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ABSTRACT

Larsen, Acadia, Identities for Partitions of n with Parts From a Finite Set. Master of Science (MS),

December, 2018, 49 pp., 46 titles, 22 references.

We show for a prime power number of parts m that the first differences of partitions into

at most m parts can be expressed as a non-negative linear combination of partitions into at most

m´ 1 parts. To show this relationship, we combine a quasipolynomial construction of ppn,mq

with a new partition identity for a finite number of parts. We prove these results by providing

combinatorial interpretations of the quasipolynomial of ppn,mq and the new partition identity.

We extend these results by establishing conditions for when partitions of n with parts coming

from a finite set A can be expressed as a non-negative linear combination of partitions with parts

coming from a finite set B. We extend these results to Gaussian Polynomials and show how our

techniques can be used to reprove asymptotic formulas for partitions of n into parts from a finite

set A.
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CHAPTER I

A (BRIEF) INTRODUCTION TO THE THEORY OF PARTITIONS

1.1 Prelude

The first examples of integers partitions, the number of unordered ways to sum to an in-

teger n, can be traced back to a letter from Leibniz to Bernoulli. Neither provided much insight

into the study of partitions. Euler gave the first examples of partition identities, expressing one

kind of partitions as another, which have been extensively studied by mathematicians since. This

thesis aims to establish new partition identities for partitions with parts from a finite set. To start,

we invite the reader to join us in a (brief) introduction to the theory of partitions.

1.2 A (Brief) Introduction to the Theory of Partitions

Definition 1. A partition, λ , of a non-negative integer n is a non-increasing sequence of parts

λ1, ...,λk such that the parts sum to n. We denote this λ $ n and is read “λ is a partition of n”. The

notation λ “ pa1,a2, ...,anq where the ith component denotes the number of parts of size i is used

throughout. The partition function of n, ppnq, enumerates all partitions of n.
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Example 2. Let n“ 5, then pp5q “ 7.

5“ λ “ pa1,a2,a3,a4,a5q

“ 5“ p0,0,0,0,1q

“ 4`1“ p1,0,0,1,0q

“ 3`2“ p0,1,1,0,0q

“ 3`1`1“ p2,0,1,0,0q

“ 2`2`1“ p1,2,0,0,0q

“ 2`1`1`1“ p3,1,0,0,0q

“ 1`1`1`1`1“ p5,0,0,0,0q.

Definition 3. The q-rising factorial is defined as

pa;qqn “
n´1
ź

i“0

p1´aqi
q (1.1)

and pa;qq8 “ lim
nÑ8

pa;qqn. (1.2)

Theorem 4 (Euler). The generating function for ppnq is

8
ÿ

n“0

ppnqqn
“

8
ź

i“1

¨

˝

8
ÿ

j“0

qi j

˛

‚“

8
ź

i“1

1
1´qi “

1
pq;qq8

. (1.3)

Proof. Let |q|ă 1, and recall that
8
ř

j“0
qi j “ 1

1´qi . For a given i and j, qi j represents j parts of size i.

After multiplication of the infinite series, the coefficient of qn is all such unordered ways to sum

to n, that is the partitions of n. The multiplication as described,

2



8
ź

i“1

´

8
ÿ

j“0

qi j
¯

“ p1`q1
`q1`1

`q1`1`1
`q1`1`1`1

`q1`1`1`1`1
`q¨ ¨ ¨

ˆ p1`q2
`q2`2

`q2`2`2
`q2`2`2`2

`q2`2`2`2`2
`¨¨ ¨ q

ˆp1`q3
`q3`3

`q3`3`3
`q3`3`3`3

`q3`3`3`3`3
`¨¨ ¨ q

ˆp1`q4
`q4`4

`q4`4`4
`q4`4`4`4

`q4`4`4`4`4
`¨¨ ¨ q

...

ˆp1`qi
`qi`i

`qi`i`i
`qi`i`i`i

`qi`i`i`i`i
`¨¨ ¨ q

...

“ 1`q1
`q2

`q1`1
`q3

`q2`1
`q1`1`1

`q4
`q3`1

`q2`2
`q2`1`1

`q1`1`1`1
`¨¨ ¨

“ pp0qq0
` pp1qq1

` pp2qq2
` pp3qq3

` pp4qq4
`¨¨ ¨ .

�

Definition 5. A restricted partition is any rule placed on the parts of a partition. We use 1 to

denote an arbitrary restricted partition and p1pnq to be the function which enumerates the number

of partitions of n which obey that rule.

We now give two examples of restricted partitions in a partition identity proved by Euler.

Theorem 6 (Euler). The partitions of n such that all parts are odd is equinumerous to the number

of partitions of n such that all parts are distinct.

Definition 7. Let popnq be the function which enumerates the partitions of n such that all parts are

odd and the generating functions for popnq is

8
ÿ

n“0

popnqqn
“

1
pq;q2q8

. (1.4)

3



Definition 8. Let pdpnq be the function which enumerates the partitions of n such that all parts are

distinct and the generating function for pdpnq

8
ÿ

n“0

pdpnqqn
“ p´q;qq8. (1.5)

We now prove Theorem 6.

Proof.

8
ÿ

n“0

popnqqn
“

1
pq;q2q8

“
pq2;q2q8

pq;qq8
“
p´q;qq8pq;qq8

pq;qq8
“ p´q;qq8 “

8
ÿ

n“0

pdpnqqn. (1.6)

�

The generating function proof, while simple and short, does not provide much intuition as

to how partitions of n into odd parts can be mapped to partitions of n into distinct parts. We offer

a bijective proof of Theorem 6 which following closely to the proof found in [2].

Proof. For a partition of n into only odd parts, λo, we merge (combine into one part) two parts of

the same size into a new part of twice the original size until no more merges can be performed.

This produces as partition of n into only distinct parts as the process of merging creates an even

part of largest size and divisible by i “ 2k`1. If there are an odd number of parts of size i, then

only one part of size i is left.

Likewise, for a partition of n into only distinct parts, λd , we split (divide into two equal

parts) parts of even size until no more splits can be preformed. This produces a partition into only

odd parts. �

Manipulating generating functions shows equality between popnq and pdpnq. Thus there

exists a bijection between the set of partitions of n into distinct parts and the set of partitions of

n into odd parts. Likewise, since we have shown a bijection by manipulating partitions of n into

odd parts and showing that they map uniquely to partitions of n into only distinct parts and vice

verse.

4



A bijective proof type can relay underlying bits of generating function manipulation as

partition mappings. Likewise, generating function manipulations can relay bits of information

as to what mapping might be used. In the generating function proof of Theorem 6, a convenient

re-indexing of the infinite product shows
´

1
pq;q2q8

¯´

1
pq2;q2q8

¯

“ 1
pq;qq8

. Implicitly, this describes

the fact that partitions of n can be ‘separated’ into even and odd parts. This is observed by

8
ÿ

n“0

ppnqqn
“

1
pq;qq8

“

ˆ

1
pq;q2q8

˙ˆ

1
pq2;q2q8

˙

“

˜

8
ÿ

n“0

popnqqn

¸˜

8
ÿ

n“0

pepnqqn

¸

(1.7)

where pepnq denotes the partitions of n into only even parts. Looking at even and odd parts is

found in the bijective proof of Theorem 6. The ‘separation’ of even and odd parts motivates the

following definitions.

Definition 9. A subpartition of λ is a partition such that a1i ď ai for all parts of size i and is de-

noted λ 1 “ pa11,a
1
2, ...,a

1
kq.

Definition 10. We say that two partitions λ 1 and λ 2 sum to a partition λ if for all i, ai “ a1i` a2i

and is denoted λ “ λ 1`λ 2.

Choliy and Sills [7] refer to the sum as the union of two partitions. We chose to use the

term sum as a large part of this work considers dividing partitions into quotient and remainders.

Equation (1.7) implies that for any partition λ of n, there is a unique way to express λ as the sum

of subpartitions of only even parts and only odd parts. The product of the generating functions

for popnq and pepnq, we observe that it must be the same as the generating function for ppnq. We

phrase this in a complicated, but useful manner.

Proposition 11. Let 1,2 , and 3 be restrictions on partitions such that for any λ 2 and λ3 obeying 2

and 3 respectively, that the sum of λ 2 and λ3 is a partition, λ 1, obeying 1. Then, there are unique

partitions λ 2 and λ3 such that λ 1 “ λ 2`λ3 if an only if

ÿ

ně0

p1pnqqn
“

˜

ÿ

ně0

p2pnqqn

¸˜

ÿ

ně0

p3pnqqn

¸

.

5



Proof. Suppose that there are unique partitions λ 2 and λ3 such that λ 1 “ λ 2`λ3 . Let n be given,

we work on counting the number of partitions of n such that they obey the restriction 1. First, for

any 0 ď i ď n, p2piqp3pn´ iq is the number of ways such that if λ 2 $ i and λ3 $ n´ i then

λ 2`λ3 $ n where λ 2`λ3 is a partition that satisfies the restrictions 1. Then over all possibilities

of i, this yields p1pnq “
n
ř

i“0
p2piqp3pn´ iq as the sums are assumed to be unique, no partition is

counted twice and there is never a partition satisfying the restriction 1 such that there are no λ 2

and λ3 that sum to it. We now observe the product of the generating functions of partitions of n

satisfying 2 and 3 respectively. Then,

˜

ÿ

ně0

p2pnqqn

¸˜

ÿ

ně0

p3pnqqn

¸

“
ÿ

ně0

˜

n
ÿ

i“0

p2piqp3pn´ iq

¸

qn
“

ÿ

ně0

p1pnqqn. (1.8)

Conversely, suppose that
ř

ně0
p1pnqqn “

˜

ř

ně0
p2pnqqn

¸˜

ř

ně0
p3pnqqn

¸

. We have that for

any ně 0, p1pnqqn “
n
ř

i“0
p2piqqi p3pn´ iqqn´i by multiplication of the generating functions. We fur-

ther re-express this equality as
ř

λ 1$n
qλ 1 “

n
ř

i“0

˜

ř

λ2$i
qλ2

¸˜

ř

λ3$n´i
qλ3

¸

“
n
ř

i“0

˜

ř

λ2$i

˜

ř

λ3$n´i
qλ2`λ3

¸¸

.

