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ABSTRACT

Asgharian, Laleh, Image Up-Sampling Using the Discrete Wavelet Transform. Master of 

Science (MS), August, 2006, 43 pp., 3 tables, 12 illustrations, 24 references, 14 titles. 

Image up-sampling is an effective technique, useful in today’s digital image processing 

applications and rendering devices. In image up-sampling, an image is enhanced from a 

lower resolution to a higher resolution with the degree of enhancement depending upon 

application requirements. It is known that the traditional interpolation based approaches 

for up-sampling, such as the Bilinear or Bicubic interpolations, blur the resultant images 

along edges and image features. Furthermore, in color imagery, these interpolation-based 

up-sampling methods may have color infringing artifacts in the areas where the images 

contain sharp edges and fine textures. We present an interesting up-sampling algorithm 

based on the Discrete Wavelet Transform (DWT). The proposed method preserves much 

of the sharp edge features in the image, and lessens the amount of color artifacts. 

Effectiveness of the proposed algorithm has been demonstrated based on comparison of 

PSNR and AE*ah quality metrics between the original and reconstructed images.

iii
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CHAPTER I

INTRODUCTION AND RELATED WORKS

The Discrete Wavelet Transform (DWT) [1] has become a versatile tool in modern 

digital image processing applications such as pattern recognition, image enhancement [2], 

image compression [3], image interpolation [4], etc. Image interpolation techniques have 

been developed to transform an image from one resolution to another [4, 5, 6]. When an 

image is interpolated from a higher resolution to a lower resolution, it is traditionally 

called image downscaling or down-sampling. On the other hand, when an image is 

interpolated from a lower resolution to a higher resolution, it is referred as image up- 

scaling or up-sampling.

In this thesis, we propose a novel image interpolation technique using the Discrete 

Wavelet Transform. This method is intended to allow magnification of an image to any 

desired size with enhanced image quality compared to traditional up-sampling methods as 

measured by objective quality metrics and subjective impression.

A. Conceptual Framework o f the Discrete Wavelet Transform

The wavelet transform, introduced in the late 1950s is based on small waves or 

“wavelets” containing both frequency and temporal information, with the energy of the

1
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wavelets concentrated in time. Unlike in Fourier representation of signals in which 

signals are time-invariant and periodic, providing only frequency information, wavelets 

allow both time and frequency analysis of transient, time-variant signals. To analyze the 

information content of images, Mallat proposed the theory of “multi-resolution 

decomposition” of signals in 1989 using wavelets in time-scale space, with a pyramidal 

algorithm based on convolutions with quadrature mirror filters [1].

Multi-resolution decomposition allows us to study the image detail at different 

resolutions, emphasizing different image structures at each resolution, as we typically 

move from coarser to finer resolution. Keep in mind that the coarser image features 

represent the “context” information in the image, and that each resolution level, a 

different set of details become apparent and conspicuous.

Let us first briefly describe a wavelet. Wavelets are functions obtained from a single 

prototype or basis function by dilations (or scaling) and translations (or shifting) in the 

time (or frequency) domain as shown:

. .  1 f t - b \
Va,b(t) = - r V  —  s a  \  a J

where a is the scaling parameter and b is the shifting parameter. The 1-D wavelet 

transform is given by:

00

W(a,b)= f  x(t)ipab(t)dt
—00

where x(t) represents the signal function. The inverse 1-D wavelet transform is given by:

4 00 00 4

x (t) = — J  J  -p W (a ,b )y /ah(t)dadb,
a = —oo b ~ —oo | ^ |

where
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M-oo | |

and y/(co) is the Fourier transform of the mother wavelet y/(t) [3].

A wavelet transform is similar to a Fourier transform in that it involves an integral of 

the product of the signal and the wavelet function. The difference between a continuous 

wavelet transform and a discrete wavelet transform is both in the nature of the signal 

function itself, as well as the dilation and translation parameters which are discrete rather 

than continuous. Since we are interested in discrete signals, from now on our discussion 

entails only discrete rather than continuous wavelet transforms.

After Mallat’s introduction of multi-resolution decomposition of signals, the discrete 

wavelet transform (DWT) became a very popular tool for signal processing applications. 

In this technique, a signal is represented using a collection of coefficients, providing 

information about both the position and frequency of the signal. This method has an 

advantage over the Fourier transform and other methods in that it produces localization in 

both the time and frequency domains. Consequently, the DWT decomposes a signal into 

different subbands such that the lower frequency subbands have coarser time resolution 

and finer frequency resolution than the higher frequency subbands, such that the quality 

of the image depends on the level of resolution. Its versatility and its support of 

progressive image transmission and region of interest coding are some of the reasons for 

its use today in the JPEG2000 image compression standard.

