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ABSTRACT 
 

 
Yaqing Chen, Probabilistic Shortest Time Queries Over Uncertain Road Networks. Master of  
 
Science (MS), May, 2014, 43 pp., 6 tables, 9 figures, 26 references, 8 titles.  
 

In many real applications such as location-based services (LBS), map utilities, trip 
 
planning, and transportation systems, it is very useful and important to provide query services 
 
over spatial road networks. Nowadays we can easily obtain rich traffic information such as  
 
the speeds of vehicles on roads. However, due to the inaccuracy of devices or integration in 
 
consistencies, the traffic data (i.e., speeds) are often imprecise and uncertain.  
 

In this paper, we model road networks by uncertain graphs, which contain edges that  
 
are associated with probabilistic velocities. We formalize the problem of probabilistic 
 
shortest time query, and we propose time bound pruning and probabilistic bound pruning to 
 
filter out false alarms. Moreover, we design offline pre-computation to facilitate PSTQ  
 
processing.
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CHAPTER I 
 
 

INTRODUCTION 
 
 

Recently, with the proliferation of geo-positioning techniques and GPS-enabled mobile 

devices, query processing over (spatial) road networks has become increasingly important in 

many real applications, such as location-based services (LBS), map utilities, trip planning, 

and transportation systems. Specifically, on road networks, there are many facilities such as 

restaurants, hotels, shopping malls, and so on, which may raise many interesting and useful 

queries. 

Figure 1 shows an example of a road network (graph), which contains 11 nodes 

(intersection points of roads), n1~n11, denoted as white circles, and edges (road segments), 

e𝑖,𝑗, between two nodes n𝑖and n𝑗(1≤ i, j ≤ 11). On road segments (e.g., e5,6), there are some 

facilities, o1~o5, denoted as solid circles, that correspond to airport, hotel,or restaurant. In 

map applications, one classical yet important query might be “retrieve a path with the 

shortest distance between two facilities, say airport and hotel”, or “given the current location 

q of a query issuer, obtain a driving path to its nearest restaurant”. 

While traditional queries over road networks only consider the traveling distances (e.g., 

the shortest path queries), a path with the shortest network distance may not be the one with 

the shortest traveling time. This is because some roads might be busy or have traffic jams,
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and the path that passes by these roads may take very long time, even if it has the shortest 

traveling distance. Thus, in some urgent scenario (e.g., catching up with the deadline), the 

traveling time is be one of the most desirable measurements from the query issuer's point of 

view. 

 

 

Figure 1: Illustration of uncertain road network model. 

 

Nowadays, with the newly emerging technologies such as roadside sensors, GPS-

equipped mobile devices/vehicles, and speed testing equipment, more and more traffic data 

(e.g., velocity samples) have been collected from road networks (e.g., via crowd sourcing). 

Such traffic information has greatly enriched the context of road networks by incorporating 

real-time traffic conditions. As a result, many road-network applications can now utilize 

actual traffic data to provide robust and reliable services, for example, route planning or map 

services by taking into account the traveling time. 

Note, however, that traffic data collected from GPS or sensing devices can be imprecise 



 

3 

and uncertain, due to the imperfect nature of devices or inherent uncertainty of vehicle 

velocities. For example, different vehicles may have different speeds on the same roads, and 

the speed of even the same vehicle may be time-varying. Thus, the collected speeds or 

traveling times of vehicles may not be accurate and fully reflect the actual traffic conditions 

on roads. Inspired by this, in this paper, we model such road networks by probabilistic graphs, 

over which each edge is associated with uncertain traveling time (represented by traveling 

time samples on the road, each with an appearance probability). This model can capture the 

realistic scenario of road networks. 

In this paper, we will study an important query, probabilistic shortest time query (PSTQ), 

in the context of uncertain road networks which retrieves those facilities on road networks 

with the shortest traveling time from a given query point and with high confidence. 

Intuitively, the PSTQ problem can obtain probabilistic paths from the query point to facilities 

that have smaller traveling time than all other facilities with high probability. Different from 

prior works on nearest neighbor queries over certain road networks, our PSTQ problem 

considers the uncertainty of the traveling times (rather than certain traveling distance/time) in 

uncertain road networks (instead of certain road networks). Therefore, it is more challenging 

to answer PSTQ efficiently and effectively. 

In particular, the challenges of answering PSTQs are as follows. First, due to the 

uncertainty of road networks, we usually consider possible worlds semantics following the 

literature of probabilistic databases [4, 24], where each possible world is a deterministic road 

network (with a certain traveling time on each road) that may appear in the real world. Since 
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the number of possible worlds for uncertain road networks is exponential, it is not efficient or 

even feasible to materialize all possible worlds. Thus, it is challenging to efficiently retrieve 

PSTQ answers. Second, the PSTQ problem involves the graph structure, in which the time 

complexity of calculating the shortest traveling time of paths is high. Therefore, it also 

requires designing efficient solution to speed up the query efficiency. 

In order to tackle the challenges mentioned above, in this paper, we design effective 

pruning strategies, time bound pruning and probabilistic bound pruning, to reduce the PSTQ 

search space. Moreover, to further improve the query performance, we also propose a novel 

pruning technique, namely (probabilistic) time Voronoi pruning, by utilizing an offline pre-

computed (probabilistic) time Voronoi over uncertain road networks. Based on offline pre-

computations, we construct an index, and propose efficient PSTQ processing approach to 

query over the index. 

Specifically, we make the following contributions in this paper. 

1. We model the road networks by uncertain graphs with uncertain traffic conditions, 

and propose the problem of probabilistic shortest time query (PSTQ) over uncertain 

road networks in Section 2. 

2. We carefully design effective pruning methods, time bound pruning andprobabilistic 

bound pruning, to filter out false alarms of PSTQ answers in Section 3. 

3. We propose an offline pre-computation technique that utilizes (probabilistic) time 

Voronoi to prune PSTQ candidates in Section 4. 

4. We design an index to organize the pre-computed data, and facilitate the PSTQ 
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pruning. We illustrate efficient PSTQ query procedure by traversing the index in 

Section 5. 

5. We demonstrate through extensive experiments the efficiency and effectiveness of our 

proposed PSTQ approaches in Section 6. 

In addition, Section 7 reviews previous works on query processing over certain/uncertain 

road networks. Finally, Section 8 concludes this paper. 
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CHAPTER II 
 
 

PROBLEM DEFINITION 
 
 

Uncertainty Model 
 

Data Model of Uncertain Road Networks 

In this subsection, we describe the data model of road networks with uncertain traveling 

time. Currently, there are many real-word applications that involve road networks. For 

example, online map services have recently become very popular and are frequently used to 

query the shortest distance or traveling time between the source and destination, where traffic 

data can be obtained from roadside sensors or cell phone signal analysis on a daily basis. 

However, this online service cannot always provide accurate real-time traffic data. For 

instance, different vehicles may have different speeds even on the same road segments; the 

velocities of vehicles may also change over time. Thus, the traveling time along each road 

segment derived from sensors or cell phone signals is often imprecise and uncertain. 

Therefore, we will model the road network by a probabilistic graph, in which each edge is 

associated with uncertain traveling time. To capture the uncertainty, we assume that the 

traveling time on each edge is a random variable, which follows some probabilistic 

distribution. Such a distribution can be represented by either discrete sample or a continuous 

probability destiny function (pdf). 

Definition 1 (Uncertain Road Networks). An uncertain road network, RN, is defined as 

an uncertain graph G = (V, E, ϕ), where V contains a set of vertices(nodes) n1, n2, . . . , and 

n|𝑉|, each n𝑖 (1 ≤i ≤ |V|) residing at a 2D location (x(𝑛𝑖),y(𝑛𝑖)), E is a set of edges, each e𝑖,𝑗 ϵ E 

associated with a velocity variableZ(e𝑖,𝑗), and ϕ is a mapping from V × V to E. 
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In the definition above, we assume that the velocity variableZ(e𝑖,𝑗) on each edge e𝑖,𝑗 

has a pdf function, which can be represented by either discrete samples or a continuous 

pdf function. In this paper, we use discrete samples to represent the distribution of 

velocity variables Z(e𝑖,𝑗) , where each sample, s𝑖,𝑗 , isassociated with an appearance 

probability s𝑖,𝑗. p �∑ 𝑠𝑖,𝑗.𝑝 = 1∀𝑠𝑖,𝑗 �. 

Example 1. In the example of Figure 1, nodes n1, n2,…, and n11 are intersection points 

of road segments on the road network. Table 1 depicts the location of each node 𝑛𝑖 (for 1 ≤i ≤ 

11), which is described by 2D coordinates. Moreover, e𝑖,𝑗  is an edgefrom node 𝑛𝑖  to  𝑛𝑗 , 

whose distance is denoted by 𝑑𝑖𝑠𝑡�n𝑖, n𝑗�. Table 2 shows traveling distances and uncertain 

velocities on each edge, where each edge e𝑖,𝑗 is associated with a probability density function, 

pdf(e𝑖,𝑗), of the velocity variable. 

 

The Traveling Time of a Probabilistic Path 

The traveling time on a road segment e𝑖,𝑗 is often determined by the edge length and 

uncertain speeds of vehicles on it. In the sequel, we formally define uncertain traveling time 

of a path on road networks. 

Definition 2 (The Traveling Time of a Path on UncertainRoad Networks). Given an 

uncertain road network RN, and two points x and y on RN, we denote the traveling time 

between two points, x and y, on uncertain road networks as 𝑡(x, y) ϵ [𝑡−(x, y),𝑡+(x, y)], where 

𝑡−(x, y) and 𝑡+(x, y) are minimum and maximum possible traveling time on the shortest path, 

𝑝𝑎𝑡ℎ(x, y), between points x and y on RN. 

