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ABSTRACT 

 

 

Juarez Ocanas, Ezequiel, Electrostatically Actuated Double Wall Carbon Nanotubes to Include 

Intertube van der Waals Forces. Master of Science Engineering (MSE), August, 2019, 58 pp., 8 

tables, 32 figures, references, 39 titles. 

 This work deals with the amplitude-frequency and amplitude-voltage responses of 

parametric and primary resonances of electrostatically actuated double-walled carbon nanotubes 

(DWCNTs). Nonlinear forces acting on the DWCNT are intertube van der Waals and 

electrostatic forces. Soft AC excitation and small viscous damping are assumed. In coaxial 

vibration, the outer and inner carbon nanotubes move together (in-phase), maintaining their 

geometric concentricity; while in noncoaxial vibration, the CNTs move in opposite direction 

(out-of-phase). Modal coordinate transformation is formulated. The Harmonic Balance Method 

(HBM) is used to find the free response solutions of the DWCNT.  The Reduced Order Model 

(ROM) method is also used in this investigation. All ROMs using one through five modes of 

vibration (terms) are developed in terms of modal coordinates. ROM using one term is solved 

and frequency-amplitude response predicted by using the Method of Multiple Scales (MMS). All 

models and methods are in agreement at lower amplitudes for coaxial vibration, while in higher 

amplitudes only ROM with five terms provides reliable results. The effects of voltage, detuning 

frequency, and damping on the various resonance responses of electrostatically actuated 

DWCNTs are reported. A discussion of stability and bifurcation analysis is presented. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 In 1991, Sumio Iijima discovered the fullerene-based carbon nanotube (CNT) [1]. CNTs 

[2] are known for their excellent mechanical, electrical, and chemical properties that warrant 

further research in the field of nanoelectromechanical systems (NEMS). DWCNTs, the simplest 

type of multi-walled carbon nanotubes (MWCNTs), are comprised of exactly two concentric 

CNTs, one tube nested within the other. Applications of DWCNTs may be seen in the areas of 

lasers [3-5], sensors [6-10], and transistors and switches [11-12]. In applications of DWCNTs as 

resonator sensors for mass sensing, electrostatic actuation is commonly used. Pull-in instability is 

a phenomenon that occurs in systems under electrostatic actuation [13]. Free vibration response 

of DWCNTs has been previously reported [14]. For these cases, coaxial vibration has been 

considered. 

 Yan et al. [15] employed the concept of nonlinear normal modes (NNMs) to model the 

nonlinear dynamical behavior of DWCNTs. They used a continuum elastic beam model devoid 

of damping and external forces with an intent to focus on free vibration. They investigated the 

case of internal resonance and the case of no internal resonance using the method of multiple 

scales (MMS) to approximate the solutions of the NNMs. They concluded that, in the coaxial 

mode of vibration, the inner and outer carbon nanotube vibrate with an amplitude ratio that is 

“very close to unity”. Natsuki et al. [16] also used a continuum Euler-Bernoulli beam model to 

characterize DWCNTs of varying lengths of inner and outer carbon nanotubes, and under free 
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vibration. They investigated the natural frequencies of a DWCNT up to the seventh mode of 

vibration and concluded that vibrational frequencies decrease when the length of either the inner 

or outer carbon nanotube is increased while the other is kept constant. The utility of controlling 

the lengths of the inner and outer carbon nanotubes of DWCNTs is that they may operate at 

different frequencies as desired. 

 Murmu et al. [17] used nonlocal Euler-Bernoulli beam theory to model a DWCNT 

subjected to an axial magnetic field. Their analytical solutions were for natural frequencies of the 

DWCNTs under a magnetic field. They concluded that for both coaxial and noncoaxial modes of 

vibrations, the presence of the longitudinal magnetic field increases the natural frequencies. 

Hajnayeb and Khadem [18] modeled DWCNTs using Euler-Bernoulli beam theory to include 

linear damping, stretching terms, nonlinear intertube van der Waals, and nonlinear electrostatic 

forces. They applied a perturbation method and long-time integration method to approximate for 

solutions for the amplitude-frequency response under primary and secondary resonance 

conditions. They concluded that, like single-walled carbon nanotubes (SWCNTs), DWCNTs 

experienced softening and hardening behavior depending on the value of DC voltage. 

Additionally, they remarked that when the AC frequency is at either the coaxial or noncoaxial 

frequency, the other mode is “damped out in the steady-state response because of system 

damping”. Hudson and Sinha [19] applied order reduction methods (modal domain analysis 

(MDA) and modified modal domain analysis (MMDA)) in atomistic simulations to investigate 

the effects of defects on the vibrational behavior of carbon nanotubes. They concluded that, 

compared to MDA, MMDA results in a “valid and useful approximation of the perturbed 

system” and both are suitable tools for investigation of high degree-of-freedom systems. 
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 In this thesis, the amplitude-frequency and amplitude-voltage responses of parametric 

and primary resonances of cantilevered DWCNTs under soft Alternating Current (AC) 

electrostatic actuation is investigated. The AC frequency is near (and near-half) the first coaxial 

natural frequency for parametric (and primary) resonance. The electrostatic and intertube van der 

Waals forces are the nonlinear forces. Reduced order models (ROMs) [20-21] of up to five 

modes of vibration (terms) are used to transform the partial differential equation of motion into a 

system of ordinary differential equations.  The ROM using one mode of vibration is solved using 

the method of multiple scales (MMS) [22]. In the analytical solution of MMS, the equations are 

coupled by the intertube van der Waals force. A Taylor polynomial is used to approximate the 

nonlinear electrostatic force per unit length. The equations of motion are decoupled in their 

linear part by using modal coordinates. These coordinates are then used for the nonlinear 

problem, and the amplitude-frequency and amplitude-voltage responses of the DWCNT coaxial 

vibrations are reported. Also, numerical integrations of ROMs using two, three, four, and five 

modes of vibration are utilized to investigate the parametric and primary resonance of coaxial 

vibrations of DWCNTs. The effects of voltage, detuning frequency, and damping parameters on 

the DWCNT resonant responses are reported. 

 

 

 

 

 

 



     

4 

 

CHAPTER II 

 

DIFFERENTIAL EQUATIONS OF MOTION 

 

 Euler-Bernoulli elastic beam model, valid for structures with high length-to-diameter 

ratio [23], is used in this work. The model of DWCNTs, Fig. 1, accounts for electrostatic, 

damping, and intertube van der Waals forces.  

 
Fig. 1. DWCNT cantilever under electrostatic, damping and van der Waals forces. 

 

The governing partial differential equations of motion are given by  

 
2 4

1 1
1 12 4 vdWT T

y y
A EI f

t x
 

 
 

 
                                         (1) 

2 4

2 2 2
2 22 4 vdWT T elec

y y y
A EI b f f

t x t
 

  
    

  
                                       (2) 

where  1 ,y x t  and  2 ,y x t  are the deflections of inner and outer CNTs, respectively, 
1A  and 

2A  cross-sectional areas, 
1I  and 

2I  cross-sectional moments of inertia, x axial longitudinal 

coordinate, t time,  ρ density, and b damping per unit length coefficient. The forces acting on the 
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DWCNT are given at the right side of Eqs. (1) and (2). The forces are: damping, due to viscosity, 

intertube van der Waals  vdWT Tf  , and electrostatic force elecf . The subscripts n = 1, 2 in Eqs. (1) 

and (2) represent the inner and outer tube, respectively. 

 Due to the presence of a viscous (air) environment, the damping force must be taken into 

account when modeling the DWCNT. Since the viscous fluid comes in direct contact with the 

outer tube, the damping is assumed to be acting only on the outer tube. Damping is considered to 

be proportional to the velocity of the tube as follows 
2 /dampf b y t   . Bhiladvala and Wang 

[24] provide a linear, fluid damping model that relates pressure and temperature to the fluid 

damping coefficient. A dry air medium under a pressure of 110 Pa (medium vacuum) and 

temperature of 300 K (room temperature) is considered. The values for the physical constants 

and dry air conditions for fluid damping afterwards numerical simulations may be found in 

Tables 1 and 2. 