Recall that in multi-resolution analysis [1], the goal is to represent a function x(t) 

using approximations at different levels of resolution. In the pyramidal algorithm, the 

resolution step is chosen to be equal to 2. Then, a wavelet orthomormal basis is used to
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decompose the function using the difference in information between the approximation at 

resolution 2 /+l and that at approximation 2 ' , in other words the detail signal at the 

resolution 2J . We can consider the wavelet coefficients as providing the detail 

information going from a coarser to a finer resolution. At each decomposition level the 

signal can be decomposed into two parts, one representing the coarse approximation of 

the signal at a lower resolution, and the other the detail information, lost in the 

approximation process.

The DWT can be implemented by filtering operations with well-defined filter 

coefficients [7]. In the traditional convolution (filtering) based approach for computation

of the forward DWT, the input signal (x) is filtered separately by a low-pass filter (h ) 

and a high-pass filter (g  ). The two output streams are then sub-sampled by simply 

dropping the alternate output samples in each stream to produce the low-pass ( y L) and 

high-pass ( y H) subband outputs as shown in Fig. 1. The two filters ( h , g )  form the 

analysis filter bank. The original signal can be reconstructed by a synthesis filter bank (h, 

g) starting from y L and y H as shown in Fig. 1. Given a discrete signal x(n ) , the output 

signals y L (n) and y H (n) in Fig. 1 can be computed as follows:

Tz(«) = Z ^ (> > (2 h - 0 ,
(=0

5

yH(n) =  Y j S( JM2n - i )
i = 0

where t L and th are the lengths of the low-pass( h ) and high-pass ( g ) filters 

respectively. During the inverse transform computation, both y L and y H are first up
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sampled by inserting zeros in between each pair of samples and then filtered by the low- 

pass (h) and high-pass (g) filters respectively. Then they are added together to obtain the 

reconstructed signal ( jc' ) as shown in Fig. 1.

Figure 1: Signal analysis and reconstruction in ID DWT.

For multi-resolution wavelet decomposition, the low-pass subband ( y , ) is further 

decomposed in a similar fashion in order to get the second-level of decomposition, and 

the process is repeated. The inverse process follows similar multi-level synthesis filtering 

in order to reconstruct the signal. A two level DWT decomposition and its reconstruction 

have been shown in Fig. 2, as an example. Image signals are two-dimensional signals. As 

a result, we need to apply two-dimensional DWT on image signals for digital image 

processing applications. Since two dimensional wavelet filters are separable functions, 

the two-dimensional DWT can be implemented by first applying the one-dimensional 

DWT row-wise to produce an intermediate result (L and H subbands in each row) and 

then applying the same one-dimensional DWT column-wise on the intermediate result to 

produce the final result (known as wavelet coefficients), as shown in Fig. 3(a). In the first 

level of decomposition, four subbands LL1, LH1, HL1 and HH1 are obtained. Repeating 

the same process to the LL1 subband, it produces LL2, LH2, HL2 and HH2 and so on, as
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shown in Fig. 3(b)-(c).
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Figure 2: Signal analysis and reconstruction in two-level ID DWT.
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row-wise
DWT

column-wise 
DWT 

 ►

LL1 HL1

LH1 HH1

(a) First level of decomposition

LL2 HL2
HL1

LH HH2

LH1 HH1

HL2
HL1

LH2 HH2

LH1 HH1

(b) Second level of decomposition (c) Third level of decomposition

Figure 3: Three levels of decomposition in 2D DWT.

As shown in Fig. 4(b), four subbands LL, HL, LH, and HH  are generated after 

applying one level of DWT in the input image I  (one of the ISO/IEC test images, BIKE, 

provided by the JPEG2000 standard committee). It is interesting to note that the LL 

subband can be used as a 2:1 downscaled version of the original image after properly 

normalizing each sample in the LL subband. The basic idea behind the application of 

DWT for image interpolation to up-sample an image is to modify all the wavelet 

subbands to a higher resolution by a suitable method which we will discuss in the 

following sections and then inverse transform (IDWT) it to obtain the interpolated image 

as explained schematically in Chapter II.A.(Fig. 5).
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(c) (d)

Figure 4: Example of LL, HL, LH, and HH subbands generated from a real image I. (a) 

Original BIKE image and subbands; (b) after level 1, (c) after level 2, (d) after level 3 

decomposition.
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B. Literature Review o f  Image Interpolation

In image interpolation, an image is transformed from one resolution to a different 

resolution. Interpolation techniques can be adaptive or non-adaptive in nature. The 

popularly used simple non-adaptive image interpolation techniques are bilinear 

interpolation, bicubic interpolation, and nearest-neighbor replacement and used in the 

commercial image processing tools such as Adobe® Photoshop® CS2 software [9]. 

Bilinear interpolation can be considered as a weighted average of four neighboring points. 

The intensity of the point of interest is estimated to be bilinear in this neighborhood. 

Bicubic interpolation uses sixteen neighboring points for estimation. It approximates the 

local intensity values using a bicubic polynomial surface. There are several adaptive 

techniques proposed in the literature [10, 11, 12, 13].

