
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Theses and Dissertations - UTB/UTPA 

8-2013 

Traveling Wave Solution to Two-Dimensional Burgers-Korteweg-Traveling Wave Solution to Two-Dimensional Burgers-Korteweg-

De Vries Equation De Vries Equation 

Xiaoqian Gong 
University of Texas-Pan American 

Follow this and additional works at: https://scholarworks.utrgv.edu/leg_etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Gong, Xiaoqian, "Traveling Wave Solution to Two-Dimensional Burgers-Korteweg-De Vries Equation" 
(2013). Theses and Dissertations - UTB/UTPA. 831. 
https://scholarworks.utrgv.edu/leg_etd/831 

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for 
inclusion in Theses and Dissertations - UTB/UTPA by an authorized administrator of ScholarWorks @ UTRGV. For 
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/leg_etd
https://scholarworks.utrgv.edu/leg_etd?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/leg_etd/831?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


TRAVELING WAVE SOLUTION TO TWO-DIMENSIONAL

BURGERS-KORTEWEG-DE VRIES EQUATION

A Thesis

by

XIAOQIAN GONG

Submitted to the Graduate School of the
University of Texas-Pan American

In partial fulfillment of the requirements for the degree of

MASTERS OF SCIENCE

August 2013

Major Subject: Mathematics





TRAVELING WAVE SOLUTION TO TWO-DIMENSIONAL

BURGERS-KORTEWEG-DE VRIES EQUATION

A Thesis
by

XIAOQIAN GONG

COMMITTEE MEMBERS

Dr. Zhaosheng Feng
Chair of Committee

Dr. Andras Balogh
Committee Member

Dr. Zhijun Qiao
Committee Member

Dr. Cristina Villalobos
Committee Member

August 2013





Copyright 2013 Xiaoqian Gong

All Rights Reserved





ABSTRACT

Gong, Xiaoqian, Traveling Wave Solution to Two-Dimensional Burgers-Korteweg-de Vries Equation.

Master of Science (MS), August, 2013, 27pp, 14 references, 20 titles.

In this thesis, we study the Two-Dimensional Burgers-Korteweg-de Vries (2D-BKdV) equation

by analyzing the equivalent Abel equation, which indicates that under some particular conditions,

the 2D-BKdV equation has a unique bounded traveling wave solution. By using the theorem of

contractive mapping, a traveling wave solution to the 2D-BKdV equation is expressed explicitly.

In the end, the behavior of the proper solution of the 2D-BKdV equation is established by applying

the comparison theorem of differential equations.
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CHAPTER I

INTRODUCTION

Searching for explicit solutions of nonlinear equations by using various different methods have

been more and more important for many researchers in the last few decades. This has been driven

by the fact that an enormous growth in the applicability of nonlinear models and in the development

of related nonlinear concepts have been seen.And many new mathematical techniques has been

discovered, for example, the theory of dynamical systems and the theory of integrable systems

and so on. But not all the systems from the physical phenomena are integrable, for example, the

two-dimensional Burgers-Korteweg-de Vries (2D-BKdV) equation. Therefore, a direct method

together with qualitative analysis for treating such nonlinear systems appears to be more powerful.

Applications of nonlinear models range from atmospheric science to condensed matter physics and

to biology, from smallest scales of theoretical particle physics up to the largest scales of cosmic

structure.

Consider the 2D-BKdV equation

(Ut + αUUx + βUxx + sUxxx)x + γUyy = 0 (1)

where α, β, s and γ are real constants and αβsγ 6= 0. Equation (1) is a two-dimensional general-

ization of the Burgers-Korteweg-de Vries equation

Ut + αUUx + βUxx + sUxxx = 0 (2)

which arise from many different physical contexts as a nonlinear model equation incorporating the
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effects of dispersion, dissipation and nonlinearity. Johnson derived (3) as the governing equation

for waves propagating in a liquid-filled elastic tube [1] and Wijngaarden and Gao used it as a

nonlinear model in the flow of liquids containing gas bubbles [2] and turbulence [3]. Grad and Hu

used a steady state version of (3) to describe a weak shock profile in plasmas [4].

During the last few decades, many theoretical issues concerning the exact solutions of 2D-

BKdV equation have received considerable attention. Barrera and Brugarino applied Lie group

analysis to study the similarity solutions of (1) and examined some features of these invariant

solutions, but the explicit traveling wave solution was not shown in [5]. Li and Wang used the

Hopf-Cole transformation and a computer algebra system to study (1) and found an exact traveling

wave solution to (1) [6]. In the mean time, Ma proposed a bounded traveling wave solution to (1)

by applying a special solution of square Hopf-Code type to an ordinary differential equation [7].

