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ABSTRACT

Rodriguez, Jose J., Comparison o f Sliding Mode and State-Feedback Control 

Applied to a Partially Treated Actively Constrained Layer Damped (ACLD) Timoshenko 

Beam. Master o f  Science (MSE), December 2005, 00 pp., 19 figures, 2 tables, 28 

references

In this research, a sliding mode control (SMC) was utilized in the control o f  a 

partially treated, actively constrained layer damped (ACLD), Timoshenko beam model. 

The resulting vibration control was compared to the vibration control achieved by a state- 

feedback linear quadratic regulator (LQR) for several loading conditions. An observer 

was designed and model order reduction (MOR) was performed to achieve a simplified, 

efficient, and more controllable finite element system model. As a result o f model 

simplification, modeling errors in the form o f unstructured uncertainties were introduced 

into the system. It was determined that the SMC and LQR achieved similar vibration 

control for all loading conditions when saturation limits were imposed. The saturation 

limits were enforced to replicate realistic voltage constraints. Saturation limits were then 

removed to investigate the ideal control action o f the SMC and LQR. The ideal case 

revealed that the SMC achieved a significant reduction in the maximum deflection and 

settling time (as much as 37.44% and 16.61%, respectively) for all loading conditions 

when compared to the LQR. The improvement in response was due to the increase in 

control activity and the utilization o f  a robust control scheme in the presence o f  

unstructured uncertainties.
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CHAPTER 1

INTRODUCTION

Vibration and noise control have long been an area o f interest in many fields o f  

engineering including mechanical, civil, and aerospace engineering. The effects o f  

vibration can be undesirable because repetitive oscillations in a structure can often lead to 

problems such as excess noise, fatigue failure, and structural instability. Advances in 

technology and research have led to several methods in controlling vibration. One 

common method is to add damping to a structure through constraining layer treatments. 

The most common o f these treatments include passive constrained layer damping 

(PCLD) treatments, active damping treatments, and active constrained layer damping 

(ACLD) treatments.

A  common method in attenuating vibration is to add passive constrained layer 

damping (PCLD) to the vibrating structure. PCLD treatments are constructed by 

sandwiching a viscoelastic material (VEM) between the vibrating structure and a 

constraining layer as shown in Figure 1(a). This method dissipates vibration energy 

through heat in the cyclic shearing o f  the viscoelastic material and results in a steady 

decrease in the vibration response. Passive damping is applicable for a wide range o f  

vibrating frequencies and does not require any control hardware or algorithms. Passive 

damping also has the desirable feature o f  being able to lower the resonance peaks o f  the

1
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vibrating structure without significantly altering the mass or stiffness properties [2]. 

These features have led to the study and implementation o f  PCLD treatments for several 

applications including those in the automotive, aerospace, and civil industries [2, 19, 21]. 

The major disadvantage o f using passive damping is the inability to alter the damping 

properties once they have been installed.

•Constraining Layer

•VisooeJastio Layer

■Beam

B. Active Damping Ireatment

B eam

C .  SCLI> T reatm ent

•Vtsoosiastfc Layer

Figure 1: PCLD, Active Damping, and ACLD Treatments
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Another currently used method in controlling vibration is through active damping 

control. One common configuration in active damping control can be found in Figure 

1(b). The active damping treatments are constructed by adhering a piezoelectric sensor 

and actuator to a vibrating structure. A control is then designed to contract and expand 

the piezoelectric actuator so that it strains the vibrating structure and creates bending 

moments that counter the bending moments created by the vibration. Active damping has 

received increasing attention especially in the aerospace industry because o f  its ability to 

provide adjustable damping that passive damping cannot [8]. Rao and Sunar [23] have 

described other recent interests in the area o f active damping. Although active damping 

has more flexibility in terms o f controlling the damping parameters, it does have some 

limitations. Active control can sometimes lead to unstable plant dynamics because o f  

large control gains or non-collocated sensor/actuator configurations [2]. Safety issues 

also arise because hardware failure or unexpected changes in the environment can cause 

actuator failure resulting in complete loss o f  vibration damping.

Active constrained layer damped (ACLD) treatments, also known as smart 

constrained layer treatments (SCLD) and hybrid damping, have been developed to 

combine the advantages and reduce the disadvantages o f  the previously discussed 

treatments. An ACLD treatment consists o f  a viscoelastic material sandwiched between 

a piezoelectric actuator and a host structure (refer to Figure 1(c)). Vibration energy is 

dissipated by multiple means in this configuration. The piezoelectric actuator now  

enhances the passive damping by contracting and relaxing the viscoelastic material so 

that the cyclic shearing is always augmented [2], Furthermore, the constraining layer 

develops bending moments that also help to dampen the vibration. ACLD treatments also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



have the advantage o f  having a fail-safe mechanism that purely active control does not. 

If the structure now loses active damping because o f hardware failure, the passive 

damping remains to provide some vibration control. ACLD treatments have been found 

to be very effective and have been the focus o f  current research [2, 8, 13-15, 17, 23-24, 

27, 28]. Balamurugan and Narayanan [2] have developed a finite element model for a 

partially treated ACLD beam using Timoshenko beam theory and the Golla-Hues- 

McTavish (GHM) method. Trindade et al [27,28] have developed additional ACLD 

finite element models based on mixed Euler and Timoshenko beam elements and have 

also studied the effects o f temperature on ACLD treatments for several VEM dissipation 

models. Liao and Wang [13] have added edge elements to the finite element model to 

improve the performance o f the ACLD treatment. Liao and Wang [14] have also 

investigated the influence o f viscoelastic material parameters on the passive damping 

ability, the active action authority, and their combined effect on an ACLD treatment. 

Lim, Va. Varadan, and Vi. Varadan [15] have compared the performance o f  the ACLD 

treatment to purely passive and active damping for multiple configurations. Margaretha

[17] has compiled a thorough history o f PCLD, active damping, and ACLD treatments 

and has also investigated the performance o f several ACLD configurations.

The control algorithm is an integral component in the application o f the ACLD 

treatment. Han, Rew, and Lee [8] have used a constant gain control (CGC) and a bang- 

bang control (BBC) in conjunction with a linear quadratic Gaussian (LQG) control 

algorithm to design a feedback control system. Rao and Veley [24] have implemented a 

proportional and derivative (PD) control to control an ACLD treated beam. The control 

scheme most commonly utilized in ACLD structures is state-feedback control with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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controller gains determined using linear quadratic regulator (LQR) theory [2,13-15,17, 

27-28]. These control methods have been shown to be effective and produce similar 

vibration damping when compared to each other. In this research, a sliding mode control 

(SMC) is designed to control the piezoelectric actuator in the ACLD treatment. One 

major advantage in using a sliding control is that it is a robust control method that allows 

for both structured and unstructured uncertainties in the development o f the model. 

Structured uncertainties arise from unknown plant parameters such as mass, stiffness, and 

modulus values while unstructured uncertainties involve simplified model dynamics such 

as modeling friction as linear, or neglecting structural modes in a reasonably rigid 

mechanical system [26].

In this research, a SMC was designed to control the actuator in the ACLD 

treatment. The resulting vibration response was compared to the response for a state- 

feedback LQR control for various loading conditions. To accurately simulate the 

vibration response for each control scheme, the beam finite element matrices were 

derived using Timoshenko beam theory and the energy dissipation in the viscoelastic 

material was modeled using the Golla-Hues-McTavish (GHM) method. An observer and 

model order reduction (MOR) were then implemented to achieve a simplified, efficient, 

and more controllable finite element beam model.

The outline o f this thesis follows the control system block diagram in Figure 2 

beginning with the “System Model” block and moving clockwise through the control 

loop. The detailed SIMULINK model t imoshenkobeamjqr  can be found in Appendix B.
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Figure 2: Control System Block Diagram

Chapter two describes the finite elements used to derive the state-space model o f the 

treated beam. Chapter three explains the design o f the observer and model order 

reduction. In chapter four, the control methods are explained and a state-feedback LQR 

control and a SMC are designed. Chapter five describes and analyzes the numerical 

results for the different loading conditions studied. Chapter six summarizes the results 

and conclusions. The introduction o f chapters two through five contain a modified 

version o f  Figure 2 in which the control system blocks corresponding to the chapter 

content are highlighted.
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CHAPTER 2

SYSTEM MODEL

2.1 Introduction to Model Derivation

In this chapter the finite element matrices for the beam and ACLD treatment are 

described and then assembled to obtain a system mass, damping, and stiffness matrix. 

The beam finite element matrices are obtained by utilizing Timoshenko beam theory as 

detailed in Felippa [5], Kwon [11], Reddy [25], and Balamuragan [2], The element 

matrices for the ACLD treatment are obtained by following the procedures described in 

Balamuragan [2] and Liao [13]. The beam and ACLD finite element matrices are then 

assembled to create a system state space model. The controllability and observability o f 

the state space model is then discussed.

The state space model is necessary to simulate loading conditions and compare 

the vibration damping achieved with state-feedback LQR control and sliding mode 

control (SMC). The corresponding block in the control system diagram is highlighted 

below.

7
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Tip Load

Control Model Order 
Reduction Observer

Figure 2: Control System Block Diagram

2.2 Model Description

A finite element model was constructed to analytically compare the effectiveness 

o f a SMC and a LQR output feedback control. The model consisted o f  three sections; the 

first section was a plain-beam section and was rigidly attached to a surface, the second 

section was an ACLD treated beam, and the third section was a plain-beam section with a 

load applied at the tip as show in Figure 3.

V iscoelastic Layer

Beam j

0.1 L 
1 ^

0.31 |
........ ........................

0.6L
.................... P*

Figure 3: Model Configuration 

This configuration has been extensively used in ACLD research and consequently finite 

element models have been derived by several researchers [2, 13-15, 17, 24]. In this work, 

the finite elements are obtained by utilizing Timoshenko beam theory methods described 

in Felippa [5], Kwon [11], Reddy [25], and Balamuragan [2]. The ACLD finite elements
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are obtained by following the procedures described in Balamuragan [2] and Liao [10].

The main assumptions made in Balamuragan [2] and Liao [13] are as follows.

1) The piezoelectric actuator, viscoelastic material, and beam are perfectly 

bonded to each other.

2) The applied voltage to the piezoelectric actuator is assumed to be constant 

along its length.

3) Linear theories are used to describe elasticity, viscoelasticity, and 

piezoelectricity.

4) The density and thickness are uniform over the beam.

In Balamuragan [2] and Liao [13] the Golla-Hues-Mctavish (GHM) [7] method was used 

to capture the energy dissipation effects o f  the viscoelastic layer and the IEEE standard 

for piezoelectricity was used to model the effects o f the actuator.

