(
1

1− 1
k+m + kt

· m

m− 1

)

+ km log

(
1

1− ( 1
k+m +mt)( 1

k+m − kt)

)
=: f(t).

The derivative can be computed as

f ′(t)=
km(m+k)t(mt+ 1

k+m)(kt− 1
k+m)

1− ( 1
k+m +mt)( 1

k+m − kt)

⎡⎢⎣ m

1−
(

1
k+m+mt

)2 + k

1−
(

1
k+m−kt

)2
⎤⎥⎦.

(12)

Observe that the denominator of the first fraction and the expression in the brackets

are positive as X̃t ⊂ S
d−1. Therefore,

sign (f ′(t)) = sign

(
t

(
mt+

1

k +m

)(
kt− 1

k +m

))
.

Thus, we observe that for t ∈ [−1/m(k+m), 0] the logarithmic energy is strictly
increasing and for t ∈ [0, 1/k(k +m)] it is strictly decreasing, thus being maximal
when t = 0. This shows that {1, k,m} is not a local minimum and we can make a
continuous perturbation that decreases the energy from t = 0 to t = −1/m(k+m),
which corresponds to a {k,m+1} configuration of two orthogonal simplexes, or to
t = 1/k(k +m), which corresponds to a {k + 1,m} configuration.

Of course, should we consider one of the simplexes, say Y , fixed and vary the
other one within the hyperplane in which it is embedded (which is equivalent to
let zj vary), then the maximum is attained when Z is regular. Therefore, this is a
case of a saddle point for the logarithmic energy. �
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5. Local Minima – Proof of the Main Result

The proof of Theorem 1.1 utilizes the following two lemmas.

Lemma 5.1. Let A = (aij) be an m × m matrix, m ≥ 3, such that (a) aii = 0,
i = 1, . . . ,m; and (b)

∑m
j=1 aij = 0. Then the following inequality holds

(13)
∑

1≤i<j≤m

(aij + aji)
2 ≥ 1

m− 2

m∑
j=1

x2
j , where xj :=

m∑
i=1

aij .

Proof. For all i, j = 1, . . . ,m define

βij :=
1

m2 − 2m
xi +

m− 1

m2 − 2m
xj , i �= j, and βii = 0.

Since
∑m

j=1 xj = 0, we have
∑m

j=1 βij = 0 and
∑m

i=1 βij = xj , i.e.

m∑
j=1

βij =

m∑
j=1

aij and

m∑
i=1

βij =

m∑
i=1

aij .

Let ãij := aij − βij . Then ∑
i

ãij =
∑
j

ãij = 0.

Consider tij := aij + aji = wij + βij + βji, where wij = ãij + ãji. Then tij =
wij +

xi

m−2 +
xj

m−2 , i �= j, where
∑

i wij =
∑

j wij = 0 (observe that tii = 0). Then∑
i<j

t2ij =
∑
i<j

(
wij +

xi

m− 2
+

xj

m− 2

)2

=
∑
i<j

w2
ij +

1

m− 2

m∑
i=1

x2
i ,

which implies (13). �

Lemma 5.2. Given an m × n matrix F = (fij) and an n × m matrix G = (gij)
such that

∑n
j=1 fij = 0 for all i = 1, . . . ,m and

∑m
j=1 gij = 0 for all i = 1, . . . , n.

Then we have

(14)
n∑

i=1

m∑
j=1

(fij+gji)
2 ≥ 1

m

n∑
j=1

y2j+
1

n

m∑
i=1

z2i , where yj :=
m∑
i=1

fij , zi :=
n∑

j=1

gji.

Proof. Let

f̃ij := fij −
yj
m

and g̃ij := gij −
zi
n
.

Since
∑

j yj =
∑

i zi = 0, we have
∑

i,j(f̃ij + g̃ji) = 0. Let tij := f̃ij + g̃ji. Observe
that

m∑
i=1

tij =

n∑
j=1

tij = 0.