These two methods were compared to each other, and the solution are proved to be equivalent by

Parkes [8]. In papers [10− 12], Feng studied equation (1) by utilizing the first integral method and

the Painleve analysis, respectively, and obtained a more general traveling wave solution in terms

of elliptic functions and in paper [13], Feng studied equation (1) by analyzing an equivalent two-

dimensional autonomous system and a traveling solitary wave solution to the 2D-BKdV equation

is expressed explicitly.

In the present thesis, our purpose is to apply the contractive mapping theory and comparison

theory in differential equations to the studies of traveling wave solutions and proper solutions of

the 2D-BKdV equation. A traveling wave solution is obtained more efficiently by a direct method

and the asymptotic behavior of proper solution is presented.

The rest of the thesis is organized as follows. In Chapter 2, we give a short introduction of the

contractive mapping theorem, Abel equation and the comparison theorem. In Chapter 3, we apply

the contractive mapping theorem to study the solution of the Abel equation. A proper solution is

presented. Chapter 4 is the process to find the traveling wave solution of 2D-KdV equation and

analyze its asymptotic behavior by comparison theorem. Chapter 5 is the conclusions we made.
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CHAPTER II

PRELIMINARIES

Contraction Mappings and the Banach Fixed Point Theorem

We will give a brief introduction of the Contraction Mapping and the Banach Fixed Point

Theorem.

The name, fixed point theorem, is usually given to a result which says that, if a mapping f

satisfies certain conditions, then there is a point z such that f(z) = z. Such a point z is called a

fixed point of f .

Definition 1. (Vector space) By a vector space we mean a nonempty set E with two operations:

(x, y)→ x+ y from E × E into E called addition,

(λ, x)→ λx from F × E called multiplication by scalars,

such that the following conditions are satisfied for all x, y, z ∈ E and α, β ∈ F:
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(a) x+ y = y + x;

(b) (x+ y) + z = x+ (y + z);

(c) For every x, y ∈ E there exists a z ∈ E such that x+ z = y;

(d) α(βx) = (αβ)x;

(e) (α + β)x = αx+ βx;

(f) α(x+ y) = αx+ αy;

(g) 1x = x.

Definition 2. (Norm) A function x → ‖x‖ from a vector space E into R is called a norm if it

satisfies the following conditions:

(a) ‖x‖ = 0 implies x = 0;

(b) ‖λx‖ = ‖λ‖‖x‖ for every x ∈ E and λ ∈ F ;

(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for every x, y ∈ E.

Definition 3. (Normed space) A vector space with a norm is called a normed space.

Definition 4. (Convergence in a normed space) Let (E, ‖‖̇) be a normed space. We say that a

sequence (xn) of elements of E converges to some x ∈ E, if for every ε > 0 there exists a number

M such that for every n ≥ M we have ‖xn − x‖ < ε. In such a case we write limn→∞ xn = x or

simply xn → x.

Definition 5. (Cauchy sequence) A sequence of vectors xn in a normed space is called a Cauchy

sequence if for every ε > 0 there exists a number M such that ‖xm − xn‖ < ε for all m, n > M .
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Definition 6. A normed space E is called complete if every Cauchy sequence in E converges to an

element of E. A complete normed space is called a Banach space.

Definition 7. (contraction mapping) A mapping f from a subset A of a normed space E into E is

called a contraction mapping (or simply a contraction) if there exists a positive number α < 1

such that

‖f(x)− f(y)‖ ≤ α‖x− y‖

for all x, y ∈ A.

Theorem 1. Let F be a closed subset of a Banach space E and let f be a contraction mapping from

F to F. Then there exists a unique fix point z ∈ F of f .

Proof. Let 0 < α < 1 be such that

‖f(x)− f(y)‖ ≤ α‖x− y‖

for all x, y ∈ F . Let x0 be an arbitrary point in F and let xn = f(xn−1) for n = 1,2, · · · . We will

show that (xn) is a Cauchy sequence. First observe that, for any n,m ∈ N ,

‖xn − xm‖ ≤ ‖xn − xn−1‖+ ‖xn−1 − xn−2‖+ · · ·+ ‖xm+1 − xm‖

≤ (αn−1 + αn−2 + · · ·αm)‖x1 − x0‖

≤ ‖x1 − x0‖
1− α

αm → 0 as m→∞.

Thus, (xn) is a Cauchy sequence. Since F is a closed subset of a complete space, there exists a

z ∈ F such that xn → z as n → ∞. We are going to show that z is the unique point such that
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f(z) = z. Indeed, since

‖f(z)− z‖ ≤ ‖f(z)− xn‖+ ‖xn − z‖

= ‖f(z)− f(xn−1)‖+ ‖xn − z‖

≤ α‖z − xn−1‖+ ‖xn − z‖ → 0 as n→∞,

we have ‖f(z)− z‖ = 0, and thus f(z) = z. Suppose now f(w) = w for some w ∈ F . Then

‖z − w‖ = ‖f(z)− f(w)‖ ≤ ‖z − w‖.