In Timoshenko beam theory the effects o f  shear deformation during bending are 

included in the derivation o f the governing differential equations. Including the effect o f  

shear deformation is equivalent to no longer assuming that plane sections before bending 

remain plane and perpendicular to the longitudinal axis while in bending as in Euler beam 

theory [25]. As derived in Kwon [11], Rao [19], and Reddy [22], the shear deformation 

results in two second order differential equations

d_
dx

I
Gb -Ab -ka

\

dw
dx

\ A2
+ f ( x , t ) = p b -Ab -

d w  

dt2

d ( I? T d<t>\ r  A ( a  dW\ -  „ T d 2<t>
<4 * f o j  ( ^  ■

A finite element model based on Timoshenko beam theory is necessary because the shear 

deformations in the beam result in shear deformations in the viscoelastic layer, which
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subsequently produce the damping found in the actual system. The resulting degrees o f  

freedom for the system include an axial displacement, u, a transverse displacement, w, a 

rotation angle, 9 , and a shear angle, (p • The degrees o f  freedom are contained in the 

nodal displacement vector {qe}

{qe} = {ul w, 0, 0, u2 w2 92 <p2} 7 . (3)

Figure 4 shows the degrees o f freedom and the lengths o f  a representative ACLD finite 

element.

constraining layer

— t, base bea m

Figure 4: Degrees o f Freedom for ACLD Treated Beam (provided by [17])

As described by Felippa [5], Kwon [11], and Reddy [25], the axial displacement, 

transverse displacement, rotation angle, and shear angle are expressed in terms o f  nodal 

displacements by finite element shape functions:

u = {N u{x)} - {qe) w = {N w{x)}- {qe) (4) - (5)

0 = (x)} • {qe} <p = {A , (x)} • {qe} (6) -  (7)
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As detailed by Felippa [5], the Timoshenko beam theory assumptions facilitate the use o f  

linear interpolation functions:

{ # „ ( * ) } -

W * ) }  =

{N A x)}  =

1 -  —  0 0 0 —  0 0 0
L. L

0 1 -  —  0 0 0 —  0 0 
Le L

0 0 1 - —  0 0 0 —  0

0 0 0 1 - - 0 0 0 —  

L.

The procedures developed in [2] and [13] are used to evaluate the potential and kinetic 

energy equations based on Hamilton’s principle and obtain the stiffness and mass 

matrices.

(8)

(9)

(10)

(11)

2.3 Beam Layer Finite Element Matrices

As described in Balamuragan [2] and Liao [13], evaluation o f the potential energy 

due to bending yields the stiffness matrix [Kwbb\-

/ ' ( " )  - h - { q f  / ( W } T '{iV .•} )* •{? .>  -

]•{«.}  ( 12)

Evaluation o f the potential energy due to extension yields the stiffness matrix [Kub\ '■

2
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,] • { « ,} ,  (13)

where Eb, h ,  and .Ab are the elastic modulus, moment o f inertia, and cross sectional area 

o f the beam, respectively. The prime symbols over the shape functions denote the first

d { N  }
derivative with respect to x (i.e. {N  J  } = ------ — ). Evaluation o f the potential energy due

dx

to transverse shear energy leads to a mathematical phenomenon known as shear locking.

Shear locking occurs when the quadrilateral linear elements used in Timoshenko beam 

theory fail to accurately model the curvature in the beam. As a beam gets thinner, the 

linear elements introduce shear stresses not present in the actual beam and cause the 

beam to reach equilibrium with smaller displacements [16]. One common method to 

circumvent shear locking is to use consistent interpolation for w  and (f> such that dw/dx 

and ^ are polynomials o f  the same order. Another method to avoid shear locking is to 

use equal interpolation for w  and (j) , but evaluate the shear energy with a polynomial 

interpolation o f (j) that is one order lower. The latter method is referred to as reduced 

integration and the details o f both these methods can be found in Reddy [25]. Following 

the method detailed in Reddy [25], reduced integration is used in the evaluation o f  the 

potential energy due to transverse shear:

dx

■Gb -Ab -ka -{qe}T ■ { ’
r

' 1 ' ' 1 '
T

w
\

- 1 - 1 w , ' } /

dx- {qe} =

W „ » , H U  (14)
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where Gb is the modulus o f rigidity and k is the shear correction factor (usually equal to 

5/6). The kinetic energy o f the beam associated with transverse and rotary inertia yields 

[Mwb]:

1 r ( d w A 2 ( d 0 \ 2 1 t rLe T

dt

\  (15)

The dot over the nodal displacement vector denotes the first partial derivative with

respect to time (i.e. {qe}  = —— ). Evaluation o f the kinetic energy due to axial motion
dt

yields [Mub\.

r  a  - • iTfe-) *  - \ p *  - A» • <«<>r ■ Cw ■ {A,-} •* ••{« -}=dt .

1
2 {VeY - l Mub]- {qe}  (16)

2.4 Viscoelastic Layer Finite Element Matrices

As outlined in Balamuragan [2] and Liao [10], evaluation o f the kinetic energy 

due to transverse and axial motion yields the mass matrices [MWJ and [Mus\, respectively.

2 ,  ^  , ,  s  2 \  

dt [ d t

f  f t ' m T ■ f “ (A, ■ { N J T ■ { N J  + I, ■ { N , f  ■ {N, } )dx

(17)

and
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2
dx =

_1
2

[ w f  f 1 f 1 I V j
f\T \ . - ( t b + t s ) /  . - ( t b + t s ) /  riu 1

’+ts)/ 2 * • { « . }  % k>J{.V}J [

(18)

where p s , Is, and As are the density, moment o f inertia, and area o f the cross-section o f

the viscoelastic layer. The constitutive equation for a viscoelastic material can be 

described by the Stieltjes convolution [2, 7, 13, 27]

G(t) is the relaxation function o f the viscoelastic material and represents energy loss from 

the material. The relaxation function can be evaluated in the time domain such as with a 

Prony series representation [19] or in the Laplace domain as with the GHM method [7]. 

Other methods used to model the dissipation effects o f  the VEM include the Anelastic 

Displacement Field (ADF) model and the Model Strain Energy (MSE) model [27]. In the 

GHM method, the material modulus is represented as a series o f mini-oscillator terms [7]:

where K is the equilibrium value o f the modulus. The constants a r, £ , and mr govern 

the shape o f the modulus function over the complex s-domain. Following the procedure 

used in Balamurugan [2] and Liao [13], two dissipation coordinates are obtained,

(19)

(20)
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z = { N2(x) } - { z } =
J X X

Le Le
(21)

Evaluation o f  the virtual work o f the viscoelastic layer yields the mass, damping, and 

stiffness matrices:

6W, — A , - { 8 q f  ■ (nr + a -K ) J o { { N ■ { N t } ) lx  ■ {q , }  -  a  ■ K ̂  ({N , } r { N , } ) d x { z i  -

- { S q , Y  ■\Ks]{q, )  + {dq,)T- \ f ^ z \ { z )

where [Ks], [KqZ], and [Kzq] were equal to

IK, ] - A, (K + a • K) ■ £ ({Nt  }r ■ {Nt  })dx

' {N, \ )dx

and

{Kz } = Ar a - K - £ ( { N z} T ■ { « , } ) &

[ M J - A ' - a - K — f  ( { N , } T - { N J ) dx  
n r

l C , ] . A s - a - K - ^ - ( \ { N , } T - {Nz \)dx.  
0)

(22)

(23)

(24) 

(26)

(27)

(28)

(29)

2.5 Piezoelectric Layer Finite Element Matrices

As described by Balamuragan [2] and others [8, 13-15], for one-dimensional 

structures with uni-axial loading, the constitutive equation o f a piezoelectric material can 

be written as
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' £ ' S Eu d 31 r '

D d 3l £ 733 E

D  is the electrical displacement, E  is the electric field ( V(t)/tc), y is the mechanical strain 

in the x direction, and r  is the mechanical stress in the x direction. S^/y is the elastic 

compliance, e r33 is the dielectric constant, and dyy is the piezoelectric constant. From the 

previous system o f equations, the stress is related to the strain by

1
T  =

S E11
(£ -  r/31 ■ E ) - E c - { e -  d 31 • E ) .

The virtual work done by the induced strain in the actuator is

S W =  f  Ec -d3l •b-V( t ) -8
( duc 

dx
\dx =

Ec -dn -b- V( l ) - S{g ,} T -[-1 0 h - t s 1 0 - h  ( , ] -

S { q , Y

V(t) is the applied voltage to the constraining piezoelectric layer and {Pc}e is the resulting 

elemental piezoelectric force vector.

As in the derivation o f the mass and stiffness matrices for the Timoshenko beam, 

energy equations are evaluated to generate the mass and stiffness matrices for the 

piezoelectric layer. Evaluation o f  the potential energy due to bending yields

The potential energy due to extension results in

W
T

■ 1 ■ ' 1 ' T
w

{ Ne '} • - h - h W 6'}

{A yi . f s . {N, ' }

■dx.

(30)

(31)

(32)

(33)

(34)
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Ec, Ac, and Ic, are the elastic modulus, cross sectional area, and moment o f inertia for 

piezoelectric layer, respectively. As in the beam element, the shear energy term for the 

piezoelectric layer is evaluated using reduced integration. The potential energy due to 

transverse shear yields the stiffness matrix

[Kwcs] = G c-Ae -ka - £
T O

T O )

1

-1
•[1 - 1} T O

T O }
dx.

W u c\ = P c ' A c ' j f

/
w

T
' 1 ' ' 1 '

T
' T O '

T \

{Ne } ■ - h • - h W e }

\
T O J s  . T O

/

dx.

p c is the density o f the piezoelectric layer.

The finite element matrices for the ACLD section were evaluated in the 

MATLAB file BalamuruganNarayananFEM2.m], the file TimoshenkoFEM2.m1 was used 

to evaluate the finite element matrices for the plain beam sections, and 

SystemMatricesQS.m was used to assemble the matrices into a single system.

(35)

Gc is the modulus o f rigidity and ka is the shear correction factor. The kinetic energy of 

the piezoelectric layer due to transverse motion and axial motion yield the mass matrices 

[Mwc\ and [Muc], respectively,

p ,  J f  - { N . y - { N J  + I C-{Ne }T - {Ne } ) b  (36)

(37)

2.6 Model Assembly

The mass and stiffness matrices for the plain-beam sections only depend on the 

original physical coordinates, {qe}, and can be written as

1 Provided by Thesis advisor Dr. Javier Kypuros
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\ M h] = [ Mwb] + [ Mub]

[Kb] = [Kwbb] + [Kub] + [Kw J .

The treated section o f the beam consists o f  plain-beam, viscoelastic, and piezoelectric 

finite element matrices. The finite element matrices for the ACLD section corresponding 

to {qe} are

[M]e = [ M b] + [ Mwc ] + [ Mws ] + [ Muc ] + [ Mus ]

[K]e - [ * * ]  + [Kwbs ] + [ Kwcb ] + [Kuc ] + [Kus ] + [K, ] .

The mass and stiffness matrices corresponding to {qe} and the dissipation coordinates {z} 

are [Kqz] and [Kzq\. The matrices corresponding only to the dissipation coordinates {z} 

are [MJ, [Cz], and [Kz\, where [Cr] is the viscoelastic damping matrix. In addition to the 

viscoelastic damping, structural damping is also included in the form o f Rayleigh 

damping,

[CeJ  = a - [ M b] + b - [ K b].

a and b are generally obtained experimentally, but in this work were obtained from 

published values [2,13]. The elemental equations o f  motion for an ACLD treated section 

are therefore

[M]e [0]8x2' '[C J [0]8x2' X q j [KA ~ [ K J W
,[0]2x8 [M]z

T
[Ok* [CJ

*T
.- [ ^ 1 [R z] .m .

{Pce} - {V( t ) } e + { f d } e

[0]

The resulting mass, damping, and stiffness matrices for the treated section o f the beam 

are 10x10 matrices. The equations o f  motion for the entire beam can now be written as 

[M]  • {q}  + [C] • {q}  + [K] • {q}  = {Pc}  • (V (f)} + { F d } .