By assumption we have, λ 2` λ3 “ λ 1, and by the equality there are the same number of qλ 1

on the left hand side as qλ2`λ3 on there right hand side. Then the mapping, qλ2`λ3 Ñ qλ 1 by

λ 2`λ3 “ λ 1 is a bijection by equality so sets hence the sum must be unique as desired. �

Proposition 39 explains how to ‘count’ partitions in regards to a well behaved sum. It is

certainly not an unexpected proposition considering it mimics the behavior of sums of even and

odd partitions. We are gifted with a powerful tool to tell how a generating functions of partitions

factor. Proposition 39 serves as a key point in producing proofs for new partition identities for

partitions of n into at most m parts.

Definition 12. Singly restricted partitions are partitions of n such that there are at most m parts.

The function ppn,mq enumerates the number of singly restricted partitions of n into at most m

6



parts and its generating function is

8
ÿ

n“0

ppn,mqqn
“

1
pq;qqm

. (1.9)

We can provide our second example of a partition identity, a recurrence relationship for

ppn,mq.

Proposition 13 (Euler). For all non-negative integers n and all positive integers m,

ppn,mq “ ppn,m´1q` ppn´m,mq. (1.10)

Proof. We present a straightforward manipulation of generating function,

8
ÿ

i“1

pppn,m´1q` ppn´m,mqqqn
“

1
pq;qqm´1

`
qm

pq;qqm
“

1´qm

pq;qqm
`

qm

pq;qqm
“

1
pq;qqm

“

8
ÿ

n“0

ppn,mqqn. (1.11)

�

Euler used Proposition 13 as a method to compute ppnq by observing that ppn,mq “ ppnq

when nď m.

Inherent in the discussion of partitions of n into at most m parts is the fact that these par-

titions are also partitions of n into no part larger than m. Frequently, partitions of n into at most

m parts is used in texts. To show this, we define a classic graphic representation of partitions, the

Ferrer’s Diagram (Ferrer’s graph, Ferrer’s board, or Young Tabalux).

Definition 14. The Ferrer’s diagram of a partition λ $ n is an upper left justified diagram of n

dots or boxes such that λi is the ith row of dots.

7



Example 15. Let λ $ 10 and λ “ 5`3`2. The Ferrer’s diagram of λ is

.

Definition 16. Let λ $ n. The conjugate partition of λ (simply the conjuate) is the partition that

interchanges the rows and columns of the Ferrer’s diagram of λ and is denoted λ t .

Example 17. Let λ $ 10 and λ “ 5`3`2. The conjugate partition of λ is λ t “ 3`3`2`1`1,

as

ÝÑ .

Proposition 18. The number of partitions into at most m parts is equinumerous to the number of

partitions of n into parts not than m.

Proof. Given any partition of n into at most m parts, it’s Ferrer’s diagram has at most m rows,

hence the conjugate partition will have at most m columns and this is a partition of n into no part

larger than m. Similarly, for a partition of n into no part larger than m, it’s Ferrer’s diagram has at

most m columns, hence the conjugate partition will have at most m rows, a partition of n into at

most m parts. �

Frequently, we examine ppn,mq thorough Proposition 18 and make arguments in regards

to the number of parts of partitions of n into parts not than m. Lastly, we wish to describe sums of

partitions in terms of Ferrer’s diagrams. To do this, we define an operation called insertion.

Definition 19. A partition λ2 is inserted into a partition λ1 by placing the number of parts of size i

in λ2 below the last occurrence of a part of that size in λ1. This is denoted by λ2 ãÑ λ1.

8



Example 20. Let λ1 “ 3`1`1 and λ2 “ 3`2. Then λ2 ãÑ λ1 “ 3`3`2`1`1 as

ãÑ “ .

Insertion is a graphical description of the sum operation in regards to Ferrer’s diagrams.

While not a fundamental portion of the proceeding work, proof with the sum operation have a

natural correspondence to a proof with Ferrer’s diagrams with the operation of insertion.

By examining the connection of partitions of n into at most m parts and partitions of n

with no part larger than m, we have given the first example of partitions with parts from a finite

set. That is partitions of n with no part larger that m is exactly partitions n with parts from the set

t1,2, ...,mu.

Definition 21. Let A be a finite set of positive integers not necessarily distinct. We denote the

number of partitions of n with parts from A as ppn,Aq. Its generating function is given by

8
ÿ

n“0

ppn,Aqqn
“
ź

iPA

1
1´qi . (1.12)

We provide the following combinatorial interpretation for a partition from a finite set A.

Let αi denote the number of copies of an integer i P A. For a partition λ into parts from A, a part of

size i can have colors 1,2, ...,αi and we use the notation λ “pai1,1,ai1,2, ...,ai1,αi1
, ...,aik,1,aik,2, ...,aik,αik

q

“ pa1,1,a1,2, ...,a1,α1, ...,ak,1, ...ak,αkq where i1, i2, ..., ik are the distinct elements of A in order of

least to greatest and at,s is the number of parts of size it in color s. We remark that ppn,mq “

ppn,t1,2, ...,muq and it is assumed throughout that m in place of A is the set of positive integers 1

through m.

1.3 Outline

This thesis is organized around three theorems for ppn,Aq each with a special case for

ppn,mq which will serve as an example. Each of these theorems are based around an object called

9



a quasipolynomial. Chapter 2 defines and establishes a quasipolynomial for ppn,Aq providing

both generating function and combinatorial proofs for this. In Chapter 3, we start by examining

the first differences of partitions ppn,mq ´ ppn´ 1,mq for prime power m. We capture several

known partition identities found in [3] and [6] as well as previously unknown partition identities.

Example 22. For k ě 0,

pp6k`3,3q´ pp6k`2,3q “ pp2k`1,2q (1.13)

pp12k`5,4q´ pp12k`4,4q “ pp6k`1,3q (1.14)

pp60k`0,5q´ pp60k´1,5q “ pp12k`0,4q` pp12k´1,4q`4pp12k´2,4q`5pp12k´3,4q

`7pp12k´4,4q`4pp12k´5,4q`3pp12k´6,4q. (1.15)

Lines (1.13) and (1.14)are known ([3], [6]) while line (1.15) was previously unknown.

These identities are special cases of the following theorem.

Theorem 23. Let s be a prime. If m “ sx where x is a positive integer and for k ě 0, 0 ď j ă

lcmprmsq, then

pplcmprmsqk` j,mq´ pplcmprmsqk` j´1,mq “
ÿ

iě0

gr`is pplcmpm´1qk` l1´ i,m´1q (1.16)

where l1 and r satisfy j “ l1s` r with 0 ď r ă s, lcmprmsq is the least common multiple of the

numbers 1 through m, and gr`is are the coefficients of some polynomial Gpqq.

Gpqq is given in Chapter 3 in the statement of Lemma 36. Chapter 4 generalizes Theorem 23 to

ppn,Aq by establishing a group structure on a finite set of partitions. Together, Chapters 2,3 and 4

represent the work in a [16] forthcoming paper by the author. Chapter 5 takes the group structure

established in Chapter 4 and the quasipolynomial construction to provide a ‘new’ proof of the

asymptotic formula for ppn,Aq and highlights several facts about the quasipolynomial of ppn,Aq.

10



Theorem 24. Let d “ |A|, then

ppn,Aq „
nd´1

pd´1q!
ś

iPA
i
`Opnd´2

q. (1.17)

Chapter 6 reproves some of the work in [6] in regards to Gaussian Polynomials and builds

on it by utilizing Theorem 23.

11



CHAPTER II

ESTABLISHING A QUASIPOLYNOMIAL FOR PpN,Aq

2.1 Quasipolynomials of ppn,Aq

Definition 25. A quasipolynomial is a piecewise function, f , such that there are polynomials

f0pkq, f1pkq, ..., f j´1pkq with rational coefficients, called constituents, such that

f pkq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

f0pkq if k ” 0 pmod jq

f1pkq if k ” 1 pmod jq

...

f j´1pkq if k ” j´1 pmod jq.

(2.1)

The number of constituents, j, of the quasipolynomial is called the period.

We refer the reader to [20] for further reading about quasipolynomials. The particular

technique in Theorem 26 that we show has been presented a number of times, notably a integral

aspect of the geometry of Ehrhart in [8], as a consequence of generating functions in [11] and

[22], and more recently in [4], [5], [6], and [18]. Other methods for creating quasipolynomials of

ppn,mq rely on partial fraction decomposition of rational functions such as in [17] and [19].

We start by generalizing the notation of lcmprmsq in the previous section. For a finite set

of positive integers, A, we define lcmpAq to be the least common multiple of all the elements of A.

For example lcmpr3sq “ lcmpt1,2,3uq “ 6. Let d count the number of elements in A. We define

12



the polynomial EApqq by

EApqq “
ź

iPA

¨

˚

˝

lcmpAq
i ´1
ÿ

j“0

qi j

˛

‹

‚

“

d lcmpAq´
ř

iPA i
ÿ

x“0

hxqx. (2.2)

Furthermore, EApqq has the following property,

ź

iPA

p1´qi
qEApqq “ p1´qlcmpAq

q
d. (2.3)

Lastly, we remark that it is known that for d a non-negative integer,

1
p1´qqd

“

8
ÿ

k“0

ˆ

k`d´1
d´1

˙

qk. (2.4)

Theorem 26. For all k ě 0 and for 0ď j ă lcmpAq,

pplcmpAqk` j,Aq “
ÿ

tě0

h j`lcmpAqt

ˆ

k´ t`pd´1q
d´1

˙

. (2.5)

Proof. We begin by manipulating the generating function for ppn,Aq,

8
ÿ

n“0

ppn,Aqqn
“
ź

iPA

1
p1´qiq

¨
EApqq
EApqq

“
EApqq

p1´qlcmpAqqd
“ EApqq

8
ÿ

k“0

ˆ

k`pd´1q
d´1

˙

qlcmpAqk (2.6)

by line (2.3) and substituting q with qlcmpAq in (2.4). Consider n pmod lcmpAqq, that is n“ lcmpAqk`

j for some positive integers k and j. We consider the possibilities for arriving at an exponent of q

which is lcmpAqk` j in

EApqq
8
ÿ

k“0

ˆ

k`pd´1q
d´1

˙

qlcmpAqk
“

¨

˝

d lcmpAq´
ř

iPA i
ÿ

x“0

hxqx

˛

‚

˜

8
ÿ

k“0

ˆ

k`pd´1q
d´1

˙

qlcmpAqk

¸

(2.7)