Intuitively, the traveling time 𝑡�o𝑖, o𝑗� of each edge (road) e𝑖,𝑗 on the path 𝑝𝑎𝑡ℎ(x, y) is 

given by 𝑑𝑖𝑠𝑡(o𝑖, o𝑗)/𝑣�o𝑖, o𝑗�, where 𝑑𝑖𝑠𝑡(x, y) is the length of edge e𝑖,𝑗 and 𝑣�o𝑖 , o𝑗� is the 

velocity variable. Since the vehicle velocity, 𝑣�o𝑖, o𝑗�, of edge e𝑖,𝑗  is a variable (following 

probability density functions pdf (e𝑖,𝑗)), the traveling time 𝑡�o𝑖, o𝑗�is therefore uncertain. Thus, 
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in Definition 2, the traveling time of the entire path 𝑝𝑎𝑡ℎ(x, y)  is given by summing up 

traveling times of edges on 𝑝𝑎𝑡ℎ(x, y) , which is also a variable within an interval 

[𝑡−(x, y),𝑡+(x, y)]. 

In this paper, we use discrete samples of the traveling time (i.e., edge length divided by 

velocity samples) to represent the distribution of the traveling time variable. We assume that 

samples of the traveling time are collected independently on different road segments. 

Moreover, the case of correlated time samples on adjacent roads can be modeled by 

considering the joint probabilities of traveling time variables. We would like to leave this 

interesting topic (i.e., with correlated time samples on consecutive roads) as our future work. 

 

Facilities on Uncertain Road Networks 

Next, we give the definition of facilities (a.k.a. points of interest, or POI) on uncertain 

road networks below. 

Definition 3 (Facility). Given an uncertain road network RN, facilities on RN are 

denoted by objects o1, o2, . . . , and o𝑛,which have attributes, including facility types and 2-

dimension allocations (x(o𝑖),y(o𝑖)). 

In a road network, there are different types of facilities such as hotels, restaurants and 

airports. Thus, each facility, o𝑖, as definedin Definition 3, has its type attribute. Moreover, 

facilities usually reside on edges, which also have their 2D coordinates. 

Example 2. Table 3 shows 5 facility points, o1 (hotel), o2 (restaurant), o3 (airport),o4 (hotel), 

and o5 (hotel) in the road network of Figure 1. Each facility o𝑖 (1≤i≤5) has its own location 

on the road network and its associated edge. For example, hotel o1 is at position (6, 5) on 

road segment e5,6, restaurant o2 is at position (7, 4) on road segment e6,11, and so on. 

For the ease of illustration, in the following discussions, we will focus on uncertain 

road networks with one type of facilities (e.g., hotel). The case of multiple types of facilities 
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can be easily extended by considering different facility types separately. 

 

Probabilistic Shortest Time Queries 
 

In this subsection, we formally define the probabilistic shortest time query (PSTQ) on 

uncertain road networks. 

Definition 4 (Probabilistic Shortest Time Query, PSTQ). Given an uncertain road 

network RN, a set of facilities o1, o2,. . . , and o𝑛 on RN, a query point q, and a probabilistic 

threshold α , a PSTQ returns a set of objects 𝑜𝑖  that have the shortest time to q  with 

probability, PrPSTQ(q, oi), greater than α, that is, 

PrPSTQ�q, oj� =∑ �𝑃𝑟{𝑡(𝑞, 𝑜𝑖) = 𝑇} ∙ ∏ �1 − 𝑃𝑟�𝑡(𝑞, 𝑜𝑗) ≤ 𝑇��∀𝑜𝑗≠𝑜𝑖 �∀𝑇 >α   (1) 

In order to find the query result with the shortest time to query point q, we calculate the 

traveling time, t(𝑞, 𝑜𝑖) , from q to o𝑖 , and its probability for each possible value T of the 

traveling time. The probability that o𝑖 is the PSTQ answer is determined by the following 

condition: the probability that the time cost t(𝑞, 𝑜𝑖) equals T and the time costs t�𝑞, 𝑜𝑗� of any 

other objects are higher than T should be greater than threshold α. Assuming independent 

velocities on connecting edges, the PSTQ probability, PrPSTQ(q, oi), is given by summing up 

probabilities that t(𝑞, 𝑜𝑖)= T and t(𝑞, 𝑜𝑖) >  𝑇 over all possible values of T. 

Example 3. In the example of Figure 1, given a query point 𝑞 at location (6, 1.5) on 

uncertain road networks and a probabilistic threshold α= 80%, the PSTQ query retrieves 

those objects (hotels) from S = { o1 , o4 , o5 }that have the smallest traveling times with 

probability greater than α. We compute the traveling time t and its probability p from point 𝑞 

to o1, o4, and o5, the traveling time and its probability on each edge are shown in Table 4. For 

example, t(𝑞, n11) records 3 possible values of the traveling time on the first edge e𝑞,𝑛11 of the 

path from 𝑞 to o1, and p represents their probabilities. 

As shown in Table 5, the traveling time interval of t(𝑞, 𝑜1) from𝑞 to o1is [0.134, 0.152], 
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the time interval of t(𝑞, 𝑜4) from 𝑞 to 𝑜4 is [0.112, 0.131], and the traveling time t(𝑞, 𝑜5) from 

𝑞 to o5 is within interval [0.122, 0.137]. Based on the Eq. (1) in Definition4, we have 

PrPSTQ(𝑞, 𝑜1) = 0,  PrPSTQ(𝑞, 𝑜4) = 87.557%, and PrPSTQ(𝑞, 𝑜5) = 7.706%. Object 𝑜4 has a high 

probability (greater than 80%) of having the shortest time to query object 𝑞 , among all 

traveling times of the three objects. Thus, object o4 is one of our PSTQ query answers. 

Challenges 

In a large road network, one straightforward method of answering the PSTQ problem is 

to compute the PSTQ probabilities above α as query answers. This method, however, is rather 

time consuming. Specifically, it is rather costly to compute the PSTQ probability, 

PrPSTQ(q, oi), in Eq. (1). This is because, it involves all objects in road networks (and has to 

consider exponential number of possible worlds [4]), which is very inefficient. Moreover, the 

cost of computing probabilities by traversing the graph is also high. Thus, in order to 

efficiently answer PSTQs, we should design effective pruning methods to reduce the search 

space, and propose efficient query processing approaches to retrieve PSTQ results. Table 6 

summarizes the commonly used symbols and their descriptions in this paper. 

 

 

Table 1: Nodes of uncertain road networks in Figure 1. 
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Table 2: Edges of uncertain road networks in Figure 1. 
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Table 3: Facilities on uncertain road networks of Figure 1. 

 

 

 

 

 

Table 4: Possible traveling times of road segments on path 𝑝𝑎𝑡ℎ(q, oi) from 𝑞 to hotels. 
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Table 5: Possible traveling times, t(𝑞, 𝑜𝑖), of the path from 𝑞 to 𝑜𝑖and their appearance 

probabilities, t(𝑞, 𝑜𝑖). p. 

 

Table 6: Notations and their descriptions. 
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CHAPTER III 
 
 

PRUNING STRATEGIES 
 
 

Time Bound Pruning 
 

In this section, we will introduce a pruning method to quickly eliminate objects that are 

not PSTQ query answers. Specifically, consider intervals of two traveling time t(𝑞, 𝑜𝑖) and 

t�𝑞, 𝑜𝑗�. If the lower bound of the traveling time t(𝑞, 𝑜𝑖) is greater than the upper bound of the 

traveling time t�𝑞, 𝑜𝑗�, then we can conclude that 𝑜𝑖 is not a query answer to the PSTQ due to 

the existence of 𝑜𝑗. More generally, we can eliminate objects from a facility set, S = {o1, 

o2,… , o𝑛}, by using this pruning method. Let [T𝑖−, T𝑖+] represent the traveling time interval of 

t(𝑞, 𝑜𝑖)= 𝑑𝑖𝑠𝑡(𝑞, 𝑜𝑖)/ 𝑣(𝑞, 𝑜𝑖) from object 𝑞 to 𝑜𝑖, where T𝑖− is the lower bound of the traveling 

time, and T𝑖+ is the upper bound of the traveling time. We have the following lemma about the 

pruning method with the time bounds. 

Lemma 1 (Time Bound Pruning). Assuming that t(𝑞, 𝑜𝑖) ϵ [T𝑖−, T𝑖+] and t�𝑞, 𝑜𝑗� ϵ [T𝑗−, T𝑗+] for 

𝑜𝑖, 𝑜𝑗 ϵ S, if T𝑖− > T𝑗+, then 𝑜𝑖 can be safely pruned from S. 

Next, we discuss how to compute the lower and upper bounds of the traveling time in 

our time bound pruning method. Assume that there exists a set of points n𝑠𝑡, n𝑠𝑡+1, n𝑠𝑡+2, . . . , 

n𝑒𝑑, where n𝑠𝑡 is a starting point and n𝑒𝑑is an ending point. Nodes 𝑛𝑗(or 𝑛𝑘) are points on 

road segments, which belong to 𝑝𝑎𝑡ℎ(q, oi). The velocity of traveling on road e𝑗,𝑘, is given by 

v ϵ[ 𝑣−�n𝑗, n𝑘� , 𝑣+�n𝑗, n𝑘� ]. Thus, we have T𝑗𝑘− = 𝑑𝑖𝑠𝑡�n𝑗 , n𝑘� / 𝑣+�n𝑗, n𝑘� , and T𝑗𝑘+ = 

𝑑𝑖𝑠𝑡�n𝑗, n𝑘�/𝑣−�n𝑗, n𝑘�, where T𝑗𝑘−  and T𝑗𝑘+  are lower and upper bounds of the traveling time on 

edge e𝑗,𝑘 , respectively. The lower bound of the time cost, T𝑖− , of path from 𝑞  to o𝑖  is the 
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summation of T𝑗𝑘−  for all edges e𝑗,𝑘 on 𝑝𝑎𝑡ℎ(q, oi). Similarly, the upper bound of the time cost, 

Ti, is the summation of T𝑗𝑘+ for all edges e𝑗,𝑘 on 𝑝𝑎𝑡ℎ(q, oi). 