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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The dissipation coordinates, {z}, are included in the vector {q},  the total system mass 

matrix is \M\, the system damping matrix is [C], and the system stiffness matrix is [if].

To formulate the system finite element model, the beam was discretized into five 

elements o f  varying lengths, one finite element before the ACLD treatment that was 10% 

o f the total length, one finite element for the ACLD treated section that was 30% o f the 

total length, and three elements after the ACLD section that were cumulatively 60% o f  

the total length as shown in Figure 3. The total number o f finite elements and the lengths 

o f each o f  the finite elements were chosen so that the most important dynamics were 

captured and so as to limit the time o f numerical simulation. The first section had few  

dynamics o f  interest so only one element was used. The length o f  the first element was 

also minimized so that the ACLD section would be placed near the area with the largest 

moments. The length or the ACLD section was kept constant at 30% percent o f the total 

length o f the beam as in [2] for validation purposes. The final section o f the beam had 

the greatest displacements and velocities and required more elements to be modeled 

accurately. The MATLAB routine FEASMBL [11] (refer to Appendix A) was utilized to 

assemble the three layers o f the ACLD section and was also used to assemble the five 

elements that constitute the entire beam.

2.7 State Space Representation

After the system mass, damping, and stiffness matrices were obtained, the first 

three degrees o f  freedom were set to zero to impose the rigid boundary condition at the 

cantilevered section o f  the beam. A  state space representation was then created from the 

reduced system matrices:
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{x} = [A ]-{x} + [B ]-V (0  + [fl]

{i:} was a 38x1 state vector for the assembled system, [A] a the 38x38 state matrix, [5]

/\ /\ 

was a 38x1 control force matrix, [5] was a 38x1 force matrix due to the tip load, and [C]

was a 1x38 output matrix. The values for the state space matrices were

[A] = [ 0 ] l9 x l9  [-T ll9 x l9

- [ M ] - ' - [ K ]  - [M ] - ’ -[C]

[ B ]  =

[B] =

[0]19x1

[0]19x1

[M ]-1 •[.Fd ]

[C] was a column vector o f zeros with the exception o f a one in the column that 

represented the tip deflection. In this case, the state space formulation resulted in the first 

19 rows o f  the state vector to correspond to the generalized displacements o f  the system 

degrees o f  freedom. The degrees o f  freedom for the plain beam section were ordered 

with the axial displacement, u, first, the transverse displacement, w,  second, and the 

rotation angle, 0 , third. Therefore, the eighteenth row o f the state vector corresponded to 

the transverse displacement at the tip o f  the beam. The eighteenth column o f the output

(45)

(46)

(47)

(48)

(49)

matrix [C] was set equal to one so that equation (46) produced the tip deflection.

2.8 Controllability and Observability

A state space model is state controllable at time to if it is possible by means o f  an 

unconstrained control vector to transfer the model from any initial state {x(t0 )} to any
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other state in a finite interval o f time [18]. The condition for complete state 

controllability is that then x n  controllability matrix

is o f  full rank [18]. A system that is not completely state controllable contains states that 

are not affected by the input and are physically disconnected from the main system (i.e. 

states associated with dissipation coordinates) [18,29, 30]. It is necessary to check the 

controllability of the state space model because if  the system is not completely state 

controllable, it will not be possible to design a controller by arbitrarily selecting 

eigenvalues (pole placement) [18].

A state space model is completely observable if  every state {*(t)} can be 

determined from the observation o f the output {y(t) } over a finite interval o f time [18]. 

The condition for complete state observability is that the (n - m ) x n  observation matrix

[[C]|[C]-[A]|...|[C]-[Ar1f

is o f rank n [18]. It is necessary to check the observability o f a model because it will not 

be possible to design an observer by arbitrarily selecting eigenvalues (pole placement) if  

the model is not completely state observable [18].

The state space model derived in section 2.7 was neither completely state 

controllable nor observable. Although it was not possible to design a controller or 

observer by arbitrarily selecting eigenvalues, it was still possible to design the controller 

and observer by utilizing an optimization approach. The optimization method for 

designing an observer and controller is outlined in chapters three and four, respectively.
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CHAPTER 3

MODEL MODIFICATION

3.1 Introduction to Model Modification

In this chapter the system state space model is modified to obtain a simplified, 

efficient, and more controllable model. To achieve this modified model, an observer is 

designed using an optimization approach [12] and model order reduction (MOR) is 

performed using a balanced realization method based on Schur decomposition [3], The 

corresponding blocks in the control system diagram are highlighted below.

Tip L oad System Model

Control Model Order 
Reduction Observer

Simulation and 
Results

Figure 2: Control System Block Diagram

3.2 Observer Design

In most dynamic systems rarely are all states available for feedback purposes. A 

state observer is needed to estimate the states {x(t)} based on the measurement o f  the 

available outputs {y{t) \. In this work, the tip deflection was used to estimate the 38 states 

o f the state vector (x(t)}.

22
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As detailed in [9, 12, 18], an observer is a dynamical system described by

{*<*}- [A] • K J  + [B] • V(t) + r n  ■ (y -  [C] • K j ) .  (50)

{x0b} is the observed (estimated) state vector, [C] • [xob} is the estimated output, and [L]

is the observer design matrix. The error between the actual states and the estimated states 

is defined as {e} = {x} ~~ {xab}- The error dynamics are therefore

{*} ~ { * * }  = [A] • { x }  -  [A] • {x 0 J  -  [L] • ([C] • {x} -  [C] • { x ob})  =

e = ( [ A ] - L - [ C ] ) - e .  (51)

If the error between the actual states and the estimated states is to vanish with time for 

any initial value o f {x0b}, then [A\ -  [L\ ■ [C] should be asymptotically stable. The 

observer design problem therefore reduces to finding an observer gain matrix, [L], such 

that [A] -  [L] • [C] is asymptotically stable (i.e. eigenvalues have negative real parts) and 

the error vanishes suitably quickly.

Several pole placement methods exist to determine [L\ such as the transformation 

approach, direct substitution approach, and Ackermann’s formula [15]. Pole placement 

methods were not applicable in this work because the model was not completely state 

observable. An optimization method was therefore utilized to determine observer gain 

matrix [L]. In the optimization approach, [L] is determined so that u = -[L]  • {x(t)} 

minimizes the performance index

- / = / ( w r ■[QobsY { x } ^ { u } T (52)

where [Qobs] is a positive-definite (or positive semi-definite) Hermitian or real symmetric 

matrix and [i?0fc] is a positive-definite Hermitian or real symmetric matrix. To use the 

optimization framework, the transpose o f [A] -  [L ] • [C] is first needed,
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( M - [ £ H C ] ) r =[ A] T - [ C f  -[L]t . (53)

([A] -  [L\ -[C])r and [A]t -  [C]7 -[Z]r have the same poles and it can be proven [18] that 

if  ([ 4̂] -  [L\ • [C])r is stable, then [L] = ([P ]-1 • [C] • [P ])r , where [P] is the positive- 

definite matrix that solves the algebraic Riccati equation (ARE) [9],

[A] • [P] + [P] • [ A f  -  [P] • [ C f  • [P ]-1 • [C] • [P] + [ Q ] . (54)

The observer was designed in the MATLAB m-file MixedBeamModel.m by using 

the MATLAB command c a r e  to return the values o f  the positive definite matrix [P], 

the observer gain matrix [Z], and the vector o f eigenvalues {A} for the matrix

[[̂ 4] -  [L] • [C ]]. The required inputs o f the c a r e  command were the transpose o f  the 

state matrix [A], the transpose o f  the output matrix [C ], and the optimization matrices 

[Q obs ]  and [P0*J. [Q obs ]  was chosen to be a 38 x 38 identity matrix and [P0̂ ] was set 

equal to 1. The vector o f eigenvalues {A} contained elements with negative real parts and 

therefore the observer designed was dynamically stable and reduced the error between the 

actual and estimated states. The observer design matrix [P] and the state space matrices 

[A], [B], and[C] were input into the “Observer” block o f the SIMULINK file 

timoshenkobeam smc (refer to Appendix B). The “Observer” block contained equation 

(50) in block diagram form and was used to implement the observer in the simulation.

3 .3  M o d el Order R ed u ction

The purpose o f  model order reduction (MOR) is to approximate input-output 

behavior o f  high order systems with lower order models. MOR also serves to increase 

the controllability o f  the state space model because the lower order models are obtained
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by removing uncontrollable states. In the case o f the ACLD treated beam, 38 states 

modeled the input-output behavior between the tip load and tip deflection. MOR was 

utilized to approximate this relationship with fewer states, reduce simulation time, and 

increase the controllability o f the model.

One o f the most common approaches to MOR is to use projection methods such 

as the Krylov-subspace [26,27], truncated-balanced realization [3], and proper orthogonal 

decomposition (POD) methods [26,27]. These methods reduce high order models to 

lower order models by projecting the high order models onto a lower subspace through 

transformation matrices. The transformation matrices are determined by different 

methods for each o f the projection schemes. A balanced realization method based on 

Schur decomposition [3] was used in this work to reduce the beam model from n states to 

k states where k « n .  In balanced realization methods, the projection subspaces are the 

dominant eigenspaces o f the controllability and observability grammians [P] and [Q\.

For a linear time invariant system, the controllability and observability grammians can be 

found by solving the Lyapunov equations,

[ P y [ A f  +[A\ - [P]  + [ B l [ B ] T = 0  

[Q]-[A] + [ A f  -[Q] + [ C f  -[C] = 0 .

The eigenvectors can then be found by placing the product grammian [P] • [Q] 

into Schur form, [V] • ([P] • [Q]) • [F]r . The square root o f  each eigenvalue is the Hankel 

singular value for that state. The Hankel singular values denote the relative importance 

o f each state and describe the effectiveness o f  the inputs translating to outputs [26]. The 

n states with the relatively largest Hankel singular values can therefore be used to 

determine the size o f the reduced order model [26,27]. Orthogonal real transformations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

[VA] and [Vd\ are then calculated so that the Schur forms are ordered in ascending and 

descending order, respectively:

[VAf  ■([/>]■ [ f i M V j -

[vDf - ( [ p y m - [ v D]=

\   '

o ...........

0 0 A„

X  .....
0 ..........

0 0 K

[VA\ and [Vd\ are then partitioned so that

^ A  ]  =  SMALL L x ( n - i )  W L f i lG ^ n x k  ]

,fl/G ]n x i: \ y L , S M A L L \ x ( n - k ) \ ’

[VR BtG ] and [VR SMALL ] form orthonormal bases for the right eigenspaces o f

[P] • [Q] associated with the big eigenvalues {olf...,ok2} and the small eigenvalues

i j ^ k + V ' ^ n

The singular value decomposition o f  \VLBIG ]r -[VR BIG] is taken to obtain

WL, „ J  ■ IV, ,.«] -  [E„0] -  [(/„ „ ]• ([2IJ1I0])- W Emof .

The left and right transformation matrices can be proven to be [3]

[sL,BIG u  = \yL,BIGi[uEMGY v E,BIGr X12 

[sR,B1G u  = wR,BIG ] • wEMG ] • p ^ r 172.