 Table 1. Physical Constants [25] 

Symbol Description Value (unit) 

ε0 Permittivity of vacuum 8.85•10-12 [C2/N/m2] 

E Young modulus 1.0•1012 [N/m2] 

C1 VdW interlayer coefficient 71.11•109 [N/m2] 

C3 VdW interlayer coefficient 2.57•1031 [N/m4] 

ρ Mass density 2.3•103 [kg/m3] 

KB Boltzmann Constant 1.38064852•10-23 [m2 kg/ (s2 K)] 

N Avogadros Number 6.022140857•1023 [mol-1] 

 

 Table 2. Fluid Damping Conditions (Dry Air) 

Symbol Description Value (unit) 

P  Absolute Pressure 110 [Pa] 

R Specific Gas Constant for 

Dry Air 

287.05  [m2/(s2 K)] 

T Absolute Temperature 300 [K] 

d Mean Diameter of Air 

Molecule 

0.3•10-9[m] 

 

Mm Molecular Mass of Dry Air 0.02897 [kg/mol] 
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 The intertube force vdWT Tf  provides the coupling that introduces the two modes of 

vibration of a DWCNT: coaxial (in-phase CNTs) and noncoaxial (180o out-of-phase CNTs). A 

Taylor polynomial describes the intertube van der Waals force as follows [25]: 

 3

1 2 1 3 2 1( ) ( )vdWT Tf C y y C y y                                                    (3) 

where C1 is van der Waals interlayer interaction coefficient of the linear term, and C3 is van der 

Waals interlayer interaction coefficient of the cubic term. 

 Using a standard capacitance model of a multi-walled carbon nanotube [13, 26] and 

assuming that all charges dominate and are applied only on the outer carbon nanotube due to the 

Faraday Cage Effect [27], the electrostatic force per unit length is given by [2,13]: 

2

0

22 2 2 2 2 2 2
2 2 2

2 2 2

ˆ ˆ ˆ ˆ ˆ( 2 ) ( 2 )
ln 1

elec

V
f

r r R r r r R
R

R R R




  
  

 

                                    (4) 

where ε0 is permittivity of vacuum, R2 is the radius of the conducting outer tube, and ȓ2 is the 

distance from the ground plate (graphite sheet) to the bottom of the outer carbon nanotube, Fig. 

1. The AC voltage is given by  

0 cosV V t                                                                (5) 

where 
0V  and Ω are the amplitude and circular frequency of the AC voltage, respectively. The 

gap g , see Table 3, is the distance from the graphite sheet to the center of the DWCNT, Fig. 1, 

and it is given by: 

2 2 2̂g y R r                                                            (6) 

Consider the following dimensionless variables: 
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n
n

y
w

g
 ; 

x
z   ;  2

2

2

EIt

A



                                               (7) 

where n = 1,2, is the length of the DWCNT and Req is the equilibrium interlayer spacing, see 

Table 3; w, z, and τ are dimensionless deflection, dimensionless longitudinal coordinate, and 

dimensionless time, respectively; and y, x, and t are their corresponding dimensional variables. 

Substituting Eq. (7) into Eqs. (1) and (2), the following system of dimensionless partial 

differential equations of motion result: 

2 4
* *1 1

2 4

2 4
* 2 *2 2 2

2 4
cos

vdWT T

vdWT T elec

w w
A I f

z

w w w
b f f

z



 
 





  
   


        

   

                              (8) 

where the dimensionless intertube van der Waals force
vdWT Tf 

and electrostatic force
elecf are 

given by 

* * 3

1 2 1 3 2 1( ) ( )vdWT Tf C w w C w w                                             (9) 

1 2
2 2 2 2 22

2 2 2

2 2

1 (1 )
(1 ) ln 1elec

w w
f w s

s s



  

         
 

                            (10) 

and 
2 2 /s R g . The dimensionless electrostatic force Eq. (10) is approximated using a Taylor 

polynomial as follows: 

3

2 2

0

( ) k

elec k

k

f w w


                                                    (11) 

 Dimensionless area A*, dimensionless moment of inertia I*, dimensionless coefficients 

C1
* and C3

* of linear and cubic terms of intertube van der Waals force, dimensionless damping 

b*, dimensionless voltage parameter δ, and dimensionless actuation frequency Ω* of Eq. (8) are 

given by: 
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2 44
* * * * 31 1 1

1 3

2 2 2 2

4 2 2
* 2 *0 0 2

2

2 2 2 2

, , ,

, ,

C gA I C
A I C C

A I EI EI

V A b
b

EI g EI A EI

 




   

    

                                   (12) 

Tables 1 and 3 give the values of the physical constants and dimensional parameters of the 

DWCNT used for the afterwards numerical simulations.  

 Table 3. Dimensional Parameters of the System [13] 

Symbol Description Value (unit) 

  Length of CNT 200•10-9 [m] 

R1 Inner tube radius 0.35•10-9 [m] 

R2 Outer tube radius 0.70•10-9 [m] 

Req 

 

Interlayer Equilibrium 

Spacing 

0.34146•10-9[m] 

h Effective Thickness 0.34•10-9 [m] 

g Gap CNT-plate 50•10-9 [m] 

 

The areas and moments of inertia are calculated as follows, Fig. 2: 

 
Fig. 2. DWCNT Cross Section. 

 

2 2( / 2) ( / 2)i i iA R h R h                                                      (13) 

4 4( / 2) ( / 2)
4

i i iI R h R h

                                                    (14) 

where i = 1,2, and h is the effective thickness of each tube in the DWCNT. 
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CHAPTER III 

 

 

MODAL COORDINATE TRANSFORMATION 

 

 

 The two concentric CNTs are coupled through the intertube van der Waals force. Only 

the linear expression is considered for the decoupling, wherein the new r-coordinate (modal) 

system will be applied to the nonlinear terms. Consider the following DWCNT system under free 

vibration with only the linear van der Waals force being applied: 

  

2 4
* * *1 1

1 1 22 4

2 4
*2 2

1 1 22 4

( )

( )

w w
A I C w w

z

w w
C w w

z





  
     


    

  

                                          (15) 

Assume the deflections as follows: 

1 1 1( ) ( )w u z  ; 2 1 1( ) ( )w v z                                            (16) 

where ( )z  is the first cantilever mode shape, and 1u  and 1v  are functions of time of the inner 

and outer tube, respectively. Assume 

 1 1cos Iu A   ;  1 1cos Ov B                                        (17) 

where A, 1I , and B, 1O  are the amplitudes and natural frequencies of the inner and outer tube, 

respectively. To find the coaxial natural frequencies of the CNTs, the right sides of Eqs. (15), i.e. 

the linear van der Waals forces, are equated to zero. Substituting Eqs. (16) and (17) into Eq. (15) 

yields the following: 
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* (4) * 2

1

(4) 2

1

( ) ( )

( ) ( )

I

O

I z A z

z z

  

  

 




                                                       (18) 

From Eq. (18), the following relationship can be established: 

*
2 2

1 1*O I

A

I
                                                                 (19) 

Substituting Eqs. (16-19) into Eq. (15) yields the following system of second order ordinary 

differential equations: 

   
* * 2 *

1 1 1 1 1 1

2 *

1 1 1 1 1 1

( )

( )

I

O

A u A u C v u

v v C u v





   


  

                                               (20) 

Equation (20) is rewritten as follows: 

1 1

1 1

0

0

u u
M K

v v

     
      

    
                                                        (21) 

where M is the mass matrix and K is the stiffness matrix. M and K are as follows: 

* 0

0 1

A
M

 
  
 

     ,    

* * 2 *

1 1 1

* * 2

1 1 1

I

O

C A C
K

C C





  
  

  
                                (22) 

The mass-normalized stiffness matrix is given by [28]: 

1 1

2 2K M KM
 

                                                              (23) 

Solving the symmetric eigenvalue problem det( K
~

-λ I) yields λ1, λ2 and V1, V2, the eigenvalues 

and eigenvectors of the system, respectively. Note that    1 1 1 1 0
T T

I u v K u v  . The P-

matrix is constructed as follows: 

 1 2P V V                                                                (24) 
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Matrix S that transforms the coordinate system from the u-coordinates to modal r-coordinates, is 

given by  

1

2S M P


                                                                 (25) 

Therefore, the modal coordinate transformation for the DWCNT system is given by u = Sr, and 

it can be written as follows: 

1 1

1 2

u rc d

v re f

    
    
    

                                                        (26) 

where c, d, e, and f are components of the matrix S. These values have been calculated using the 

Matlab function eig of the mass-normalized stiffness matrix. They are given in Table 4.  