13



which is exactly when x` lcmpAqpk´ tq “ lcmpAqk` j and hence we have

pplcmpAqk` j,Aq “
ÿ

tě0

h j`lcmpAqt

ˆ

k´ t`pd´1q
d´1

˙

. (2.8)

�

We arrive at a quasipolynomial for ppn,Aq when all values possible values of j are con-

sidered in Theorem 26 are considered. In the case of ppn,mq, Empqq has a nice form Empqq “

p1´qlcmprmsqqm

pq;qqm
. For example, let m“ 3 then,

E3pqq “
p1´q6q3

pq;qq3
“ p1`q`q2

`q3
`q4

`q5
qp1`q2

`q4
qp1`q3

q

“ 1`q`2q2
`3q3

`4q4
`5q5

`4q6
`5q7

`4q8
`3q9

`2q10
`q11

`q12. (2.9)

Therefore, as a consequence of Theorem 26, for k ě 0,

ppn,3q “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

pp6k`0,3q “ 1
`k`2

2

˘

`4
`k`1

2

˘

`1
`k

2

˘

“ 3k2`3k`1

pp6k`1,3q “ 1
`k`2

2

˘

`5
`k`1

2

˘

“ 3k2`4k`1

pp6k`2,3q “ 2
`k`2

2

˘

`4
`k`1

2

˘

“ 3k2`5k`2

pp6k`3,3q “ 3
`k`2

2

˘

`3
`k`1

2

˘

“ 3k2`6k`3

pp6k`4,3q “ 4
`k`2

2

˘

`2
`k`1

2

˘

“ 3k2`7k`4

pp6k`5,3q “ 5
`k`2

2

˘

`1
`k`1

2

˘

“ 3k2`8k`5.

(2.10)

There are other quasipolynomoial expressions for ppn,3q such as
›

›

1
12pn`3q2

›

›, where }¨} denotes

the nearest integer. Further explicit quasipolynomials for ppn,4q, ppn,5q and ppn,6q can be found

in [15].
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2.2 A combinatorial interpretation of a quasipolynomial for ppn,mq

Choliy and Sills in [7] provide a formula for ppnq that “counts” using Durfee squares.

Following their work, we aim to provide an analogous proof for the quasipolynomial formula of

ppn,mq in Theorem 26 that “counts”. We start with essential definitions.

Recall that the notation λ “ pa1,a2, ...,anq where the ith component denotes the number of

parts of size i is used throughout. A subpartition of λ is a partition such that a1i ď ai for all parts

of size i and is denoted λ 1 “ pa11,a
1
2, ...,a

1
kq. We say that two partitions λ 1 and λ 2 sum to a partition

λ if for all i, ai “ a1i`a2i and is denoted λ “ λ 1`λ 2. Choliy and Sills [7] refer to this sum as the

union of two partitions. We define remainder-like objects for ppn,mq.

Definition 27. A lcmprmsq-remainder partition is a partition such that there are no parts larger

than m and for any part of size i, there are less than lcmprmsq
i copies of that part. Let Em be the

collection of all lcmprmsq-remainder partitions. The generating function for lcmprmsq-remainder

partitions is Empqq.

Example 28. A lcmp3q-remainder partition is 3`2`1 “ p1,1,1q but 3`3`1 “ p1,0,2q is not

an lcmp3q-remainder partition.

Definition 29. Let the set of partitions Em j be the partitions in Em such that they partition numbers

that when divided by lcmprmsq have remainder j.

Example 30. We give the example for m“ 3 and j “ 0. We have the set of partitions

E30 “ tp0,0,0q,p1,1,1q,p2,2,0q,p3,0,1q,p4,1,0q,p5,2,1qu.

Definition 31. Let x be a non-negative integer, we say hx is the number of partitions in Em such

that they partition x.

We note that hx is the xth coefficient of Empqq. We now present a proof that “counts” the

case of Theorem 26 when A“ t1,2, ...,mu.

15



Theorem 32. For all k ě 0 and 0ď j ă lcmprmsq,

pplcmprmsqk` j,mq “
ÿ

tě0

alcmprmsqt` j

ˆ

k´ t`m´1
m´1

˙

. (2.11)

Proof. It is sufficient to consider partitions of n into parts no larger than m. Let n“ lcmprmsqk` j

and consider a partition λ “ pa1,a2, ...,amq. Let ri be the remainder of ai when divided by lcmprmsq
i .

Define λr “ pr1, ...,rmq and λq “ pa1´ r1, ...,am´ rmq. Then we note first, λ “ λq`λr. Second,

λr P Em, and third, for any i, lcmprmsq
i divides ai´ ri, that is, lcmprmsq

i ki “ ai´ ri for some positive

integer ki. We will show that λr P Em j and that k´ t “
m
ř

i“1
ki for some non-negative integer t.

We start by showing λr P Em j . Since λ $ lcmprmsqk` j, we have

lcmprmsqk` j “
m
ÿ

i“1

iai “

m
ÿ

i“1

ipai´ riq`

m
ÿ

i“1

iri “

m
ÿ

i“1

i
lcmprmsq

i
ki`

m
ÿ

i“1

iri. (2.12)

Therefore,

lcmprmsqk` j ”
m
ÿ

i“1

iri ” j pmod lcmprmsqq. (2.13)

As
m
ř

i“1
iri “ λr, and is a partition of a number that when divided by lcmprmsq has remainder j, then

λr P Emr as desired. Express
m
ř

i“1
iri as lcmprmsqt` j for some non-negative integer t. Furthermore,

λq $ lcmprmsqpk´ tq by combining lines (2.12) and (2.13). Hence, by canceling lcmprmsq, we have

k´ t “
m
ř

i“1
ki as desired.

Now, we count the partitions of lcmprmsqk` j into parts no larger than m in the following

manner. We count the number of partitions such that λ “ λq`λr where λr $ lcmprmsqt` j and

λq $ lcmprmsqpk´ tq. The number of choices for λr is hlcmprmsqt` j since this is the number of

partitions in Em and in Em j such that they partition lcmprmsqt ` j. By line (2.12) and Stars and

Bars counting, the number of choices for λq $ lcmprmsqpk´ tq which is
`k´t`m´1

m´1

˘

. Thus the

number of choices for λ is the product of the number of choices for λq and λr. Accounting for
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every possibility of t, we have

pplcmprmsqk` j,mq “
ÿ

tě0

hlcmprmsqt` j

ˆ

k´ t`m´1
m´1

˙

. (2.14)

�

We should remark that the proof of Theorem 32 could easily be Theorem 26. We re-

place every instance of lcmprmsq with lcmpAq, each m in an index of a sum with d. We consider

lcmpAq-remainder partitions as defined in Definition 38 rather than lcmprmsq-remainder the parti-

tions. Next, rather than i as the index variable, we have iv for color v. We should also note that we

we consider the insertion operation and conjugation, we can quickly recover the proposed l-box

decomposition of [4].
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CHAPTER III

FIRST DIFFERENCES OF PpN,Mq

With a quasipolynomial for ppn,mq in hand, we now aim to prove Theorem 23 and a new

proof of Proposition 13.

Definition 33. For k ď m, we define the kth difference of ppn,mq, denoted ∆kpn,mq, is

8
ÿ

n“0

∆kpn,mqqn
“

8
ÿ

n“0

pppn,mq´ ppn´ k,mqqqn
“

1´qk

pq;qqm
. (3.1)

∆kpn,mq can be interpreted as partitions of n with at most m parts without any parts of

size k. In particular, when k “ 1, these are twin partitions following [3] and we omit the sub-

script. Furthermore, when k “ m, ∆mpn,mq “ ppn,m´ 1q. When k ď m, it follows that if A “

t1,2, ...muztku, then ∆kpn,mq “ ppn,Aq. In this case we say ppn,Aq “ ppn,mzkq and use the no-

tation mzk in regards to EA. Naturally, by Theorem 26, we can produce a quasipolynomial for

∆kpn,mq. Proposition 13 studies the mth difference of ppn,mq and Theorem 23 studies the first

differences of ppn,mq.

The case of m “ 3,4 of Theorem 23 occurs in [3] and [6]. We provide a new proof for

this via generating functions distinguishing the proof from the direct computation of differences

of quasipolynomials as in [6] and the recursion used in [3]. It illustrates a necessary lemma to

prove Theorem 23. Then we provide an example of the case of m “ 5 to build intuition for the

arithmetic of Theorem 23. Results similar to the case of m “ 3 are found in articles regarding

Gaussian polynomials such as in [6], [12], [13], and [14].
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3.1 The case of m“ 3 and m“ 4

We start by showing the proof of the case for m“ 3. This follows the proof in [6] and the

result is found in both [3] and [6].

Theorem 34. For `ě 0,

∆p3``0,3q “ ``1 (3.2)

∆p3``1,3q “ ` (3.3)

∆p3``2,3q “ ``1. (3.4)

Proof. We begin by computing the quasipolynomial for ppn,2q via Theorem 26. We see that for

all k ě 0,

ppn,2q “

$

’

’

&

’

’

%

pp2k,2q “ k`1

pp2k`1,2q “ k`1
(3.5)

We set `“ 2k`1. Then we examine the constituent ∆p3p2k`1qq`0q “ ∆p6k`3,3q. We have

∆p6k`3,3q“ pp6k`3,3q´ pp6k`2,3q“ p3k2
`6k`3q´p3k2

`5k`2q“ k`1“ pp2k`1,2q.

(3.6)

The remaining 5 cases follow by setting `“ 2k or `“ 2k`1 in lines (3.2), (3.3), and (3.4) and then

preforming similar computations using lines (2.10) and (3.5). �

This proof, while making use of a clever observations, fails to give any insight to how

this statement might generalize. Furthermore, it relies on having computed all constituents of

a quasipolynomial which the number of which depends on lcmprmsq. This process quickly be-

comes unfeasible trying by hand or computer with large enough m. We now provide the proof for

the case of m“ 4 which will illustrate the intuition for Theorem 23.
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Theorem 35. For `ě 0,

pp2`´3,4q´ pp2`´4,4q “ pp`´3,3q (3.7)

pp2`´4,4q´ pp2`´5,4q “ pp`´2,3q. (3.8)

Proof. By considering ` modulo 6 in lines (3.7) and (3.8), we will prove an equivalent statement.

For k ě 0,

pp12k,4q´ pp12k´1,4q

pp12k`3,4q´ pp12k`2,4q

,

/

.