The method proposed by Hong, et al. [10] known as “directional interpolation” 

overcomes common problems associated with standard interpolation techniques, such as 

image blurring and blocking artifacts, resulting in more natural looking magnified images 

in applications like the camcorder zoom. They accomplish this by retaining the sharpness 

of edges appearing in the image in different arbitrary directions. Local edge information 

in the image is extracted using DCT coefficients, which are also used to specify one of 

five different edge types. The edge type then helps specify the interpolation method that 

is to be applied to the local region. Then, Cubic B-Spline Transformation is applied, 

followed by a combination of zero order and bilinear interpolations. Finally, five 

different Gaussian low-pass filters are applied to reduce the discontinuities and blocking 

artifacts generated by the interpolation procedure.

Li, et al. [11] use a multi-resolution “edge-directed covariance based adaptation
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method” to statistically model the interpolation to any arbitrary edge orientation so that, 

unlike Hong et al.’s approach, they need not restrict themselves to specific edge 

orientations. However, since this technique is computationally quite expensive, they only 

apply it to “edge pixels” and for other regions of the image, “non-edge pixels”, they apply 

the usual bilinear interpolation method, since edge pixels only cover a small fraction (5- 

15%) of the image. They then test their algorithm to enhance the resolution of a grayscale 

image and to reconstruct a full-resolution color image from CCD (charge-coupled device) 

samples and demonstrate enhanced quality over linear interpolation in both applications 

using subjective perceptual measures. First, the image is modeled as a locally stationary 

Gaussian process. Then, the high resolution covariance is estimated from its low- 

resolution version using “geometric duality”, that is, the relation between pixels at 

different resolutions that lie along the same orientation without use of explicit 

information about edge orientation. The low-resolution covariance is estimated from the 

four nearest diagonal neighbors. Finally, the high-resolution covariance estimate is used 

to obtain the minimum mean square error linear interpolation coefficients using Wiener 

filtering theory. The major disadvantage of this method, which is the computational 

complexity, can be reduced by applying it only to edge pixels, which make up only a 

small fraction of the whole image.

Hwang, et al. ’s approach [12] uses local gradient information to adapt the bilinear and 

bicubic interpolation algorithms to yield better perceptual image quality and improved 

image metrics like the PSNR value. In addition they are able to overcome problems such 

as the smoothing of edges that conventional interpolation algorithms have not yet 

resolved. They then test their two adaptive “inverse gradient” interpolation algorithms on
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a set of six test images and demonstrate enhanced preservation of structural features and 

edge regions. In this method, the weights of the input image pixels, which in 

conventional interpolation algorithms are functions of distance only, are modified by 

dividing by the normalized local gradients to yield a better interpolation estimate when 

the gradient changes abruptly as in edge regions and across image features.

Carrato, et al. [13] introduce a rational interpolator, providing a nonlinear 

interpolation procedure that produces sharp synthetic and natural images with minimum 

blurring and undesirable artifacts. First, each pixel to be interpolated is divided into 

quarters. Then a subset of a 3x3 pixel mask is used to make corrections to the value of 

the pixel where the edges may be either sharp or smooth. The correction is made by 

taking appropriate weights of all the possible difference pixels (pairs) and averages of 

difference pixels using some optimization procedure. To ensure that both sharp and 

smooth edges are accurately interpolated, the operator should be height independent, 

reducing the number of possible pattern combinations to consider. With the designation 

of the interpolator output for all the patterns, the set of parameters are obtained using an 

optimization process to minimize the mean square error of the interpolator output with 

respect to the desired pixel value. The authors find that when this procedure is applied to 

both synthetic and natural images, superior images are produced compared to both the 

bilinear and bicubic interpolations, yielding sharp, artifact-free images.

The adaptive techniques reviewed in the papers mentioned above usually take into 

consideration some image content related features such as edges, local gradients, and the 

like. These techniques are usually computationally more expensive compared to the 

above non-adaptive techniques. In this thesis, we present a novel DWT based image
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interpolation algorithm which is adaptive in nature by virtue of the characteristics of the 

DWT which divides the image into low and high frequency subbands. The directional 

edge information (vertical, horizontal, and diagonal) in the image is embedded into the 

high frequency subbands after wavelet decomposition. The choice of wavelet filters can 

be determined by a user depending upon the characteristics of the image. However, the 

underlying operations in the algorithm are not image content dependent and hence non- 

adaptive in nature. The experimental results are found to be superior compared to the 

state-of-the-art in the literature.

The remainder of this thesis is organized as follows. Chapter II presents the proposed 

algorithm and its implementation including a discussion of the scaling factor used in the 

wavelet filters. Our experimental results are presented in Chapter III. Chapter IV 

presents the conclusion of our work.
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CHAPTER II

DWT BASED IMAGE UP-SAMPLING

A. Proposed Methodology 

We explain the proposed up-sampling technique with an example, as shown in Fig. 5. 