         Table 4. Coordinate Transformation Constants 

Symbol  Value 

c  0.81649 

d  1.15470 

e  0.81649 

f  -0.57735 

 

Using Eq. (26), Eq. (7) becomes: 

1

2 ( )Tr r P M F r


    ,   

2

1

2

2

0

0





 
   

 
                                    (27) 

         Table 5. Coaxial and noncoaxial natural frequencies. 

Symbol  Value 

1  3.07309 

2  29660.65309 
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where F is the column matrix of applied forces of Eqs. (8), 1 , and 2  are the DWCNT’s 

coaxial and noncoaxial frequencies of resonance, respectively, and  1 2

T
r r r . Moreover F(r) is 

the column matrix F of the applied forces after the substitution of modal coordinate 

transformation given by Eq. (26). To be able to use Eq. (27) with nonlinear terms, Eq. (16) is 

substituted into Eq. (8) which is then multiplied by the operator 

1

0

( )z dz . The following 

coefficients result: 

1

1

0

( )k

kg z dz                                                                 (28) 

These coefficients have been previously calculated by Caruntu and Knecht [29], Table 6. 

         Table 6. g-coefficients for First Natural Frequency. [29] 

Symbol  Value 

0g  0.7830 

1g  1.0000 

2g  1.4778 

3g  2.3488 
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CHAPTER IV 

  

METHOD OF MULTIPLE SCALES 

 

 To investigate the parametric resonance of DWCNTs, MMS is used to solve the r-

coordinate system of differential equations where solutions of zero and first order problems may 

be found more readily. Consider b* and δ to be small, i.e. the system is under soft excitation and 

small damping. The intertube coefficients may not be assumed to be small, in fact they are large 

coefficients. Setting the small parameters (b* and δ) to a slow scale time scale by multiplying 

them by ɛ, a small dimensionless bookkeeping parameter, Eqs. (27) becomes: 

 

 

 

 

32 *

1 1 1 3 1 2 1 2 3

3* *

3 1 2 1 2 3 1 2

3
2 *

1 2

0

32 *

2 2 2 3 1 2 1 2 3

3* *

3 1 2 1 2 3 1 2

2

1 2

( )

( ) cos

( )

( ) cos

k

k k

k

k

k k

r r cC er fr cr dr g

e C cr dr er fr g b er fr

g er fr

r r dC er fr cr dr g

f C cr dr er fr g b er fr

g er fr





  





 



     

      



  



     

      


 



3
*

0k

























                               (29) 

where the values of coefficients k  are given in Table 7.  
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         Table 7. Taylor Expansion Coefficients of Eq. (11) 

Symbol  Value 

0  0.04062 

1  0.05700 

2  0.07016 

3  0.08193 

 

Consider fast 0T   and slow 1T   time scales, and first-order expansions of r1 and r2 as 

follows: 

1 10 11

2 20 21

r r r

r r r





 


 
                                                               (30) 

where 10 20,r r , and 11 21,r r  are the zero-order and first-order approximation solutions. The time 

derivative is then expressed in terms of derivatives with respect to the fast and slow scales: 

0 1D D



 


 ; 

2
2

0 0 12
2D D D




 


  ;  i

i

D
T





                           (31) 

Substituting Eqs. (30) and (31) into Eq. (29), it results: 
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2 22
0 0 1 10 11 1 10 11

3
*

3 10 11 20 21 10 11 20 21 3

3
* )

3 10 11 20 21 10 11 20 21 3

*
0 1 10 11 0 1 20 21

10 11

D D D r r r r

cC e r r f r r c r r d r r g

e C c r r d r r e r r f r r g

b e D D r r f D D r r

g e r r
k k

   

   

   

    

  

    

        
  

            

      
  

   

    

       

       

    

3
2 *cos

20 21 0
0

2 22
0 0 1 20 21 2 20 21

* 3[ ]
3 10 11 20 21 10 11 20 21 3

3
*

3 10 11 20 21 10 11 20 21 3

*
0 1 10 11 0 1 2

k

f r r T

k

D D D r r r r

dC e r r f r r c r r d r r g

f C c r r d r r e r r f r r g

b e D D r r f D D r



   

   

   

   


       

    

       

            

     

   

0 21

3
2 *cos

10 11 20 21 0
0

r

k
g e r r f r r T

k k
k



   




























   

   


           

                       (32) 

From Eq. (32), the following two problems result, the zero-order problem  

   

   

32 2 *

0 10 1 10 3 3 10 20 10 200

32 2 *

0 20 2 20 3 3 10 20 10 20

:
D r r c e C g er fr cr dr

D r r d f C g er fr cr dr






      


     

                        (33) 

and first-order problem: 

   

   

1

*1 cos 23
2 2 * 02

0 11 1 11 0 110 0 10 0 20 10 20 20
:

*1 cos 23
2 2 * 02

0 21 2 21 0 1 20 0 10 0 20 10 20 20

Tk
D r r D D r eb eD r fD r e g er fr

k k
k

Tk
D r r D D r fb eD r fD r f g er fr

k k
k

  



  

   
          

   


   
        
   

  

        (34)      
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4.1 HARMONIC BALANCE METHOD 

In order to solve the zero-order problem, Eqs. (33), consider 10r  and 20r  to be as follows: 

0 0

0 0

10 1

20 1

( )

( )

i T i T

i T i T

r p T e e

r q T e e

 

 





     


    

                                               (35) 

and use the Harmonic Balance Method (HBM). Substituting Eq. (35) into Eq. (33) and 

multiplying by  
2 /

0

0

cos t dT

 

  the following system of equations results: 

 

 

3 2 2

1 1

3 2 2

2 2

[( ) ( ) ]

[( ) ( ) ]

m e c p f d q p

m e c p f d q q

  

  

     


    

                                (36) 

where, 

 

 

 

2

2

1 0 0
0

2

2

2 0 0
0

2

* 4

3 3 0 0
0

2
cos

2
cos

8 cos

T dT
c e

T dT
d f

m C g T dT













 

 

















                                          (37) 

Solving Eq. (36) for amplitudes p and q yields to the amplitude-frequency response for free 

vibration by considering Eq. (16), Eq. (26), and Eq. (35) for the tip deflections. Eq. (36) is solved 

by using substitution method where     
1

2 2 2 2

2 2 1 1p q     


   and graphed in Matlab 

by setting arrays for .  Two cases result, coaxial vibrations [25], i.e. the inner and outer tubes 

move together synchronously with the same amplitude, Fig. 3, and noncoaxial vibrations, i.e. the 

inner and outer tube move in opposite phase, Fig. 4.  
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Fig. 3. Free response (g = 1) of the coaxial vibrational mode of the free end z = 1 of DWCNT. 

 
Fig. 4. Free response (Req  = 1) of the noncoaxial vibrational mode of the free end z = 1 of 

DWCNT. 
 