/

-

“ pp6k,3q

pp12k`2,4q´ pp12k`1,4q

pp12k`5,4q´ pp12k`4,4q

,

/

.

/

-

“ pp6k`1,3q

pp12k`4,4q´ pp12k`3,4q

pp12k`7,4q´ pp12k`6,4q

,

/

.

/

-

“ pp6k`2,3q

pp12k`6,4q´ pp12k`5,4q

pp12k`9,4q´ pp12k`8,4q

,

/

.

/

-

“ pp6k`3,3q

pp12k`8,4q´ pp12k`7,4q

pp12k`11,4q´ pp12k`10,4q

,

/

.

/

-

“ pp6k`4,3q

pp12k`10,4q´ pp12k`9,4q

pp12k`13,4q´ pp12k`12,4q

,

/

.

/

-

“ pp6k`5,3q.

We following the proof of Theorem 26 we produce a quasipolynomial for ∆pn,4q and ppn,3q.

Line (2.9) gives E3pqq. Next, we must compute E4z1pqq which is,

E4z1pqq “ 1`q2
`q3

`2q4
`q5

`3q6
`2q7

`4q8
`3q9

`5q10
`4q11

`4q12
`5q13

`5q14

`4q15
`4q16

`5q17
`3q18

`4q19
`2q20

`3q21
`q22

`2q23
`q24

`q25
`q27. (3.9)
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We highlight that,

E4z1pqq “ p1`q3
qp1`q2

`2q4
`3q6

`4q8
`5q10

`4q12
`5q14

`4q16
`3q18

`2q20
`q22

`q24
q

“ p1`q3
qE3pq2

q. (3.10)

Next, generating function arithmetic yields

8
ÿ

n“0

∆pn,4qqn
“

1
pq2;qq3

“
E4z1pqq

E4z1pqqpq2;qq3
“

E4z1pqq
p1´q12q3

“ E4z1pqq
8
ÿ

k“0

ˆ

k`2
2

˙

q12k

“ p1`q3
qE3pq2

q

8
ÿ

k“0

ˆ

k`2
2

˙

q12k

“ p1`q3
q

˜

8
ÿ

k“0

ˆˆ

k`2
2

˙

`4
ˆ

k`1
2

˙

`

ˆ

k
2

˙˙

q12k

`

8
ÿ

k“0

ˆˆ

k`2
2

˙

`5
ˆ

k`1
2

˙˙

q12k`2

`

8
ÿ

k“0

ˆ

2
ˆ

k`2
2

˙

`4
ˆ

k`1
2

˙˙

q12k`4
`

8
ÿ

k“0

ˆ

3
ˆ

k`2
2

˙

`3
ˆ

k`1
2

˙˙

q12k`6

`

8
ÿ

k“0

ˆ

4
ˆ

k`2
2

˙

`2
ˆ

k`1
2

˙˙

q12k`8
`

8
ÿ

k“0

ˆ

5
ˆ

k`2
2

˙

`

ˆ

k`1
2

˙˙

q12k`10

¸

“ p1`q3
q

˜

8
ÿ

k“0

pp6k,3qq12k
`

8
ÿ

k“0

pp6k`1,3qq12k`2
`

8
ÿ

k“0

pp6k`2,3qq12k`4

`

8
ÿ

k“0

pp6k`3,3qq12k`6
`

8
ÿ

k“0

pp6k`4,3qq12k`8
`

8
ÿ

k“0

pp6k`4,3qq12k`10

¸

.

(3.11)

by lines (2.9), (2.10), and (3.9). Comparing powers of q modulo 12 in the preceding equation, the

result is as desired. �

3.2 A Lemma for First Differences of Partitions

The ability to factor E4z1pqq into p1` q3qE3pq2q was essential in proving the claim. For-

tunately, in this specific case a computer can handle this factorization with ease as E4z1pqq is a
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polynomial of degree 27. This leads to the following lemma which states under what conditions

Emz1pqq factors. We will provide three proofs for. The first two proofs will occur in this section;

one following the generating function arithmetic of Theorem 26 and another following the count-

ing of Theorem 32. The third occurs in the following chapter.

Lemma 36. Let m“ sk where s is prime and k is a positive integer, then Emz1pqq “ GpqqEm´1pqsq

where Gpqq “
m
ś

i“2,i‰sa,@aPN

s´1
ř

j“0
qi j.

Remark 37. Strictly speaking, Gpqq is the generating function for the collection of lcmprmsq-

remainder partitions which have no parts of size 1, any positive integer power of s, and parts of

any size occur less than s times. The nature of Gpqq is seemly mysterious. In a broader context,

we can also think of Gpqq as the generating function for a collection of “remainder partitions”

when the collection of partitions generated by Emz1pqq are considered modulo lcmprm´ 1sq-

remainder partitions. This arises naturally from defining a group structure on partitions gener-

ated by EApqq which will be treated a later chapter. For now, we can experience Gpqq as a conse-

quence of arithmetic and as a property of the sum of partitions and some particular combinatorial

map.

Proof. We show that
Emz1pqq
Em´1pqq

“ Gpqq by simplifying the expression,

Emz1pqq
Em´1pqsq

“

p1´qlcmprmsqqm´1

pq2;qqm´1

p1´qlcmprmsqqm´1

pqs;qsqm´1

“
pqs;qsqm´1

pq2;qqm´1
“

śk
r“1

´

p1´qsr
q
śsr´1

i“sr´1`1p1´qsiq

¯

śk
r“1

´

p1´qsr
q
śsr´1

i“sr´1`1p1´qiq

¯

“

śk
r“1

śsr´1
i“sr´1`1

˜

s´1
ř

j“0
qi j

¸

p1´qiq

śk
r“1

śsr´1
i“sr´1`1p1´qiq

“ Gpqq. (3.12)

�

For the combinatorial proof of Lemma 36, we introduce a generalization of lcmprmsq-

remainder partitions. Furthermore, we discuss how the sums of restricted partitions behave in

regards to their generating functions.
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Definition 38. A lcmpAq-remainder partition is a partition of n into parts from A such that for

each i P A, the number of parts of size i is less than lcmpAq
i . The generating function for lcmpAq-

remainder partitions EApqq and the collection of all lcmpAq-remainder partitions is denoted EA.

Proposition 39. Let 1,2 , and 3 be restrictions on partitions such that for any λ 2 and λ3 obeying 2

and 3 respectively, that the sum of λ 2 and λ3 is a partition, λ 1, obeying 1. Then, there are unique

partitions λ 2 and λ3 such that λ 1 “ λ 2`λ3 if an only if

ÿ

ně0

p1pnqqn
“

˜

ÿ

ně0

p2pnqqn

¸˜

ÿ

ně0

p3pnqqn

¸

.

Proof. Suppose that there are unique partitions λ 2 and λ3 such that λ 1 “ λ 2`λ3 . Let n be given,

we work on counting the number of partitions of n such that they obey the restriction 1. First, for

any 0 ď i ď n, p2piqp3pn´ iq is the number of ways such that if λ 2 $ i and λ3 $ n´ i then

λ 2`λ3 $ n where λ 2`λ3 is a partition that satisfies the restrictions 1. Then over all possibilities

of i, this yields p1pnq “
n
ř

i“0
p2piqp3pn´ iq as the sums are assumed to be unique, no partition is

counted twice and there is never a partition satisfying the restriction 1 such that there are no λ 2

and λ3 that sum to it. We now observe the product of the generating functions of partitions of n

satisfying 2 and 3 respectively. We arrive at

˜

ÿ

ně0

p2pnqqn

¸˜

ÿ

ně0

p3pnqqn

¸

“
ÿ

ně0

˜

n
ÿ

i“0

p2piqp3pn´ iq

¸

qn
“

ÿ

ně0

p1pnqqn. (3.13)

Conversely, suppose that
ř

ně0
p1pnqqn “

˜

ř

ně0
p2pnqqn

¸˜

ř

ně0
p3pnqqn

¸

. We have that for

any ně 0, p1pnqqn “
n
ř

i“0
p2piqqi p3pn´ iqqn´i by multiplication of the generating functions. We fur-

ther re-express this equality as
ř

λ 1$n
qλ 1 “

n
ř

i“0

˜

ř

λ2$i
qλ2

¸˜

ř

λ3$n´i
qλ3

¸

“
n
ř

i“0

˜

ř

λ2$i

˜

ř

λ3$n´i
qλ2`λ3

¸¸

.

By assumption we have, λ 2` λ3 “ λ 1, and by the equality there are the same number of qλ 1

on the left hand side as qλ2`λ3 on there right hand side. Then the mapping, qλ2`λ3 Ñ qλ 1 by

λ 2`λ3 “ λ 1 is a bijection by equality so sets hence the sum must be unique as desired. �

23



We now provide a combinatorial proof of Lemma 36.

Proof. Let λz1 “ p0,a2, ...,amq P Emz1. Let λ
prq
z1 “ p0,r2, ...,rmq be a sub partition of λz1. λ

prq
z1 is

defined by two cases, parts that are powers of s and parts that are not powers of s. If a part of size

i is a power of s, then the number of parts ri, is zero. Otherwise, we define the number of parts,

ri, to be the remainder of ai when divided by s. Let λ
pqq
z1 be p0,a2´ r2, ...,am´ rmq. The number

ai´ ri, unless i is a power of s, is divisible by s. We have λz1 “ λ
prq
z1 `λ

pqq
z1 . Furthermore, by the

uniqueness of quotient and remainders of non-negative integer division, this sum is unique.

λ
prq
z1 is a partition generated Gpqq. That is, λ

prq
z1 is a partition such that no part has a power

of s and for any part of size i there are less than s copies. The generating function Em´1pqsq de-

scribes partitions such parts of size i that are powers of s occur no more than lcmprm´ 1sq “

lcmprmsq
s times and parts of size i that are not powers of s occur a multiple of s number of times,

with no more than s¨lcmprm´1sq
i copies of a part of size i. Any subpartition λ

pqq
z1 if λz1 is generated

by Em´1pqsq as its construction satisfies the description of partitions generated by Em´1pqsq.

Let 1 be the restriction describing partitions in Emz1. Let 2 be the restriction that is de-

scribed by λ
prq
z1 in the first paragraph of this proof and 3 be the restriction that is described by

λ
pqq
z1 in the first paragraph. The restrictions 1,2 ,3 satisfy the conditions of Proposition 39, and the

lemma is proven.