We would like to up-sample an input image (I) of resolution m x n  (say 4 x 4  as in Fig. 

5) to an image ( / ’) of resolution 2m x2n . In the first step, we transform the image using 

the forward discrete wavelet transform (FDWT) in order to decompose it into four 

subbands -  one low frequency subband (LL) and three high frequency subbands (HL, LH  

and HH), resulting in the wavelet coefficient image Idwt of size m x n .  These four 

subbands contain different information about the image. The HL and LH  subbands 

contain edge information in different directions, which will be used for the purpose of 

enhancement in the next step. The HH  subband can be considered as high frequency noise 

present in the image and can be abandoned to reduce the computational time.

The second step is to form a new wavelet coefficient image I ’dwt of size 2m x2n. We 

call it a virtual DWT image, whose LL subband is the original input image I  with each 

pixel multiplied by a scaling factor s. This scaling factor is determined by the DC gain of 

the low pass filter coefficients used in the DWT, as will be explained in Chapter II.C. 

Hence, the dimension of the new LL subband is the same as the resolution m xn  of the 

original image I. The HH subband of the virtual DWT image ( I ’dwt) is considered to

13
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contain all zeros and hence it is nothing but a matrix of zeros with dimension m x n .  The 

new HL and LH  subbands of the virtual DWT image are generated from the original HL 

and LH  subbands (computed in the first step) by inserting zeros in alternate rows and 

columns as shown in Fig. 5(b).

In the last step, we inverse transform (IDWT) this virtual DWT image (I ’dwt) that we 

formed in the second step as explained above. The resulting image after IDWT is the 

desired up-sampled image / ’ of resolution 2m x2n.

To up-sample color images, the proposed technique can be applied independently in 

each color plane.
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Figure 5: DWT based image up-sampling.
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B. Implementations

The algorithm can be implemented in different ways. Since the 2-D discrete wavelet 

transform is computed by applying the 1-D low-pass and high-pass filters in succession to 

the rows and the columns of the input image, and the filtering operation is simply a 

multiply-and-accumulate operation, the proposed algorithm can be easily implemented in 

any DWT based hardware architecture or by using a DSP (digital signal processor). The 

HL subband of the /W rc a n  be obtained by applying the 1-D high-pass filter row-wise, 

followed by the 1-D low-pass filter column wise on the input image I, and then setting the 

alternate row and column coefficients to zeros. The LH  subband of the I ’dwt can be 

obtained in a similar fashion by switching the order of applying the high- and low-pass 

filters.

Alternatively, for software implementation, the proposed up-sampling method can be 

summarized in the following steps:

1. Initialize a matrix I ’dwt of dimensions 2m x 2n with all its elements as zeros.

2. Set the original image to a matrix I  of dimension mx n .

3. Multiply /  by the scale factor s to produce a matrix III■ Replace the top-left 

quadrant of I ’dwt by III• The scale factor s is equal to the square of the DC gain of 

the selected analysis low-pass filter.

4. Apply the high-pass wavelet filter (without down-sampling) to each row of I  

followed by the low-pass filter to each column. Set the alternate rows and 

columns of the resulting matrix to zeros to produce a matrix Ihl• Replace the top- 

right quadrant of the matrix I ’dwt by this I h l -

5. Apply the low-pass wavelet filter (without down-sampling) to each row of I
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followed by the high-pass filter to each column. Set the alternate rows and 

columns of the resulting matrix to zeros to produce a matrix ILh. Replace the 

bottom-left quadrant of matrix I ’dwt by this Il h -

6 . Apply the inverse DWT on matrix I ’dwt to produce I ’.

C. Selection o f Scaling Factor 

Here we discuss the scaling factors associated with the wavelet coefficients so that 

users can adaptively choose the wavelet filters suitable for particular applications and 

image characteristics.

The scaling factor s is set equal to the square of the DC gain of the selected analysis 

low-pass filter. For a given n-taps analysis low-pass filter, h(n),  the expression

h (n) denotes the DC gain; while (-1)” g(n) denotes the Nyquist gain of a n-tap

analysis high-pass filter, g(n).  Depending upon the implementation of the discrete 

wavelet transform, one may choose a different DC gain for the analysis low-pass filter 

and Nyquist gain for the analysis high-pass filter, or even choose different filters. For 

more detailed discussion, the readers are referred to the course notes by M. Rabbani and

D. Santa-Cruz [14]. In this paper, we first choose the 9/7 bi-orthogonal Spline filters due 

to the fact that it is commonly used in the literature, and it is one of two default filters 

used in the JPEG2000 image compression standard [3, 15]. It is known to produce better 

perceptual quality. We also normalized the 9/7 filters with both the DC and Nyquist gains

equal to V2. This will maintain the same dynamic range for all four subbands. 