Fig. 3 establishes the basis for coaxial vibrations, where the geometric concentricity of the CNTs 

is maintained. In this case the following conclusion can be made 1 2u u  [14], Eq. (26): 

 10 20 10 20 0e r f r c r d r                                                 (38) 
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4.2 COAXIAL PARAMETRIC RESONANCE 

For coaxial parametric resonance, the AC frequency *  is near coaxial frequency 1 : 

                                                     *

0 1 0 1T T T                                                          (39) 

where σ is the detuning parameter for the frequency of actuation. Substituting Eq. (35) with 

1   into Eq. (34) and rewriting the amplitudes in polar form 

1

1

2

ip a e  , 2

1

2

iq a e                                                 (40) 

yields the following secular terms expression equated to zero:  

 

 

1

1

2 ( )2 * 2

1 1 1 1 1 1 1 1 1

2 ( )4 3

3 3 1

1 1
( ) 2

2 8

1
3 2 0

16

i T

i T

i a i a i i e b a e g e a

e g e a

 

 

     

 





      

 

                (41) 

Denote 

 1T                                                           (42) 

Applying steady-state assumptions 1 0a    , the imaginary and real components of Eq. (41) 

yield to zero amplitude steady-state solutions, and non-zero amplitude steady-state solutions 

given by the following amplitude-frequency 1,a    equations: 

                      
2 *

1 1 1
1 4 2

3 3 3 3

8 21

sin 2

e b g
a

e g e g

 

   
                                            (43) 

   
42

23 31 1
1

1 1

2 cos 2 3 2cos 2
8 16

e ge g
a

  
  

 
                          (44) 
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4.3 COAXIAL PRIMARY RESONANCE 

For coaxial primary resonance, the AC frequency *  is near-half coaxial frequency 1 : 

* 1 0
0 1

2

T
T T


                                                               (45) 

Similar to the coaxial parametric resonance, the following secular terms result: 

            

1

1 1 1

(2 )2 * 2

1 1 1 1 1 1 0 0 1 1 1

( 2 ) (2 ) (2 )3 3 2 4 3

2 2 2 2 1 3 3 1

1 1 1
( )

2 4 4

1 1 3
0

16 8 16

i T

i T i T i T

i a i a i i e b a eg e e g a

e g e e g e a e g e a

 

     

       

     



  

      

 
   

 

            (46) 

Substitute Eq. (42) into Eq. (46) and applying steady-state assumptions 1 0a    , the imaginary 

and real components of Eq. (46) yield to zero amplitude steady-state solutions, and non-zero 

amplitude steady-state solutions given by the following amplitude-frequency 1,a    equations: 

2

* 2 * 2 2 4 2

1 1 0 2 0 2

1
3

2 2

1 1 1
sin

2 2 16

1
sin

8

b e b e e g g

a

e g

     

  

 
  

 
                         (47) 

2 3 4 2

0 0 1 1 2 2 1 3 3 1

1 1

1 1 cos 1 3 3
cos

2 4 4 16 16
eg e g e g a e g a

a


         



 
     

 
     (48) 
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CHAPTER V 

 

REDUCED ORDER MODEL 

 

 Reduced Order Models (ROMs) with two or more modes of vibration are used in this 

thesis. Equation (8) can be written as follows: 

2 4
* *1 1

2 4

2 4 2 *
*2 2 2

52 4

2

0

cos

vdWT T

vdWT T
k

k

k

w w
A I f

z

w w w
b f

z
a w



 

 







  
 

 

   

       





                                   (49) 

where elecf  was replaced by a fifth-degree Taylor polynomial at the denominator. 

 5T ROM is more accurate for both weak and strong nonlinearities, as well as for both low 

and high amplitudes. ROM accuracy increases with the number of modes of vibrations 

considered. The solutions of the dimensionless deflections are assumed as follow: 

1

1

2

1

( , ) ( ) ( )

( , ) ( ) ( )

N

i i

i

N

i i

i

w z u z

w z v z

  

  










 






                                                     (50) 

where N is the number of ROM terms (modes of vibration), ui and vi are the time functions to be 

determined, and i are cantilever mode shapes. Note that (1)i  is the value of the mode shape at 

the tip (free end) of the DWCNT resonator. Substituting Eq. (51) into Eq. (49) and multiplying 
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the second equation by
5

2

0

k

k

k

a w


 , and then multiply the entire system of equations by the operator 

1

0

( )n z dz  yields: 

32
* * 2 * *

1 32
1 1 1 1 1 1

N N N N N N
i

ni i i ni i ni i ni i ni i ni

i i i i i i

u
A h I u h c v h u h c v h u h

     

    
        

    
                     (51) 

 

1 1

1 1

1 1

1 1

1 1

1 1

2 5

0 ... ...2
1 1 ...

5
*

0 ... ...

1 1 ...

5
2

0 ... ...

1 1 ...

*

1 0

k k

k

k k

k

k k

k

N N
i

ni k j j nij j

i k j j

N N
i

ni k j j nij j

i k j j

N N

i i ni k j j nij j

i k j j

i i ni

v
a h a v v h

v
b a h a v v h

v a h a v v h

c v u a h a













 

 

 

 
  

  

 
   

  

 
  

 

 

  

  

  

 

1 1

1 1

1 1

1 1

5

... ...

1 1 ...

5
3* 2 *

3 0 ... ...

1 1 ...

cos

k k

k

k k

k

N N

k j j nij j

i k j j

N N

i i ni k j j nij j n

i k j j

v v h

c v u a h a v v h h 





 

 

  
  

   

  
     

   

  

  

                    (52) 

where n = 1, 2,…, N, and i, j1...jk = 1, 2,…, N.  The values of ka coefficients are given in Table 8, 

and coefficients h are as follows: 

1 1 1 1

1 1 1 1

...

0 0 0 0

, , ...
k kn n ni i n nij i j n nij j i j j nh dz h dz h dz h dz                              (53) 
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         Table 8. Coefficients of Electrostatic Denominator 
5

2

0

k

k

k

a w


  

Symbol  Value 

0a  24.61700 

1a  -34.54542 

2a  5.96045 

3a  1.65281 

4a  0.74268 

5a  0.41202 

 

One should notice that ni nih   where ni  is Kronecker’s delta. For an N-Term ROM, Eq. (20) 

may be re-written as follows: 

*
1

*

1

* * 2 *
11 1 1

* * 2 *

1 1

* * 2

1 1 1

* * 2

1 1

0 0 0

0 0 0

0 0 1 0

0 0 0 1

0 0

0 0

0 0

0 0

N

N

I

NI

O

NO

uA

uA

v

v

uC I c

C I c

c C

c C









   
   
   
   

   
   
   
   

     

  
 
 
  
 

  
 
 

   

1

0

0

0

0

N

N

v

u

v

   
   
   
   

   
   
   
   
    

            (54) 

Following the same modal analysis procedure outlined in Eqs. (21)-(25), the modal coordinate 

transformation for an N-Term ROM becomes: 
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1 1 1 11

1

1 1 1 21

2

0 0

0

0 0

0 0

0 0

N N N N

N N N N

u c d r

u c d r

v e f r

v e f r

     
     
     
     

     
     
     
     
          

                                  (55) 

Subsequently, substituting Eq. (55) into Eq. (50), a ROM is constructed in the modal r-

coordinate system as: 

1 1 2

1

2 1 2

1

( , ) ( )( ) ( )

( , ) ( )( ) ( )

N

i i i i i

i

N

i i i i i

i

w z c r d r z

w z e r f r z

  

  






 



  






                                            (56) 

From Eq.  (27) and E. (38), the Modal ROM equations in the r-coordinate system are given by: 

 