Since 0 < α < 1, we must have ‖z − w‖ = 0, which implies z = w.

Abel Equation

Abel Equation of the First Kind

Based on reference [14], we will give a brief introduction of the Abel Equation of the First Kind.

An Abel equation of the first kind is an equation of the form,

y
′
= f3(x)y3 + f2(x)y2 + f1(x)y + f0(x)

where f3(x) 6= 0. If f3(x) = 0 and f0(x) = 0, or f2(x) = 0 and f0(x) = 0, the equation reduces

to a Bernoulli equation, while if f3(x) = 0 the equation reduces to a Riccati equation.

(a). If f1 is continuous, f2 and f3 are differentiable, f3 6= 0, then the substitution

y = w(x)η(ξ)− f2
3f3

6



where

ξ =

∫
f3w

2dx,

w(x) = exp

∫ (
f1 −

f 2
2

3f3

)
dx

brings the Abel equation of the first kind to the canonical form

η
′
= η3 + I(x),

where

f3w
3I = f0 +

d

dx

f2
3f3
− f1f2

3f3
+

2f 3
2

27f 2
3

.

Panayotounakos and Zarmpoutis discovered an analytic method to solve the above equation gen-

erally.

(b). The substitution y = 1
u

brings the Abel equation of the first kind to the Abel equation of

the second kind of the form

uu
′
= −f0(x)u3 − f1(x)u2 − f2(x)u− f3(x).

Abel Equation of the Second Kind

Based on reference [4], we will give a brief introduction of the Abel Equation of the Second Kind.

An Abel equation of the second kind is an equation of the form,

yy
′
= f(x)y2 + g(x)y + h(x).
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where f, g, h are continuous functions. (a). The substitution

y = E(x)w,

where E(x) = exp
(∫

f(x)dx
)
, brings this equation to the simper form,

ww
′
= F1(x)w + F0(x), (3)

where

F1(x) = g(x)/E(x),

F0(x) = h(x)/E2(x).

(b). By introducing the new independent variable

z =

∫
F1(x)dx,

the Abel equation of the second kind can be reduced to the canonical form,

ww
′ − w = Φ(z). (4)

Here the function Φ(z) is defined parametrically (x is the parameter) by the relations

Φ =
F0(x)

F1(x)
,

z =

∫
F1(x)dx.

The books by Zaitsev & Polyanin (1994) and Polyanin & Zaitsev (2003) preset a large number of

solutions to the Abel equations of the form (3) and (4).

8



Comparison Theorem

Differential Form of Gronwall’s Inequality

Theorem 2. Let I denote an interval of the real line of the form [a, b] with a < b. let β and u

be real-valued continuous functions defined on I. If u is differentiable in the interior I0 of I and

satisfies the differential inequality

u
′
(t) ≤ β(t)u(t)

with t ∈ I0, then

u(t) ≤ u(a) exp

(∫ t

a

β(s)ds

)
for all t ∈ I .

Proof. Define the function

v(t) = exp

(∫ t

a

β(s)ds

)
, t ∈ I.

Note that v satisfies

v
′
(t) = β(t)v(t), t ∈ I0,

with v(a) = 1 and v(t) > 0 for all t ∈ I . By the quotient rule,

d

dt

u(t)

v(t)
=
u

′
(t)v(t)− v′

(t)u(t)

v2(t)
≤ βu(t)v(t)− βv(t)u(t)

v2(t)
= 0, t ∈ I0

so,
u(t)

v(t)
≤ u(a)

v(a)
= u(a), t ∈ I,

which is Gronwall’s inequality.

9



First Comparison Theorem

Theorem 3. Let f(t, x) and F (t, x) be continuous functions in G ⊂ R2 and f(t, x) < F (t, x).

Let (t0, x0) ∈ G and let ϕ(t) and φ(t) be the solutions, respectively, of

x
′
= f(t, x), x(t0) = x0

and

x
′
= F (t, x), x(t0) = x0,

then

ϕ(t) < φ(t),∀t ∈ (t0, b).

Proof. By contradiction. If ϕ(t) > φ(t) for some T > t0, then set

t1 = sup{t : t0 ≤ t < T and ϕ(t) ≤ φ(t)}.