Consequently, the scaling factor, s, used in the proposed algorithm should be 2, since that
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is the square of the DC gain.

The same theory applies to all other wavelet filters and users can use any other wavelet 

filter for the proposed image up-sampling technique.
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CHAPTER III

EXPERIMENTAL RESULTS

In order to demonstrate the proposed merits of the up-sampling method, we have used 

a large set of color images with different image sizes, shown in Fig. 6  for testing 

purposes. The test set here includes two large-sized images (Balloon and Flag), four 

natural mid-sized images from Kodak Photo CD [16] (Hat, Parrots, Sails and 

Lighthouse), and two small-sized images (Star and Zebra) with a lot of edge content. The 

test images are first down-sampled by a factor of two in both the vertical and horizontal 

directions. A simple sub-sampling method is used to down-sample these test images. 

Hence, we intentionally dropped three fourths of the data from the original image. The 

resultant down-sampled images were then used as inputs for the proposed algorithm 

which up-sampled them to their original size. These up-sampled images are then 

compared with the original images. We also up-sampled the same image using the 

bilinear and bicubic interpolation methods, to use for comparison with our results.

A. Image Quality Metrics 

Peak signal-to-noise ratio (PSNR) and CIELAB AE*ab [19], are two commonly used

“quality metrics” or measures used to objectively evaluate the quality of our up-sampled 

images,

19
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(a) Balloon 1280x1024 (b) Flag 1024x1280

(c) Hats 768x512

(e) Sails 512x768

(g) Star 640x480

(d) Parrots 768x512

(f) Lighthouse 512x768

(h) Zebra 640x480

Figure 6 : Original test Images used in the experiment.
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or any processed image in general. The peak signal-to-noise ratio depends on another 

quantity known as the root-mean-squared-error (RMSE). For an image /  of size m x n ,  

with processed or reconstructed image denoted by / ’, the RMSE is given by

1 “  "

RMSE = ------£  £  [I(i ,  j )  - 1' (i, j ) f  ,
V mn i= 1 7=1

where I(i, j ) and I ’(i, j)  represent the gray level intensity or color value of pixel (i, j)  in a 

given color plane of the original and processed images respectively.

For an 8 bit image, with a maximum pixel value of 255, in decibel (dB) the peak 

signal-to-noise ratio is given by

2552
PSNR = 10 log 10 RMSE

PSNR values of 40 or greater indicate that the images being compared are perceptually 

indistinguishable. To obtain the PSNR for a color plane of a processed image, we simply 

apply the formula above for the color value of a given image pixel in the color plane 

instead of the gray-level value. We want to emphasize that a higher PSNR value does not 

always imply a higher image quality. It turns out that objective quality metrics do not 

always correlate closely with the subjective quality of the image. However, they provide a 

general idea about the global image quality.

The CIELAB color scale was developed in 1976 by the Commission Internationale de 

l’Eclairage (luminosity) or CIE to provide a standard uniform color scale. The CIELAB 

metric is a “perceptual color fidelity metric” and is a measure of how close to the original 

color is the reproduction of the actual color according to the human eye. Color perception 

is dependent on spatial frequency and viewing conditions. CIELAB is a three

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



22

dimensional color space used to represent the perception of color stimuli. It is uniform 

because equal distances on this scale correspond to approximately equal difference in 

color perception. The three coordinates in this space are designated as L*, a*, and b*. The 

L* axis is also known as lightness (related to luminance value) and ranges from 0 (black) 

to 100 (white). The difference between green (-a*) and red (+a*) is denoted as a* and b* 

represents the difference between yellow (+b*) and blue (-b*). These two parameters are 

related to the chromaticity and hue values.

The coordinates in the CIELAB space can be obtained from transformation of 

coordinates in the CIEXYZ or “tristimulus scale”, also an absolute color space. The 

nonlinear transformations correspond to the nonlinear (log) response of the human eye to 

color. The transformation formula also involves normalization factors for white light, 

used as the reference. The “XYZ” coordinates on the tristimulus scale are related to the 

spectral power sensitivities of the three types of cones found in the human retina.

Any color in the CIELAB space can be represented as a point on its associated graph. 

AE*, the Euclidean distance between two points in this color space is given by

AE* -V aZ *1  + Aa*2 + Ab*2 and represents the magnitude of the difference between two 

color stimuli in appropriate perceptual units [20]. It is also referred to as the “total color 

difference.” If a* and b* are zero, then the L* axis represents an achromatic range of gray 

levels. The delta represents the difference in scale of the sample from the standard and is 

used for quality control purposes.

Two points that coincide on the color plane represent the same color perception, and 

the greater the distance between two color points in the space, the greater the sensed color
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difference. The CIELAB AEab measures the Euclidean distance between the original and 

processed image in CIELAB color space. The expression for CIELAB AEab* is given by

i m n

A£o; = — Ill/O ', j ) »
m n  ;=1 7=1

where I(ij)Lab and r(i,j)iab represent the CIELAB color values of pixel (i,j) in the original 

and processed images, and ||»|| denotes L2-Norm. As discussed in [21], a value of 2.3 on

this scale distinguishes the threshold for sensing a difference in color.