�

With Lemma 36 in hand, deducing if a constituent of ∆pn,mq can be expressed as a non-

negative linear combination of constituents of ppn,m´1q is straightforward.

Example 40. Let m“ 5, then by Lemma 36, E5z1pqq “ GpqqE4pq5q “

˜

4
ś

i“2

4
ř

j“0
qi j

¸

E4pq5q. Now,

construct the respective quasipolynomials of ∆pn,5q and ppn,4q,

8
ÿ

n“0

∆pn,5qqn
“

1
pq2;qq4

“
E5z1pqq
p1´q60q4

“ E5z1pqq
8
ÿ

k“0

ˆ

k`3
3

˙

q60k (3.14)

“ GpqqE4pq5
q

8
ÿ

k“0

ˆ

k`3
3

˙

q60k
“

¨

˝

4
ź

i“2

4
ÿ

j“0

qi j

˛

‚E4pq5
q

8
ÿ

k“0

ˆ

k`3
3

˙

q60k (3.15)

24



and
8
ÿ

n“0

ppn,4qqn
“

1
pq;qq4

“
E4pqq

p1´q12q4
“ E4pqq

8
ÿ

k“0

ˆ

k`3
3

˙

q12k. (3.16)

Where

Gpqq “

¨

˝

4
ź

i“2

4
ÿ

j“0

qi j

˛

‚“ 1`q2
`q3

`2q4
`q5

`3q6
`2q7

`4q8
`3q9

`4q10
`4q11

`6q12

`4q13
`6q14

`5q15
`7q16

`5q17
`7q18

`5q19
`7q20

`5q21
`6q22

`4q23
`6q24

`4q25

`4q26
`3q27

`4q28
`2q29

`3q30
`q31

`2q32
`q33

`q34
`q36, (3.17)

E4pqq “ 1`q`2q2
`3q3

`5q4
`6q5

`9q6
`11q7

`15q8
`18q9

`23q10
`27q11

`30q12

`35q13
`39q14

`42q15
`44q16

`48q17
`48q18

`50q19
`48q20

`48q21
`44q22

`42q23

`39q24
`35q25

`30q26
`27q27

`23q28
`18q29

`15q30
`11q31

`9q32
`6q33

`5q34

`3q35
`2q36

`q37
`q38, and (3.18)

E4pq5
q “ 1`q5

`2q10
`3q15

`5q20
`6q25

`9q30
`11q35

`15q40
`18q45

`23q50
`27q55

`30q60
`35q65

`39q70
`42q75

`44q80
`48q85

`48q90
`50q95

`48q100
`48q105

`44q110
`42q115

`39q120
`35q125

`30q130
`27q135

`23q140
`18q145

`15q150
`11q155

`9q160
`6q165

`5q170
`3q175

`2q180
`q185

`q190. (3.19)

For example, ∆p60k` 0,5q “ pp12k` 0,4q` pp12k´ 1,4q` 4pp12k´ 2,4q` 5pp12k´ 3,4q`

7pp12k´4,4q`4pp12k´5,4q`3pp12k´6,4q.

While further arithmetic could explicitly show the partition identity between ∆pn,5q and

ppn,4q, it is tedious and the observed relationship above motivates the proof of the Theorem 23.
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3.3 Proof of a Theorem on First Differences of ppn,mq

We now prove Theorem 23.

Proof. We manipulate the generating function of ∆pn,mq following the proof for Theorem 26 and

apply Lemma 36,

8
ÿ

n“0

∆pn,mqqn
“

1
pq2;qqm´1

“
Emz1pqq

Emz1pqqpq2;qqm´1
“

Emz1pqq

p1´qlcmprmsqqm´1 (3.20)

“ Emz1pqq
8
ÿ

k“0

ˆ

k`m´2
m´2

˙

qlcmprmsqk
“ GpqqEm´1pqs

q

8
ÿ

k“0

ˆ

k`m´2
m´2

˙

qlcmprmsqk.

(3.21)

with Gpqq “
m
ś

i“2,i‰sa,@aPN

s´1
ř

j“0
qi j. Next, we construct the quasipolynomial for ppn,m´1q,

8
ÿ

n“0

ppn,m´1qqn
“

1
pq;qqm´1

“
Em´1pqq

p1´qlcmprm´1sqqm´1 “ Em´1pqq
8
ÿ

k“0

ˆ

k`m´2
m´2

˙

qlcmprm´1sqk.

(3.22)

Express the polynomials Emz1pqq, Em´1pqq, and Gpqq as

Emz1pqq “
ÿ

iě0

hiqi, Em´1pqq “
ÿ

iě0

fiqi, and Gpqq “
ÿ

iě0

giqi. (3.23)

Notice if the index of any coefficient of Emz1pqq, Em´1pqq, and Gpqq is less than zero, then the

coefficient is zero. For any constituent

∆plcmprmsqk` j,mq “
ÿ

tě0

h j`lcmprmsqt

ˆ

k`m´2´ t
m´2

˙

(3.24)

of the quasipolynomial of ∆pn,mq, let l and r be integers such that j “ l` r where r is the remain-

der of j when divided by s with 0 ď r ă s. Since GpqqEm´1pqsq “ Emz1pqq by Lemma 36, this
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implies by polynomial multiplication that the coefficient h j`lcmprmsqt in line (3.24) is

h j`lcmprmsqt “
ÿ

iě0

gis`r flcmprmsqt`l´is. (3.25)

Therefore, we apply line (3.25) to line (3.24) and rearrange the sum to see

ÿ

tě0

h j`lcmprmsqt

ˆ

k`m´2´ t
m´2

˙

“
ÿ

tě0

ÿ

iě0

gis`r flcmprmsqt`l´is

ˆ

k`m´2´ t
m´2

˙

(3.26)

“ gr
ÿ

tě0

flcmprmsqt`l

ˆ

k`m´2´ t
m´2

˙

`
ÿ

iě1

ÿ

tě0

gis`r flcmprmsqt`l´is

ˆ

k`m´2´ t
m´2

˙

(3.27)

“ gr
ÿ

tě0

flcmprmsqt`l

ˆ

k`m´2´ t
m´2

˙

`
ÿ

iě1

ÿ

tě1

gis`r flcmprmsqt`l´is

ˆ

k`m´2´ t
m´2

˙

(3.28)

“ gr
ÿ

tě0

flcmprmsqt`l

ˆ

k`m´2´ t
m´2

˙

`
ÿ

iě1

gis`r
ÿ

tě0

flcmprmsqpt´1q`l´is

ˆ

k`m´2´pt`1q
m´2

˙

.

(3.29)

Set l1 “ l
s . We now compare line (3.29) to constituents of ppn,m´1q. In particular,

pplcmprm´1sqk`l1`plcmprm´1sq´ iq,m´1q“
ÿ

tě0

flcmprm´1sqt`l1`plcmprm´1sq´iq

ˆ

k`m´2´ t
m´2

˙

.

(3.30)

Taking k “ k´1 we have,

pplcmprm´1sqpk´1q` l1`plcmprm´1sq´ iq,m´1q “ pplcmprm´1sqk` l1´ i,m´1q

“
ÿ

tě0

flcmprm´1sqt`l1`plcmprm´1sq´iq

ˆ

k`m´2´pt`1q
m´2

˙

(3.31)

By substituting q for qs in Em´1pqq, we have flcmprmsqt`l`is “ flcmprm´1sqt`l1`i. Furthermore, since

lcmprmsq “ s ¨ lcmprm´1sq, the following holds by combining lines (3.29) and (3.31),

∆plcmprmsqk` j,mq “
ÿ

iě0

gr`si pplcmprm´1sqk` l1´ i,m´1q. (3.32)
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We now prove Proposition 13.

Proof. We start by creating the quasipolynomial for ∆pn,mq and apply properties of Empqq and

Emz1pqq,

8
ÿ

n“0

∆pn,mqqn
“

1
pq2;qqm´1

“
1´q
pq;qqm

“
p1´qqEmpqq
p1´qlcmprmsqqm

(3.33)

“
Emz1pqq

p1´qlcmprmsqqm´1 “ Emz1pqq
8
ÿ

k“0

ˆ

k`m´2
m´2

˙

qlcmprmsqk. (3.34)

Next, we address ppn,m´1q.

8
ÿ

n“0

ppn,m´1qqn
“

1
pq;qqm´1

“
1´qm

pq;qqm
“
p1´qmqEmpqq
p1´qlcmprmsqqm

(3.35)

“

p1´qq
ˆ

m´1
ř

i“0
qi
˙

Empqq

p1´qlcmprmsqqm
“

ˆ

m´1
ř

i“0
qi
˙

Emz1pqq

p1´qlcmprmsqqm´1 “

˜

m´1
ÿ

i“0

qi

¸

Emz1pqq
8
ÿ

k“0

ˆ

k`m´2
m´2

˙

qlcmprmsqk.

(3.36)

The arguments in the proof of Theorem 23 yield,

pplcmprm´1sqk` j,m´1q “
m´1
ÿ

i“0

∆plcmprmsqk` j´ i,mq “ ∆mplcmprmsqk` j,mq. (3.37)

Thus ppn,m´ 1q can always be written as a linear combination of constituents of ∆pn,mq in a

manner that is equivalent to the familiar partition identity, ppn,m´1q “ ppn,mq´ ppn´m,mq. �
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CHAPTER IV

THE GROUP OF REMAINDER PARTITIONS

We now aim to generalize the previous section into partitions with parts from finite sets A

and B.

4.1 lcmpAq-Remainder Partitions

First, lcmpAq-remainder partitions are equipped with a natural group structure as an opera-

tion on the number of parts.

Definition 41. Let A be a finite set of positive integers and consider the set EA consisting of

all lcmpAq-remainder partitions. We define an operation, ‘, on EA. Let λ1,λ2 P EA, and λ1 “

pai1,1, ...,aik,αik
q and λ2 “ pbi1,1, ...,bik,αik

q. Then λ1‘λ2 “ λ3 “ pci1,1, ...,cik,αik
q by defining ci j,`

with ` P t1,2, ...,αi ju to be the smallest non-negative remainder of ai j,`` bi j,` divided by lcmpAq
i j

.

That is, ai j,``bi j,` ” ci j,` pmod lcmpAq
i j
q. The operation ‘ is called piecewise modular addition.