* 2 * 2

1 1 2 1 1

1 1 1 1

2

5
1

1 2

0

* * 2 2

2 1 2 2 2

1 1 1 1

2

1

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

(

N N N N

i i i i i i i i i i i i

i i i i

N
i t

ki
k i i i i i

k

N N N N

i i i i i i i i i i i i

i i i i

i t

k i

r z b e r z b e f r z r z

e V

a e r f r z

r z b e f r z b f r z r z

e V

a e r

    





    



   





   

   



   

   




   

 
5

1
2

0

) ( )

N

ki
i i i i

k

f r z

























             (57) 

Equations (57) are multiplied by the denominators of their right-hand sides. Then the resulting 

equations are multiplied by ( )n z and integrated from 0 to 1, n = 1,2,…,N. After the system is 

numerically integrated, Eq. (56) is deconstructed such that 1 11 12N Nw w w   and 

2 21 22N Nw w w  as defined below: 
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11 1 12 2

1 1

21 1 22 2

1 1

( , ) ( ) ( ) , ( , ) ( ) ( )

( , ) ( ) ( ) , ( , ) ( ) ( )

N N

N i i i N i i i

i i

N N

N i i i N i i i

i i

w z c r z w z d r z

w z e r z w z f r z

     

     

 

 

   

   

 

 

                (58) 

 For instance 12 ( , )Nw z   is the noncoaxial modal deflection of 1w  of inner CNT  

containing the 2 ( )ir   noncoaxial modal coordinates, for N terms ROM. The reason for this 

decomposition is the later use of modal truncation method [14] for N = 5,6, i.e. 5T-ROM and 6T-

ROM. In this method, modes of frequency far from excitation frequency can be neglected. 

Truncated models reduce the size of the ROM, and therefore allow for numerical simulations of 

ROMs with larger number N of modes, such as 5T-ROM and 6T-ROM. In this work, the terms 

12 Nw  and 22Nw  containing the noncoaxial modal coordinates 2 ( )ir  , in the tested cases are  

shown to be negligible, and therefore to not contradict the truncation method. The system of Eqs. 

(57) is replaced by the truncated model 

 

2
* 2 2

1 1 1 1 5
1 1 1 1

1

0

( ) ( ) ( )

( )

N N N N
i t

i i i i i i i i
ki i i i

k i i i

k

e V
r z b e r z r z

a e r z


   

   



     


                 (59) 

Similar to Eqs. (51) - (52), Eq. (59) is multiplied by the denominators at the right-hand side. 

Then, the resulting equation is multiplied by ( )n z and integrated from 0 to 1, n = 1,2,…,N, 

resulting into a system of N second order differential equations 

1 2 2 1 2

1 2 1

1 2 2 1 2

1 2 1

1 2

1

2 5
1

0 ... 1 ... 1 ...2
1 1 1 ...

5
* 2

0 ... 1 ... 1 ...

1 1 1 ...

2

1 0 ...

1 1

k k k

k

k k k

k

N N N
i

nj k j j j j nj j j

i j k j j

N N N
i

i nj k j j j j nj j j

i j k j j

N N

i i nj k j

i j

r
a h a e e r r h

v
b e a h a e e r r h

v a h a e e











  

  

 

 
  

  

 
   

  



   

   

  2 1 2

2 1

5
2 *

1 ... 1 ...

1 ... 1

cos
k k k

k

N N

j j j nj j j i n

k j j i

r r h e h 
 

 
  

 
  

                     (60) 
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CHAPTER VI 

 

NUMERICAL SIMULATIONS 

 

 AUTO-07P, a software package for continuation and bifurcation, is utilized to calculate 

ROM solutions and predict the frequency-amplitude response. MATLAB software is used to 

simulate the frequency-amplitude response predicted by MMS. Matlab is also used to 

numerically integrate ROMs and predict time responses of the structure. In this work, time 

responses for specified parameters are obtained using a MATLAB ODE solver, namely ode15s. 

One should mention that ode15s is a “multistep, variable order solver based on numerical 

differentiation formulas” [30-31]. 

 MMS is a perturbation technique [32-34] that is utilized due to the ease of identifying 

amplitude-frequency responses for weak nonlinearities and low amplitudes. MMS provides an 

approximate analytical solution for ROM with one mode of vibration. To investigate solutions of 

higher amplitude and verify those of smaller amplitude, ROMs with a larger number of modes of 

vibration is used. While more accurate at higher amplitudes, these ROMs are more time-

consuming. 
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6.1 PARAMETRIC RESONANCE – FREQUENCY RESPONSE (COAXIAL) 

 
Fig. 5. Amplitude-frequency response, parametric resonance, using five terms (5T) ROM 

(present work) and MMS, b* = 0.0003, δ = 0.15. 
 

 Fig. 5 shows the amplitude-frequency response of the DWCNT under parametric 

resonance using 5T ROM and a direct comparison with MMS. Dash and solid lines represent the 

unstable and stable solutions, respectively. This response is characterized by two Hopf 

bifurcations: subcritical with the bifurcation point at A and the supercritical with the bifurcation 

point at B.  For 5T ROM, the unstable branch (left) of the subcritical bifurcation divides the area 

into two distinct regions. For initial amplitudes below the dash line, the system settles to zero 

amplitudes, while for initial amplitudes above the dash line the resonator is “pulled-in” to the 

ground plate or settles to large amplitudes. For frequencies below that of point C, the MEMS 

resonator settles to zero amplitude regardless of initial amplitude. For frequencies between those 

of point A and D,  the resonator is pulled-in regardless of initial amplitude (contact of the MEMS 

cantilever with the ground plate, which corresponds to a dimensionless amplitude of 1, i.e. 

dimensional amplitude equals the gap). One can observe that for amplitudes less than 0.4 of the 

gap, the ROM and MMS are in excellent agreement. For amplitudes larger than 0.4 of the gap, 
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MMS cannot predict the behavior of the system, a limitation of this method. It underestimates 

the softening effect and does not predict the pull-in phenomenon from large amplitudes, points C 

and D.  

 
Fig. 6. Time response using 1T ROM for DWCNT resonator for AC frequency near natural 

frequency. Initial amplitude U0 = 0.05, b* = 0.0003, δ = 0.15, σ = 0. (a) r1i only (b) r2i only. 

 

 

Fig. 7. Time response using 2T ROM for DWCNT resonator for AC frequency near natural 

frequency. Initial amplitude U0 = 0.05, b* = 0.0003, δ = 0.15, σ = 0. (a) r1i only (b) r2i only. 
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Fig. 8.  Time response using 3T ROM for DWCNT resonator for AC frequency near natural 

frequency. Initial amplitude U0 = 0.05, b* = 0.0003, δ = 0.15, σ = 0. (a) r1i only (b) r2i only. 

 

 

Fig. 9.  Time response using 4T ROM for DWCNT resonator for AC frequency near natural 

frequency. Initial amplitude U0 = 0.05, b* = 0.0003, δ = 0.15, σ = 0. (a) r1i only (b) r2i only. 

 

 In Figs. 6-9, time responses for b* = 0.0003, δ = 0.15, small initial amplitude, U0 = 0.05, 

and zero detuning frequency have been simulated for 1T ROM, 2T ROM, 3T ROM, and 4T 

ROM, respectively. The utility of expanding the ROM in the modal coordinate system is that this 
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allows for one to see what occurs in the coaxial and noncoaxial resonances. The modal 

amplitudes represented in Figs. 6-9 are the decomposition of Eq. (52) as shown in Eq. (54) that 

relate the modal coordinates to the dimensionless deflections. A small initial amplitude of U0 = 

0.05 was chosen to compare different number of terms in the ROM since the differences are only 

to be expected in higher amplitudes. This intentional approach of setting each N-term ROM to 

small initial amplitudes allows for a more direct comparison of the systematic influences of 

modal amplitudes devoid of any amplitude difference related to number of terms.  Note that any 

numerical inaccuracies/discrepancies in Fig. 6 (1T ROM) are likely due to the lack of robustness 

from a one-term ROM expansion. Nevertheless, the same orders of magnitude as shown in Figs. 