To convert an image from RGB color space to CIELAB color space, we first convert 

from the RGB scale to the CIEXYZ or tristimulus scale and then from CIEXYZ to 

CIELAB. The conversion matrices and formulas are provided as follows:

RGB O  CIE XYZ (ITU D65)

x~ 0 .431 0.342 0.178 ~R
Y 0 .2 2 2 0.707 0.071 X G
Z 0 .0 2 0 0.130 0.939 B

R '  3.063 -1.393 -0 .476 ' ' X
G -0.969 1.876 0.042 X Y
B 0.068 -0.229 1.069 Z

D65 refers to the class of illuminant that resembles the relative spectral energy 

distribution of northern hemisphere daylight. ITU D65 is the standard most monitors 

conform to.

CIE XYZ O  CIELAB
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L *  =  U6xf(y/Yn)-16
a* = 500 x ( f ( x / x n ) - f ( y ynl)

b * = 200 x ( / (% „ )- / (% „ ) )

JV /3 i f  q>  0.008856
/(<?) i 7  7 8 7  x q + 16/j^ ̂  otherwise

Xn = 0.950449, Di = 1, Zn = 1.0889166

Here, the RGB is normalized within [0 -  1], and (Xn, Yn, Zn) is the white point which

means Y=1 and R=G-B. For more information on converting an image from RGB color

space to CIELAB color space, the reader may refer to [19] and [22],

B. Results Using Different DWTImplementations and Filters

In order to verify the proposed DWT based up-sampling method, we implemented 

two different discrete wavelet transforms -  traditional filtering/convolution based 

implementation with Daubechies 9/7 bi-orthogonal Spline filters [7] and lifting based 

implementation [17, 18] with 5/3 integer filters. For the filtering based implementation, 

we also normalized the 9/7 filters with both DC and Nyquist gains equal to V2 . 

Consequently, the scaling factor, s, used in the proposed algorithm should be 2. As for the 

lifting based implementation, the 5/3 filter has a DC gain of 1, so the scaling factor is set 

equal to 1 too.

Fig. 7 and Fig. 8 show the up-sampling images using the proposed DWT based method 

with the two different DWT implementations. As we can see in Fig. 9, the DWT based
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up-sampled Zebra images, Fig. 9 (d - e), have much better visual quality with sharper 

edges as compared to the bilinear and bicubic interpolation results. We observed similar 

behavior with many other challenging images, such as the Star image shown in Fig. 10, as 

well.
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(a) Balloon 1280x1024 (b) Flag 1024x1280

□

(c) Hats 768x512

(e) Sails 512x768

(g) Star 640x480

(d) Parrots 768x512

(f) Lighthouse 512x768

(h) Zebra 640x480

Figure 7: Up-sampling results with proposed DWT based approach using 9/7 filters.
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(a) Balloon 1280x1024 (b) Flag 1024x1280

(c) Hats 768x512

(e) Sails 512x768

(g) Star 640x480

(d) Parrots 768x512

(f) Lighthouse 512x768

(h) Zebra 640x480

Figure 8 : Up-sampling results with proposed DWT based approach using 5/3 filters.
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(a) Original image

(b) Bilinear up-sampling

(d) DWT-9/7 up-sampling

fr-ya
VS, J-

(c) Bicubic up-sampling

Vv J /
4

(e) DWT-5/3 up-sampling

Figure 9: Experimental results for ZEBRA image.
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(a) Original image

(b) Bilinear up-sampling (c) Bicubic up-sampling

(d) DWT-9/7 up-sampling (e) DWT-5/3 up-sampling

Figure 10: Experimental results for STAR image.
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Table I shows the PSNR and AE*ab comparisons between the proposed DWT based 

up-sampling (9/7 and 5/3), bilinear, and bicubic interpolation techniques. It is evident 

from Table I that the proposed method outperforms the bilinear and bicubic interpolations 

in all cases. The four nature images from Kodak Photo CD (Hat, Parrots, Sails and 

Lighthouse) have more compatible results between the three different up-sampling 

methods due to the fact that there is less sharp edge content in those images.
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Table I: PSNR AND AE*ab COMPARISONS