From

fij + gji =
yj
m

+
zi
n

+ tij .

one derives that
m∑
i=1

n∑
j=1

(fij + gji)
2 =

m∑
i=1

n∑
j=1

(yj
m

+
zi
n

+ tij

)2
=

m∑
i=1

n∑
j=1

t2ij +
1

m

n∑
j=1

y2j +
1

n

m∑
i=1

z2i ,

which completes the proof. �
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Proof of Theorem 1.1. Denote the two regular orthogonal simplexes, whose centers
of mass are both in the origin with

Xm = {x1, x2, . . . , xm}, Xn = {xm+1, xm+2, . . . , xm+n}.

Let ε > 0 be a positive number and let us perturb the points of the simplexes
to yi ∈ S

d−1, yi := xi + hi, where ‖hi‖ < ε, i = 1, . . . d + 2. Denote the new
configuration Y = Ym ∪ Yn. Since ‖xi‖ = ‖yi‖ = 1, we have 2xi · hi = −‖hi‖2. We
also have 1− yi · yj = (1− xi · xj)(1− zi,j), where

(15) zi,j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

m− 1

m
(xi · hj + xj · hi + hi · hj), 1 ≤ i �= j ≤ m

xi · hj + xj · hi + hi · hj , i ≤ m < j or j ≤ m < i

n− 1

n
(xi · hj + xj · hi + hi · hj), m < i �= j ≤ m+ n.

Clearly |zi,j | < 2ε+O(ε2). The definition of the logarithmic energy (1) implies that
(16)

2 [Elog(Y )− Elog(X)] = −
∑

1≤i �=j≤m+n

log(1−zi,j) =
∑

1≤i �=j≤m+n

(
zi,j +

z2i,j
2

)
+O(ε3).

Excluding O(ε3) terms from (16) the remainder is

D :=
∑

1≤i �=j≤m+n

zi,j +
1

2

∑
1≤i �=j≤m+n

(
xi · hj + xj · hi

1− x·xj

)2

.

To compute D, without loss of generality we may assume that xi = (pi, 0), hi =
(ai, bi), i = 1, . . . ,m and xm+j = (0, qj), hm+j = (cj , dj), j = 1, . . . , n, where
pi, ai, cj ∈ R

m−1 and qj , bi, dj ∈ R
n−1. Application of 2xi · hi = −‖hi‖2 yields

∑
1≤i �=j≤m

zi,j =
2(m− 1)

m

(
m∑
i=1

xi

)(
m∑
i=1

hi

)
+
∥∥∥ m∑

i=1

hi

∥∥∥2 − 1

m

∥∥∥ m∑
i=1

hi

∥∥∥2.
As the origin is the center of mass of Xm we have

∑
1≤i �=j≤m

zi,j =
∥∥∥ m∑

i=1

hi

∥∥∥2 − 1

m

(∥∥∥ m∑
i=1

ai

∥∥∥2 + ∥∥∥ m∑
i=1

bi

∥∥∥2) .

Similarly,

∑
m+1≤i �=j≤m+n

zi,j =
∥∥∥ m+n∑

j=m+1

hj

∥∥∥2 − 1

n

⎛⎝∥∥∥ n∑
j=1

cj

∥∥∥2 + ∥∥∥ n∑
j=1

dj

∥∥∥2
⎞⎠ ,

and
m∑
i=1

m+n∑
j=m+1

zi,j =

(
m∑
i=1

hi

)
·
(

m+n∑
i=m+1

hj

)
,
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This simplifies to

D =
∥∥∥m+n∑

i=1

hi

∥∥∥2 − 1

m

(∥∥∥ m∑
i=1

ai

∥∥∥2 + ∥∥∥ m∑
i=1

bi

∥∥∥2)− 1

n

⎛⎝∥∥∥ n∑
j=1

cj

∥∥∥2 + ∥∥∥ n∑
j=1

dj

∥∥∥2
⎞⎠

+

(
m− 1

m

)2 ∑
1≤i<j≤m

(pi · aj + pj · ai)2 +
(
n− 1

n

)2 ∑
1≤i<j≤n

(qi · dj + qj · di)2
(17)

+

m∑
i=1

n∑
j=1

(pi · cj + qj · bi)2.