Then t0 ≤ t1 < T , ϕ(t1) = φ(t1), and ϕ(t) > φ(t) for t > t1 (using the continuity of ϕ− φ). For

t1 ≤ t ≤ T , |ϕ(t)− φ(t)| = ϕ(t)− φ(t), and since we can see thatf(t, ϕ)− F (t, φ) is continuous

and bounded when t1 ≤ t < T so, there exists L ∈ R such that

(ϕ− φ)
′
= ϕ

′
(t)− φ′

(t) = f(t, ϕ)− F (t, φ) ≤ L|ϕ(t)− φ(t)| = L(ϕ(t)− φ(t)).

But by Gronwall’s inequality (applied to ϕ − φ on [t1, T ], with (ϕ − φ)(t1) = 0, β(t) = L),

(ϕ− φ)(t) ≤ 0 on [t1, T ]. A contradiction.
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CHAPTER III

PROPER SOLUTION TO ABEL EQUATION

Integral Form of Abel Equations

In this section, we present a simple integral form of Abel equations which plays a fundamental

role in the discussion. Let us consider the Abel equation

r′ = a(t)r2 + b(t)rn, t ∈ [t0, t1], n ≥ 3. (5)

Dividing equation (5) by r2 where r 6= 0 on both sides,

r′

r2
= a(t) + b(t)rn−2. (6)

Integrating equation (6) from t0 to t, where t ∈ [t0, t1], we obtain

∫ t

t0

r′

r2
dτ =

∫ t

t0

(
a(τ) + b(τ)rn−2

)
dτ + c1,

where c1 is an integral constant.

so we have,

∫ r(t)

r(t0)

1

r2
dr =

∫ t

t0

a(τ)dτ +

∫ t

t0

b(τ)rn−2dτ + c1

− 1

r(t)
−
(
− 1

r(t0)

)
= A(t) +

∫ t

t0

b(τ)rn−2dτ + c1

11



where A(t) =
∫ t
t0
a(τ)dτ

− 1

r(t)
= A(t) +

∫ t

t0

b(τ)rn−2dτ + c2

where c2 = c1 − 1
r(t0)

r(t) =
1

−A(t)−
∫ t
t0
b(τ)rn−2dτ − c2

r(t) =
− 1
c2

1
c2
A(t) + 1

c2

∫ t
t0
b(τ)rn−2dτ + 1

r(t) =
c

1− cA(t)− c
∫ t
t0
b(τ)rn−2dτ

where c = − 1
c2
.

So

r(t)

(
1− cA(t)− c

∫ t

t0

b(τ)rn−2dτ

)
= c

or equivalently,

r(t) = c

(
1 + r(t)A(t) + r(t)

∫ t

t0

b(τ)rn−2dτ

)
(7)

Proposition 1. A continuous function r(·) on the closed interval [t0, t1] satisfies the integral equa-

tion (7) if and only if it is continuously differentiable on the open interval (t0, t1) and satisfies the

Abel equation (5) with the initial condition r(t0) = c.

Proof. The conclusion is obvious.
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Solutions to Abel Equation

In this section we first define a nonlinear operator Tc for given continuous functions a and b

and a constant c. Then we prove that Tc is contractive and that an iterated sequence {T nc (f)} with

a suitable function f converges to the solution of the Abel equation (5) .

For convenience we take [t0, t1] to be [0, 1]. Let C[0, 1] denote the Banach space of all continu-

ous functions on the interval [0, 1] with the norm ‖f‖ = max0≤t≤1 |f(t)|. With the equation (7)in

mind we define a nonlinear operator,

Tc : C[0, 1]→ C[0, 1],

Tc(f)(t)
def
=

c+ cf(t)
∫ t
0
b(τ)fn−2dτ

1− cA(t)

for given a, b ∈ C[0, 1], c ∈ R, and A(t) =
∫ t
0
a(τ)dτ , c 6= 1

A(t)
for any t ∈ [0, 1].

Lemma 1. If ‖f‖ ≤ 1 and
∥∥∥ c
1−cA(t)

∥∥∥ (1 + ‖b‖) ≤ 1, then ‖Tcf‖ ≤ 1.

Proof.

∥∥∥Tc(f)(t)
∥∥∥ =

∥∥∥c+ cf(t)
∫ t
0
b(τ)fn−2dτ

1− cA(t)

∥∥∥
=

∥∥∥ c

1− cA(t)

∥∥∥∥∥∥1 + f(t)

∫ t

0

b(τ)fn−2dτ
∥∥∥

≤
∥∥∥ c

1− cA(t)

∥∥∥(1 + ‖b‖) ≤ 1.

Lemma 2. If
∥∥∥ c
1−cA(t)

∥∥∥ (1 + ‖b‖) ≤ 1 and
∥∥∥ c
1−cA(t)

∥∥∥ ‖b‖ (n − 1) ≤ 1, then Tc is a contractive

mapping on the closed unit ball B1 = {f ∈ C[0, 1]| ‖f‖ ≤ 1}ofC[0, 1].