The reduced system matrices are therefore

U ] [ B J

I Q ] [Dr ]

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)
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MOR was performed by utilizing a modified version o f the schurmr command 

in the MATLAB m-file MixedBeamModel (refer to Appendix A). The modified 

command, schurmr JAK2, required the inputs sys and the desired size o f the reduced 

order model. The variable sys was the original state space model and was obtained by 

using the MATLAB command ss ( sys = s s ( A, B, C, D ) ) .  If sys is the only input into 

schurmr JAK, the function will plot the Hankel singular values (refer to Figure 5) and 

prompt for the size o f the reduced order model. As previously discussed, the n states 

with the relatively largest Hankel singular values will effectively describe the input- 

output behavior o f the model and therefore a plot o f the system Hankel singular values 

can be used to determine appropriate size o f the reduced order model. In Figure 5, the 

first six Hankel singular values are relatively much larger than the rest, so the six states 

that correspond to these values are kept in the reduced order model. After the size o f the 

reduced order model is entered, the function returns the structured arrays G and 

redinfo. G contains the reduced order state space model and redinf o contains the 

transformation matrices [SL BlG ] and [SR BIG ] .  The transformation matrices are used in 

chapter four to project control optimization matrices onto the reduced subspace.

2 File provided by Thesis advisor Dr. Javier Kypuros. The modified command included the transformation 
matrices [ S LjBig ] andl [ S r ,b ig ] in the structure array r e d i n f o .
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Figure 5: Hankel Singular Values for ACLD Treated Beam
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CHAPTER 4

CONTROL METHODS

4.1 Introduction to Control Methods

In this chapter a state-feedback control and a sliding mode control (SMC) are 

designed for the vibration attenuation o f  the reduced order ACLD beam model. The 

control gains o f  the state-feedback control and the sliding mode control are designed 

using an optimization method. To implement the optimization method in the reduced 

space, the optimization matrix [Q] is first designed in the full state space o f  the model 

and then projected onto the reduced space through the transformation matrix [S^s/g]- 

The control system block corresponding to the chapter content is highlighted below.

Tip Load System Model

Control < Model Order 
Reduction OtoervBr

Simulation and 
Resuits

Figure 2: Control System Block Diagram

4.2 LQR Control

State feedback control with control gains determined from linear quadratic 

regulator (LQR) theory is currently the most used control method for ACLD treated

29
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beams [2, 13-15, 17, 27-28]. As in the design o f  the observer, the LQR problem is to find 

a gain vector [K\ such that u = - [ i f ]  • {x(t)\  minimizes the performance index

J  -  I T ( « r ■ ■ « + <">r • i v  • { “> )* . (65>

where [Qiqr] is a positive-definite (or positive semi-definite) Hermitian or real symmetric 

matrix and [Riqr] is a positive-definite Hermitian or real symmetric matrix. The purpose 

o f the performanpe index is to find an optimal balance between the control effort and the 

steady state error. The matrix [Rlqr ] penalizes large values o f the control effort u(t) and

the matrix [Qiqr] penalizes large values o f {x(t)} and minimizes the steady state error [9,

12].

The optimal control gain matrix [if] was determined by first specifying [Qiqr] in 

the full state space o f  the model and then projecting [Qiqr\ onto the reduced space by the 

following transformation

J - [ W  + W r -V<^} {u})dl (66)

[ < ? * ] - [ W ' - t e v H w -  <67>

The LQR control was designed in the MATLAB m-file MixedBeamModel.m 

(refer to Appendix A). The optimization matrices \Qiqr\ and [Rjqr] were chosen by testing 

values suggested in the literature [2, 13-15] and were then adjusted for further 

improvements. The values that produced the best results were [Qlqr ] = 1011 •[/], where 

[/]  was a38x  38 identity matrix, and [Rlqr \ = 1. After [Qiqr\ was specified, the m-file 

MixedBeamModel.m was used to evaluate equation (67) and obtain the reduced 

optimization matrix [Qlqr ]. The MATLAB command l q r  was then used to perform the 

aforementioned optimization routine and determine the control gains [£]. The required
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inputs were the reduced state space model G obtained in section 3.3, the reduced matrix 

[Qlqr ] 5 ar*d the optimization matrix [Riqr].

4.3 Sliding Mode Control

The effectiveness o f sliding mode control (SMC) in ACLD applications was 

investigated in this research. A SMC is a robust control method that allows for both 

structured and unstructured uncertainties in the development o f  the model. Structured 

uncertainties arise from unknown plant parameters such as mass, stiffness, and modulus 

values while unstructured uncertainties involve simplified model dynamics such as 

neglecting structural modes in a reasonably rigid mechanical system, or estimating state 

values through an observer [1, 26]. Another form o f unstructured uncertainties arises 

from disturbances that are unknown or unaccounted for. The beam model contained 

unstructured uncertainties due to the model simplifications made by observing 

(estimating) states and reducing the order o f  the system.

To design the SMC, a sliding surface was first designed in the reduced state space 

o f the system. This sliding surface <j({xr}) was the desired state trajectory o f the system 

and contained the desired dynamics [4, 26]. The sliding surface can be nonlinear but is 

most commonly designed as a linear combination o f the (reduced) states [4]

<*({*,})- P ]  ■{*,}.

In this work, the resulting sliding surface was a 6-dimensional manifold in the reduced 

state space o f system.

An optimal sliding surface matrix [5] was obtained by minimizing a performance 

index as with the design o f the observer and LQR control [1, 4, 31]. To minimize the
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performance index, [Qxmc] was first specified in the full state space o f  the model and then 

projected to the reduced space by the transformation matrix [SV«/g] as in equation (67).

The values that produced the best results were [Qsmc] = 106 •[/] , where [/]  w a sa 3 8 x 3 8  

identity matrix, and [Rsmc ] = 1. The reduced [Qxmc\ and [Rsmc\ were the values used in the 

MATLAB command l q r  to obtain the optimal design matrix [5], The required inputs 

were the reduced state space model “G” obtained in section 3.3, the reduced matrix 

\Qiqr ] > and the optimization matrix [Riqr] (refer to MixedBeamModel.m  in Appendix A).

Once the sliding surface was obtained, a nonlinear switching feedback 

control,u({xr} , t ) , was utilized to drive and maintain the system on the sliding surface.

The control consisted o f a linear portion, ueq({xr}), and a nonlinear portion [1,4]

w ({x ,} ,0  = ueq({xr}) + r\ -sgn(cr({xr}) . (69)

The linear portion o f  the control drives the system state trajectory to the sliding surface 

and is referred to as the equivalent control force. The equivalent control force is obtained 

by using the fact that on the sliding mode cr({jc}) = cr({x}) = 0 [1, 4, 6, 31]. Therefore, 

cr({jcr}) = [5] • { i r} = 0 and the equivalent control in equation (69) must equal

M W )  -  - ( [5 ]•  \BrF 1 • [ 5 ] - [A, ] -K }. (70)

The nonlinear portion o f the control maintains the system on the sliding surface by 

utilizing a set o f gains when the state trajectory is “above” the sliding surface and another 

set o f gains when the state trajectory is “below” the sliding surface [4]. The parameter t) 

imparts discontinuity to the control action across the sliding surface and must be chosen 

so that reachability and the existence o f  the sliding surface are guaranteed, 

a ({xr} ) ' <*({*,.}) < 0  [ f  4, 5, 28]. rj must therefore be
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(71)

Before the control u({xr} , t )  was implemented, modifications were necessary to 

the nonlinear portion o f the control to eliminate the effects o f chattering. Chattering is a 

result o f  imperfect control switching and is usually highly undesirable because it involves 

high control activity and may lead to the excitation o f  unmodeled structural modes [4,

26]. Chattering was eliminated by smoothing out the control discontinuity in a thin 

boundary layer, e, surrounding the switching surface [4, 27], For illustrative purposes, 

the boundary layer is superimposed over the chattering response o f a simplified 2-state 

model in Figure 6. By adding a boundary layer to the sliding surface o , the sliding 

surface is effectively “thickened” and the desired state trajectory (dynamics) is reached 

with less control switching.

Figure 6: Chattering and Boundary Layer 

To further smooth out the control discontinuity, the signum function was 

replaced by a saturation function with limits o f -1  and 1 as shown in Figure 7.
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4t

............ ...........

-1
t

saturation function

Figure 7: Signum and Saturation Functions 

The final nonlinear switching control was

< { x r}, t }  = Ueq({xr}) +ri ■ sat o\ (72)

The SMC was designed in the MATLAB m-file MixedBeamModel.m in Appendix 

A. The file used the l q r  command to determine the optimal sliding surface, evaluated 

the coefficient o f {xr} in equation (70), and calculated equation (71) to determine e. The 

calculated values were input into the “SMC” block o f  the SIMULINK file 

timoshenkobeam smc in Appendix B. The “SMC” block contained equation (72) in 

block diagram form and was used to implement the control for the simulation.
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CHAPTER 5

SIMULATION AND NUMERICAL RESULTS

5.1 Introduction to Simulation and Results

In this chapter the vibration damping achieved by a state-feedback linear 

quadratic regulator (LQR) is compared to the vibration damping achieved by a sliding 

mode control (SMC). Several loading conditions and saturation limits are tested to 

accurately compare the control methods. The blocks corresponding to the chapter 

content is highlighted below.

Tip Load System Model

Control <- Modet Order 
Reduction Observer

Simulation and

5.2 Experimental Setup

An SCLD-treated cantilevered beam with dimensions o f 300 mmx 15 mm x 3 mm 

was utilized in the comparison o f the SMC and LQR control schemes. The viscoelastic 

layer and piezoelectric cover sheet had dimensions o f  100 mmx 15 mm and were placed 

30 mm from the fixed end. Several loading conditions with varying control saturation 

limits were simulated to compare the vibration control produced by the
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controllers. Table 1 indicates the model parameters used throughout the case studies 

unless otherwise stated.

TABLE 1

Material Properties and Other System Parameters

Eb 7 .0 x l0 10N/m2 Beam elastic modulus
Ec 6 .4 9 x l0 10N/m2 PZT elastic modulus

Gb 2 .6 x l0 10N/m2 Beam shear modulus
Gc 2 .4 9 x l0 10N/m2 PZT shear modulus

Pb 2700 kg/m3 Beam density

Pc 7600 kg/m3 PZT density

Ps 1250 kg/m3 VEM density

tb 0.003 m Beam thickness
tc 0.00025 m PZT thickness
u 0.001 m VEM thickness
b 0.015 m Beam, PZT, and VEM Thickness
L 0.3 m Length o f  Beam
K 106N/m2 VEM equilibrium modulus

1.0 VEM modulus parameter

cor 1000 rad/s VEM modulus parameter

5 4.0 VEM modulus parameter

K 5/6 Shear correction factor

a 0.64 Coefficient for structural damping
b 1.2x 10~6 Coefficient for structural damping

d 3 j -175x lO ~ 12m/V PZT constant

\Qsmc\ io 6m „ , SMC optimization matrix

[Qlqr] i o n [ / ] 3„ , LQR optimization matrix

R 1 SMC and LQR optimization matrix
£ 1 Chattering coefficient

5.3 Case 1: 1-N Pulse

A 1-N pulse load with a duration o f 1 ms was applied to the tip o f  the finite 

element beam model at t = 0 as shown in Figure 8.
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Figure 8: Single 1-N Pulse 

To demonstrate the effectiveness o f the ACLD treatment, the load was first 

applied to a beam treated with only a PCLD treatment. Implementation o f the PCLD 

treatment resulted in a maximum displacement o f  0.675 mm and a settling time well over 

1 s as shown in Figure 9. It should also be noted that the passive response matched the 

results from [2].