7-9 are observed.  It is important to note that the resonant case investigated in this thesis is both 

far from the noncoaxial resonance and thus devoid of any internal resonance. From perturbation 

methods, such as MMS, the non-resonant mode is “damped out” after steady-state assumptions 

are made [18]. The importance of these results is that they present a numerical investigation 

(ROM) of both resonant (coaxial) and non-resonant (noncoaxial) with no steady-state 

assumptions that are typically made in perturbation methods. The numerical cases investigated in 

Figs. 6-9 confirm that the 2 ( )ir   modal amplitudes, which form the modal superposition of 12 Nw

and 22Nw , have no influence in the deflections outlined in Eq. (52).  Therefore, since the AC 

actuation frequency is near the first natural frequency of the coaxial vibration, the tip deflection 

of the DWCNT resonator may be defined satisfactorily by considering only 1 ( )ir  , since 2 ( )ir   

values are in the 10-12 order of magnitude.  The concept of modal system reduction is also known 

as modal truncation, with the general basis that “certain modes occur at frequencies well outside 

the system’s domain of operating frequencies…these modes can be safely removed from the 

model with minimal approximation error since they [do] not contribute much to the relevant 
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dynamics of the system” [35]. It is important to note that the full-order modal responses were 

numerically compared with time responses and bifurcation diagrams up to 4T ROM with their 

modally truncated (no r2) counterparts. The errors were observed in the 10-12 range, thus, for 

higher order ROM, the expansions are performed using only 1 ( )ir  , which not only reduces the 

system of equations by half, but also reduces computational time in the MATLAB time 

responses. 

 
Fig. 10. ROM AUTO convergence of the amplitude-frequency response for DWCNT resonator 

using two terms (2T ROM), three terms (3T ROM), …, and six terms (6T ROM). AC frequency 

near natural frequency. b* = 0.0001, δ = 0.15. 

 

 Fig. 10 illustrates the convergence of the ROM method. Using numerical simulation with 

AUTO-07P, the number of terms considered is between two and six. One can see that the 

difference between 5T ROM AUTO and 6T ROM AUTO is in the 10-3 order of magnitude, 

meaning that tip deflections can be achieved with adequate accuracy by 5T ROM with reduced 

computational time. Between the two bifurcation points, the zero amplitude steady-states are 

unstable, and the system experiences either pull-in or settles to nonzero steady-state amplitudes 

on the stable branch, regardless of the initial amplitude.  
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Fig. 11. ROM AUTO Taylor denominator convergence of the amplitude-frequency response for 

DWCNT resonator using five terms (5T ROM). AC frequency near natural frequency.  

b* =0.0003, δ = 0.15. 

 

 Fig. 11 shows the solution convergence to increasing the degree of the Taylor polynomial 

in the denominator for ROM. Similar to the term convergence shown in Fig. 10, a numerical 

solution convergence may be seen in the fifth degree of the electrostatic force (polynomial) in 

the denominator. 
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Fig. 12. Time response using 5T ROM for DWCNT resonator for AC frequency near natural 

frequency; b* = 0.0003, δ = 0.15, (a) Initial amplitude U0 = 0.25, σ = -0.001, (b) Initial 

amplitude U0 = 0.9, σ = -0.001, (c) Initial amplitude U0 = 0.1, σ = -0.0004, (d) Initial amplitude 

U0 = 0.25, σ = 0. 

 

 Figs. 12 (a)-(d) show time responses using 5T ROM for b* = 0.0003 and δ = 0.15 

considering various initial amplitudes and values of detuning frequency, where 1(1, )u w   and

2 (1, )v w  . They are in excellent agreement with the frequency responses from 5T ROM 

AUTO and MMS, as shown in Fig. 5. Pull-in phenomena is evidenced in Fig. 12 (b) and Fig. 12 

(c), while attenuation to a zero-amplitude results can be seen in Fig. 12 (a) and Fig. 12 (d). The 

observed beating behavior is typical in the transient response nonlinear oscillators subjected to 

harmonic forcing [36-37]. It is important to note that a large enough time span is chosen for each 

case in order for the responses to reach a steady-state solution. 
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Fig. 13.  Effect of applied voltage, δ, on frequency response, MMS and ROM AUTO. 

 

 

Fig. 14. Effect of dimensionless damping, b*, on frequency response, MMS and ROM AUTO. 
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 Fig. 13 shows the effect of applied voltage on the amplitude-frequency response. The 

voltage parameter δ has a significant effect on the response. Increasing the voltage parameter, 

increases the distance between the Hopf bifurcations, therefore the range of frequencies for 

which the system experiences pull-in is significantly larger. Also, both branches shift to lower 

frequencies, the unstable branch more than the stable branch. Furthermore, increasing the voltage 

parameter shows an increase in softening effect. 

 Fig. 14 illustrates the effect of dimensionless damping on the amplitude-frequency 

response. As damping increases, the distance between the subcritical and supercritical Hopf 

bifurcations decreases, until the unstable and stable branches coalesce for high enough damping 

coefficients. Increasing damping reduces the range of frequencies for which the DWCNT 

undergoes large amplitudes or pull-in.  

6.2 PARAMETRIC RESONANCE – VOLTAGE RESPONSE (COAXIAL) 

 
Fig. 15. Amplitude-voltage response, parametric resonance, using five terms (5T) ROM and 

MMS, b* = 0.00035, σ = -0.00025 
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 Fig. 15 shows the amplitude-voltage response of the DWCNT under parametric 

resonance using 5T ROM and a direct comparison with MMS. Dash and solid lines represent the 

unstable and stable solutions, respectively. This response is characterized by two Hopf 

bifurcations at zero amplitude: subcritical with the bifurcation point at the left (stable to unstable) 

and the supercritical with the bifurcation point at the right (unstable to stable).  From 5T ROM 

time responses, it is clear that for any initial amplitude to the left of the subcritical Hopf 

birfurcation and to the right of the supercritical Hopf bifurcation, the deflection will attenuate to 

zero amplitude. Conversely, for initial amplitudes greater than zero between the Hopf bifurcation 

points, the deflection will tend toward the higher amplitude, stable branch. One can observe that 

for amplitudes less than 0.4 of the gap, the ROM and MMS are in excellent agreement. For 

amplitudes larger than 0.4 of the gap, MMS cannot predict the behavior of the system, a 

limitation of this method. It underestimates the softening effect and fails to predict the saddle-

node bifurcation that occurs at higher amplitudes. 

 

Fig. 16. ROM AUTO convergence of the amplitude-voltage response for DWCNT resonator 

using two terms (2T ROM), three terms (3T ROM), …, and five terms (5T ROM). AC frequency 

near natural frequency. b* = 0.00035, σ = -0.00025 
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 Fig. 16 illustrates the convergence of the ROM method. Using numerical simulation with 

AUTO-07P, the number of terms considered is between two and five. One can see that the 

difference between 4T ROM AUTO and 5T ROM AUTO is only at higher amplitudes. The 2T 

ROM AUTO solutions has a shift in the bifurcation points, indicative of low accuracy when not 

enough terms are considered. For this case, there is no need to check for higher terms above 5T 

ROM since five terms is shown to be appropriate for solutions.  

 
Fig. 17. ROM AUTO Taylor denominator convergence of the amplitude-voltage response for 

DWCNT resonator using five terms (5T ROM). AC frequency near natural frequency. b* = 

0.00035, σ = -0.00025 

 

 Fig. 17 shows the solution convergence to increasing the degree of the Taylor polynomial 

in the denominator for 5T ROM. Similar to the term convergence shown in Fig. 16, a numerical 

solution convergence may be seen in the fifth degree of the electrostatic force (polynomial) in the 

denominator, with an excellent approximation of higher amplitudes. 
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Fig. 18. Time response using 5T ROM for DWCNT resonator for AC frequency near natural 

frequency; b* = 0.00035, σ = -0.00025, (a) Initial amplitude U0 = 0, δ = 0.04, (b) Initial 

amplitude U0 = 0.5, δ = 0.04, (c) Initial amplitude U0 = 0.5, δ = 0.1, (d) Initial amplitude U0 = 

0.5, δ = 0.16 

 

 Figs. 18 (a)-(d) show time responses using 5T ROM for b* = 0.00035 and σ = -0.00025 

considering various initial amplitudes and values of voltage, where 1(1, )u w   and 2 (1, )v w  . 