13



Proof. From lemma (1), we have for any f, g ∈ B1, Tc(f), Tc(g) ∈ B1.

Moreover,

∥∥∥Tc(f)(t)− Tc(g)(t)
∥∥∥ =

∥∥∥ c

1− cA(t)

(
f(t)

∫ t

0

b(τ)fn−2dτ − g(t)

∫ t

0

b(τ)gn−2dτ

)∥∥∥
=

∥∥∥ c

1− cA(t)

∥∥∥∥∥∥(f − g)

∫ t

0

b(τ)fn−2dτ + g

∫ t

0

b(τ)(fn−2 − gn−2dτ)
∥∥∥

≤
∥∥∥ c

1− cA(t)

∥∥∥ (‖f − g‖ ‖b‖+ ‖b‖
∥∥fn−2 − gn−2∥∥) .

Note that,

∥∥fn−2 − gn−2∥∥ =
∥∥(f − g)(fn−3 + fn−4g + · · · fgn−4 + gn−3)

∥∥
≤ ‖f − g‖ (n− 2),

so,

‖Tc(f)− Tc(g)‖ ≤
∥∥∥∥ c

1− cA(t)

∥∥∥∥ ‖f − g‖ ‖b‖ (1 + n− 2)

=

∥∥∥∥ c

1− cA(t)

∥∥∥∥ ‖b‖ (n− 1) ‖f − g‖ .

Therefore, Tc is contractive on B1.

According to the well known Banach contraction principle, an iterated sequence T nc (f) with

f ∈ B1 converges uniformly for t ∈ [0, 1] to the unique fixed point of Tc in B1. Proposition (1)

shows that the fixed point is no other than the solution r(t) of the equation (5).

Theorem 4. For given a, b ∈ C[0, 1], c ∈ R,c 6= 1
A(t)

for any t ∈ [0, 1] with
∥∥∥ c
1−cA(t)

∥∥∥ (1+‖b‖) ≤ 1
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and
∥∥∥ c
1−cA(t)

∥∥∥ ‖b‖ (n−1) ≤ 1 , the solution r(t) of the equation (1) with r(0) = c can be uniformly

approximated by an iterated sequence {T nc (f)(t)},i.e.,

r(t) = lim
n→∞

T nc (f)(t), 0 ≤ t ≤ 1 (8)

for arbitrary f ∈ C[0, 1] with ‖f‖ ≤ 1.

Proof. As we mentioned above, the conclusion follows from the Banach contraction principle.

If we set n = 3, and for ri(t) ∈ B1(i = 1, 2, · · · ), let hi(t) =
∫ t
0
b(τ)ri(τ)dτ with b ∈ C[0, 1]

and ‖b‖ < 1, then it gives

r2(t) =
c

1− cA(t)
(1 + r1(t)h1(t))

r3(t) =
c

1− cA(t)
(1 + r2(t)h2(t)) =

c

1− cA(t)
+

(
c

1− cA(t)

)2

(1 + r1(t)h1(t))h2(t)

r4(t) =
c

1− cA(t)
(1 + r3(t)h3(t)) =

c

1− cA(t)
+

(
c

1− cA(t)

)2

h3(t)

+

(
c

1− cA(t)

)3

(1 + r1(t)h1(t))h2(t)h3(t).

...

so,

rn =
c

1− cA(t)
+

(
c

1− cA(t)

)2

hn−1 +

(
c

1− cA(t)

)3

hn−2hn−1

+ · · ·+
(

c

1− cA(t)

)n−1
(1 + r1h1)h2 · · ·hn−1.

Note, since
∥∥∥ c
1−cA(t)

∥∥∥ (1 + ‖b‖) ≤ 1,
∥∥∥ c
1−cA(t)

∥∥∥ ≤ 1 and since ‖hi(t)‖ =
∥∥∥∫ t0 b(τ)ri(τ)dτ

∥∥∥ ≤
‖b‖ < 1, hjhj+1hj+2 · · ·hj+k is bounded for any j ≥ 1, k ≥ 0. Note that c

1−cA(t) → 0 as

15



c→ 0,thus, if c is sufficiently small and n ≥ 3, we have

rn ≈
c

1− cA(t)
+

(
c

1− cA(t)

)2

hn−1.

Take limit n→ +∞ of both sides of the above equation, then

r(t) ≈ c

1− cA(t)
+

(
c

1− cA(t)

)2 ∫ t

0

b(τ)r(τ)dτ

where t ∈ [0, 1].