Tip Deflect io l Without Control

Time fe}

Figure 9: 1-N Pulse without Active Control
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The pulse load was then applied to an ACLD treated beam model for both a LQR and a 

SMC control scheme. Saturation limits o f  120V to -120V were enforced to replicate 

realistic voltage constraints.

Implementation o f the ACLD treatment with a LQR control resulted in a 

maximum deflection o f 0.666 mm and a settling time o f 0.340 s (refer to Figure 10). 

Application o f  the SMC resulted in a maximum deflection o f 0.672 mm and a settling 

time o f 0.335 s (refer to Figure 11). The two control schemes produced a lower 

maximum deflection and a much shorter settling time when compared to the model with 

only a PCLD treatment, but only a marginally different vibration response, less than 1.5% 

difference for both maximum deflection and settling time, when compared to each other. 

When saturation limits are imposed, the amplitude and frequency o f  the beam, not the 

control algorithm, dictate the control activity. The LQR and SMC request the same 

maximum negative voltage as the beam approaches its peaks in amplitude and both 

control methods plateau at the maximum negative voltage until the beam begins to 

oscillate in the opposite direction.

Sm ite 1 t l  I OR Contial

300!_______I_______I_____ I ____ „J______________ I ____________ I_____________I _ _  J_______i_________

0 DOE 01  015 0 7  0 2 5  0 3 0 35 0 4 0 4 5  OS

Figure 10: Single 1-N Pulse: LQR with Saturation
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Figure 11: Single 1-N Pulse: SMC with Saturation 

SMC is a high speed switching control that achieves good performance at the cost 

o f high control activity. To further compare the effectiveness o f  the LQR and SMC, the 

1-N pulse load was applied to the beam model for both control methods without 

saturation limits. Removing the saturation limits allowed the LQR and SMC to operate 

under the ideal condition where an infinite amount o f voltage was available and a 

resulting force was applicable. As shown in Figure 12, Application o f the LQR control 

without saturation limits resulted in a maximum deflection o f 0.594 mm, a settling time 

o f 0.1125 s, and required a maximum o f 2380 V.
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Figure 12: Single 1-N Pulse: LQR without Saturation 

Application o f a SMC without saturation produced a maximum deflection o f 0.561 mm, a 

settling time o f  0.0755 s, and required a maximum voltage o f 2258 V (refer to Figure 13). 

When compared to the LQR without saturation, the maximum deflection was decreased 

by 5.5%, the settling time was decreased by 32.9%, and the maximum voltage required 

was lowered by 122V.

Single 4 N P«*ls« SMC Control Unsaliirat-J C.oiitmi Voltage

[ a ........r ....... L J
............■'■"'T...............r m..... ..."'"i »

t f l ! ........i .......... i..........

L . . 1
W  ; ;

a  -  i  |___________J________ _____________ 1 I I I ___

0 ~  0 02 0 04 0 0b 0 08 0 1 ~ 0 12 C 14 0 1 6  0 1 6  0

Conftiottor Vo*taqo

Twite <?0

Figure 13: Single 1-N Pulse: SMC without Saturation
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The improvement in performance demonstrates the effectiveness o f  the SMC control 

scheme when the saturation limits are removed and the control algorithm is the foremost 

factor in determining the control action.

5.4 Case 2: Double 1-N Pulse

For the second case, an additional 1-N pulse load was applied to the beam 100 ms 

after the first pulse as shown in Figure 14. The second pulse was applied at t = 100 ms so 

that neither control scheme had sufficient time to completely dampen the vibration from 

the first pulse load. This loading condition was tested to investigate the vibration control 

achieved for a beam that is impacted when already in motion.

--------

. . . . . . 1. . . . . . . .

• ..................... • - - - - - - - - - - - - -

L_____
0 0

_____
J2 0 04 0 0*> 0

____ 1
OB 0 

Tune
1 0 
(->

1? 0
= —  

14 0
_____
16 0 18

Figure 14: Double 1-N Pulse 

As shown in Figure 15, the LQR control with saturation resulted in maximum amplitude 

o f 0.955 mm and a settling time o f 0.475 s. The load and saturation limits were then 

applied to a SMC with e = 0.2 to eliminate chattering. Implementation o f the SMC 

resulted in maximum amplitude o f 0.952 mm and a settling time o f 0.461 s as illustrated
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in Figure 16. As in the first case, the vibration response is only marginally better for the 

SMC when the saturation limits are enforced.

SdilurrfliKl Control V oltage

II   j__________ [_____ i______ _j____________ j___  _B1
0 0 1  0 7  0 1  0 4  0 6  0 6

Figure 15: Double 1-N Pulse: LQR with Saturation

■I '’ I 0 ✓ O '  u 1 0  5  0  6

C onU rttefV ottap

0 3  
Time (s)

Figure 16: Double 1-N Pulse: SMC with Saturation 

The saturation limits were then removed to test the controls under the ideal situation 

where the controllers used all o f  their requested voltage and the PZT was able to apply a 

corresponding force. Figure 17 illustrates that the LQR control without saturation
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produced maximum amplitude o f  0.624 mm, settling time o f 0.225 s, and a maximum 

voltage o f 2445 V.

0 O'- 0 1 0 IS o ;  0 75 0 3

£

0 0 5  0 1  0 1 5  0 ?  0 25 0 J

Figure 17: Double 1-N Pulse: LQR without Saturation 

Application o f  the SMC without saturation limits resulted in a maximum deflection of 

0.562 mm, settling time o f 0.172 s, and a maximum voltage o f  2258 V as shown in 

Figure 18.

DouM» 4 N Putsit SMC Contrnt UnstrturdteU Curtrof VoAjftje

0 1  0 15 0 7  0 75 0 3

Figure 18: Double 1-N Pulse: SMC without Saturation
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When compared to the LQR without saturation limits, the maximum amplitude was 

decreased by 9.93% and the settling time was decreased by 23.56%. As in the first case, 

the SMC control scheme greatly out performed the LQR control scheme when saturation 

limits were removed.

5.5 Case 3: Harmonic Load

For the third case, a harmonic load o f  f ( t )  = 0.1 • sin(l 79 • t) N  was applied to the 

tip o f the beam for 0.193 s as shown in Figure 19. The frequency o f the harmonic load 

corresponded to a natural frequency o f  the full order model and was chosen to investigate 

the effectiveness o f the control schemes during resonance as illustrated in Figure 20. The 

duration o f  the load was chosen so that the sinusoid completed 5.5 cycles and terminated 

at f(t) = 0. The amplitude o f the control force was designed so that the maximum 

deflection o f the beam model would not exceed 5mm during the application o f  the load.

0 0? a 04 0 06 0 08 0 1 Q 13 ft 14 0 ’«  0  18

Figure 19: Harmonic Load
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Figure 20: Frequency Response o f Full Order Model 

As with the first two cases, the vibration response was compared for a LQR and 

SMC with saturation and then a LQR and SMC without saturation. Implementation o f  

the LQR with saturation limits produced a maximum deflection o f 4.480 mm and a 

settling time o f  0.95 s as shown in Figure 21.

I

lime (s)

Figure 21: Harmonic Load: LQR with Saturation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The SMC with saturation limits resulted in a maximum deflection o f 4.475 mm a settling 

time o f  0.93 s as shown in Figure 22.

o ? 0 4 ■ ■ ■ ■ ■ ■ I

100

100

0 8 1 4

Figure 22: Harmonic Load: SMC with Saturation 

As in the first two cases, the vibration response o f  the beam when the SMC was 

implemented was only slightly improved when saturation limits were imposed. In this 

case the dependence o f the control activity on the frequency and amplitude o f the 

vibration response is more evident. As the beam deflection increases the voltage 

requested by the controller decreases and then plateaus until the beam begins to oscillate 

in the opposite direction.

The load was then applied to a LQR and SMC without saturation limits to 

investigate the ideal response o f the controllers. The LQR without saturation limits 

produced a vibration response with maximum amplitude o f 1.1445 mm, settling time o f

0.2980 s, and a maximum voltage o f 1622 V as shown in Figure 23. Implementation o f a 

SMC without saturation limits resulted in a maximum amplitude o f 0.716 mm, settling 

time o f  0.2485 s, and a maximum voltage o f  1675 V as shown in Figure 24. When
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compared to the LQR without saturation limits, the amplitude o f the vibration was 

decreased by 37.44% and the settling time was decreased by 16.61%.

\  /  V !
I f  *A /  I :. . . . . . . . . i . . . . . . . . . . . . . .

0 0 5

T Y t / V f

- - - - - - -

................................

\ t  \  /
V v y i
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0 05 o r  0 tf> 0 7  0 / b  0 3 0 35

Figure 23: Harmonic Load: LQR without Saturation
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Figure 24: Harmonic Load: SMC without Saturation 

The implementation o f the SMC produced a smaller maximum deflection and a shorter 

settling time when saturation limits were removed for all three loading cases. The 

improvement in vibration control when compared to the LQR was a result o f  the increase
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in the allowed control activity and the utilization o f a robust control scheme in the 

presence o f  unstructured modeling errors. The results are summarized in Table 2.

TABLE 2

Summary of Results

Loading
Case

Control
Method

Saturation
Limit

Max
Deflection

(mm)
Settling 
Time (s)

% Decrease of 
md Relative to 

SMC

% Decrease of 
ts Relative to 

SMC

1 LQR On 0.666 0.3400 -0.90 1.47
SMC On 0.672 0.3350
LQR Off 0.594 0.1125 5.56 32.89
SMC Off 0.561 0.0755

2 LQR On 0.955 0.4750 0.31 2.95
SMC On 0.952 0.4610
LQR Off 0.624 0.2250 9.94 23.56
SMC Off 0.562 0.1720

3 LQR On 4.480 0.9500 0.11 2.11
SMC On 4.475 0.9300
LQR Off 1.145 0.2980 37.44 16.61
SMC Off 0.716 0.2485
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this work an actively constrained layer damping (ACLD) treatment was applied 

to a beam for vibration suppression. The beam was modeled using Timoshenko beam 

theory and the viscoelastic material in the ACLD treatment was modeled using the GHM 

method. Energy methods were utilized to obtain the mass, damping, and stiffness 

matrices for the discrete elements o f  the beam and a MATLAB algorithm was created to 

assemble these segments into a finite element model for the entire beam. The finite 

element model was neither completely state controllable nor observable. An observer 

was designed and model order reduction (MOR) was implemented to obtain a simplified, 

efficient, and more controllable model. The process o f  observation and MOR introduced 

modeling errors into the system in the form o f unstructured uncertainties.

The most common control method utilized in the control o f ACLD treatments is 

state feedback control with control gains determined using linear quadratic (LQR) theory. 

Sliding mode control (SMC) is a robust control method and was utilized in this research 

to determine if  a robust control method produced better vibration attenuation in ACLD 

treated beam models containing unstructured uncertainties.

The vibration control for a SMC and LQR were compared for several loading 

conditions. SMC produced only a marginally better vibration response for all loading 

conditions when saturation limits were imposed. The similarity in vibration control was a

49
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direct result o f  the limitations on control activity placed on the SMC. Saturation limits 

were removed to test effectiveness o f the control schemes for an ideal scenario where the 

controllers were allowed an infinite amount o f voltage and a corresponding force was 

applicable. When compared to the LQR without saturation limits, the vibration control 

for a SMC was greatly improved. This improvement in response was due to the increase 

in control activity and the utilization o f  a robust control scheme in the presence o f  

unstructured uncertainties.