Lemma 2 (Lower and Upper Bounds of the Traveling Time). For two points n𝑗 and n𝑘on  

𝑝𝑎𝑡ℎ(q, oi), if the velocity of traveling on the road is v ϵ [𝑣−�n𝑗, n𝑘�,𝑣+�n𝑗, n𝑘�], we have 

T𝑗𝑘− =  𝑑𝑖𝑠𝑡�n𝑗, n𝑘� /𝑣+�n𝑗, n𝑘� , T𝑗𝑘+ = 𝑑𝑖𝑠𝑡�n𝑗 , n𝑘� /𝑣−�n𝑗, n𝑘� , 𝑇𝑖− = ∑ T𝑗𝑘−∀𝑒𝑗𝑘∈𝑝𝑎𝑡ℎ(𝑞,𝑜𝑖)  and𝑇𝑖+ =

∑ T𝑗𝑘+∀𝑒𝑗𝑘∈𝑝𝑎𝑡ℎ(𝑞,𝑜𝑖)  . 

Below, we show our time bound pruning method that filters out false alarms, using the 

following example. 

Example 4. As shown in Table 5, the traveling time, t(𝑞, 𝑜1), from point 𝑞 to o1 is within 

interval [T1−,T1+ ] = [0.134, 0.152], t(𝑞, 𝑜4) from point 𝑞 to o4 is within interval [T4−,T4+] = 

[0.112, 0.131], and t(𝑞, 𝑜5) from point 𝑞 to o5 is within interval [T5−,T5+] = [0.122, 0.137]. 

Since T1− > T4+, we can thus immediately prune object o1. 

In Example 4, we use Lemma 1 to prune object o1 from S. Note, however, that it is 

infeasible to prune object o5 from S by using time bound pruning, since the traveling time 

interval of t(𝑞, 𝑜5) overlaps with that of t(𝑞, 𝑜4). Thus, in the next section, we will explore 

probabilistic information to enhance the pruning power. 

Probabilistic Bound Pruning 
 

In this section, we introduce a pruning method that uses probabilistic bound to filter out 

false alarms. Specifically, consider intervals of two traveling time t(𝑞, 𝑜𝑖) and t�𝑞, 𝑜𝑗�, that 

have overlaps. In order to prune object o𝑗, we introduce a way to prune a portion of t(𝑞, 𝑜𝑖), 

and get probabilistic upper bound of t(𝑞, 𝑜𝑖). The definition of probabilistic upper bound can 

be given as follows: 

Definition 5 (𝛽 − upper− bound). Assuming that the traveling time t(𝑞, 𝑜𝑖)ϵ [Ti−, Ti+] for 𝑜𝑖ϵ S, 

a 𝛽 − upper − bound of t(𝑞, 𝑜𝑖) is denoted as T𝑖+.𝛽 which satisfies Pr{t(𝑞, 𝑜𝑖) ϵ[Ti−, Ti+. 𝛽]}= 𝛽. 

In Definition 5, the 𝛽 − upper − bound , Ti+ .𝛽 , is given by an upper bound of the 
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traveling time t(𝑞, 𝑜𝑖), such that t(𝑞, 𝑜𝑖) is in the interval [Ti−,Ti+.𝛽] with probability 𝛽. 

Discussion on how to choose β in discrete sample 

 Given a list of discrete samples τ={τ1, τ2,…, τn}and its corresponding probability 

τ.p={p1, p2,…, pn}, where τi (i ϵ [1,n]) is in ascending order, we add probability of the first m 

samples. If it satisfies ∑i=1
m-1 pi<β and ∑i=1

mpi  ≥ β, then we choose ∑i=1
mpi  as the value of β. 

Lemma 3 (Probabilistic Bound Pruning). Assuming that t(𝑞, 𝑜𝑖) ϵ[ Ti− , Ti+ ] and t�𝑞, 𝑜𝑗� ϵ 

[Tj−,Tj+.𝛽] for o𝑖, o𝑗ϵ S, if it holds that 𝛽 ≥ 1 − 𝛼 and Ti− > Tj+.𝛽, then object o𝑖 can be safely 

pruned fromS. 

Proof: We prove the correctness of our probabilistic bound pruning, by using the example in 

Figure 2. Specifically, for o𝑖, o𝑗ϵ S, t(𝑞, 𝑜𝑖) and t�𝑞, 𝑜𝑗� are with intervals of two traveling time 

[Ti−,Ti+] and [Tj−,Tj+] respectively. Assume that, Tj+.𝛽 is a 𝛽 − upper− bound of t�𝑞, 𝑜𝑗� which 

satisfies Pr {  t�𝑞, 𝑜𝑗�  ϵ [ Tj− , Tj+ .𝛽 ]}= 𝛽 . From Eq. (1) in Definition 4, we overestimate 

Pr{ t�𝑞, 𝑜𝑗� > 𝑇 } of any other objects oj in S. Since we have Pr{ t�𝑞, 𝑜𝑗� > 𝑇 } ≤ 1 for any 

other objects, we have the probability that 𝑜𝑖 has the shortest time to 𝑞 below: 

𝑃𝑟𝑃𝑆𝑇𝑄�𝑞, 𝑜𝑗�      (2) 

≤��Pr {𝑡(𝑞, 𝑜𝑖) = 𝑇} ∙ (Pr {𝑡(𝑞, 𝑜𝑗) > 𝑇}) × 1�
∀𝑇

 

≤�Pr{𝑡(𝑞, 𝑜𝑖) = 𝑇}
∀𝑇

· (Pr�𝑡�𝑞, 𝑜𝑗� > 𝑇�𝑡�𝑞, 𝑜𝑗�𝜖�T𝑗+,𝑇𝑗+.β�� + 

Pr�𝑡�𝑞, 𝑜𝑗� > 𝑇|𝑡�𝑞, 𝑜𝑗�𝜖�T𝑗+.β,𝑇𝑗+��)) 

From the lemma assumption, since 𝑇𝑗+.𝛽 < 𝑇𝑖− ≤ 𝑡(𝑞, 𝑜𝑖) = 𝑇, we have Pr�𝑡(𝑞, 𝑜𝑖) >

𝑇|𝑡(𝑞, 𝑜𝑗)𝜖[𝑇𝑖−,𝑇𝑖+.𝛽]� = 0. Moreover, from the definition of 𝛽 − upper − bound in Definition 

5, it hold that : Pr�𝑡(𝑞, 𝑜𝑗) > 𝑇�𝑡(𝑞, 𝑜𝑗) ∈ �𝑇𝑗+.𝛽,𝑇𝑗+�� < 1 − 𝛽. Thus, we can derive that: 

𝑃𝑟𝑃𝑆𝑇𝑄�𝑞, 𝑜𝑗� < �Pr�𝑡�𝑞, 𝑜𝑗� = 𝑇�
∀𝑇

× (0 + 1 − 𝛽) 

< 1 × (1 − 𝛽) = 1 − 𝛽 
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Therefore, we can conclude that the upper bound of 𝑃𝑟𝑃𝑆𝑇𝑄�𝑞, 𝑜𝑗� is 1 − 𝛽. If 𝛽 ≥ 1 − 𝛼, 

that is 1 − 𝛽 ≤ 𝛼, the probability 𝑃𝑟𝑃𝑆𝑇𝑄�𝑞, 𝑜𝑗� that 𝑜𝑖 has the shortest time to 𝑞 must be less 

than 𝛼. Hence, we can safely prune 𝑜𝑖 from S. 

 

Figure 2: An example of probabilistic bound pruning. 

 

An example of using probabilistic bound pruning can be shown as follows: 

Example 5. As shown in Table 5, the traveling time, 𝑡(𝑞, 𝑜4) from point 𝑞 to o4 is within 

interval [𝑇4−,𝑇4+] = [0.112,0.131] . And that 𝑡(𝑞, 𝑜5)  from point 𝑞  to o5  is within interval 

[𝑇5−,𝑇5+] = [0.122,0.137].  𝑇5− is the lower bound of 𝑡(𝑞, 𝑜5). Next, we compute a 𝛽 − upper−

bound for o4. According to Lemma 3, we have the following upper bound for 𝑡(𝑞, 𝑜5). Given 

a threshold 𝛼  = 80%, a 𝛽  bound of 𝑡(𝑞, 𝑜5)  must satisfy 𝛽 ≥ 1 − 𝛼 = 20% , we choose a 

0.22− upper − bound of 𝑡(𝑞, 𝑜5) which is within [0.122,0.137], a probabilistic upper bound of 

𝑡(𝑞, 𝑜5)  is 𝑇4+. 0.22 = 0.115, since 0.115 < 0.122, we can immediately prune object o5 from S. 

Generalization of Probability Upper Bound 

In Lemma 3, we use the 𝛽 − upper − bound, 𝑇𝑗+.β, of only one object 𝑜𝑗 to prune object 

𝑜𝑖. Below, we generalize the pruning method to the one that uses multiple (e.g., s) candidate 

objects 𝑜𝑗1, 𝑜𝑗2,…, 𝑜𝑗𝑠, where 𝑠 ≥ 1. Specifically, for each object 𝑜𝑗𝑟(1 ≤ 𝑟 ≤ 𝑠) assume that its 

traveling time 𝑡�𝑞, 𝑜𝑗𝑟� has a 𝛽𝑟 − upper − bound, denoted as 𝑇𝑗𝑟+.βr, such that 𝑇𝑖− > 𝑇𝑗𝑟+.βr, 
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where 𝑇𝑖− is the lower bound of the traveling time 𝑡(𝑞, 𝑜𝑖) for an object 𝑜𝑖. 