Furthermore, r(t) is between

c

1− cA(t)
+

(
c

1− cA(t)

)2

=
c(1− cA(t)) + c2

(1− cA(t))2
and

c

1− cA(t)
−
(

c

1− cA(t)

)2

=
c(1− cA(t))− c2

(1− cA(t))2
,

that is,
c(1− cA(t))− c2

(1− cA(t))2
< r(t) <

c(1− cA(t)) + c2

(1− cA(t))2
.
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CHAPTER IV

TRAVELING WAVE SOLUTION TO 2D-KdV EQUATION

From PDE to ODE

In this section, we will transform the 2D-BKdV Equation to a second order nonlinear ODE. Con-

sider the 2D-BKdV equation

(Ut + αUUx + βUxx + sUxxx)x + γUyy = 0

where α, β, s, and γ are constants and αβsγ 6= 0.

Assume that equation (1) has an exact solution in the form

U(x, y, t) ≡ U(ξ) ξ = hx+ ly − wt (9)

where h, l, w are real constants to be determined. Substitution of (9) into equation (1) yields

−whUξξ + αh2(UUξ)ξ + βh3Uξξξ + sh4Uξξξξ + γl2Uξξ = 0

Integrating the above equation twice with respect to ξ, we have

sh4Uξξ + βh3Uξ +
α

2
h2U2 + γl2U − whU = C

where we set the first integration constant to zero and set the second one asC. Rewrite this second-
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order ordinary differential equation as

U
′′
(ξ) + λU

′
(ξ) + aU2(ξ) + bU(ξ) + d = 0 (10)

where λ = β
sh

, a = α
2sh2

, b = γl2−wh
sh4

and d = − C
sh4

.

From Second Order ODE to Abel Equation

In this section, we will transform the second order nonlinear ODE to an Abel Equation.

From equation (10), let v = U(ξ) and y = U
′
(ξ), then,

U
′′
(ξ) =

dU
′
(ξ)

dξ
=
dy

dξ
=
dy

dv

dv

dξ
=
dy

dv
y.

So we can rewrite the equation (10) into

dy

dv
y + λy + av2 + bv + d = 0. (11)

Solving for dy
dv

we get,
dy

dv
= −λ− (av2 + bv + d)y−1. (12)

Let z = 1
y
, then y = 1

z
, dy

dv
= dy

dz
dz
dv

= − 1
z2
dz
dv

so,

− 1

z2
dz

dv
= −λ− (av2 + bv + d)z.

By multiplying −z2 both sides, we have

dz

dv
= λz2 + (av2 + bv + d)z3. (13)
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Let f(v) = λ, g(v) = av2 + bv + d, then

z
′
= f(v)z2 + g(v)z3

where v = U(ξ) ∈ [v0, v1]. Also U(ξ0) = v0, U
′
(ξ0) = 1

c
, z(v0) = 1

U ′ (ξ0)
= c and c is a real

constant.

Let η = v−v0
v1−v0 , then η ∈ [0, 1] and v = v0 + (v1 − v0)η, so let

r(η) = z(v),

h(η) = (v1 − v0)f(v) = (v1 − v0)λ,

k(η) = (v1 − v0)g(v),

then we have

r
′
= h(η)r2 + k(η)r3 with initial condition r(0) = c (14)

where h(η), k(η) ∈ C[0, 1].

By Theorem 1, if c ∈ R,c 6= 1
H(η)

for any η ∈ [0, 1] with
∥∥∥ c
1−cH(η)

∥∥∥ (1 + ‖k‖) ≤ 1 and∥∥∥ c
1−cH(η)

∥∥∥ ‖k‖ (n− 1) ≤ 1, the solution to the equation (14) is

r(η) = lim
n→+∞

T nC(w)(η) (15)

where 0 ≤ η ≤ 1 for any w ∈ C[0, 1] with ‖w‖ ≤ 1 and

Tc(w)(η) =
c+ cw(η)

∫ η
0
k(x)wdx

1− cH(η)
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with

H(η) =

∫ η

0

h(x) dx =

∫ η

0

(v1 − v0)λ dx = (v1 − v0)λη,

k(x) = (v1 − v0)
(
a(v0 + (v1 − v0)x)2 + b(v0 + (v1 − v0)x) + d

)
.

Let v2 = v1 − v0, then

k(x) = v2(a(v0 + v2x)2 + b(v0 + v2x) + d)

= v2(av
2
2x

2 + (2av2v0 + bv2)x+ av20 + bv0 + d).

Let ᾱ = av32 , β̄ = v2(2av2v0 + bv2), µ̄ = v2(av
2
0 + bv0 + d), then

k(x) = ᾱx2 + β̄x+ µ̄.

Application of the Contraction Mapping

In this section, we will use the contraction Mapping theorem to find the boundary of the solution

to the Abel Equation.