Proposition 42. The operation ‘ on EA is a abeilan group.

Proof. A routine check of axioms follows. We note the operation is closed by the choice of the

smallest non-negative remainder. The identity of EA is the empty partition, λe “ p0,0, ...,0q as for

any λ P EA, λe‘λ “ λ as 0`ai j,` “ ai j,` which is less than lcmpAq
i j

but greater than or equal to 0.

Next, we show ‘ is associative. For any λ1,λ2,λ3 PEA, we observe pλ1‘λ2q‘λ3 component wise,

we have pai j,``bi j,`q` ci j,` ” ai j,``pbi j,`` ci j,`q pmod lcmpAq
i j
q which implies that λ1‘pλ2‘λ3q.

We follow this by showing the existence of inverses. For λ1 P EA, we pick λ2 by bi j,` “
lcmpAq

i j
´

ai j,` unless ai j,` “ 0, then we set bi j,` “ 0. We see that λ1‘λ2 “ λe. If ai j,` “ 0, then ai j,``bi j,` “

0` 0 “ 0 pmod lcmpAq
i j
q and if not then, ai j,` ` bi j,` “ ai j,` `

lcmpAq
i j

´ ai j,` ” 0 pmod lcmpAq
i j
q.
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Lastly, the commutative property follows as for observing λ1‘ λ2 component wise. We have

ai j,``bi j,` “ bi j,``ai j,` pmod lcmpAq
i j
q which implies λ1‘λ2 “ λ2‘λ1. �

The notation EA will be used for both the group pEA,‘q and the set of partitions lcmpAq-

remainder partitions. We now give several important properties of EA, the group of lcmpAq-remainder

partitions.

Proposition 43. The group EA is isomorphic to
ś

iPA
Z lcmpAq

i
where the product is the usual direct

product of groups and Zn is a cyclic group of order n.

The proof is left to the reader. The group EA has order
ś

iPA

lcmpAq
i by Proposition 43 or by

counting and the order of any element in EA is at most lcmpAq.

Proposition 44. Let λ1,λ2 P EA and suppose that λ1 $ n and λ2 $ m. Then λ1‘ λ2 $ pn`mq

pmod lcmpAqq.

Proof. We first note that n “
k
ř

s“1

αis
ř

t“1
i j ¨ ais,t and m “

k
ř

s“1

αis
ř

t“1
i j ¨ bis,t . Furthermore, it must be the

case that λ1‘λ2 implies that pais,t `bis,tq “ cis,t ` xis,t

´

lcmpAq
is

¯

for some positive integer xis,t by

definition. The following arithmetic shows the result,

n`m“
k
ÿ

s“1

αis
ÿ

t“1

i j pais,t `bis,tq “

k
ÿ

s“1

αis
ÿ

t“1

i j

ˆ

cis,t ` xis,t

ˆ

lcmpAq
is

˙˙

“

k
ÿ

s“1

αis
ÿ

t“1

`

i jcis,t ` xis,t lcmpAq
˘

“ λ1‘λ2` lcmpAq
k
ÿ

s“1

αis
ÿ

t“1

xis,t ” λ1‘λ2 pmod lcmpAqq. (4.1)

�

The proof of Proposition 44 closely follows the strategy employed in Theorem 32 applied

strictly to lcmpAq-remainder partitions. We are now ready to state and prove the generalization of

Lemma 36.

Lemma 45. Let A and B be two sets of positive integers with |B| ď |A|. If there is an onto ho-

momorphism from EA to EB, then EApqq “ GpqqEBpqsq for Gpqq a generating function of some

collection of lcmpAq-remainder partitions and s“ lcmpAq
lcmpBq .
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Proof. Suppose that there is an onto homomorphism ϕ from EA to EB. By the first isomorphism

theorem, Impϕq – EA{kerpϕq and as the mapping is onto, Impϕq – EB. We essentially have two

tasks; first, show that there is a collection of partitions H Ď EA that is generated by EBpqsq; sec-

ond, to find a collection, G, of lcmpAq-remainder partitions such that H and G are restrictions of

lcmpAq-remainder partitions which satisfy the conditions of Proposition 39.

To satisfy the first task, we make a few notes about EB in relationship to EA. Let λ
pAq
iv,w P EA

be be a partition that has one part of size iv in color w. λ
pAq
iv,w is a generator of group EA. Likewise,

let λ
pBq
it,u P EB be a partition that has one part of size it in color u. Likewise λ

pBq
it,u is a generator of the

group EB. As ϕ can be viewed as an onto homomorphism for direct products of cyclic groups, it

is the case that ϕpx ¨λ pAqiv,w q “ λ
pBq
it ,u where x ¨λ pAqiv,w :“

x
À

k“1
λ
pAq
iv,w is piecewise modular addition of λ

pAq
iv,w

x times and gcdpx, lcmpAq
iv
q “ 1. Since the order of x ¨λ pAqiv,w is lcmpAq

iv,w
, we have

lcmpAq
iv,w
ÿ

k“1

¨

˝

x
ÿ

j“1

λ
pAq
iv,w

˛

‚$ x ¨ iv,w ¨
lcmpAq

iv,w
“ x ¨ lcmpAq (4.2)

and in the group EA, it is the case that lcmpAq
iv,w

¨ px ¨λ pAqiv,w q “ λe. We apply ϕ , which yields

lcmpAq
iv,w

¨ϕpx ¨λ pAqiv,w q “
lcmpAq

iv,w
¨λ
pBq
it,u “ λ

pBq
e . (4.3)

Applying Proposition 44 to (4.3), we see that

λ
pBq
e “

lcmpAq
iv,w
à

r“1
λ
pBq
it,u $

lcmpAq
iv,w
ÿ

r“1

it,u “
lcmpAq

iv,w
¨ it,u ” 0 pmod lcmpBqq. (4.4)

This implies that there is a smallest positive integer y such that

y ¨ lcmpBq “
lcmpAq

iv,w
¨ it,u which is equivalent to y ¨ iv,w “

lcmpAq
lcmpBq

¨ it,u “ s ¨ it,u. (4.5)

If s � y in the previous line, there is a positive integer z such that z ¨ iv,w “ it,u. Furthermore, z ¨
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iv,w ¨
lcmpBq

it,u
“ lcmpAq. If s ffl y in line (4.5), then s � iv,w. For each generator λ

pBq
it,u of EB, we name a

partition λ
pAq
it,u P EA. Let λ

pAq
it,u “ y ¨λ pAqiv,w P EA such that y ¨λ pAqiv,w $ s ¨ it,u. We define the set H by

H “

#

à

it,uPB
kit,u ¨λ

pAq
it,u

∣∣∣∣ 0ď kit,u ă
lcmpBq

it,u

+

. (4.6)

We have a natural bijection between H and EB by mapping λ
pAq
it,u to λ

pBq
it,u . Next, if λ $ n in EB, the

corresponding partition by the natural bijection in H must partition s ¨n. By this correspondence,

the generating function for H must be EBpqsq.

With our first task complete, we turn to the second. Let λ P EA. We will define λq and

λr such that λq` λr “ λ and that λq P H, λr P G. We start by defining λr. For the number aiv,w

of parts of size iv and color w, if there is a λ
pAq
it,u P H such that λ

pAq
it,u “ y ¨ λ pAqiv,w $ s ¨ it,u then we

have two cases: if y � s and if y ffl s. For the first case, we divide aiv,w by y letting the remainder be

defined as riv,w . In the second case, we set riv,w “ 0. In all other cases, we set riv,w to aiv,w . Let λr

be the partition with the number riv,w of parts of size iv and color w. Let λq be the partition with

the number qiv,w “ aiv,w´ riv,w of parts of size iv and color w. Then we define G be the set of all λr

partitions. As G is a finite set, Gpqq is the polynomial generating function for the partitions in G.

Furthermore, by uniqueness of non-negative integer division, we the unique sum λq`λr “ λ .

We verify that λq P H. For the number qiv,w of parts of size iv and color w, if there is a

λ
pAq
it,u P H such that λ

pAq
it,u “ y ¨ λ pAqiv,w $ s ¨ it,u, then we have two cases. If s � y, then y � qiv,w by

definition and hence qiv,w “ kit,u ¨ y for some 0ď kit,u ă
lcmpBq

it,u
. If s ffl y, then gcdpy, lcmpBq

it,u
q “ 1 and

there is some 0 ď kit,u ă
lcmpBq

it,u
such that y ¨ kit,u ” qiv,w pmod lcmpAq

iv,w
q. In all other cases, qiv,w “ 0

and hence implicitly is in H. Since λq` λr “ λ is unique, we have satisfied the conditions of

Proposition 39, proving the lemma. �

Remark 46. The reader is encouraged to show that H is isomorphic to EB (hence a subgroup

of EA) and that EA{H – G – kerpϕq. This fact is not necessary in the proof but gives an idea

how to describe G. We can think of the set G as the “remainder” of EA when considered modulo

partitions from EB.
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When A “ t2, ...,mu and B “ t1, ...,m´ 1u, we construct an explicit mapping in the sec-

ond proof of Lemma 36 between Emz1 and Em´1. This mapping inspires the more general proof.

Since both Emz1 and Em´1 are isomorphic to direct products of cyclic groups, we simply need

to describe a homomorphism between these groups. We now sketch the proof Lemma 36 using

Lemma 45. This exhibits how Lemma 45 can be used to establish infinite families for partition

identities.

Proof. Let m “ sk where s is prime and k is a positive integer. By Proposition 43, it is sufficient

to define a homomorphism ϕ :
m
ś

i“2
Z lcmprmsq

i
Ñ

m´1
ś

i“1
Z lcmpm´1q

i
. Let px2,x3, ...,xmq “ x P

m
ś

i“2
Z lcmprmsq

i

and py1,y2, ...,ym´1q “ y P
m´1
ś

i“1
Z lcmpm´1q

i
. The generators of

m
ś

i“2
Z lcmprmsq

i
are e2 “ p1,0,0, ...,0q,e3 “

p0,1,0, ...,0q, ...,em “ p0,0,0, ...,1q and the generators of
m´1
ś

i“1
Z lcmpm´1q

i
are f1 “ p1,0,0, ...,0q, f2 “

p0,1,0, ...,0q, ..., fm´1 “ p0,0,0, ...,1q. We define ϕ based on generators. If j “ sr for any r “

1, ...,k, let ϕpe jq “ fsr´1 and ϕpe jq “ f j otherwise. With ϕ defined, the completion of the proof is

routine using lcmprmsq “ s ¨ lcmpm´1q and Lemma 45 and it is left to the reader. �

With Lemma 45, we can now generalize Theorem 23.