PSNR (dB)
AAabR G B

Balloon

BL 30.14 30.22 33.14 2.67
BC 30.09 30.29 33.05 2.70
DWT-9/7 32.07 33.02 34.53 2.27
DWT-5/3 32.93 33.27 34.92 2.03

Flag

BL 26.95 26.68 26.70 2.27
BC 26.83 26.56 26.59 2.33
DWT-9/7 28.11 27.88 28.04 2.07
DWT-5/3 28.23 28.00 28.15 1.86

Hats

BL 30.05 30.04 30.38 1.56
BC 29.91 29.86 30.06 1.65
DWT-9/7 30.07 29.97 29.89 1.62
DWT-5/3 30.25 30.31 30.42 1.44

Parrots

BL 29.96 29.95 30.83 1.51
BC 29.91 29.92 30.74 1.58
DWT-9/7 30.63 30.60 31.68 1.42
DWT-5/3 30.63 30.61 31.74 1.24

Sails

BL 28.26 28.09 28.52 1.59
BC 28.10 27.98 28.34 1.66
DWT-9/7 28.87 28.80 28.93 1.55
DWT-5/3 28.87 28.65 28.98 1.41

Lighthouse

BL 25.26 25.30 25.67 2.43
BC 24.99 24.98 25.31 2.56
DWT-9/7 25.38 25.25 25.48 2.52
DWT-5/3 25.63 25.55 25.76 2.18

Star

BL 18.15 17.67 18.23 4.68
BC 18.19 17.72 18.28 4.72
DWT-9/7 20.27 19.98 20.42 4.17
DWT-5/3 19.79 19.40 19.92 3.81

Zebra

BL 22.87 22.89 22.92 3.26
BC 22.60 22.63 22.63 3.61
DWT-9/7 24.15 24.17 24.06 3.38
DWT-5/3 24.09 24.12 24.19 2.86
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C. Results for Image Fidelity

The homogeneity of an image is a measure of its uniformity and is related to the 

local information content around a given region of the image. It is defined in [23] as 

being composed of two quantities: standard deviation and discontinuity of the

intensities. Standard deviation describes the contrast within a local region. 

Discontinuity is obtained by applying edge detectors to a given region and is a measure 

of its abrupt change in gray level. For a given pixel at image location (i ,j), its standard 

deviation is denoted as v(i ,j) and its discontinuity is denoted as e(i ,j). These values are 

normalized for computational consistency, and the normalized standard deviation and 

discontinuity values for a given image location are denoted as V(i ,j) and E(i, j)  

respectively. The homogeneity is thus given by:

H(i, j )  = \ ~ V  (/, j )  x E(i, j )

The homogeneity value for a given image location ranges from 0 to 1, and the larger the

homogeneity value at a given point, the more uniform the local region around that

pixel.

Figure 11: (a) Homogeneity image of ZEBRA green channel, (b) Blended mask image of 
RGB channels.
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For the purpose of measuring the image fidelity, we generated a binary mask based on 

the homogeneity of the image. A threshold is applied to the homogeneity image, and a 

binary mask is generated to separate the “edge” and “smooth” regions of the image. To 

perform the PSNR comparisons we used a different mask for each color channel, but for 

the AE*ab comparison, we blended the masks used for the three colors, and used a single 

“blended” mask in our study. As an example, we provided the homogeneity image 

corresponding to one of our test images -  the Zebra above. Fig. 11 (a) shows the 

homogeneity image corresponding to the green channel of the ZEBRA image, and Fig. 11

(b) shows the blended mask image of the RGB channels. We then used the mask to 

compute two distinct PSNR and AE*ab values: one comparing the “edge” region of the up-

sampled image to the original image, and the other comparing the “smooth” region of the 

up-sampled image to the original image respectively. This was done since sometimes the 

overall PSNR and AE*ab values of the entire image do not give sufficient information

about different amounts and types of artifacts found around image features. A similar 

approach using the edge map instead of the homogeneity mask has been reported in [24].
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Table II: IMAGE FIDELITY COMPARISON RESULTS

PSNR(dB)
R G B

Smooth Edge Smooth Edge Smooth Edge Smooth Edge

Balloon

BL 38.35 20.37 40.23 19.86 39.03 23.40 1.79 9.76
BC 38.14 20.33 40.13 19.94 38.98 23.28 1.80 9.94
DWT 9/7 37.94 22.82 39.42 23.27 39.28 25.20 1.71 6.75
DWT 5/3 38.72 23.70 40.10 23.41 39.57 25.64 1.47 6.50

Flag

BL 31.74 21.35 31.58 20.97 31.91 20.90 1.50 4.95
BC 31.82 21.16 31.67 20.78 32.03 20.72 1.54 5.11
DWT 9/7 31.49 23.15 31.33 22.82 31.69 22.88 1.53 3.98
DWT 5/3 32.22 22.96 32.07 22.63 32.41 22.70 1.31 3.77

Hats

BL 31.91 22.84 31.85 22.71 32.08 24.20 1.21 4.46
BC 31.71 22.80 31.60 22.64 31.73 23.99 1.27 4.69
DWT 9/7 31.34 23.96 31.19 23.80 31.20 24.40 1.31 4.11
DWT 5/3 31.79 23.57 31.87 23.43 32.18 24.12 1.13 3.89