Then, we can define a generalized (tighter) upper bound of the PSTQ probability 

PrPSTQ(q, oi) which is given by ∏ (1 − 𝛽𝑟)𝑠
𝑟=1 .  From Lemma 3, we can immediately derive the 

following corollary. 

Corollary 1 Given objects o𝑖, 𝑜𝑗𝑟 ∈ 𝑆(1 ≤ 𝑟 ≤ 𝑠) , assume that 𝑡(𝑞, 𝑜𝑖) ∈ [𝑇𝑖−,𝑇𝑖+]  and 

𝑡�𝑞, 𝑜𝑗𝑟� ∈ �𝑇𝑗−,𝑇𝑗𝑟+ ∙ 𝛽𝑟�, where 𝑇𝑖− > 𝑇𝑗𝑟+.𝛽𝑟  holds. If it satisfies the condition that ∏ (1 −𝑠
𝑟=1

𝛽𝑟) ≤ 𝛼, then object o𝑖 can be safely pruned. 

Discussions on How to Obtain Probabilistic Upper Bound 

In Lemma 3, object o𝑖  can be filtered out from S, if a 𝛽 − upper− bound of 𝑡�𝑞, 𝑜𝑗�  

holds 𝛽 ≥ 1 − 𝛼  and 𝑇𝑖− > 𝑇𝑗𝑟+.𝛽 . Now one remaining issue to be addressed is as follows: 

given a threshold α, how to obtain probabilistic upper bound (i.e., 𝛽 − upper− bound) for a 

path between two objects 𝑞 and o𝑖. 

We next discuss how to obtain such a 𝛽 − upper − bound of traveling time 𝑡�𝑞, 𝑜𝑗� (as 

given in Lemma 3) for a path, 𝑝𝑎𝑡ℎ�q, oj�. Our basic idea is to consider summing up 𝛽𝑤 −

upper − bounds of traveling times for all the 𝑙 edges (road segments) on 𝑝𝑎𝑡ℎ�q, oj�. 

Without loss of generality, we assume that the w − th  edge on 𝑝𝑎𝑡ℎ�q, oj�  has the 

traveling time intervals �𝑇𝑗
(𝑤)−,𝑇𝑗

(𝑤)+�, where 1 ≤ 𝑤 ≤ 𝑙. Moreover, we denote 𝑢𝑏𝑤(1 ≤ 𝑤 ≤

𝑙) as the 𝛽𝑤 − upper − bounds of the traveling time on the w − th edge of 𝑝𝑎𝑡ℎ�q, oj�. In other 

words, the traveling time on the w − th edge is interval �𝑇𝑗（𝑤）−,𝑢𝑏𝑤� with probability 𝛽𝑤 . 

Then, for β = ∏ 𝛽𝑤𝑙
𝑤=1 , we can obtain a 𝛽 − upper − bound, 𝑇𝑗+.𝛽, of 𝑡�𝑞, 𝑜𝑗� by ∑ 𝑢𝑏𝑤𝑙

𝑤=1 . 

For simplicity, below, we denote the 𝛽 − upper − bound, 𝑇𝑗+.β as 𝑢𝑏.  

Note that, we can select different pairs of 𝛽𝑤 and 𝑢𝑏𝑤 on the w − th edge (1 ≤ 𝑤 ≤ 𝑙). In 

order to enhance the pruning power, we want to choose (𝛽𝑤 ,𝑢𝑏𝑤  )-pairs on edges of 

𝑝𝑎𝑡ℎ�q, oj� such that the 𝛽 − upper − bound, 𝑢𝑏(i.e.,𝑇𝑗+,𝛽)，is minimized, on condition that 
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𝛽 ≥ 1 − 𝛼. 

Straightforward Method: A straightforward method to minimize 𝑢𝑏 is to enumerate all 

possible combinations of traveling time samples on edges 𝑝𝑎𝑡ℎ�q, oj�  and identify one 

combination that has the smallest 𝑢𝑏 and satisfies the 𝛽 constraint (i.e., 𝛽 ≥ 1 − 𝛼). 

Specifically, assume that there are m samples of traveling times on each edge. Then, the 

w − th edge on 𝑝𝑎𝑡ℎ�q, oj� has m possible 𝛽𝑤 − upper − bounds, 𝑢𝑏𝑤, which indicate that the 

traveling time falls into interval �𝑇𝑗（𝑤）−,𝑢𝑏𝑤� with probability  𝛽𝑤 . By materializing all 

possible combinations of (𝛽𝑤 , 𝑢𝑏𝑤 )-pairs on edges, we can find a minimum 𝛽 − upper−

bound, 𝑢𝑏(= ∑ 𝑢𝑏𝑤𝑙
w=1 ), such that 𝛽=∏ 𝛽𝑤 ≥ 1 − 𝛼𝑙

𝑤=1 . 

However, the straightforward method mentioned above is rather inefficient. In particular, 

the time complexity is exponential, that is, O(𝑚𝑙) , where 𝑚  is the (average) number of 

samples on each edge, and 𝑙 is the path length from 𝑞 to 𝑜𝑗. Thus, it is impractical, or even 

infeasible, to enumerate all possible combinations for long paths. Inspired by this, we 

alternatively seek for a greedy algorithm to approximately compute a tight 𝛽 − upper −

bound. 

Greedy Algorithm to Compute the β-upper-bound: Next, we provide a greedy 

algorithm to obtain a tight (small) 𝛽 − upper − bound of the traveling time on a path, without 

enumerating all sample combinations. Specifically, our greedy algorithm recursively extends 

the path by varying its length from 1 to 𝑙, and maintains M (𝛽，𝑢𝑏)-pairs for the traveling 

time on 𝑝𝑎𝑡ℎ�q, oj� of length l. 

1. Base Case. On the first edge of path 𝑝𝑎𝑡ℎ�q, oj� (i.e., the subpath, 𝑃1, of length 𝑤 = 1), 

let 𝑎𝑟𝑟_𝑡1 be a sorted array of size n, which contains n1 samples of the traveling time in 

ascending order. We first select M out of n1  samples 𝑡1
(1), 𝑡1

(2)  and 𝑡1
(𝑀)  as   

𝛽 − upper− bounds  of the first edge (note: including the minimum and maximum time 

samples). Each sample, 𝑡1
(𝑤)(1 ≤ 𝑤 ≤ 𝑀), is associated with a 𝛽𝑤 value, denoted as 𝑡1

(𝑤).𝑝, 
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which is given by the probability that the traveling time on the first edge is not greater than 

𝑡1
(𝑤) . Denote 𝑎𝑟𝑟_𝑢1  and 𝑎𝑟𝑟_𝛽1  as arrays { 𝑡1

(𝑤)/1 ≤ 𝑤 ≤ 𝑀  } and {𝑡1
(𝑤).𝑝/1 ≤ 𝑤 ≤ 𝑀  }, 

respectively, where 𝑎𝑟𝑟_𝑢1 is sorted in ascending order of 𝛽𝑤 − upper − bounds, and 𝑎𝑟𝑟_𝛽1 

[𝑤] ≥ 1 − 𝛼 for all 𝑤. 

2. Recursive Computation. When the prefix, 𝑃𝐾,of 𝑝𝑎𝑡ℎ�q, oj� has length k (i.e., 𝑤 = k), 

assume that we can obtain two arrays, 𝑎𝑟𝑟_𝑢𝑘 = {𝑡𝑘
(𝑤)/1 ≤ 𝑤 ≤ 𝑀 }and 𝑎𝑟𝑟_𝛽𝑘={𝑡𝑘

(𝑤).𝑝/1 ≤

𝑤 ≤ 𝑀}, which stores different 𝛽𝑤 − upperbounds of the traveling time on subpath 𝑃𝐾, and 

their corresponding 𝛽(≥ 1 − 𝛼) values, respectively. Note that, 𝛽𝑤 − upper bounds in array 

𝑎𝑟𝑟_𝑢𝑤 are sorted in ascending order. 

When we consider the subpath (prefix), 𝑃𝑘+1, of 𝑝𝑎𝑡ℎ�q, oj� (for 𝑤 = 𝑘 + 1), we combine 

the  𝛽𝑤 − upper  bounds on subpath  𝑃𝑘  with that of the (𝑘 + 1) − th  edge on 𝑝𝑎𝑡ℎ�q, oj� 

Specifically, we obtain combinations of 𝑀 𝛽𝑤 − upper bounds from 𝑎𝑟𝑟_𝑢𝑘 and n𝑘+1  samples 

of traveling times on the (k + 1) − th edge of the path (stored in a sorted array 𝑎𝑟𝑟_𝑡𝑘+1). 

Each combination is corresponding to a 𝛽 − upper − bounds, (𝑎𝑟𝑟_𝑢𝑘[𝑖] + 𝑎𝑟𝑟_𝑡𝑘+1[𝑗]), as 

well as the  𝛽  value 𝑎𝑟𝑟_𝛽𝑘[𝑖]∑ 𝑎𝑟𝑟𝑡𝑘+1[𝑟].𝑝
𝑗
𝑟=1  for 1 ≤ 𝑖 ≤ 𝑀  and 1 ≤ 𝑗 ≤ n𝑘+1 . Then, we 

choose 𝑀 out of (𝑀 ∙ n𝑘+1) combinations (uniformly w.r.t.𝛽 values) such that 𝛽 ≥ 1 − 𝛼, and 

store pairs of 𝛽 − upper− bounds  and their 𝛽  values s in arrays 𝑎𝑟𝑟_𝑢𝑘+1  and 𝑎𝑟𝑟_𝛽𝑘+1 , 

respectively. 
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Figure 3: Algorithm for finding probabilistic upper bound. 