Theorem 47. Let A and B be two sets of positive integers such that |A| “ |B|. If there is an onto

homomorphism from EA to EB, then any constituent of ppn,Aq can be expressed as a non-negative

linear combination of constituents ppn,Bq.

Proof. First, by Lemma 45, EApqq “ GpqqEBpqsq for s “ lcmpAq
lcmpBq . That is, Gpqq “ EApqq

BE qs and can

be computed because EApqq and EBpqsq are known. We proceed to manipulate the generating

function of ppn,Aq using the facts noted above,

8
ÿ

n“0

ppn,Aqqn
“
ź

iPA

1
p1´qiq

“
EApqq

p1´qlcmpAqqd
“ EApqq

8
ÿ

k“0

ˆ

k`d´1
d´1

˙

qlcmpAqk (4.7)

“ GpqqEBpqs
q

8
ÿ

k“0

ˆ

k`d´1
d´1

˙

qlcmpAqk. (4.8)
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Next, we construct the quasipolynomial for ppn,Bq,

8
ÿ

n“0

ppn,Bqqn
“
ź

iPB

1
p1´qiq

“
EBpqq

p1´qlcmpBqqd
“ EBpqq

8
ÿ

k“0

ˆ

k`d´1
d´1

˙

qlcmpBqk. (4.9)

The remainder of the proof follows the proof of Theorem 23 by using the same diligent arith-

metic. In particular considering j when divided by s, that is j “ l1s` r, we have,

pplcmpAqk` j,Aq “
ÿ

iě0

gr`si pplcmpBqk` l1´ i,Bq. (4.10)

�

The third proof of Lemma 36 using Lemma 45 in conjunction with Theorem 47 proves

Theorem 23.

4.2 Notes for Future Projects

We have given three proofs of Theorem 23. First, though classic generating function arith-

metic. Second, by showing a combinatorial map between 1-free partitions into at most m parts

and partitions with no more than m´ 1 parts via conjugation and the sum operation in Chapter

3. Third, by proving the more general theorem, Theorem 47, which applies algebraic structure

to lcmpAq-remainder partitions and the sum operation to find a ‘universal’ mapping. Unifying

these proofs is the fact that ppn,Aq can be expressed as a quasipolynomial with a finite number of

constituents.

The existence of an onto homomoprhism from EA to EB gives a sufficient condition for

when a constituent of the quasipolynomial of ppn,Aq can be expressed as a non-negative linear

combination of constituents of the quasipolynomial of ppn,Bq. The converse is in general not

true. For example, Proposition 13 implies that any a constituent of ppn,m´1q can be written as a

non-negative linear combination of constituents of ∆pn,mq by line (3.37). When m“ 5, there is no

onto homomorphism from E4 Ñ E5z1 as
∣∣E5z1

∣∣ą |E4|. Given Theorem 23, we pose the following

questions.
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Question 48. If m is not a prime power, can any constituent of ∆pn,mq be expressed as a non-

negative linear combination of constituents of ppn,m´1q in accordance to Theorem 26?

Question 49. What other infinite families of partition identities can be established using Theorem

47?
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CHAPTER V

AYSMPTOTICS OF PpN,Aq

We have utilized the group EA to establish certain partition identities of ppn,mq. Now we

will use the group EA to prove well known asymptotic formula of ppn,Aq. These The is work in

this chapter is joint with Alexander Swarzes-Beard and Dr. Brandt Kronholm [21].

Definition 50. Let the set of partition EA j be the partitions in EA such that they partition numbers

when divided by lcmpAq have remainder j.

Proposition 51. EA0 is a subgroup of EA.

Proof. Let λ1 and λ2 be in EA0 . By Proposition 44, λ
´1
2 P EA0 and again by Proposition 44 λ1‘

λ
´1
2 $ pg`hq ” 0`0 pmod lcmpAqq and hence λ1‘λ

´1
2 P EA0 �

We now can prove Theorem 24 which appears in some form [18], [10], and [] . We utilize

several properties of abstract algebra to quickly provide a proof of the asymptotic formula. We

make the simplifying assumption that the elements of A are relatively prime.

Proof. From Theorem 26 we have,

pplcmpAqk` j,Aq “
d
ÿ

t“0

h j`lcmpAqt

ˆ

k´ t`pd´1q
d´1

˙

“

d
ÿ

t“0

a j`lcmpAqt

d´2
ś

i“0
pk`d´1´ i´ tq

pd´1q!

“

˜

1
pd´1q!

d
ÿ

t“0

h j`lcmpAqtk
d´1

¸

` f jpkq. (5.1)

where f jpkq is a polynomial of degree d ´ 2. Since EA0 is a normal subgroup of EA, we have

lcmpAq distinct cosets each corresponding with representative elements that which partitions of
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numbers with remainders 0 to lcmpAq ´ 1 and thus lcmpAq “ |EA|
EA0

which implies that
∣∣EA0

∣∣ “
lcmpAqd´1

ś

iPA
i . Now we have

∣∣EA0

∣∣ “ ∣∣EA j

∣∣ “ lcmpAqd´1
ś

iPA
i . We further relate EA j to the coefficients

h j`lcmpAqt by noting that
∣∣EA j

∣∣“ d
ř

t“0
h j`lcmpAqt . Line (5.1) becomes

pplcmpAqk` j,Aq“

˜

1
pd´1q!

ÿ

sě0

h j`lcmpAqsk
d´1

¸

` f jpkq“

¨

˝

1
pd´1q!

lcmpAqd´1
ś

iPA
i

kd´1

˛

‚` f jpkq.

(5.2)

Lastly, we take k “ n´ j
lcmpAq ,

ppn,Aq „
nd´1

pd´1q!
ś

iPA
i
`Opnd´2

q (5.3)

as desired. �

Remark 52. Though this proof we have shown that the sum of coefficients of any constituent of

ppn,Aq is lcmpAqd´1
ś

iPA
i with the assumption that gcdpAq “ 1. If this is not the case, a simple adjustment

in formula and proof shows that the sum of any constituent is gcdpAq lcmpAqd´1
ś

iPA
i . This comes from

the fact that the number of cosets when examining EA{EA0 will be lcmpAq
gcdpAq .

We can refine this process to recover part of another result of [18] and [9]. We start with

the example for ppn,mq to illustrate the proof and then generalize the statement and proof for

ppn,Aq.

Theorem 53. For any mě 3,

pplcmprmsqk` j,mq “ α1, jkm´1
`α2, jkm´2

`Opkm´3
q

where

α1, j “
lcmprmsqm´1

m!pm´1q!
and α2, j “

lcmprmsqm´2

m!pm´2q!

ˆ

j`
mpm`1q

4

˙

.

Proof. The proof of Theorem 24, we immediately have α1, j “
lcmprmsqm´1

m!pm´1q! . Next, we consider the
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first differences of ppn,mq, ∆pn,mq. We have that

∆plcmprmsqk` j,mq “ pplcmprmsqk` j,mq´ pplcmprmsqk` j´1,mq

“

m
ÿ

t“1

αt, jkm´t
´

m
ÿ

t“1

αt, j´1km´t
“

m
ÿ

t“2

`

αt, j´αt, j´1
˘

km´t . (5.4)

By Theorem 24 and that ∆pn,mq “ ppn,mz1q, we have α2, j´α2, j´1 “
lcmprmsqm´2

m!pm´2q! hence

α2, j`r´α2, j “
lcmprmsqm´2

m!pm´2q!
¨ r. (5.5)

Furthermore, by changing a constituent of ppn,mq from the binomial basis to a monnomial in k,

we have,

pplcmprmsqk` j,mq “
1

pm´1q!

˜

m´1
ÿ

t“1

h j`lcmprmsqtk
m´1

¸

`

1
pm´1q!

˜

m´1
ÿ

t“0

h j`lcmprmsqt
pm´2tqpm´1q

2

¸

` f jpkq (5.6)

where f jpkq is a polynomial of degree m´ 3. We wish to evaluate α
2,´mpm`1q

4
for the purpose of

computation. Empqq has the property that h
t lcmprmsq´mpm`1q

4
“ h

pm´tq lcmprmsq´mpm`1q
4

and h
t lcmprmsq´t

mpm`1q
4 u
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“ h
pm´tq lcmprmsq´r

mpm`1q
4 s

. We compute

α
2,r´mpm`1q

4 s
`α

2,t´mpm`1q
4 u

“

˜

m´1
ÿ

t“0

h
r´

mpm`1q
4 s`lcmprmsqt

pm´2tqpm´1q
2

¸

`

˜

m´1
ÿ

t“0

h
t´

mpm`1q
4 u`lcmprmsqt

pm´2tqpm´1q
2

¸

“

˜

m´1
ÿ

t“0

h
r´

mpm`1q
4 s`lcmprmsqt

pm´2tqpm´1q
2

¸

`

˜

m´1
ÿ

t“0

h
pm´tq lcmprmsq´r

mpm`1q
4 s

pm´2tqpm´1q
2

¸

“

˜

m´1
ÿ

t“0

h
r´

mpm`1q
4 s`lcmprmsqt

pm´2tqpm´1q
2

¸

`

˜

m´1
ÿ

t“0

h
t lcmprmsq´r

mpm`1q
4 s

pm´2pm´ tqqpm´1q
2

¸

“

m´1
ÿ

t“0

ˆ

h
r´

mpm`1q
4 s`lcmprmsqt

pm´2tqpm´1q
2

`h
t lcmprmsq´r

mpm`1q
4 s

pm´2pm´ tqqpm´1q
2

˙

“

m´1
ÿ

t“0

ˆ

h
r´

mpm`1q
4 s`lcmprmsqt

pm´2tqpm´1q
2

`h
t lcmprmsq´r

mpm`1q
4 s

pm´2pm´ tqqpm´1q
2

˙

“

m´1
ÿ

t“0

ˆ

h
r´

mpm`1q
4 s`lcmprmsqt

pm´2tqpm´1q
2

´h
t lcmprmsq´r

mpm`1q
4 s

pm´2tqpm´1q
2

˙

“ 0. (5.7)

Line (5.7) and (5.5) implies that

α
2,´mpm`1q

4
“ α

2,r´mpm`1q
4 s

´α
2,t´mpm`1q

4 u
“ 0. (5.8)

Therefore,

α2, j “ α
2,p j`mpm`1q

4 q´
mpm`1q

4
´α

2,´mpm`1q
4

“
lcmprmsqm´2

m!pm´2q!
¨

ˆ

j`
mpm`1q

4

˙

. (5.9)

�

We define a similar difference for ppn,Aq as for ppn,mq. This allows us to generalize the

statement for ppn,mq to ppn,Aq.