Recall that r = z = 1
y
, y = U

′
(ξ), η = v−v0

v1−v0 , v = U(ξ),

so when c ∈ R,c 6= 1
H(η)

for any η ∈ [0, 1] with 2
∥∥∥ c
1−cH(η)

∥∥∥ ≤ 1 and ‖k‖ < 1, U ′
(ξ) = 1

r(η)
is

between F (ξ) and G(ξ),

where F (ξ) = (1−cλ(U(ξ)−v0))2
c(1−cλ(U(ξ)−v0))+c2 and G(ξ) = (1−cλ(U(ξ)−v0))2

c(1−cλ(U(ξ)−v0))−c2 .

That’s, if we letU ′
(ξ) = Ĥ(ξ), where Ĥ(ξ) is continuous on [ξ0,+∞), then F (ξ) < Ĥ(ξ) < G(ξ).

Integral of the Boundary Functions

In this section, we will look into the solution to an Ordinary Differential Equation.
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Note,

dU

dξ
= U

′
(ξ) =

(1− cλ(U − v0))2

c(1− cλ(U − v0))± c2

⇒ d(U − v0)
dξ

=
(1− cλ(U − v0))2

c(1− cλ(U − v0))± c2
.

Let v = U − v0, then

dv

dξ
=

(1− cλv)2

c(1− cλv)± c2

⇒ −1

cλ

d(1− cλv)

dξ
=

(1− cλv)2

c(1− cλv)± c2
.

Let v̄ = 1− cλv, then

−1

cλ

dv̄

dξ
=

v̄2

cv̄ ± c2

⇒ dv̄

dξ
=
−λv̄2

v̄ ± c

⇒ v̄ ± c
λv̄2

dv̄ = −dξ

⇒
∫ (

1

λv̄
± c

λv̄2

)
dv̄ =

∫
−1dξ

⇒ 1

λ
ln |v̄| ∓ c

λ

1

v̄
= −ξ + c∗

⇒ ln |v̄| ∓ c1

v̄
= −λξ + c̄

where c∗is a constant and c̄ = λc∗. Plug v̄ = 1− cλ(U − v0) into the above result, we have

|1− cλ(U − v0)| = exp

{
± c

1− cλ(U − v0)
− λξ + c̄

}
.
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Implicit Function Theorem

Note that U ∈ [v0, v1], if c is positive and sufficiently small, then 1 − cλ(U − v0) > 0, so |1 −

cλ(U − v0)| = 1− cλ(U − v0).

Let F̂ (ξ, U) = exp
{

c
1−cλ(U−v0) − λξ + c̄

}
− 1 + cλ(U − v0),

D = {(ξ, U)|ξ ∈ (−∞,+∞), U ∈ (v0 − 1, v1 + 1)}, ξ0 = 0, U0 = v0,

and c̄ = −c 6= − 1
λ(U−v0) for any U ∈ (v0 − 1, v1 + 1). Then we have

(1). (ξ0, U0) ∈ D and F̂ (ξ, U) is continuous in D;

(2). F̂ (ξ0, U0) = 0;

(3). Since,

F̂U = exp

{
c

1− cλ(U − v0)
− λξ − c

}
c2λ

(1− cλ(U − v0))2
+ cλ

So, F̂U is continuous in D.

(4). F̂U(ξ0, U0) = c2λ + cλ = cλ(1 + c) 6= 0. According to the Implicit Function Theorem, there

exists an unique continuous function U1(ξ),ξ ∈ [0,+∞), such that U1(0) = v0 and F̂ (ξ, U1(ξ)) =

0.

Similarly,we can prove that under the parametric condition, there exists an unique continuous

function U2(ξ),ξ ∈ [0,+∞), such that U2(0) = v0 and Ĝ(ξ, U2(ξ)) = 0 with

Ĝ(ξ, U) = exp

{
− c

1− cλ(U − v0)
− λξ + c̄

}
− 1 + cλ(U − v0).

First Comparison Theorem

In this section, we will apply the First Comparison Theorem to find the boundary of the solution

to the 2D-BKdV equation.

Theorem 5. Let f(t, x), F (t, x) be two continuous functions in G ∈ R2 with f(t, x) < F (t, x).
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Let (t0, x0) ∈ G, and for t ∈ (a, b), ψ(t) and φ(t) are respectively the solutions of the initial value

problems,

ẋ = f(t, x), x(t0) = x0

and

ẋ = F (t, x), x(t0) = x0,

then

ψ(t) < φ(t),∀t ∈ (t0, b),

ψ(t) > φ(t),∀t ∈ (a, t0).