 

Figure 3 illustrates the pseudo code, Algorithm PUB, of finding 𝛽 − upper − bounds of 

𝑝𝑎𝑡ℎ�q, oj�, as well as different 𝛽 values. In particular, we maintain two arrays of size 𝑀, 

𝑎𝑟𝑟_𝑢𝑤  and  𝑎𝑟𝑟_𝛽𝑤 , which are used for storing  𝛽 − upper − bounds  and 𝛽 values for a 

subpath(prefix) of path 𝑝𝑎𝑡ℎ�q, oj� with length 𝑤 (line 1). Then, starting from the first edge on 

𝑝𝑎𝑡ℎ�q, oj�, we compute arrays 𝑎𝑟𝑟_𝑢1, by randomly selecting samples from array 𝑎𝑟𝑟_𝑡1 

(which contains traveling time samples on the first edge) (lines 2-4). We also update the 𝛽 

values in array 𝑎𝑟𝑟_𝛽1, with respect to that in 𝑎𝑟𝑟_𝑢1 (line 5). Next, we extend the subpath 

for length 𝑤 from 2 to 𝑙, and compute the corresponding arrays 𝑎𝑟𝑟 _𝑢𝑤 and 𝑎𝑟𝑟_𝛽𝑤 (lines 6-

11). That is, each time we consider a combination of traveling time samples of subpath 𝑃𝑤−1 

and that of the w − th  edge, and obtain the 𝛽 − upper bound  given by ( 𝑎𝑟𝑟 _ 𝑢𝑤−1[𝑖] +

𝑎𝑟𝑟_𝑡𝑤[𝑗]), where 𝛽=𝑎𝑟𝑟_𝛽𝑤−1[𝑖]·∑ 𝑎𝑟𝑟_𝑡𝑤[𝑟] · p𝑗
𝑟=1 (line 9). Then, we randomly retain 𝑀 

sample combinations with 𝛽 values ≥ 1 − 𝛼, and store them in arrays 𝑎𝑟𝑟_𝑢𝑤  and 𝑎𝑟𝑟_𝛽𝑤 

(lines 10-11). Finally, we return the arrays for the entire 𝑝𝑎𝑡ℎ�q, oj� of length 𝑙, that is, 𝑎𝑟𝑟_𝑢𝑙 
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and 𝑎𝑟𝑟 _𝛽𝑙 (line 12). 
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CHAPTER IV 
 
 

PRUNING WITH PRE-COMPUTATIONS 
 
 

Time Voronoi Pruning 
 

In this section, we introduce a time Voronoi pruning method to enable PSTQs that return 

objects with low probabilities, of being the PSTQ answers. Consider two facility points o1 

and o2 on road networks, we propose an approach to locate two time Voronoi points m1 and 

m2, which divided the path from o1 to o2  into three parts 𝑝𝑎𝑡ℎ(o1, m1), path(m1, m2), and 

𝑝𝑎𝑡ℎ(m2, o2). The time Voronoi points m1 and m2 are defined as follows: 

Definition 6 (Time Voronoi Points). Given two facility points o1 and o2 on the road network 

RN, m1  and m2  are located on the path from o1  to o2 . Let 

𝑇+(o1, m1) = ∑ 𝑑𝑖𝑠𝑡(o𝑗, o𝑘)/𝑣−(o𝑗, o𝑘)∀𝑒𝑗𝑘∈𝑝𝑎𝑡ℎ(o1,m1)  represent the maximum traveling time 

between o1  and m1 , and 𝑇−(m1, o2) = ∑ 𝑑𝑖𝑠𝑡(o𝑗, o𝑘)/𝑣+(o𝑗, o𝑘)∀𝑒𝑗𝑘∈𝑝𝑎𝑡ℎ(m1,o2)  represent the 

minimum traveling time between m1  and o2 . The time 𝑉𝑜𝑟𝑜𝑛𝑜𝑖  point, m1  satisfies the 

condition that 𝑇+(o1, m1) = 𝑇−(m1, o2). 

Similarly, 𝑇+(o1, m2) = ∑ 𝑑𝑖𝑠𝑡(o𝑗, o𝑘)/𝑣−(o𝑗, o𝑘)∀𝑒𝑗𝑘∈𝑝𝑎𝑡ℎ(o1,m2)  represent the maximum 

traveling time between o1  and m2 , and 𝑇−(m2, o2) = ∑ 𝑑𝑖𝑠𝑡(o𝑗, o𝑘)/𝑣+(o𝑗, o𝑘)∀𝑒𝑗𝑘∈𝑝𝑎𝑡ℎ(m2,o2)  

represent the minimum traveling time between m2  and o2 . The time Voronoi point, m2 , 

satisfies the conditionthat 𝑇+(o1, m2) = 𝑇−(m2, o2). 

Lemma 4 (Time Voronoi Pruning). Assuming that m1 and m2 are two time Voronoi points on 

𝑝𝑎𝑡ℎ(o1, o2), if q is located on 𝑝𝑎𝑡ℎ(o1, m1), we can immediately prune o2; if 𝑞 is located on 

𝑝𝑎𝑡ℎ(m2, o2), we can safely prune o1. 
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Proof: We consider the following two cases: 

Case 1: Time Voronoi point m1 satisfies the condition that: 

∑ 𝑑𝑖𝑠𝑡(o𝑗, o𝑘)/𝑣−(o𝑗, o𝑘)∀𝑒𝑗𝑘∈𝑝𝑎𝑡ℎ(o1,m1) = ∑ 𝑑𝑖𝑠𝑡(o𝑗, o𝑘)/𝑣+(o𝑗, o𝑘)∀𝑒𝑗𝑘∈𝑝𝑎𝑡ℎ(m1,o2)  in Definition 

6. If 𝑞 is located on 𝑝𝑎𝑡ℎ(o1, m1), we have 𝑑𝑖𝑠𝑡(o1,𝑞) 

< 𝑑𝑖𝑠𝑡(o1, m1),∀𝑒𝑗𝑘 ∈ 𝑝𝑎𝑡ℎ(o1, q), 𝑣�o𝑗, o𝑘� ≥ 𝑣−�o𝑗, o𝑘�. Moreover, we have𝑑𝑖𝑠𝑡 (o2,𝑞)>

𝑑𝑖𝑠𝑡(o2, m2), ∀𝑒𝑗𝑘 ∈ 𝑝𝑎𝑡ℎ(o2, 𝑞), 𝑣�o𝑗, o𝑘� ≤ 𝑣+(o𝑗, o𝑘). Thus, we can conclude that 𝑇(o1, q) =

 ∑ 𝑑𝑖𝑠𝑡�o𝑗, o𝑘�∀𝑒𝑗𝑘∈𝑝𝑎𝑡ℎ(o1,q) /𝑣�o𝑗, o𝑘�  must be less than 

𝑇(o2,𝑞) =  ∑ 𝑑𝑖𝑠𝑡�o𝑗, o𝑘�∀𝑒𝑗𝑘∈𝑝𝑎𝑡ℎ(o2,𝑞) /𝑣(o𝑗, o𝑘),  that is, 𝑇(o1, q) < 𝑇(q, o2). Thus, if 𝑞 is 

located on 𝑝𝑎𝑡ℎ(o1, m1), o2 can be pruned. 

Case 2: The time Voronoi point m2 satisfies the condition that 

∑ 𝑑𝑖𝑠𝑡(o𝑗, o𝑘)/𝑣−(o𝑗, o𝑘) = ∑ 𝑑𝑖𝑠𝑡(o𝑗, o𝑘)/𝑣+(o𝑗, o𝑘)∀𝑒𝑗𝑘∈𝑝𝑎𝑡ℎ(m2,o1)∀𝑒𝑗𝑘∈𝑝𝑎𝑡ℎ(o2,m2)  in Definition 

6. If 𝑞 is located on 𝑝𝑎𝑡ℎ(m2, o2), we have 𝑑𝑖𝑠𝑡(𝑞, 𝑜2) < 𝑑𝑖𝑠𝑡(m2, o2),  

∀𝑒𝑗𝑘 ∈ 𝑝𝑎𝑡ℎ(𝑞, o2), 𝑣(o𝑗, o𝑘) ≥ 𝑣−(o𝑗, o𝑘). Moreover, we have(o1, q) > 𝑑𝑖𝑠𝑡(o1, m2),  ∀𝑒𝑗𝑘 ∈

𝑝𝑎𝑡ℎ(o2,𝑞),𝑣(o𝑗, o𝑘) ≤ 𝑣+(o𝑗, o𝑘). 

Then, 𝑇(o2,𝑞) = ∑ 𝑑𝑖𝑠𝑡(o𝑗, o𝑘)/𝑣(o𝑗, o𝑘)∀𝑒𝑗𝑘∈𝑝𝑎𝑡ℎ(o2,𝑞)  must be less than 

T(o1, q) =∑ 𝑑𝑖𝑠𝑡(o𝑗, o𝑘)/𝑣(o𝑗, o𝑘)∀𝑒𝑗𝑘∈𝑝𝑎𝑡ℎ(o1,q) ,  that is, 𝑇(o2,𝑞) < 𝑇(o1, q) . Therefore, if 𝑞  is 

located on 𝑝𝑎𝑡ℎ(m2, o2), o1 can be pruned. 

 

Figure 4: Time Voronoi pointsm1 and m2. 