Definition 54. Let x be the smallest integer in A, then we define the smallest difference of A as
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∆pn,Aq “ ppn,Aq´ ppn´ x,Aq.

Theorem 55. For any d ě 3, let y“
ř

iPA
i and x be the smallest number in A then,

pplcmpAqk` j,mq “ α1, jkd´1
`α2, jkd´2

`Opkd´3
q

where

α1, j “
lcmpAqd´1

pd´1q!
ś

iPA
i

and α2, j “
lcmpAztxuqd´2

pd´2q!
ś

iPAztxu
i

´

j`
y
2

¯

.

The proof is exactly as in the previous theorem except m is replaced with d in any index,

lcmprmsq is replaced with lcmpAq, mpm`1q
4 is replaced with y

2 . Lastly, we should see the difference

we must observe is

α2, j`xr´α2, j “
lcmpAztxuqd´2

pd´2q!
ś

iPAztxu
i
¨ r. (5.10)
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CHAPTER VI

EXTENSIONS TO GAUSSIAN POLYNOMIALS

We work to extend the results of Chapter 3 to Gaussian Polynomials. We will arrive at

generalization of an identify derived in [6].

Definition 56. The function ppn,m,Nq denotes the number of partitions of doubly restricted

partitions of n into at most m part with no part larger than N and its generating function is

8
ÿ

n“0

ppn,m,Nqqn
“

pq;qqN`m

pq;qqNpq;qqm
“
pqN`1;qqm
pq;qqm

. (6.1)

The notation

»

—

–

N`m

m

fi

ffi

fl

“
pq;qqN`m
pq;qqNpq;qqm

is used.

Andrews [1] gives justification for the generating functions of ppn,mq and ppn,m,Nq as

well as proof that pq
N`1;qqm
pq;qqm

is a polynomial.

Theorem 57.

pz;qqm “
m
ÿ

h“0

»

—

–

m

h

fi

ffi

fl

p´1qhq
hph´1q

2 zh. (6.2)

The reader may find a proof of the q-Binomial Theorem in [1]. We provide an alternate

proof of a Theorem occurring [6].

Theorem 58. If nă 2N`2, then ∆pn,m,Nq “ ∆pn,mq.

Proof. The proof is split into two parts. First, we manipulate the generating function of ∆pn,m,Nq

to show ∆pn,mq “ ∆pn,m,Nq agree up to some n, then we show that this happens when nă 2N`2.
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The generating function of ∆pn,m,Nq is

8
ÿ

n“0

∆pn,m,Nqqn
“
pqN`1;qqm
pq;qqm

´q
pqN ;qqm
pq;qqm

“
pqN`1;qqm´1pp1´qm`Nq´qp1´qNqq

pq;qqm

“

pqN`1;qqm´1p1´qq

˜

m`N´1
ř

i“0
qi´

N
ř

j“1
q j

¸

pq;qqm

“

˜

8
ÿ

n“0

∆pn,mqqn

¸

pqN`1;qqm´1

˜

1`
m´1
ÿ

i“1

qN`i

¸

. (6.3)

If the smallest non-zero power of q of pqN`1;qqm´1

´

1`qN
m´1
ř

i“1
qi
¯

in line (6.3) is 2N`2, then the

statement is shown. To show this, we will carefully multiply pqN`1;qqm´1

´

1`qN
m´1
ř

i“1
qi
¯

. Prior to

multiplying, we define a recursive function, A jpqq, such that each A jpqq has the property that the

smallest non-zero power of q is 2N`2. For an index j with 2ď j ď m´1, let

A1pqq “ ´qN`1
m´1
ÿ

i“1

qN`i and

A jpqq “ A j´1pqq ´ qN` jA j´1pqq ´ qN` j
m´1
ř

i“ j
qN`i.(6.4)Inspection of A1pqq reveals that

A1pqq has the property that the smallest non-zero power of q is 2N`2. Let 2ď j ď m´1 be given

and assume that A j´1pqq has the property that the smallest non-negative power of q is 2N`2. By

assumption A j´1pqq; assumption and multiplying by a non-zero power of q, ´qN` jA j´1pqq; and

inspection ´qN` j
m´1
ř

i“ j
qN`i, respectively have the property that the smallest non-zero power of q

is 2N`2. Therefore, A jpqq must have a smallest non-zero power of q is 2N`2.

Now, to show that careful multiplication of pqN`1;qqm´1

´

1`qN
m´1
ř

i“1
qi
¯

yields the smallest
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non-zero power of q is 2N`2. First, notice that

p1´qN`1
q

˜

1`qN
m´1
ÿ

i“1

qi

¸

“ 1´qN`1
`qN

m´1
ÿ

i“1

qi
´qN`1

m´1
ÿ

i“1

qi`N
“ 1`qN

m´1
ÿ

i“2

qi
`A1pqq.

(6.5)

Furthermore, note

p1´qN` j
q

˜

1`qN
m´1
ÿ

i“ j

qi
`A j´1pqq

¸

“ 1´qN` j
`qN

m´1
ÿ

i“ j

qi
´qN` j

m´1
ÿ

i“ j

qi`N
`A j´1pqq

`qN` jA j´1pqq “ 1`qN
m´1
ÿ

i“ j`1

qi
`A jpqq. (6.6)

We multiply pqN`1;qqm´1

ˆ

1`qN
m´1
ř

i“1
qi
˙

sequentially starting with the factor pqN`1;qqm´1 that

contains the smallest power of q to the largest by the either 1`qN
m´1
ř

i“1
qi or the resulting product of

the previous computation. Line (6.5) is the result of the first multiplication. In general on the jth

multiplication, the qN` j term is zero by line (6.6). As there are m´2 factors in pqN`1;qqm´1 and

m´2 terms in qN
m´1
ř

i“1
qi, we see that

pqN`1;qqm´1

˜

1`qN
m´1
ÿ

i“1

qi

¸

“ 1`Am´1pqq (6.7)

which indeed has a smallest non-zero power of q that is 2N`2, hence the lemma is proven. �

Rather than defining an recursive function, we offer a second proof utilizing the the q-

Binomial Theorem. This is how the authors in [6] proved Theorem 58.

Proof. We start from line (6.3). We apply the q-binomial theorem to re-express pqN`1;qqm´1 in
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(6.3)) in the following way.

pqN`1;qqm´1 “

m´1
ÿ

h“0

»

—

–

m´1

h

fi

ffi

fl

q
hph´1q

2 `hpN`1q

“

m´1
ÿ

h“0

hpm´1´hq
ÿ

i“0

p´1qh ppi,h,m´1´hqq
hph´1q

2 `hpN`1q`i

“ 1´
m´2
ÿ

j“0

qN`1` j
`

m´1
ÿ

h“2

hpm´1´hq
ÿ

i“0

p´1qh ppi,h,m´1´hqq
hph´1q

2 `hpN`1q`i. (6.8)

Note that the following polynomial Apqq has degree strictly greater than to 2N`2,

Apqq “
m´1
ÿ

h“2

hpm´1´hq
ÿ

i“0

p´1qh ppi,h,m´1´hqq
hph´1q

2 `hpN`1q`i.

Now we have

pqN`1;qqm´1

˜

1`
m´1
ÿ

i“1

qN`i

¸

“

¨

˝1´qN`1
m´2
ÿ

j“0

q j
`Apqq

˛

‚

˜

1`qN`1
m´2
ÿ

i“0

qi

¸

“ 1´q2N`2

¨

˝

m´2
ÿ

j“0

q j

˛

‚

2

`Apqq`qN`1
m´2
ÿ

i“0

qiApqq. (6.9)

Therefore, the smallest non-zero power of q in line (6.9) is 2N`2, and Theorem 58 is proved. �

The first proof provides intuition into how the second proof with the q-Binomial Theorem

ought to function. We now reprove two results from [6].
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Theorem 59 (Castillo et al.). For k ě 0 and k ă N´1
3 , then

pp2k,2q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

pp6k,3,Nq´ pp6k´1,3,N´1q

pp6k`2,3,Nq´ pp6k`1,3,N´1q

pp6k`4,3,Nq´ pp6k`3,3,N´1q

, (6.10)

pp2k`1,2q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

pp6k`3,3,Nq´ pp6k`2,3,N´1q

pp6k`5,3,Nq´ pp6k`4,3,N´1q

pp6k`7,3,Nq´ pp6k`6,3,N´1q

. (6.11)

For k ě 0 and k ă N´1
6 ,

pp2k´3,4,Nq´ pp2k´4,4,N´1q “ ppk´3,3q, (6.12)

pp2k´4,4,Nq´ pp2k´5,4,N´1q “ ppk´2,3q. (6.13)

Proof. We apply Theorem 58 to Theorem 23 for the cases m “ 3,4. In the first case, we express

n as 6k` j for a positive integer j such that 0 ď j ď 5, then k ă N´t j{2u`1
3 by the condition of

Theorem 58. When j “ 5 gives the smallest bound, we recover lines (6.10) and (6.11). To find lines

(6.12) and (6.13), we express n“ 12k` j for a positive integer j such that 0ď j ď 11, we see that

0ď k ă N´t j{2u`1
6 . �

We now state the generalization of Theorem 23 to Gaussian Polynomials.

Theorem 60. Let s be a prime. If m “ sx where x is a positive integer and for 0 ď j ă lcmprmsq,

0ď k ă 2N´ j`2
lcmprmsq then

pplcmprmsqk` j,m,Nq´ pplcmprmsqk` j´1,m,N´1q “
ÿ

iě0

gr`si pplcmpm´1qk` l1´ i,m´1q

(6.14)

where l1 and r satisfy j “ l1s` r with 0ď r ă s, lcmprmsq is the least common multiple of the num-
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bers 1 through m, and gr`si are the coefficients of some polynomial Gpqq as defined by Lemma

36.

Proof. We apply Theorem 58 Theorem to 23 proving the result. �
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