Note that if v1 < v0 + 1±c
cλ

, F (ξ) and G(ξ) is continuous where ξ ∈ [ξ0,+∞). According to

the Comparison Theorem, we have,U1(ξ) ≤ U(ξ) ≤ U2(ξ), where ξ ∈ [ξ0,+∞) and

U
′
1(ξ) = F (ξ), U1(ξ0) = v0;U

′
2(ξ) = G(ξ), U2(ξ0) = v0.

Plug U1(ξ0) = v0 into equation

|1− cλ(U1 − v0)| = exp

{
c

1− cλ(U1 − v0)
− λξ + c̄

}
,

we have c̄ = λξ0 − c, so,

|1− cλ(U1 − v0)| = exp

{
c

1− cλ(U1 − v0)
− λξ + λξ0 − c

}
.

Similarly,

Plug U2(ξ0) = v0 into equation

|1− cλ(U2 − v0)| = exp

{
− c

1− cλ(U2 − v0)
− λξ + c̄

}
,

23



we have c̄ = λξ0 + c, so,

|1− cλ(U2 − v0)| = exp

{
− c

1− cλ(U2 − v0)
− λξ + λξ0 + c

}
.
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CHAPTER V

CONCLUSION

In this thesis, we studied the Two-Dimensional Burgers-Korteweg-de Vries (2D-BKdV) equa-

tion by analyzing the equivalent Abel equation, which indicates that under some particular condi-

tions, the 2D-BKdV equation has a unique bounded traveling wave solution. By using the theorem

of contractive mapping, a traveling wave solution to the 2D-BKdV equation is expressed explicitly.

In the end, the behavior of the proper solution of the 2D-BKdV equation is established by applying

the comparison theorem of differential equations.

25



REFERENCES

[1] R.S. Johnson, A non-linear equation incorporating damping and dispersion, J. Fluid Mech.
42 (1970) 49-60.

[2] L. van Wijngaarden, On the motion of gas bubbles in a perfect fluid, Ann. Rev. Fluid Mech.
4 (1972) 369-373.

[3] G. Gao, A theory of iteraction between dissipation and dispersion of turbulence, Sci. Sincia
(Ser. A), 28 (1985) 616-627.

[4] H. Grua, P.W. Hu, Unified shock profile in a plasma, Phys. Fluids, 10 (1967) 2596-2602.

[5] P. Barrera, T. Brugarino, Similarity solutions of the generalized Kadomtsev-Petviashvili-
Burges equations, Nuovo Cimento B, 92 (1986) 142-156.

[6] Z.B. Li, M.L. Wang, Travelling wave solutions to the teo-dimensional BdV-Burgers equa-
tion, J. Phys. A (Math. Gen.) 26 (1993) 6027-6031.

[7] W.X. Ma, An exact solution to two-dimensional Korteweg-de Vries-Burgers equation, J.
Phys. A (Math. Gen.) 26 (1993) L17-L20.

[8] E.J. Parkes, Exact solutions to the two-dimensional Korteweg-de Vries-Burgers equation, J.
Phys. A (Math. Gen.) 27 (1994) L497-L501.

[9] E.G. Fan, J. Zhang, B.Y. Hon, A new complex line soliton for the two dimendional KdV-
Burgers equation, Phys. Lett. A 291 (2001) 376-380.

[10] Z. Feng, Qualitative analysis and exact solutions to the Burgers-Korteweg-de Vries equation,
Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 9 (2002), 563-580.

[11] Z. Feng, The first integral method to the Burgers-Korteweg-de Vries equation, J. Phys. A
(Math. Gen) 35 (2002), 343-350.

[12] Z. Feng, Exact solution in terms of elliptic functions for the Burgers-Korteweg-de Vries
equation, Wave Motion 38 (2003), 109-115.

[13] Z. Feng, Traveling wave solutions and proper solutions to be the two-dimensional Burgers-
Korteweg-de Vries equation, J. Phys. A (Math. Gen.) 36 (2003), 8817-8827.

[14] E. Kamke, Handout of Differential Equation, Beijing Sience Press, 1997.

26



BIOGRAPHICAL SKETCH

Xiaoqian Gong, the daughter of Zhizhong Gong and Lanzhi Cui, was born in China, 1987.

She received her bachelor degree in Mathematics from Tianjin University of Technology and Ed-

ucation, Tianjin, China in July of 2011. In August of 2011, she joined the Mathematical Master’s

Program at the University of Texas-Pan American, Edinburg, Texas. Her main research interests

were in Differential Equations and Dynamical systems. Her permanent mailing address is, Huixi-

ang Xincheng, Anping Town, Hengshui city, Hebei province, China, 053600.

27


	Traveling Wave Solution to Two-Dimensional Burgers-Korteweg-De Vries Equation
	Recommended Citation

	tmp.1683730588.pdf.BRKI0