Thus, in this case we shall reduce the theorem to proving the inequalities

(18) D1 :=

(
m− 1

m

)2 ∑
1≤i<j≤m

(pi · aj + pj · ai)2 −
1

m

∥∥∥ m∑
i=1

ai

∥∥∥2 ≥ 0

(19) D2 :=

(
n− 1

n

)2 ∑
1≤i<j≤n

(qi · dj + qj · di)2 −
1

n

∥∥∥ n∑
j=1

dj

∥∥∥2 ≥ 0

and

(20) D3 :=

m∑
i=1

n∑
j=1

(pi · cj + qj · bi)2 −
1

m
‖

m∑
i=1

bi‖2 −
1

n

∥∥∥ n∑
j=1

cj

∥∥∥2 ≥ 0.

If we denote h̃i := hi−(xi · hi) xi, i = 1, . . . ,m+n, then xi·h̃i = 0. Since 2xi·hi =

−‖hi‖2, we respectively have ãi = ai+O(ε2)pi, b̃i = bi, for i = 1, . . . ,m, and c̃j = cj
and d̃j = dj + O(ε2)qj for j = 1, . . . , n. Therefore, by adding additional O(ε3)
terms to (16), it suffices to prove (18) and (19) under the additional assumption
that pi · ai = 0 and qj · dj = 0.

To prove the inequalities we embed the first simplex Xm = {p1, . . . , pm} in
the hyperplane of Rm that is orthogonal to (1, 1, . . . , 1). Similarly, we embed the
second simplex Xn = {q1, . . . , qn} in R

n. Thus, we embed Xm ∪ Xn ⊂ R
m × R

n.
Denote wm = ( 1

m , 1
m , . . . , 1

m) ∈ R
m and let p̃i := ei − wm, i = 1, . . . ,m. Then

pi =
√

m
m−1 p̃i. Similarly, if q̃j := ej−wn, then qj =

√
n

n−1 q̃j . For the perturbation

vectors ai = (ai1, ai2, . . . , aim), bi = (bi1, bi2, . . . , bin), cj = (cj1, cj2, . . . , cjm), dj =
(bj1, bj2, . . . , bjn), we will have that

∑m
j=1 aij = 0,

∑n
j=1 bij = 0, i = 1, . . . ,m, and∑m

j=1 cij = 0,
∑n

j=1 dij = 0, i = 1, . . . , n. The conditions pi · ai = 0 and qj · dj = 0
imply that aii = 0 for all i = 1, . . . ,m and djj = 0 for all j = 1, . . . , n.

Using that p̃i · aj = aji we can re-write (18) as

∑
1≤i<j≤m

(aij + aji)
2 ≥ 1

m− 1

m∑
j=1

(
m∑
i=1

aij

)2

,

which follows from the stronger inequality (13) in Lemma 5.1. Observe that equality
holds in (18) and (19) if and only aij +aji = 0 and dij +dji = 0 respectively, which
is equivalent to pi · aj + pj · ai = 0, qj · di + qi · dj = 0,

∑
ai = 0, and

∑
dj = 0.
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In a similar manner we shall utilize Lemma 5.2 to derive the inequality (20). We
have that

pi · cj + qj · bi =
√

m

m− 1
cji +

√
n

n− 1
bij

with the substitution fij =
√

n
n−1bij and gji =

√
m

m−1cji we re-write (20) as

n∑
i=1

m∑
j=1

(fij + gij)
2 ≥ 1

m

n− 1

n

n∑
j=1

y2j +
1

n

m− 1

m

m∑
i=1

z2i ,

which clearly follows from (14). Moreover, equality occurs if and only if pi · cj + qj ·
bi = 0,

∑
ci = 0, and

∑
bj = 0.