Further studies can be performed to include modeling errors due to structured 

uncertainties, random forces, and combinations o f  both to achieve increasingly realistic 

models. In this work, it was assumed the material properties o f  the beam, VEM, and PZT 

were known exactly. This is rarely the case especially with viscoelastic materials where 

the material properties are estimated experimentally, highly dependent on the frequency 

o f the vibration, and extremely sensitive to temperature. The tip loads were also assumed 

exactly known before the simulation. A more realistic model would employ a bounded 

random tip load to model the uncertainty in loads. The forces can also be applied to 

varying sections o f  the beam during the simulation to represent uncertainty in the 

application o f  the load. Additional studies can also be performed to include tracking 

applications and other applications that require much less control effort. Applications 

that require less control effort will not cause the SMC to reach saturation limits as often 

and will therefore increase the control effectiveness.

This research has contributed several advancements in the area o f ACLD 

research. First, ACLD model modifications were introduced through the implementation 

o f an observer and model order reduction. These modifications produced a simplified,
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efficient, and more controllable state space model. Secondly, a sliding mode control 

(SMC) was implemented and compared to the conventional state-feedback control with 

gains determined using linear quadratic regulator (LQR) theory. SMC was shown to be 

effective and produced greater vibration control in the absence o f  saturation limits.
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%MixedBeamModel.m p. 57

% Nodes and Degrees of Freedom

nelL = 1; 
nelC = 1; 
nelR = 3;
nel = nelL+nelC+nelR; 
nnel = 2; 
ndofl = 3; 
ndof2 = 4;
nnode = (nnel-1)*nel+l;

% number of elements left of ACLD 
% number of elements for ACLD 

% number of elements right of ACLD 
% number of elements 

% number of nodes per element 
% number of dofs per node for beam element 

i number of dofs per node for SCLD elements
% total number of nodes

PLL = 0.1 
PLC = 0.3 
PLR = 0 . 6

% percent length of beam segment left of ACLD 
% percent length of ACLD beam segment 

% percent length of beam segment right of ACLD

% total system dofs

sdof = nelL*ndofl + ((nelC+1)*ndof2+nelC*2) + nelR*ndofl;

% System matrices

M = zeros(sdof,sdof); 
C = zeros(sdof,sdof); 
K = zeros(sdof,sdof); 
Fd = zeros(sdof,1); 
index = zeros(1,6);
F d (sdof-1) = 1.0; 
source = 1;
Pc = zeros(sdof, 1);

% initialization of system mass matrix 
% initialization of system damping matrix 

% initialization of system stiffness matrix 
% initialization of Fd vector 

% initialization of index vector 
% tip load magnitude 

1 for impulse, 2 for periodic, and 3 for step 
% initialization of control vector

% Compute system mass, damping, and stiffness matrices
[M, C , K, Pc] = :SystemMatricies03 (M, C , K, Pc , nelL, nelC , nelR, nel, PLL, PLC, v?
PLR) ;

% State Space Representation -------------------------------------
% Apply constraints
% The following lines remove rows and columns corresponding to 
% displacements specified by boundary conditions.
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M = M (4:sdof,4:sdof); 
K = K(4:sdof,4:sdof); 
C = C (4:sdof,4:sdof); 
Fd = F d (4:sdof,1) ;
Pc = P c (4:sdof,1);

AA = [ zeros(sdof-3) eye(sdof-3); -inv(M)*K -inv(M)*C]; 
BB = [zeros(sdof-3,1) ; inv(M)*Pc];
CC = zeros(1,(sdof-3)*2);
C C (18) = 1;
DD = 0;

sys = SS(AA,BB,CC,DD);

% Observability and Controllability of FOM

Cl = [BB AA*BB AA/'2*BB AAA3*BB AAA4*BB AAA5*BB AAA6*BB... 
AAA7*BB AAA8*BB AAA9*BB AAA10*BB AAA11*BB AAA12*BB. . . 
AAA13 *BB AAA14 * BB AAA15 *BB AAA16 *BB AAA17*BB AAA18 *BB.
AAA19*BB AAA20*BB AAA21*BB AAA22*BB AAA23*BB AAA24*BB.
AAA25*BB AAA26*BB AAA27*BB AAA28*BB AAA29*BB 7VAA30*BB.
AAA31*BB AAA32*BB AAA33*BB AAA34*BB AAA35*BB 71AA36*BB.
AAA37*BB];

rank(Cl);

01 = [CC; CC*AA; CC*AAA2; CC*AAA3; CC*AAA4; CC*AAA5;...
CC*AAA6; CC*AA*7; CC*AAA8; CC*AAA9; CC*AAA10; CC*AAA11; 
CC*AAA12; CC*AAA13; CC*AAA14; CC*AAA15; CC*AAA16;
CC*AAA17; CC*AAA18; CC*AAA19; CC*AAA20; CC*AAA21
CC*AAA22; CC*AAA23; CC*AAa 24; CC*AAa 25; CC*AAa26
CC*AAA27; CC*AAA28; CC*AAA29; CC*AAA30; CC*AAA31
CC*AAA32; CC*AAA33; CC*AAA34; CC*AAA35; CC*AAA36
CC*AAA37];

rank(01);

% Observer Design -------------

Qob = l*eye(size(AA));

[P,Eig,L] = care(AA1,CC',Qob); 

L = L 1 ;

% Solves Algebric Ricatti Equation 

% Observer gain matrix
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Eig; % Must Have Negative Real Parts To Be Stable

% Model Order Reduction -----------------------------------------------------

[G, redinfo] = schurmrJAK(sys,6);

SLBIG = redinfo.SLBIG; % Transformation Matrix

SRBIG = redinfo.SRBIG;

T = SLBIG';

% Check for Controllability and Observability in ROM --------------------

CM = [G.b G.a*G.b G.aA2*G.b G.aA3*G.b G.aA4*G.b G.aA5*G.b];

rank(CM); % Rank of Controlability Matrix

OM = [G.c; G .c*G.a; G.c*G.aA2; G.c*G.aA3; G.c*G.aA4; G.c*G.aA5];

rank(OM); % Rank of Observablility Matrix

% LQR Control Design ---------------------------------------------------------

[rM,cM] = size(M);

BBhat = [zeros(rM,1); inv(M)*Fd]; % Vector Nedded for Tip Load

Qct = lell*eye(size(AA)); % Q specified in the full state space

Qct = SRBIG'*Qct*SRBIG; % Transformtion of Q to Control Reduced States 

R = 1;

sysrom = ss(G.a,G.b,G.c ,G .d);

[Kc,Pl,El] = lqr(G.a,G.b,Qct,R); % Control Gain based on LQR design

%Kc = [ 0 0 0 0 0 0 ] ;  % No control
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% Sliding Mode Control Design -----------------------------------------------

Qs = l*10/'6*eye (size (AA) ) ; % Q specified in the full state space

Qs = SRBIG'*Qs*SRBIG; % Transformtion of Q to Control Reduced States 

Rs = 1;

[S,P2,E2] = lqr(G,Qs,Rs); % S = Optimal sliding surface

Eta = 1.5*abs(inv(S*G.b)* (S*T*BBhat));

KUeq = -inv(S*G.b)*S*G.a; % Equivalent Control Force

e = 1; % Boundary Layer Thickness of Sliding Surface
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% SystemMatrices03 .m p . 61

function [M,C',K,Pc] = SystemMatrices03(M,C,K,Pc,nelL,nelC,nelR,nel,PLL , ^  
PLC,PLR)
% --------------------------------------------------------------
% SystemMatrices03.m (created by jak 032305; updated by jak 032305)
% This file calculates system matrices (M, C, K, and P) for the ACLD 
% problem. This accounts for a partially ACLD treated beam.
%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Variabe subscripts: b = beam, c = PZT, s = VEM

% Elastic Modulus (N/mA2) 
Eb = 7.0el0;
Ec = 6.4 9el0;
Es = 0 * 14 e 6 ;

% Shear Modulus 
Gb = 2.6el0;
%Gb = 3 . 8 * 10 A 6; 
Gc = 2 . 4 96el0;
Gs = 0*3.8*10A6;

% Width of Beam, PZT, and VEM (m) 
b = .015;

% Thickness Cm) 
tb = .003; 
ts = .00025; 
tc = .001;

% Cross sectional Area (mA2) 
Ab = tb*b;
Ac = ts*b;
As = tc*b;

% Moment of Inertia (mA4) 
lb = b*tbA3/l2;
Ic = b*tsA3/12;
Is = b*tcA3/12;

% Density (kg/mA3) 
rhob = 2700; 
rhoc = 7 600;
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rhos = 1250;

% shear correction factor 
k_alpha = 5/6;

% VEM Layer Parameters
kappa = 1*10A6; % Equilibrium Value of Modulus (N/m/'2)
alpha = 1.0; 
omega = 1000; 
chi = 4.0;

% Total Length of Beam (m)
L = .3;

% Coefficients for Structral/Rayleigh Damping 
a_hat = .64; 
b_hat = 1.2e~6;
InternalDamping = 1;

% Piezoelectric constant (m/V) 
d31 = -175e-l2;

BLP = [Eb Gb rhob tb a_hat b_hat]; % Beam Layer Parameters
VLP = [Es rhos ts alpha omega chi kappa];%Viscoelastic Layer Parameters 
CLP = [Ec Gc rhoc tc d31]; % Constraining Layer Parameters

Lei = PLL*L/nelL; 
Le2 = PLC*L/rielC; 
Le3 = PLR*L/nelR;

% element 1 length 
% element 2 length 
% element 3 length

[Mel,Cel, Kel,Peel] = TimoshenkoFEM2(BLP,k_alpha,b,Lei,InternalDamping); 
[Me2,Ce2,Ke2,Pce2] = BalamuruganNarayananFEM2(BLP,k_alpha,VLP,CLP,b , ^  
Le2, InternalDamping);
[Me3,Ce3,Ke3,Pce3] = TimoshenkoFEM2(BLP,k_alpha,b,Le3,InternalDamping);

for iel = l:nel
if (iel <= nelL)

% Timoshenko beam elements
Me = Mel; Ce = Cel; Ke = Kel; Pee = Peel;
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if (iel == 1)
index = [1:6];

else
index = [index(4:6) index(4:6)+3];

end
elseif (iel > nelL) & (iel <= nelL+nelC)

% ACLD elements
Me = Me2; Ce = Ce2; Ke = Ke2; Pee = Pce2; 
if (iel == nelL+1)

index = [index(4:6) index(4:6)+3 index(4:6)+6 index(6)+7];
else

index = [index(5:8) index(5:10)+6];
end

else
% Timoshenko beam elements
Me = Me3; Ce = Ce3; Ke = Ke3; Pee = Pce3;
if (iel == nelL+nelC+1)

index = [index(5:7) index(5:7)+6];
else

index = [index(4:6) index(4:6)+3];
end

end
M = FEASMlBL (M,Me, index) ; 
C = FEASMiBL (C,Ce, index) ; 
K = FEASMBL(K,Ke,index);
Pc = FEASFIBL2 (Pc, Pee, index) ;

% assembles system mass matrix 
% assembles system damping matrix 

% assembles system stiffness matrix 
% assembles system control vector

end
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% TimoshenkoFEM2.m p.64

function [Me,Ce,Ke,Pe] = TimoshenkoFEM2(BLP,k_alpha,b,Le , ^  
InternalDamping)
%   ----------------
% TimoshenkoFE!M2 .m (created by jak 021704; updated by jak 021904)
% This is the same as the Balamurugan & Narayanan FEM without the*' 
damping
% and constraining layers. This has be corrected from TimoshenkoFEM*' 
where
% there was an error with Mwb.
% qe = [ul wl thetal u2 w2 theta2]’

% Beam layer parameters 
Eb = BLP(1) ;
Gb = BL P (2); 
rhob = B L P (3); 
tb = BL P (4); 
a_hat = B L P (5); 
b_hat = BLP(6);

Ab = b*tb; 
lb = b*tbA3/12;

% beam stiffness bending term 
Kwbb = Eb*Ib/Le*[...

zeros(2,6);...
0 0 1 0 0 -1; . . .

zeros(2,6);...
0 0 -1 0 0 l] ;

% beam stiffness transverse shear term
% Must use a quadrature rule to correct the shear term and
% shear locking. This matrix matches that in Kwon & Bang,
% ELEMENT METHOD, p. 244, Eq. 8..2.11.
Kwbs = Gb*Ab*k_alpha/4/Le*[...