Example 6. As shown in Figure 5, o4 and o5 are two facility points on road network RN, 

n2, n1, n11, n8 are intersection points on the path between o4 and o5, 𝑚4 and 𝑚5 are two time 

Voronoi points. 𝑚4   holds T+(o4 ,m4) = T−(m4 ,o5) and m5  holds T+(o5 ,m5) = T−(m5 ,o4). 

Based on Lemma 4, we know that when q is located on 𝑝𝑎𝑡ℎ(o4,m4), o5 can be pruned safely; 
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when q is located on 𝑝𝑎𝑡ℎ(o5,m5), o4 can be pruned safely. 

 

Figure 5: Time Voronoi Pointsm4 and m5on path(o4, o5) 

Evaluation of 𝑚1 and m2 

We now discuss how to obtain offline pre-computations, m1 and m2. Assuming that o1 

and o2  are two facility points on road network RN, there exist a set of nodesn𝑠𝑡 , n𝑠𝑡+1 , 

n𝑠𝑡+2, . . . , and n𝑒𝑑, and l edges between o1 and o2 on the path.For edges e𝑖𝑗 on path(o1, o2), 

we calculate lower and upper bounds of the traveling times on e𝑖𝑗 , that is [𝑇𝑖𝑗
(1)−,𝑇𝑖𝑗

(1)+], 

[𝑇𝑖𝑗
(2)−,𝑇𝑖𝑗

(2)+],…, and [𝑇𝑖𝑗
(𝑙)−,𝑇𝑖𝑗

(𝑙)+]. If 𝑇𝑖𝑗
(1)+ ≥ ∑ 𝑇𝑖𝑗

(𝑤)−𝑙
𝑤=2 , we can determine that 𝑚1 is located 

on the first edge; otherwise, we further consider the second edge on the path. If 𝑇𝑖𝑗
(1)+ ≤

∑ 𝑇𝑖𝑗
(𝑤)−𝑙

𝑤=2 and 𝑇𝑖𝑗
(1)+ + 𝑇𝑖𝑗

(2)+ ≥ ∑ 𝑇𝑖𝑗
(𝑤)−𝑙

𝑤=3 , then 𝑚1 must be located on the second edge. The 

rest can be deduced by analogy: If ∑ 𝑇𝑖𝑗
(𝑤)+ < ∑ 𝑇𝑖𝑗

(𝑤)−𝑙
𝑤=𝑖

𝑖−1
𝑤=1 and ∑ 𝑇𝑖𝑗

(𝑤)+𝑖
𝑤=1 ≥ ∑ 𝑇𝑖𝑗

(𝑤)−𝑙
𝑤=𝑖+1 , 

we can determine that 𝑚1 located on the w − th edge of path(o1,o2). 

Next, we explain how the location of 𝑚1 is computed on an edge e𝑖𝑗 by the pervious step. 

Moreover, the offset of 𝑚1  on edge e𝑖𝑗 is denoted by 𝑑𝑖𝑠𝑡 ( 𝑛𝑖 , m1 ). Assume that the 

minimumand maximum speeds on edge e𝑖𝑗  are denoted by    v−(𝑛𝑖,𝑛𝑗)  and    v+(𝑛𝑖,𝑛𝑗) , 

respectively. Then, from Definition 6, we have 𝑇+(o1, m1)= 𝑇−(m1, o2). The formula can be 

rewritten as follows: 

𝑇+(o1, n𝑖) + 𝑑𝑖𝑠𝑡(𝑛𝑖,𝑚1)
𝑣−�𝑛𝑖,𝑛𝑗�

= 𝑑𝑖𝑠𝑡�𝑛𝑖,𝑛𝑗�−𝑑𝑖𝑠𝑡(𝑛𝑖,𝑚1)
𝑣+�𝑛𝑖,𝑛𝑗�

+ 𝑇−( n𝑗 ,o2)       (3) 

which can be rewritten as: 

𝑑𝑖𝑠𝑡(𝑛𝑖,𝑚1) = 𝑇−(𝑛𝑖,𝑜2)−𝑇+(o1,n𝑖)
1

𝑣−�𝑛𝑖,𝑛𝑗�
+ 1
𝑣+�𝑛𝑖,𝑛𝑗�

                                   (4) 

Thus, we can find the offset, 𝑑𝑖𝑠𝑡(𝑛𝑖,𝑚1), of 𝑚1 on edge e𝑖𝑗. The case of finding the position 
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of m2 is similar and thus omitted. 

 

Probabilistic Time Voronoi Pruning 
 

In order to enhance the pruning power of time Voronoi pruning, we will propose an 

improved approach that considers probabilistic information. Similar to time Voronoi points, 

we introduce two probabilistic time Voronoi points, m1
𝛽 and m2

𝛽 as follows: 

Definition 7 (Probabilistic Time Voronoi Points). Given two facility points o1 and o2 on the 

road network RN, denote probabilistic time Voronoi points with respect to o1 and o2 as m1
𝛽 

and m2
𝛽  respectively, where  𝛽 ≥ 1 − 𝛼  holds. The probabilistic time Voronoi point, m1

𝛽 , is 

defined as a point on the path from o1 to o2  such that 𝑇+ �o1, m1
𝛽� .β = 𝑇− �m1

𝛽 , o2�, where 

𝑇+ �o1, m1
𝛽� .β is a 𝛽 − upper− bound of the traveling time t �o1, m1

𝛽�. 

 Similarly, a probabilistic time Voronoi point,m2
𝛽 , is defined as a point on the path, 

path(o2, o1), from o2  to o1, that satisfies the condition 𝑇+ �o2, m2
𝛽� .β = 𝑇− �m2

𝛽, o1�, where 

𝑇+ �o2, m2
𝛽� .β is a 𝛽 − upper− bound ofthe traveling timet �o2, m2

𝛽�, and  β ≥ 1 − 𝛼. 

Lemma 5 (Probabilistic Time Voronoi Pruning). Assuming that m1
𝛽 and m2

𝛽  are two 

probabilistic time Voronoi points on path, 𝑝𝑎𝑡ℎ(o1, o2), if 𝑞 is located on 𝑝𝑎𝑡ℎ �o1, m1
𝛽�, then 

o2 can be safely pruned; if 𝑞 is located on 𝑝𝑎𝑡ℎ �o2, m2
𝛽�, then o1 can be pruned. 

Proof: We consider the following 2 cases: 

Case 1: If 𝑞  is located on 𝑝𝑎𝑡ℎ �o1, m1
𝛽� , we have 𝑑𝑖𝑠𝑡(o1, q) < 𝑑𝑖𝑠𝑡 �o1, m1

𝛽�  and 

𝑑𝑖𝑠𝑡(o2,𝑞) > 𝑑𝑖𝑠𝑡 �o2, m2
𝛽� . From Definition7, we know that m1

𝛽  holds that 𝑇− �o1, m1
𝛽� =

𝑇+ �o2, m2
𝛽� .β  and  𝛽 ≥ 1 − 𝛼, thus we have 𝛽 ≥ 1 − 𝛼 and 𝑇−(o2,𝑞) > 𝑇+(o1, q).β. Based on 

Lemma3, we have 𝑃𝑟𝑃𝑆𝑇𝑄{𝑡(𝑞, o2)} < 𝛼, thus, o2 can be pruned. 

Case 2: If 𝑞  is located on 𝑝𝑎𝑡ℎ �o2, m2
𝛽� , we have 𝑑𝑖𝑠𝑡 ( o2 , 𝑞) < 𝑑𝑖𝑠𝑡 �o2, m2

𝛽� and 
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𝑑𝑖𝑠𝑡(o1, q) > 𝑑𝑖𝑠𝑡 �o2, m2
𝛽� . From Definition7, we know that m2

𝛽  holds that 𝑇− �o2, m2
𝛽� =

𝑇+ �o1, m2
𝛽� .β  and 𝛽 ≥ 1 − 𝛼, thus we have  𝛽 ≥ 1 − 𝛼 and 𝑇−(o1,𝑞) > 𝑇+(o2, q).β . Based 

on Lemma3, we have 𝑃𝑟𝑃𝑆𝑇𝑄{𝑡(𝑞, 𝑜1)} < 𝛼 , thus, o1 can be pruned. 

 

 

Figure 6: Probabilistic time Voronoi points m1
𝛽and m2

𝛽
 

 

Example 7. As shown in Figure 7, o4 and o5 are two facility points on road network RN, 

n2, n1, n11 and n8 are intersection points located between o4 and o5, m4 and 𝑚5 are two time 

Voronoi points, and m4
𝛽 and m5

𝛽 are two probabilistic time Voronoi points, and m4
𝛽 satisfies 

𝛽 ≥ 1 − 𝛼 and T−(o5,m4
𝛽) = T+ (m4

𝛽 ,o4). 𝛽, and m5
𝛽  satisfies 𝛽 ≥ 1 − 𝛼 and T−(o4,m5

𝛽) = T+ 

(m5
𝛽,o5).𝛽. Based on Lemma 5, we know that when 𝑞 is located on 𝑝𝑎𝑡ℎ(o4,m4

𝛽), o5 can be 

pruned safely; when 𝑞 is located on 𝑝𝑎𝑡ℎ(o5,m5
𝛽), o4 can be pruned safely. 

 

Figure 7: Probabilistic time Voronoi points m4
𝛽and m5

𝛽 on 𝑝𝑎𝑡ℎ(o4, o5) 

Evaluation of 𝐦𝟏
𝜷 and 𝐦𝟐

𝜷 

Next, we will discuss how to compute the probabilistic time Voronoi points. We first 

consider how to find m1
𝛽 . As introduced in Definition 7, m1

𝛽  must satisfy the following 

conditions: 𝛽 ≥ 1 − 𝛼  and 𝑇− �o2, m1
𝛽� = 𝑇+ �o1, m1

𝛽� .β  . Thus, our goal is to find 
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probabilistic time Voronoi point m1
𝛽  which satisfies T− �o2, m1

𝛽� =  T+ �o1, m1
𝛽� .β , and 

𝛽 = 1 − 𝛼.  The case of point m2
𝛽 is similar, and thus omitted. 