To summarize, the quadratic term in ε will be strictly positive, and hence
Elog(Y ) − Elog(X) > 0, for any perturbation vectors {ai, bi, ci, di} (pi · ai = 0,
qj · dj = 0), except when

pi · aj + pj · ai = 0, qj · di + qi · dj = 0, pi · cj + qj · bi = 0,

and
m∑
i=1

ai = 0,

m∑
i=1

bi = 0,

n∑
j=1

ci = 0,

n∑
j=1

dj = 0.

Utilizing (15) and these conditions, one simplifies (16) to

2 [Elog(Y )− Elog(X)] =
(m− 1)2

2m2

∑
1≤i �=j≤m

(ai · aj)2 +
(n− 1)2

2n2

∑
1≤i �=j≤n

(di · dj)2

+

m∑
i=1

n∑
j=1

(bi · cj)2 +O(ε5).

Clearly, the quartic term will be positive, unless all inner products vanish, in which
case we easily derive that ai = cj = 0 and bi = dj = 0 for all i = 1, . . . ,m and
j = 1, . . . , n. This completes the proof. �

6. Concluding remarks and open problems

6.1. Morse theory of (d+2)-configurations in d–dimensions. Let Conf(d,N)
denote the configuration space of N–tuples of points in S

d−1 up to isometry. Then

Conf(d,N) = (Sd−1 × · · · × S
d−1)/SO(d)

and the dimension of this space is

dimConf(d,N) = (d− 1)N − d(d− 1)

2
.

In particular,

dimConf(d, d+ 2) =
(d+ 4)(d− 1)

2
, dimConf(3, 5) = 7.

The Morse index of a critical point x of a smooth function f on a manifold M
is equal, by definition, to the negative index of inertia of the Hessian of f at x.

By the above results we have a classification of all critical (stationary) points of
Elog on Conf(d, d + 2). In particular, if d = 3 then we have only three types of
critical points: C0 of type (0,5), C1 of type (1,2,2) and C2 of type (2,3).
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Theorem 6.1. The Morse index of Elog on Conf(3, 5) at Ci, i = 0, 1, 2, is 2− i.

Proof. Denote by μ(x) the Morse index of Elog on Conf(3, 5) at x. Since Elog has
at C2 a minimum,

μ(C2) = 0.

Let x, y ∈ S
2 with spherical coordinates (φ, θ) and (φ′, θ′). Then

(21) [x− y|2 = 2− 2(sin θ sin θ′ cos(φ− φ′) + cos θ cos θ′).

Consider X={x1, . . . , x5}⊂S
2 with spherical coordinates {(φ1, θ1), . . . , (φ5, θ5)}

as a point in Conf(3, 5). Without loss of generality we can assume that φ1 = θ1 =
φ2 = 0. Then

v = v(X) := (θ2, φ3, θ3, φ4, θ4, φ5, θ5)

is a vector of seven variables that uniquely defined a point in the configuration
space Conf(3, 5). It is not hard to show that

v(C0) = (2π/5, 0, 4π/5, π, 4π/5, π, 2π/5),

v(C1) = (w, π/2, w, π, w, 3π/2, w), w := arccos(−1/4).

Using (21) we can represent Elog(X) as a function f(v). Then the Hessian H(v)
of f(v) and its eigenvalues at v(C0) and v(C1) can be found by direct calculations.
These calculations show that

μ(C0) = 2, μ(C1) = 1.

�

It is an interesting problem:

Find the Morse indexes of all critical points of Elog on Conf(d, d+2) for all d.

6.2. Extensions of the main theorems for other potentials. It is of interest
to determine other potentials for which we are able to characterize the optimal
d+ 2-point configurations on S

d−1.

(a) Riesz potentials: It is an interesting open problem to find all critical
configurations of the energy Eh on Conf(3, 5) for Riesz potential interaction h(t) =
(1− t)−s/2 (see [2, Section 2.5] for details). Even in this simple case of five points
on S

2, rigorous results are limited. Here we have two competing configurations:
the triangular bi-pyramid (TBP) consisting of one point at the north pole, one at
the south pole, and three arranged in an equilateral triangle around the equator;
and the regular four-pyramid (FP) with square base and varying height on the
parameter s.