0 0 0 0 0 0; . . .
0 4 2*Le 0 -4 2*Le;...
0 2*Le LeA2 0 -2 *Le LeA2;. . .
0 0 0 0 0 0; . . .1o -2 *Le 0 4 -2 *Le;.. .
0 2 *Le LeA2 0 -2*Le LeA2];

% beam stiffness extension term
Kub = Eb*Ab/Le*[...

1 0 0 -1 0 0; . . .
zeros(2,6);...
-1 0 0 1 0 0; . . .
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zeros(2,6)];
% beam tranverse mass term 
Mwb = rhob*Le/6*[ ...

0 0 0 0 0 0; . . .
0 2 *Ab 0 0 Ab 0; . . .
0 0 2*Ib 0 0 Ib;...
0 0 0 0 0 0; . . .
0 Ab 0 0 2 *Ab 0; . . .
0 0 lb 0 0 2*Ib];

% beam axial mass term
Mub = rhob*Ab *Le/6* [. . .

2 0 0 1 0 0; . . .
zeros(2,6);...
1 0 0 2 0 0; . . .
zeros(2,6)];

Me = Mwb + Mub;
Ke = Kwbb + Kwbs + Kub;

% Has been modified to allow for Rayleigh damping, 
if InternalDamping == 1

Ce = a_hat*Me + b_hat*Ke;
else

Ce = zeros(6,6);
end
Pe = zeros (6,1);
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%BalamuraganNarayanaDerivation.m p.66

% BalamuraganjNarayanaDerivation.m 
% (created by jak 071603; updated by jak 021804)
% qe = [ul wl thetal gamal u2 w2 theta2 gama2]'
% ze = [zl z2] 1
syms Ab As Ac tb ts tc lb Is Ic Gb Gs Gc rhob rhos rhoc
syms Eb Es Ec k_alpha alpha kappa omega chi Le x z h

Nu = [l-x/Le, 0, 0, 0, x/Le, 0, 0, 0];
Nw = [0, l-x/Le, 0, 0, 0, x/Le, 0, 0];
Ntheta = [0, 0, l-x/Le, 0, 0, 0, x/Le, 0];
Ngamma = [0, 0, 0, l-x/Le, 0, 0, 0, x/Le];
% Corrected this on 021404 
Nz = [l-x:/Le, x/Le];
dNu = di f f (N u , 'x 1 ,1); 
dNw = diff(Nw,1x ',1); 
dNtheta = diff(Ntheta,1x ',1); 
dNgamma = diff(Ngamma,'x',1);

%h = ts+(tb+tc)/2;

% Beam --------------------------------------------------------------------
Kwbb = Eb*Ib*int(dNtheta.'*dNtheta,x,0,Le);
Kwbs = Gb*Ab*k_alpha*int([Ntheta; dNw].'*[l -1]'*[1 -1]*[Ntheta; ^  
dNw],...

x,0,Le);
Kub = Eb*Ab*int(dNu.1*dNu,x,0,Le);
Mwb = rhob*int(Ab*Nw.'*Nw+Ib*Ntheta.1*Ntheta,x,0,Le);
Mub = rhob*Ab*int(Nu.'*Nu,x,0,Le);
%  --------------------------------------------

% Piezoelectric l a y e r ----------------------.----------------------------
Kwcb = Ec*Ic*int (dNtheta. 1 *dNtheta, x, O', Le) ;
Kwcs = Gc*Ac*k_alpha*int([Ntheta; dNw].'*[l —1] '*[1 -1]*[Ntheta; *£ 
dNw],...

x,0,Le);
Kuc = Ec*Ac*int([dNu; dNtheta; dNgamma].'*[1 -h ts].'*[l -h ts]*...

[dNu; dNtheta; dNgamma].', x, 0 , Le) ;
Mwc = rhoc*int(Ac*Nw.'*Nw+Ic*Ntheta.'*Ntheta,x,0,Le);
Muc = rhoc*Ac!*int ( [Nu; Ntheta; Ngamma]. ’*[1 -h ts].'*[l -h ts]*...

[Nu; Ntheta; Ngamma],x,0,Le);
%   -----------------------------------

% Viscoelastic layer ----------------------------------------------------
Kwsb = Es*Is*int(dNtheta.1*dNtheta,x,0,Le);
Kus = Es*As*iint ( [dNu; dNtheta; dNgamma ].'*[ 1 -(tb+ts)/2 ts/2].1*...

[1 -(tb+ts)/2 ts/2]*[dNu; dNtheta; dNgamma],x,0,Le);
Ks = As*(kappa+alpha*kappa)*int(Ngamma.1*Ngamma,x,0,Le);
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Mws = rhos*int. (As*Nw.1*Nw+Is*Ntheta.'*Ntheta,x,0,Le) ;
Mus = rhos*As’*‘int ( [Nu; Ntheta; Ngamma].'*[1 -(tb+ts)/2 ts/2].'*...

[1 -(tb+ts)/2 ts/2]*[Nu; Ntheta; Ngamma],x,0,Le);
Kqz = As*alpha*kappa*int(Ngamma.'*Nz,x,0,Le);
Kzq = Kqz.';
Kz = As*alpha*kappa*int(Nz.1*Nz,x,0,Le) ;
Mz = As*alpha*kappa/omegaA2*int(Nz.'*Nz,x,0,Le);
Cz = As*alpha*kappa*2*chi/omega*int(Nz.'*Nz,x,0,Le);
% -----------------------------------------------------------------

Me = Mwb + Mwc + Mub + Muc + Mus + Mws;
Ke = Kwbb + Kwbs + Kwcb + Kwcs + Kub + Kuc + Kus + Ks + Kwsb;
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% BalamurugamNarayananFEM2.m p. 68

function [Mea,Cea,Kea,Pea] = BalamuruganNarayananFEM2(BLP,k_alpha,VLP , ^  
CLP,b,Le,InternalDamping);

% BalamuruganNarayananFEM2.m (created by jak 092803; updated by jak*' 
021904)
% Refer to Balamurugan, V. and Narayanan, S., 2002, "Finite element 
% formulation and active vibration control study on beams using smart 
% constrained layer damping (SCLD) treatement," Journal of Sound and 
% Vibration, 249(2), pp. 227-250.

% Beam layer parameters 
Eb = B L P (1) ;
Gb = B L P (2); 
rhob = B L P (3); 
tb = B L P (4); 
a_hat = B L P (5); 
b_hat = BL P ( 6 ) ;
% Viscoelastic layer parameters
Es = VLP (1);
rhos = V L P (2) ;
ts = V L P (3);
alpha = V L P (4);
omega = V L P (5);
chi = V L P (6) ;
kappa = VLP(7j;
% Constraining layer parameters 
Ec = C L P (1) ;
Gc = C L P (2); 
rhoc = CL P (3); 
tc = C L P (4); 
d31 = C L P (5);

Ab = b*tb;
As = b*ts;
Ac = b*tc; 
lb = b*tbA3/12;
Is = b*tsA3/12;
Ic = b*tcA3/12; 
h = ts+(tb+tc)/2;

% B e a m ------------------------------------------------------------------------
Kwbb = Eb*Ib/Le*[zeros(2,8) ; ...

0 0 1 0 0 0 -1 0; . . .
zeros (3,8); ...
0 0 -1 0 0 0 1 0; . . .
zeros(1,8)];

%Must use a quadrature rule to correct the shear term and prevent shear
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% locking. This matrix matches that in Kwon & Bang, THE FINITE ELE1
% METHOD, p. 244, Eq. 8.2.11.
Kwbs = Gb*Ab*k_alpha/4/Le*[zeros(1,8);. 

0 4 2 *Le 0 0 -4 2 *Le 0; .
0 2 *Le LeA2 0 0 -2 *Le LeA2 0; .
zeros(2,8);... 
0 -4 -2 *Le 0 0 4 -2 *Le 0; .
0 2 *Le LeA2 0 0 -2 *Le LeA2 0; .

%Kwbs
0,-Q

zeros(1,8)];
= Gb*Ab*k_alpha* 

0 1/Le
[zeros(1, 

1/2
8); ...

0 0 -1/Le 1/2 0;
% 0 1/2 Le/3 0 0 -1/2 Le/6 0;
%
*6

zeros(2,8); . 
0 -1/Le -1/2 0 0 1/Le -1/2 0;o,"o 0 1/2 Le/6 0 0 -1/2 Le/3 0;g,"5

Kub =
zeros(1,8)]; 

Eb*Ab/Le*[ ...
1 0 0 0 -1 0 0 0;
zeros(3,8); 
-1 0 0 0 1 0 0 0;

Mwb =
zeros(3,8)]; 

rhob*Le*[zeros(1,8); ... 
0 Ab/3 0 0 0 Ab/6 0 0;
0 0 Ib/3 0 0 0 Ib/6 0;
zeros(2,8);
0 Ab/6 0 0 0 Ab/3 0 0;
0 0 Ib/6 0 0 0 Ib/3 0;

Mub =
zeros(1,8)]; 

rhob*Ab*Le*[ ... 
1/3 0 0 0 1/6 0 0 0;
zeros(3,8); 
1/6 0 0 0 1/3 0 0 0; .
zeros(3,8)];

% Piezoelectric layer --------------------------------------------------------
Kwcb = Ec*Ic/Le*[zeros(2,8); ...

0 0 1 0 0 0 - 1  0 ; . . .

zeros(3,8); ...
0 0 - 1  0 0 0 1 0 ; . . .
zeros (1,8)] ;

%Must use a quadrature rule to correct the shear term and prevent shear 
% locking. This matrix matches that in Kwon & Bang, THE FINITE ELEMENT 
% METHOD, p. 244, Eq. 8.2.11.
Kwcs = Gc*Ac*k_alpha/4/Le*[zeros(1, 8) ; . . .

0 4 2 *Le 0 0 -4 2*Le 0;...
0 2 *Le LeA2 0 0 -2*Le LeA2 0;...
zeros(2,8);...
0 -4 -2 *Le 0 0 4 -2*Le 0;...
0 2 *Le LeA2 0 0 -2*Le LeA2 0;...
zeros (1,8)];
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bKwcs = Gc*Ad*k alpha*[zeros(1,8);

Kuc

0 1/Le
0 1 / 2
zeros(2,8);
0 -1/Le
0 1 / 2
zeros(1,8)];

Ec*Ac/Le*[ ...
1 0

1 / 2
Le/3

- 1 / 2
Le/6

-h

zeros(1,8); ...
-h 0 h A2

h*ts;...
ts 0

-1 0
zeros(1,8);.. 
h 0 -hA2

Mwc

Muc

-ts 0 h*ts
rhoc*Le*[zeros(1,8); .. 