They are in excellent agreement with the frequency responses from 5T ROM AUTO and MMS, 

as shown in Fig. 15. Fig. 18 (a) and Fig. 18 (b) characterize the behavior to the left of the 

subcritical Hopf bifurcation, where regardless of initial amplitude, the deflection will settle to the 

zero amplitude stable solution. Similarly, Fig. 18 (d) shows the behavior to the right of the 

supercritical Hopf bifurcation, where regardless of initial amplitude, the deflections will reach 

zero amplitude. Fig. 18 (c) shows the typical behavior of deflections in between the two Hopf 

bifurcation points, where the solutions will settle at the higher amplitude stable branch. 
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Fig. 19. Effect of detuning frequency, σ, on voltage response, MMS and ROM AUTO 

 

 
Fig. 20. Effect of dimensionless damping, b*, on voltage response, MMS and ROM AUTO 
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 Fig. 19 shows the effect of detuning frequency σ on the amplitude-voltage response. 

Increasing the detuning frequency, i.e, increasing positively, causes both Hopf bifurcation 

voltages to shift to lower voltages, with a greater shift on the supercritical bifurcation. This is 

typified by a hardening of the nonlinearity, where the saddle-node bifurcation is shifted to lower 

amplitudes and higher voltage. Furthermore, the voltage interval between the Hopf bifurcation 

points for nonzero steady-state amplitudes decreases for increasing values of detuning frequency. 

 Fig. 20 illustrates the effect of damping b* on the amplitude-voltage response. Increasing 

the damping on the electrostatically actuated DWCNT shifts the Hopf subcritical bifurcation 

voltages to higher voltages and the Hopf supercritical bifurcation voltages to lower voltages. 

Essentially, increasing values of damping reduces the voltage interval of nonzero steady-state 

amplitudes, while also reducing the nonlinear behavior and peak amplitude. 

6.3 PRIMARY RESONANCE – FREQUENCY RESPONSE (COAXIAL) 

 
Fig. 21. Amplitude-frequency response, primary resonance, using five terms (5T) ROM and 

MMS, b* = 0.001, δ = 0.15 
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 Fig. 21 shows the amplitude-frequency response of the electrostatically actuated 

DWCNT in the case of soft AC of frequency near-half fundamental natural frequency using two 

methods, namely MMS and ROM. In the ROM method five terms (five modes of vibration) are 

used. There are three branches (stable-unstable-stable) of the response. The solid branches are 

stable branches. The dashed branch is unstable. There are two situations to be discussed, first 

when the system reached steady-state and the frequency is swept up and down, and second when 

the frequency and initial amplitude (other than steady-state) are given and the frequency is kept 

constant. In the first situation, as the frequency is swept up from the left, the steady-state 

amplitude increases along the first solid branch until it reaches the saddle-node bifurcation. At 

this point the plate loses stability and the amplitude suddenly jumps to a value of 1 (the 

amplitude reaches the value of the gap), i.e. a pull-in phenomenon occurs (contact between the 

DWCNT and the ground plate). As the frequency is swept down from larger frequencies the 

amplitude increases along the unstable branch until the system loses stability and undergoes a 

pull-in phenomenon. In the second situation, when the frequency is kept constant, the behavior 

of the system depends on its AC frequency and its initial amplitude. If the frequency is less than 

the frequency of the endpoint of the unstable branch, then regardless of initial amplitude the plate 

settles to an amplitude on the left solid branch. If the frequency is between the frequencies of the 

saddle-node bifurcation and the unstable endpoint, then the behavior of the system depends on 

the initial amplitude. Therefore for any initial amplitude below the unstable branch, the DWCNT 

settles to a steady-state amplitude on the left solid branch. 
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Fig. 22. ROM AUTO convergence of the amplitude-frequency response for DWCNT resonator 

using two terms (2T ROM), three terms (3T ROM), …, and five terms (5T ROM). AC frequency 

near-half natural frequency. b* = 0.001, δ = 0.15 

 

 Fig. 22 illustrates the convergence of the ROM method. Using numerical simulation with 

AUTO-07P, the number of terms considered is between two and five. One can see that the 

difference between the terms is only at higher amplitudes. The convergence of solutions is 

apparent on the unstable branch, which shifts to lower frequencies. For this case, there is no need 

to check for higher terms above 5T ROM since five terms is shown to be appropriate for 

solutions. 
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Fig. 23. ROM AUTO Taylor denominator convergence of the amplitude-frequency response 

for DWCNT resonator using five terms (5T ROM). AC frequency near-half natural 

frequency. b*=0.001, δ = 0.15 

 Fig. 23 shows the solution convergence to increasing the degree of the Taylor polynomial 

in the denominator for 5T ROM. Similar to the term convergence shown in Fig. 22, a numerical 

solution convergence may be seen in the fifth degree of the electrostatic force (polynomial) in the 

denominator, with an excellent approximation of higher amplitudes. One can observe the 

increasing the Taylor polynomial terms shifts the unstable branch to higher amplitudes.  
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Fig. 24. Time response using 5T ROM for DWCNT resonator for AC frequency near-half 

natural frequency; b* = 0.001, δ = 0.15, (a) Initial amplitude U0 = 0.95, σ = -0.00125, (b) 

Initial amplitude U0 = 0.95, σ = -0.001, (c) Initial amplitude U0 = 0.5, σ = -0.001, (d) Initial 

amplitude U0 = 0, σ = -0.0005 

 

 Figs. 24 (a)-(d) show time responses using 5T ROM for b* = 0.001 and δ = 0.15 

considering various initial amplitudes and values of detuning frequency, where 1(1, )u w   and

2 (1, )v w  . They are in excellent agreement with the frequency responses from 5T ROM 

AUTO and MMS, as shown in Fig. 21. Fig. 24 (a) and Fig. 24 (b) characterize the left unstable 

branch end point; for frequencies to the left of the endpoint, regardless of initial amplitude, the 

deflections settle to the left stable branch, while for an initial amplitude greater than the endpoint 

and higher frequency, the deflection goes to pull-in. Fig. 24 (c) occurs at a frequency between 

that of the unstable endpoint and saddle-node bifurcation; since the initial amplitude is below the 

unstable branch, the deflection settles to a point on the left stable branch. Fig. 24 (d) 

characterizes the behavior in between the saddle-node bifurcation and the right branch endpoint; 

for any initial amplitude, the deflection will tend to pull-in behavior. 
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Fig. 25. Effect of applied voltage, δ, on frequency response, MMS and ROM AUTO 

 

 

Fig. 26. Effect of dimensionless damping, b*, on frequency response, MMS and ROM AUTO 
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 Fig. 25 shows the effect of the voltage parameter on the frequency response. One can 

observe that if the voltage parameter is small the system has a linear behavior. As the voltage 

parameter increases the system experiences a nonlinear behavior with softening effect. The 

frequency of the saddle-node bifurcation point is shifted to lower frequencies while its amplitude 

is not significantly affected. Also, the unstable branch endpoint before pull-in is reached is 

shifted to lower frequencies. 

 Fig. 26 illustrates the effect of the damping parameter on the response. Small damping 

results into a nonlinear behavior of the system. As the damping increases the saddle-node 

bifurcation point is shifted to higher frequencies and amplitudes and the unstable branch 

endpoint is shifted to lower frequencies. If the damping is large enough, then the branches 

collapse onto each other resulting only one branch and a linear behavior of the system, with no 

pull-in phenomenon. 