For s = 0 it is shown in [4] that TBP is the unique up to rotations minimizer
of Elog. Utilizing computer aided proofs the optimality of TBP is established for
s = −1 in [6] and for s = 1, 2 in [15], which was recently extended [16] to show
that there is a constant s∗ ≈ 15.048081 (conjectured in [9]), such that the TBP is
the global minimizer for s ≤ s∗, and for s∗ ≤ s < 15 + 25

512 the FP is the global
minimizer.

The determination of d + 2 points on S
d−1 with minimal Riesz energy is an

interesting open problem, even for d = 4 and particular values of s, say the Newton
potential interaction case s = 2. We expect similar transition value s∗(d) so that
for 0 ≤ s ≤ s∗(d) the optimal configuration will be the configuration consisting of
two orthogonal simplexes of minimal cardinality difference.
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(b) Bi-quadratic potential energy: In [18] it was shown that the TBP is the
unique up to rotations optimal spherical configuration of five points on S

2 for the
bi-quadratic potential

h(xi · xj) = a (xi · xj)
2 + b (xi · xj) + c, a > 0, b > 2a.

We expect that our results will extend to bi-quadratic potentials and d+2 points
on S

d−1 and intend to return to this problem in the near future.

(c) Optimal 1-designs of cardinality d+ 2 in d–dimensions:
Since log-optimal stationary configurations X have their centroid at the origin, it

is of interest to minimize various energies among the class of configurations that are
1-designs, i.e. x1 + · · · + xN = 0, also called balanced configurations. Minimizing
energy over balanced configurations is an interesting problem that has physical
meaning, we intend to return to it in the near future as well.

(d) SDP bounds for optimal configurations:
Recently, in [12] have been obtained new SDP bounds for distance distribution

and distance graphs of spherical codes. It is an interesting problem to extend these
bounds for optimal configurations.

6.3. Optimal (d+ k)-configurations in d–dimensions. Now we consider X ⊂
S
d−1 with d + 2 ≤ |X| ≤ 2d. Rankin’s theorem states that if X is a subset of

S
d−1 with |X| ≥ d + 2, then the minimum distance between points in X is at

most
√
2. For the case |X| = 2d Rankin proved that X is a regular cross-polytope.

Wlodzimierz Kuperberg [8] extended Rankin’s theorem.

Kuperberg’s theorem. Let X be a (d+ k)–point subset of Sd−1 with 2 ≤ k ≤ d

such that the minimum distance between points is at least
√
2. Then R

d splits into

the orthogonal product
∏k

i=1 Li of non-degenerate linear subspaces Li such that for
Si := X ∩ Li we have |Si| = di + 1 and rank(Si) = di (i = 1, 2, ..., k), where
di := dimLi.

Theorem 6.2 is equivalent to [13, Theorem 4.2].

Theorem 6.2. Let h : [−1, 1) → R be a convex monotone increasing function.
Let X be a subset of S

d−1 of cardinality d + k with 2 ≤ k ≤ d such that the
minimum distance between distinct points in X is at least

√
2. Then the set of all

local minima of Eh (see (2) in Section 1) consists of k orthogonal to each other
regular di–simplexes Si such that all di ≥ 1 and d1 + · · ·+ dk = d.

Actually, this theorem easily follows from the optimality of simplices ([13, The-
orem 4.1]) and Kuperberg’s theorem.

Let h(t) := − log(1 − t). If k = 2, then Theorem 1.1 yields Theorem 6.2.
Moreover, we don’t need the assumption that for all x, y ∈ X with x �= y we have
|x− y| ≥

√
2. For the case k = d it is proven by [7] that log-optimal X is a regular

cross-polytope.
It is an interesting open problem to extend Theorem 1.1 for 2 < k ≤ d. Our

conjecture is that for all k such that 2 ≤ k ≤ d we have the same result as in
Theorem 6.2.
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