In order to obtain the location of m1
𝛽, we first need to identify the edge on which m1

𝛽 

resides. Our observation is as follows. Given an edge e𝑖𝑗(with ending nodes n𝑖  𝑎𝑛𝑑 𝑛𝑗) on a 

path from o1   to o2 , m1
𝛽   is located on e𝑖𝑗 , if and only if 𝑇+(o1, n𝑖).β ≤ 𝑇−(𝑛𝑖, o2)    and 

𝑇+�o1, n𝑗�.β ≥ 𝑇−�𝑛𝑗, o2� hold, where 𝑇+(𝑥, y) ∙ β  is the 𝛽 − upper− bound  of the traveling 

time between points  𝑥  and y  on road networks, and 𝑇−(𝑥, y)  is the lower bound of the 

traveling time between 𝑥 and y. 

The Computation of Offset 𝑑𝑖𝑠𝑡(n𝑖,m1
𝛽) 

Once we know m1
𝛽 is on edgee𝑖𝑗, we can compute the offset of point m1

𝛽 on edge e𝑖𝑗, that 

is 𝑑𝑖𝑠𝑡 ( n𝑖 , m1
𝛽 ). Denote the minimum and maximum speeds on edge e𝑖𝑗  as    v−(𝑛𝑖,𝑛𝑗) 

and   v+(𝑛𝑖,𝑛𝑗), respectively. The speed variable on edge e𝑖𝑗 has n samples  v1,v2, ..., and v𝑛 

(in ascending order), where each sample v𝑟(1 ≤ 𝑟 ≤ 𝑛) is associated with an appearance 

probability v𝑟.𝑝. We have the following lemma to obtain 𝑑𝑖𝑠𝑡(n𝑖,m1
𝛽). 

Lemma 6 Assume that m1
𝛽 resides on edgee𝑖𝑗. Given   v−(𝑛𝑖,𝑛𝑗) and   v+(𝑛𝑖,𝑛𝑗), if the 

speed sample v𝑟 satisfies the condition that ∑ v𝑠.𝑝n
s=r  is the smallest probability that is greater 

than or equal to β𝑟, then we have: 

𝑑𝑖𝑠𝑡 �n𝑖 , m1
𝛽� = T−(n𝑖,o2)−T+(o1,n𝑖).β𝑠

1
v𝑟
+ 1

   v+(𝑛𝑖,𝑛𝑗)
                        (5) 

Proof: From Definition 7, we consider 𝑇+ �o1, m1
𝛽� .β = 𝑇− �o2, m1

𝛽�. 

The formula can be rewritten as follows: 

T+(o1, n𝑖).β𝑠 + T+ �n𝑖 , m1
𝛽� .β𝑟 = 𝑇− �m1

𝛽 , n𝑗� + T−�n𝑗, o2�         (6) 

Where β𝑠 ∙ β𝑟 = β 

Since it holds that: 
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T+ �n𝑖, m1
𝛽� .β𝑟 = 𝑑𝑖𝑠𝑡 �n𝑖 , m1

𝛽� /v𝑟 and 

𝑇− �m1
𝛽 , n𝑗� =

𝑑𝑖𝑠𝑡�n𝑖, n𝑗� − 𝑑𝑖𝑠𝑡 �n𝑖, m1
𝛽�

   v+(𝑛𝑖,𝑛𝑗)
 

we substitute Eq. (5) into Eq. (6), and obtain: 

T+(o1, n𝑖) · β𝑠 +
𝑑𝑖𝑠𝑡 �n𝑖, m1

𝛽�
v𝑟

=
𝑑𝑖𝑠𝑡�n𝑖, n𝑗� − 𝑑𝑖𝑠𝑡 �n𝑖 , m1

𝛽�
   v+(𝑛𝑖,𝑛𝑗)

+ T−�n𝑗, o2� 

which can be rewritten as Eq. (5). Hence, the lemma holds. 

This way, we can obtain the location of m1
𝛽 on edgee𝑖𝑗.The case of finding the position of 

m2
𝛽 is similar and thus omitted.
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CHAPTER V 
 
 

PSTQ PROCESSING 
 
 

In this section, we build an index over offline pre-computed data which can facilitate 

efficient PSTQ processing. Section 5.1 presents the index construction. Section 5.2 illustrates 

the PSTQ query procedure over the constructed index. 

 

Index Construction 

Data structure of the Index 

We construct a spatial index, R*-tree [2], over the pre-computed data, including 

probabilistic time Voronoi points, which can enable efficient PSTQ answering. An R*-tree 

index is a hierarchical tree structure. Each non-leaf node of the tree contains entries that refer 

to a set of child nodes. Each leaf node of the index contains a list of index entries that 

correspond to information of objects. Figure 6 shows an example of such an index. 

Leaf Nodes 

Each entry, E𝑖, in leaf node, E, stores entries of the form (𝑜𝑖𝑑, MBR𝛽, path𝛽, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟). 

Here, 𝑜𝑖𝑑 refers to the identity of a facility object o𝑖 in the database. For each pre-computed β 

value (i.e.,β1, β2,…, or β𝑙), MBRβ in entry E𝑖 is the minimum bounding rectangle that tightly 

encloses object, o𝑖, and its associated probabilistic time Voronoi points m𝑖
𝛽(i.e., between o𝑖 

and any adjacent objects o𝑗, where o𝑖 is connected to oj directly). Note that, when 𝛽 = 1, the 

probabilistic time Voronoi point, m𝑖
𝛽, is exactly the time Voronoi point m𝑖. Moreover, path𝛽 in 

entry E𝑖  records the path between o𝑖  and m𝑖
𝛽  for
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the pre-computed 𝛽 ϵ [0, 1]. The 𝑝𝑜𝑖𝑛𝑡𝑒𝑟, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟, in E stores the address of objecto𝑖. 

Non-Leaf Nodes 

Each entry, E𝑖 , of non-leaf node E  contains records in the form 

(𝑀𝐵𝑅𝛽1, 𝑀𝐵𝑅𝛽2,..., 𝑀𝐵𝑅𝛽𝑙, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟), where 𝑀𝐵𝑅𝛽𝑘 (1 ≤k ≤ l) is the minimum bounding box 

of all MBR𝛽 (for 𝛽 = 𝛽𝑘) of the child node E𝑖 in E, and the pointer, pointer, points to the child 

node E𝑖. 

 

 

 

 

 

(a) Offline pre-computation 

 

 

(b) Minimum bounding rectangle 

 

(c) Index structure 

Figure 8: An example of the index construction 
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The Construction of Tree Structure 

We now illustrate how to construct the index. Figure 6(a) shows how to obtain 𝑀𝐵𝑅𝑠 of 

objects. For each object o𝑖, we record other objects o𝑗, which are connected to o𝑖 directly (i.e., 

on the path from o𝑖 to o𝑗, there are no other objects of the same facility type). According to 

Lemma 6, we can obtain probabilistic time Voronoi points m𝑖
𝛽 of o𝑖, with respect to other 

adjacent objects o𝑗 . Then, we generate a minimum bounding rectangle (𝑀𝐵𝑅)MBR, which 

covers object o𝑖 and points m𝑖
𝛽 for different 𝛽 values. This way, we can compute the 𝑀𝐵𝑅𝑠 for 

all objects by the procedure above. Then, the index can be constructed by inserting 𝑀𝐵𝑅𝑠 of 

objects into the R*-tree, by using the standard insertion method [2]. 

Discussions on Selection of β Values 

Next, we discuss how to select the value of 𝛽. As introduced before, each entry E𝑖 of 

nodes in the index contains E𝑖 . MBR𝛽 , for 𝛽 ∈  [0, 1]. In a special case where 𝛽 = 1, 

probabilistic time Voronoi point m𝑖
𝛽(o𝑖, o𝑗) is exactly the time Voronoi point m𝑖(o𝑖, o𝑗). To 

select possible valuesof 𝛽  for offline pre-computations, we uniformly generate 𝛽  values 

within [0, 1]. In the case that we know the statistics of 𝛼 specified by historical PSTQ queries, 

we can pre-select 𝛽 valuesthat follow the distribution of (1 − 𝛼). 

 

Query Procedure 
 

Pruning with the Index 

In the sequel, we discuss how to use our constructed index to support execution of 

queries. Specifically, by traversing the constructed index, we can find the location of a given 

query point 𝑞, and meanwhile retrieve those PSTQ candidates. That is, starting from the root, 

for each E𝑖.MBR𝛽  of entry E𝑖  in node E we encounter (for a smallest pre-computed 𝛽 value 

greater than or equal to 1 − 𝛼), we check whether or not E𝑖.MBR𝛽 contains 𝑞. If the answer is 

yes, we will explore the children of node E; otherwise, entry E𝑖 in the index can be safely 
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pruned. After the index traversal, we can obtain a set of PSTQ candidates, which are then 

refined to return true PSTQ answers. We give the pruning with the index in the following 

lemma. 

Lemma 7 (Index Pruning). Given a query point 𝑞, if 𝑞 is not contained in an MBR𝛽 of entry E𝑖 

in the index, then E𝑖 can be safely pruned, where 𝛽 ≥ 1 − 𝛼. 