0 Ac/3 0
0 0 Ic/3
zeros(2,8); ...
0 Ac/6 0
0 0 I c / 6
zeros(1,8)]; 

rhoc*Aci*Le* [ ...
1/3 0 -h/3

ts

-h*ts 

-h*ts tsA2

-ts

h*ts

ts/3

-ts

-tsA2 ts

1 / 6

-1/Le
- 1 / 2

1/Le
- 1 / 2

Ac / 6 
0

Ac/3 
0

1 / 2
Le/6

- 1 / 2
Le/3

-h A2^

h*ts

h A2

0
Ic/6

0
Ic/3

-h/6

0 ;
0 ;

0 ;
0 ;

-ts; ̂

-tsA2 ; ^

ts; .

-h*ts

-h*ts tsA2]

0 ; . .
0 ; . .

0 ; . .

0 ; . .

ts/6;

zeros(1,8); ... 
-h/3 0

h*ts/6;
ts/3

1 / 6

0

0

hA2/3 -h*ts/3 -h/6

-h*ts/3 tsA2/3 ts/6

-h/6 ts/6 1/3

zeros(1,8); ...
-h/6 0

h*ts/3; ...
ts/6 0

tsA2/3];
Pc = Ec*d31*b*[-1 0 h -ts 1 0 -h ts]'; 
* ------------------------------------------------------------

0 h A2 / 6

0 -h*ts/6 tsA2/6 ; ^

0 -h/3 ts/3 ; ^

h A2 / 6 -h*ts/6 -h/3 0 h A2/3

-h*ts/6 tsA2/6 ts/3 0 -h*ts/3 vi

% Viscoelastic layer --------
Kwsb = Es*Is/Le*[zeros(2,8) ; 

0 0 1 
zeros (3,8); ...
0 0 - 1  
zeros(1,8)];

0 ;

0;
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Kus = Es*As/Le*[ ...
1 0 -(tb+ts)/2

(tb+ts)/2 -ts/2; ...
0 0 0

0 0 ; . . .
- (tb+ts)/2 0 (tb+ts)A2/4

- (tb+ts)A2/4 (tb+ts)*ts/4; ...
ts/2 0 - (tb+ts)*ts/4

(tb+ts)*ts/4 -tsA2/4; ...
-1 0 (tb+ts)/2

- (tb+ts)/2 ts/2; ...
0 0 0

0 0 ; . . .
(tb+ts)/2 0 - (tb+ts)A2/4

(tb+ts)A2/4 - (tb+ts)*ts/4; ...
-ts/2 0 (tb+ts)*ts/4

- (tb+ts)*ts/4 tsA2/4];
Ks = As*(kappa+alpha*kappa)*Le*[zeros(3,8); ...

ts/2

0

- (tb+ts)*ts/4 

tsA2/4 

-ts/2 

0

(tb+ts)*ts/4 

-tsA2/4

0

(tb+ts)/2 

-ts/2 

1 

0

0*  

0*  

0*  

o*'

O*'

0 *

- (tb+ts) /2 Ot^ 

ts/2 Q*

0 0 0 1/3 0 0 0 1 / 6 ; ^

zeros(3,8); ...
0 0 0

Mws = rhos*Le*[zeros(1,8) ; .,
0 As/3 0
0 0 Is/3
zeros (2,8); ...
0 As/6 0
0 0 Is/6
zeros1 (1,8)];

Mus = rhos*As*Le*[ ...
1/3 0 - (tb+ts)/6

- (tb+ts)/12 ts/12; ...
zeros (1,8); ...
- (tb+ts)/6 0

1 / 6

0
0

0
0

ts/6

As/6 
0

As/3
0

0
Is/6

0
Is/3

1 / 6

1/3] ;

0 ; . . 
0 ; . .

0 ; . . 

0 ; . .

- (tb+ts)*ts/12

ts/12

- (tb+ts) /12 O*' 

ts/12 O*'

1/3 O*'

(tb+ts) *ts/24 -(tb+ts)/6 0k̂

(tb+ts)A2/12 
(tb+ts)A2/24 - (tb+ts)*ts/24; ...

ts/6 0 - (tb+ts)*ts/12 tsA2/12
- (tb+ts)*ts/24 tsA2/24; ...

1/6 0 - (tb+ts)/12
- (tb+ts)/6 ts/6; ...

zeros(1,8); ...
- (tb+ts)/12 0 (tb+ts)A2/24

(tb+ts)A2/12 - (tb+ts)*ts/12; ...
ts/12 0 - (tb+ts)*ts/24 tsA2/24 ts/6 O*'

- (tb+ts)*ts/12 tsA2/12];
Kqz = As*alpha*kappa*Le*[zeros(3,2); ...

1/3 1/6; ...
zeros (3,2); ...
1/6 1/3];

Kzq = Kqz1 ;
Kz = As*alpha*kappa*Le*[ ...

1/3 1/6; ...
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1/6 1/3] ;
Mz = As*alpha*kappa*Le/omegaA2 * [ ...

1/3 1/3; ...
1/6 1/3];

Cz = 2*As*alpha*kappa*Le*chi/omega*[ ...
1/3 1/6; ...
1/6 1/3];

% --------------------------------------------------------------------------------------------------------

% Element Matrices -----------------------------------------------
Me = Mwb + Mwc + Mws + Mub + Muc + Mus;
Ke = Kwbb + Kwbs + Kwcb + Kwcs + Kub + Kuc + Kwsb + Kus + Ks; 
% --------------------------------------------------------------------------------------------------------

% Augmented Element Matrices and Control Matrix --------------
Mea = [Me zeros (8,2); zeros(2,8) Mz];
% Has been modified to allow for Rayleigh damping, 
if InternalDamping == 1

Cea = [(a_hat*Me + b_hat*Ke) zeros(8,2); zeros(2,8) Cz] ;
else

Cea = [zeros(8,10); zeros(2,8) Cz];
end
Kea = [Ke -Kgz; -Kzq Kz];
Pea = [Pc; zeros(2,1)];
% --------------------------------------------------------------------------------------------------------
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%FEASMBLl.m p.72

function [kk] = FEASMBL(kk,k,index)
%--------------------------------------------------------------
% Purpose:
% Assembly of element matrices into the system matrix
%

% Note:
% This has not be changed from the original. This is OK
% because the dofs associated with dissipation coordinates
% are not added between elements due to indices.
%
% Synopsis:
% [kk] = feasmbll(kk,k,index)
%
% Variable Description:
% kk - system matrix
% k element matrix
% index - d.o.f. vector associated with an element
%  -----------------------------------------------------------------------------

edof = length(index);
for i = l:edof % changes row in element matrix

ii = index(i); % assigns row in the system matrix
for j = l:edof % changes collumn of element matrix

jj = index(j); % assigns the collumn in the system matrix
kk(ii,jj) = kk(ii,jj) + k(i,j); % adds the element matrix to*' 

the system matrix 
end

end
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%FEASMBL2.m p.73

function [ff] = FEASMBL2(ff,f,index)
%-------------------------------------------------------
% Purpose:
% Assembly of element vector into the system vector
%

% Synopsis:
% [ff]=feasmbl2(ff,f,index)
%
% Variable Description:
% ff - system vector
% f - element vector
% index - d.o.f. vector associated with an element
% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

edof = length(index); 
for i = l:edOf

ii = index(i); 
ff (ii) = ff(ii)+f (i);

end
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% s churmrJAK.m p.74

% This file is the same as schurmr with the exception of matrices 
% [SLBIG] and [SRBIG] included at the end.
% Only the description of the command and the modifications made to 
% schurmr.m are printed out.

function [Gred,info] = schurmrJAK(G,varargin)

%SCHURMR Schur balanced truncation model reduction fori^ 
continuous/discrete 
% & stable/unstable plant.
%
%[GRED,REDINFO] = SCHURMR(G,ORDER,KEY1,VALUE1,KEY2,VALUE2,...) performs
% Schur balanced truncation model reduction on LTI system G such*'
that the
% sigma plot of the error (GRED - G) < 2 * (the sum of the discarded
% states' Hankel singular values). For unstable G the algorithm*'
works
% by first splitting G into a sum of stable and antistable part,
% reduces the stable part, then add the unstable part back for
% the final output G. The unstable part is kept as default.
%
% Inputs:
% G - LTI system to be reduced 
%

% Optional inputs:
% ORDER - an integer array with desired order of reduced model.
% A batch run of [m:n] can be specified for a pack of reduced
% order models to be generated.
%
% KEY |VALUE | MEANING
%   ------------------------------------------------------------------------
% 1MaxError1 |real no. or | Reduce to achieve H-infinity error
% |vector | If present, ’MaxError1 overrides ORDER*'
input.
% ------------------------------------------------------------------------------------------------------------------------
% 'Weights1 |{Wout,Win} | Optional 1x2 cell array of LTI weights*'
Wout
% | cell | (output)and Win (input); default is both
% | | identity. Weights have to be invertable.
% ------------------------------------------------------------------------------------------------------------------------
% 'Display1 |'off' or 'on'| Display HANKELSV plots (default 'off')
%
% Outputs:
% GRED - LTI reduced order system
% REDINFO - a struct of REDINFO.ErrorBound, REDINFO.StabSV,
% REDINFO.UnstabSV, REDINFO.SRBIG, and REDINFO.SLBIG

% R. Y. Chiang & M. G. Safonov 4/15/02
% Copyright 1988-2004 The MathWorks, Inc.
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Type = Typeoriginal;
end

stabexe = length(redval{1,1}) ;
Ebound = zeros(stabexe,1); 
for i = 1:stabexe

if redval{1,1}(i) < 0
warning('desired order(Gred) < order(Gunstable+Gjw), assign*’ 

(Gunstable+Gjw) to Gred.1)
redval{l,l}(i)=0;

end
A = G . a
B = G.b
C = G.c
D = G.d
[Ar,Br,C r ,Dr,aug,hhsv,SLBIG,SRBIG] = schbal(A,B,C,D,Type,redval*’ 

{1 ,1} (i ) ) ;
gr = ss(Ar,Br,Cr,Dr); 
if wtflagi % exists weighting

ggrr = wtval{1,1}'*(gr+Gus)*wtval{1,2}';
[gr,gtemp] = stabproj(ggrr); 
gr = gr + get(gtemp,1d 1);

end
gr = gr+P+Gjw; % add back the unstable part of G 
if Ts, % discrete case

gr = ibilin(gr, 1, 1 S_Tust1 , [Ts, 1-paaz] ) ; 
gr.Ts = TsO;

end
Gred(:,:,i) = gr;
Ebound(i ) = aug(2); 
info.ErrorBound = Ebound;
info.StabSV = [inf*ones(no_jw_pole,1);hhsv];
[rA,cA] = size(A); 
if (prod(size(info.StabSV)) < rA) 

info.UnstabSV = hksv(P);
else

info.UnstabSV = [];
end
info.SRBIG = SRBIG; 
info.SLBIG = SLBIG;

end

% -----------End 0f SCHURMR.M % 10/26/02
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Tip Load Duration and Original Plant Blocks 78
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Observer and Model Order Reduction Blocks 79
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LQR and SMC Blocks 80
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