6.4 PRIMARY RESONANCE – VOLTAGE RESPONSE (COAXIAL) 

 
Fig. 27. Amplitude-voltage response, primary resonance, using five terms (5T) ROM and MMS, 

b* = 0.001, σ = -0.0004 
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 Fig. 27 shows the amplitude–voltage response of five terms reduced order model (5T 

ROM) in comparison with MMS. This response is a bifurcation diagram. The steady-state 

solutions response shown consists of two branches, a stable branch shown as solid line, and 

unstable branch shown as dashed line. Starting from rest at equilibrium position, as the AC 

voltage is increased at constant frequency, the deflection of the DWCNT increases until it 

reaches the saddle-node bifurcation point, where the system loses stability and jumps to pull-in 

(contact with the ground plate). The unstable solutions located on dashed branch are saddle 

points. In the voltage range of unstable branch, the amplitude decreases and settles to the 

corresponding (same voltage) low amplitude on the stable branch if the initial amplitude is below 

the dashed line, and increases to pull-in if the initial amplitude is above the dashed line. The 

branch solution shown in gray is the response using MMS. As can be noticed, the response from 

using 5T ROM and MMS are in agreement for amplitudes below 0.4 of the gap. This is due to 

MMS being limited to weak nonlinearities, thus underestimating the nonlinear behavior of the 

system at high amplitudes. MMS fails to predict the saddle-node bifurcation point and the pull-in 

phenomenon for large initial amplitudes, which can occur for large enough values of voltage. 
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Fig. 28. ROM AUTO convergence of the amplitude-voltage response for DWCNT resonator 

using two terms (2T ROM), three terms (3T ROM), …, and five terms (5T ROM). AC frequency 

near-half natural frequency. b* = 0.001, σ = -0.0004 

 

 Fig. 28 illustrates the convergence of the ROM method. Using numerical simulation with 

AUTO-07P, the number of terms considered is between two and five. One can see that the 

difference between the terms is only at higher amplitudes. The convergence of solutions is 

apparent on the unstable branch and saddle-node bifurcation point, which shifts to lower 

frequencies. For this case, there is no need to check for higher terms above 5T ROM since five 

terms is shown to be appropriate for solutions. Two terms, as in all other cases, is insufficient for 

higher amplitude approximation. 
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Fig. 29. ROM AUTO Taylor denominator convergence of the amplitude-voltage response for 

DWCNT resonator using five terms (5T ROM). AC frequency near-half natural frequency. b* = 

0.001, σ = -0.0004 

 

 Fig. 29 shows the solution convergence to increasing the degree of the Taylor polynomial 

in the denominator for 5T ROM. Similar to the term convergence shown in Fig. 28, a numerical 

solution convergence may be seen in the fifth degree of the electrostatic force (polynomial) in the 

denominator, with an excellent approximation of higher amplitudes. One can observe the 

increasing the Taylor polynomial terms shifts the unstable branch and bifurcation point to higher 

amplitudes. 
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Fig. 30. Time response using 5T ROM for DWCNT resonator for AC frequency near-half 

natural frequency; b* = 0.001, σ = -0.0004, (a) Initial amplitude U0 = 0.95, δ = 0.02, (b) Initial 

amplitude U0 = 0.95, δ = 0.08, (c) Initial amplitude U0 = 0.5, δ = 0.08, (d) Initial amplitude U0 = 

0, δ = 0.08 

 

 Figs. 30 (a)-(d) show time responses using 5T ROM for b* = 0.001 and σ = -0.0004 

considering various initial amplitudes and values of voltage, where 1(1, )u w   and 2 (1, )v w  . 

They are in excellent agreement with the frequency responses from 5T ROM AUTO and MMS, 

as shown in Fig. 27. Fig. 30 (a) and Fig. 30 (b) characterize the left unstable branch end point; 

for voltages to the left of the endpoint, regardless of initial amplitude, the deflections settle to the 

stable branch, while for an initial amplitude greater than the endpoint and higher voltage, the 

deflection goes to pull-in. Fig. 30 (c) occurs at a voltage between that of the unstable endpoint 

and saddle-node bifurcation; since the initial amplitude is below the unstable branch, the 

deflection settles to a point on the stable branch. Fig. 30 (d) typifies the deflection behavior for 

voltages below that of the saddle-node bifurcation, where the steady-state amplitude will settle 

on the stable branch. 
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Fig. 31. Effect of detuning frequency, σ, on voltage response, MMS and ROM AUTO 

 

 
Fig. 32. Effect of dimensionless damping, b*, on voltage response, MMS and ROM AUTO 

 

 

 

 

 

 

 

 



     

51 

 

 Fig. 31 shows the influence of the detuning frequency on the voltage response of the 

system for three cases of frequency detuning parameter using 5T ROM and MMS. One can 

notice that as the frequency increases, the plate goes from a nonlinear behavior to a linear 

behavior. For σ = 0.0002 and higher, the DWCNT no longer experiences a bifurcation point or 

pull-in instability. The results from MMS exhibit the same behavior. Results from MMS and 5T 

ROM are identical for low amplitudes. However, MMS fails to predict the nonlinear behavior 

and saddle-node bifurcation at amplitudes larger than 0.4 of the gap.  

 Fig. 32 shows the effect of the dimensionless damping parameter on the voltage–

amplitude response. Starting from a low damping coefficient of b* = 0.001, as the damping 

parameter increases, the curves for the response of the system shift from exhibiting nonlinear 

behavior to linear behavior. Also, a larger voltage is required to achieve the same amplitude of 

vibration if large damping is present. The voltage required to reach the bifurcation point, and 

therefore pull-in, increases as the damping of the system increases. Lastly, pull-in instability is 

not present for large enough values of damping. MMS is in perfect agreement with the results 

from 5T ROM for low amplitudes. 
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CHAPTER VII 

 

 

DISCUSSIONS AND CONCLUSIONS 

 

 

Modal coordinates have been found using undamped DWCNT to include linear intertube van der 

Waals forces. Two modes of vibration resulted, coaxial and noncoaxial. This work predicted the 

effects voltage, detuning frequency, damping on amplitude-frequency and amplitude voltage of 

coaxial parametric and primary resonance of cantilever DWCNTs. Five ROMs using one 

through five modes of vibration were developed and used. All ROMs were expressed in terms of 

modal coordinates of the DWCNT.  In addition, the influence of the strongly nonlinear van der 

Waals coefficient is presented in the amplitude-frequency response of primary resonance. The 

coaxial mode of vibration was investigated. The ROM using one mode of vibration was solved 

using the method of multiple scales in order to obtain the amplitude-frequency response. All 

other ROMs using one through five modes of vibration were solved either through numerical 

integration in Matlab in order to obtain time responses [20-22, 29, 38], or using AUTO-07P, a 

software package for continuation and bifurcation, in order to obtain the amplitude-frequency 

response. All methods are in agreement for amplitudes lower than 0.4 of the gap. For larger 

amplitudes, only ROM using five modes of vibration predicts accurately the behavior of the 

DWCNT. Increasing voltage and/or decreasing damping results in a larger range of frequencies 

for which pull-in occurs. 

The applicability of Euler-Bernoulli beam modelling over molecular dynamics (MD) 

methodology and nonlocal continuum mechanics (small-scale effect) has been comprehensibly 
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discussed in the study of electrostatically actuated single-walled carbon nanotubes [2]. It has 

been shown that the small-scale effect does not have a significant influence on the fundamental 

frequencies of long slender carbon nanotubes [2]. A model limitation is that this investigation 

does not account for thermal vibrations that arise from an axial load induced by thermal 

expansion [39]. MD simulations and/or other experimental work is needed to validate the 

analytical work presented in this thesis. 
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