Proof: As mentioned before, MBR𝛽  of entry E𝑖  is a minimum bounding rectangle 

enclosed by o𝑖 , time 𝑉𝑜𝑟𝑜𝑛𝑜𝑖 point m𝑖  of o𝑖 , and probabilistic time 𝑉𝑜𝑟𝑜𝑛𝑜𝑖 point m𝑖
𝛽  of o𝑖 

for 𝛽 ∈ [1 − 𝛼, 1]. Object o𝑖 is a PSTQ answer of 𝑞, if and only if 𝑞 is contained in the MBR𝛽 

of E𝑖 . Conversely, if 𝑞  is not contained in an MBRof entry E𝑖 , then E𝑖  cannot be a PSTQ 

answer of 𝑞. Therefore, E𝑖 can be safely pruned. 

PSTQ Processing Algorithm 

We now discuss how to use the index to perform the PSTQ query. Given a query point 𝑞, 

we traverse the index I by maintaining a queue Q which contains entries E in the form of MBR. 

In addition, we keep a candidate set S𝑐𝑎𝑛𝑑, in which candidates can be used to prune other 

objects.  

Figure 9 illustrates the pseudo code of PSTQ query procedure, namely PSTQ_ 

Processing, which retrieves PSTQ candidates by traversing the index and refines the 

candidates. Given a PSTQ query with query object 𝑞, we first initialize a queue Q and a 

candidate set S𝑐𝑎𝑛𝑑. Then, we insert the root, root(I), of the index into queue Q. Every time 

we pop out a node N from queue Q (lines 4-5), if N is a non-leaf node, for each entry E𝑖 in N, 

we check if 𝑞 is contained in E𝑖.MBR𝛽 of entry E𝑖, where 𝛽 is set to the smallest pre-computed 

value that satisfies 𝛽 ≥ 1 − 𝛼. If the answer is yes, we insert E𝑖 into the queue Q for further 

filtering; otherwise, entry E𝑖  can be safely pruned by probabilistic time 𝑉𝑜𝑟𝑜𝑛𝑜𝑖  pruning 

(lines 6-9). 

When N is a leaf node, for each object o𝑖 in N, we check if 𝑞 is contained in o𝑖.MBR𝛽 of 
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object o𝑖 . If the answer is yes, we add object o𝑖  to S𝑐𝑎𝑛𝑑 , indicating that o𝑖  is a PSTQ 

candidate; otherwise, o𝑖  can be pruned by probabilistic time 𝑉𝑜𝑟𝑜𝑛𝑜𝑖 pruning(lines 11-13). 

Then, we update two (probabilistic) thresholds 𝜏+  and 𝜏+.𝛽 , which are defined as the 

minimum upper bound and minimum 𝛽 − upper − bound  of traveling time t�𝑞, 𝑜𝑗�  for all 

candidates o𝑗 in S𝑐𝑎𝑛𝑑 respectively (line 14). Next, we aim to prune false alarms in S𝑐𝑎𝑛𝑑 by 

using time bound and probabilistic bound pruning methods (lines 15-21). In particular, for 

each candidate o𝑗 in S𝑐𝑎𝑛𝑑, if it holds that 𝑇𝑗− > 𝜏+, candidate o𝑗  can be safely pruned (i.e., 

time bound pruning), where T𝑗− is the lower bound of traveling time t�𝑞, 𝑜𝑗� (lines 15-18). 

When o𝑗  cannot be pruned, we further check the pruning condition T𝑗− > 𝜏+.𝛽 . If this 

condition holds, o𝑗 can be safely pruned via probabilistic bound pruning(lines 19-21). Finally, 

we refine candidates in S𝑐𝑎𝑛𝑑 by computing PSTQ probabilities (given in Eq. (1)), and return 

actual PSTQ answers (line 22). 
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Figure 9: PSTQ query processing
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CHAPTER VI 
 
 

EXPERIMENTAL EVALUATION 
 

 
In this section, we empirically evaluate the efficiency and effectiveness of our proposed 

pruning methods to answer PSTQ queries through extensive experiments over both real and 

synthetic data sets. Specifically, we use a 2D real data sets, which contains MBRs of 175812 

intersection points and 179178 edges of road network of north America. In particular, we 

randomly generate 1000-10000 facility nodes oi on the road network, for each object oi, we 

first record the shortest path between oiand any other object oj, where oi connects to ojdirectly. 

Then we obtain probabilistic time 𝑉𝑜𝑟𝑜𝑛𝑜𝑖 points m𝑖
𝛽 for βϵ[0.1,0.2,…,1] on each shortest 

path on 𝑝𝑎𝑡ℎ(oi, oj). We obtain probabilistic time Voronoi point m𝑖
𝛽 for all object oi by this 

procedure. After that, we generate minimum bounding rectangle MBRs for all objects. And 

insert these MBRs into R*- tree to enable our PSTQ processing.  

We evaluate the performance of our pruning methods in answering PSTQ queries, in 

terms of CPU time and I/O cost. Specifically, we count the CPU time during the process of 

PSTQ queries and I/O cost of construction of R*-tree by inserting MBRs into R*-tree.  

Moreover, we count the number of objects which are pruned by PSTQ query processing. The 

reported results are the average of 1000 queries. 
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CHAPTER VII 
 
 

RELATED WORK 
 
 

In this section, we overview previous works on query processing over 

probabilistic/uncertain databases, probabilistic graphs, and certain/uncertain road networks.  

Probabilistic and Uncertain Databases 

The data uncertainty can be classified into two categories [24], attribute uncertainty and 

tuple uncertainty. The attribute uncertainty is usually captured by uncertain databases, 

whereas the tuple uncertainty is often modeled by probabilistic databases. 

A probabilistic database [4] is composed of x-tuples, and each x-tuple has one or 

multiple mutually exclusive alternatives. one or multiple mutually exclusive alternatives. 

Each alternative is associated with an existence probability, which indicates the probability 

that the alternative can appear in reality. Query processing in probabilistic databases usually 

considers the possible worlds [4] semantics, where each possible world is materialized 

instance of the database that may appear in the real world. Existing works on queries over 

probabilistic databases include range queries or nearest neighbor queries [3], top-k queries 

[18], and skyline queries [21] 

 

Certain/Uncertain Road Network 

There are many existing works on the data model of certain spatial road networks (or 

graphs), whose road segments (edges) are associated with deterministic weights. One 

classical query over certain road networks is the shortest path query, which retrieves the
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shortest path between source and destination points on road networks. Dijkstra [6] proposed 

the well-known Dijkstra’s algorithm to solve such a problem. In order to improve the query 

efficiency, several variants have been proposed to heuristically prune the search space [16] or 

materialize some paths [1, 12]. Huang et al. [11] studied the shortest path search with 

constraints. Li et al. [17] explored the shortest path queries between source and destination 

that pass through some types of interesting data points. Apart from the shortest path query, 

many other query types have been studied in spatial road networks, for example, range 

queries [20, 13], k-nearest neighbor (kNN) queries [23, 20], reverse nearest neighbor queries 

[26],multi-source skyline queries [5], and so on. In these works, road networks are usually 

modeled by certain graphs, and the traveling distances are used as the metric to measure the 

distance between two points on road networks. In contrast, our PSTQ problem utilizes the 

traveling time (rather than the traveling distance) as the measurement, and considers 

uncertain model of road networks (instead of certain ones), which reflects real traffic 

conditions on road networks. Thus, previous works on certain road networks cannot be 

directly applied to our PSTQ problem over uncertain road networks.  

Ding et al. [7] investigated the shortest path query over time-dependent road networks, 

which return paths with the smallest total traveling times, but allowing staying time at some 

facilities, where edges are associated with delay time functions that are certain and varying 

over time. However, the delay time functions on edges are assumed to be predicted, which, in 

practice, may not be very accurate. In contrast, our PSTQ problem considers a different data 

model of road networks with uncertain traffic conditions (time variables) on road segments 

(rather than certain graphs). Moreover, our problem tackles a different query type, 

probabilistic shortest time query, instead of the path query. 

There are some studies on uncertain road networks that are relevant to our work. Hua 

and Pei [9] proposed probabilistic path queries on uncertain road networks, and presented 
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three semantics of probabilistic path queries, with respect to the traveling time and probability. 

Different from the path query type, our PSTQ problem considers the probability shortest time 

query. Potamias et al. [22] used different metrics such as median distance and majority 

distance to re-define traditional k-NN queries in uncertain graphs, which assume existence 

probabilities on edges. Our work considers a different graph model with uncertain time 

variables on edges (rather than edge existence probabilities), and formalize the query that 

uses the traveling time (instead of the distance) as the measure. 

Probabilistic Graphs 

For probabilistic graphs, the existing works [10, 14] modeled the (RDF) graph that 

contains edges with existence probabilities. That is, edges in the probabilistic graph either 

exist or do not exist. Other works [8, 25, 19] represented a probabilistic graph by the 

graphical model, Bayesian network [15], which has uncertain labels. In contrast, our work 

considers spatial road networks, whose edge weights correspond to uncertain time variables. 

Moreover, we consider a different query type, that is, PSTQs rather than graph matching 

queries. Thus, we cannot borrow prior techniques to solve our PSTQ problem.
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CHAPTER VIII 
 
 

CONCLUSIONS 
 
 

In this paper, we model the road network with actual traffic conditions by uncertain road 

network (uncertain graph) whose edges are associated with traveling time variables, and 

formalize the problem of the probabilistic shortest time query (PSTQ). In order to efficiently 

answer PSTQs, we propose effective pruning methods, time bound pruning and probabilistic 

bound pruning, to filter out PSTQ false alarms. Moreover, we design offline pre-computation 

techniques to enable the probabilistic time𝑉𝑜𝑟𝑜𝑛𝑜𝑖  pruning, over which an index can be 

constructed to facilitate an efficient PSTQ query procedure. Extensive experiments have been 

conducted to demonstrate the efficiency and effectiveness of our proposed PSTQ approach 

under various experimental settings. 
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