Sails

BL 31.30 20.12 31.14 19.78 31.19 20.31 1.18 5.56
BC 31.16 19.95 31.06 19.63 31.05 20.09 1.23 5.88
DWT 9/7 31.01 21.66 30.93 21.43 30.94 21.51 1.22 4.74
DWT 5/3 31.24 21.40 31.01 21.01 31.15 21.35 1.09 4.49

Light
house

BL 29.85 18.23 29.75 18.11 30.07 18.55 1.77 6.26
BC 29.49 17.99 29.32 17.85 29.56 18.27 1.89 6.48
DWT 9/7 29.10 18.78 28.80 18.55 28.99 18.84 1.93 5.92
DWT 5/3 29.83 18.76 29.60 18.56 29.83 18.81 1.65 5.28

Parrots

BL 32.18 20.78 32.41 20.25 34.41 20.21 1.26 4.83
BC 32.13 20.74 32.39 20.21 34.29 20.15 1.32 5.00
DWT 9/7 32.18 22.54 32.44 21.75 34.36 21.84 1.23 3.85
DWT 5/3 32.33 22.25 32.59 21.55 34.72 21.61 1.07 3.53

Star

BL 27.06 14.83 26.62 13.93 26.91 14.53 0.82 10.42
BC 27.32 14.40 26.87 13.96 27.17 14.57 1.00 10.23
DWT 9/7 26.41 16.85 26.19 16.58 26.32 17.09 1.34 8.36
DWT 5/3 27.39 16.15 27.05 15.79 27.30 16.36 0.91 8.12

Zebra

BL 29.10 15.51 29.05 15.39 29.20 15.40 1.80 11.37
BC 29.03 15.18 29.03 15.97 29.14 15.04 2.10 12.00
DWT 9/7 29.29 17.11 29.33 16.98 29.10 16.91 2.19 9.96
DWT 5/3 29.92 16.84 29.90 16.73 29.83 16.84 1.71 9.21

Table II shows the image fidelity comparison results. We obtained comparable or 

slightly better numbers in the smooth region of all test images, and considerably better 

numbers (up to 3 dB in PSNR and less than 3 units in AE*ab) for the edge region of the 

images when we compared DWT based up-sampling with the bilinear and bicubic
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interpolation methods as expected. As before, the improvement in values in more 

pronounced in the images with more edge content and features. Also, we notice that 

our DWT 5/3 based up-sampling yields better results than the DWT 9/7 based up- 

sampling.

D. Results for Recursive Up-sampling 

The key disadvantage of the proposed DWT based up-sampling method is that it only 

can up-sample the image by a factor of 2  in both horizontal and vertical directions. 

Compare this to the traditional bilinear or bicubic interpolation methods, which can up

sample to any size as required. In order to up-sample an image by a factor of 4 in both 

horizontal vertical directions, the proposed method needs to recursively apply the up- 

sampling method, i.e., it needs to up-sample the image by a factor of 2  in both horizontal 

and vertical directions twice. To evaluate the performance of recursive up-sampling, we 

further down sampled the two large-sized test images (Balloon and Flag) to one sixteenth 

of their original size. The resultant down-sampled images were then up-sampled to their 

original size using recursive up-sampling with DWT, bilinear, and bicubic interpolations 

in two steps, as compared with directly up-sampling them using bilinear and bicubic 

interpolations in one step. Fig. 12 shows the resultant up-sampled images using the 

proposed DWT-9/7 based method, and PSNR and AE*ab measures for comparison. As we 

can see in Fig. 12, the proposed DWT based up-sampled images still outperform the 

bilinear/bicubic based up-sampled images in term of both PSNR and AE*ab measures.
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DWT<(25.91, 26.36, 28.75), 4.51 >BL<(24.50, 24.38, 28.49), 4.98> 
BC<(23.94, 23.99, 28.05), 5.32>

DWT u p-sam pled  B alloon  
(1280x1024)

Balloon
(320x256

dwt<(26.66 26 98, 29.48) 3 98> DWT up-sampled Balloon
(640x512)

Figure 12. Experimental results for recursive up-sampling.

E. Results for Combination o f Bicubic and DWT

We also tried to get around another limitation of our DWT based up-sampling, 

namely, that you can only multiply the image size by a power-of-two number in the 

horizontal and vertical directions. It turns out that we can actually expand our image to 

any desired size to yield any multiple of the image size in each dimension. For example, 

to triple our image size, we first used DWT up-sampling to double the size of the original 

image and then used bicubic up-sampling to multiply the resultant image by a factor of 

1.5, with the end result of multiplying the image size by a factor of 3 in both horizontal 

and vertical directions. Basically, we like to up-sample the image, as far as possible,
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using the DWT based method. Then, we up-sample the image to the desired size using 

the bilinear or bicubic interpolation. In terms of image quality metrics, the performance 

was more or less on par with up-sampling the image using the bilinear or bicubic 

interpolation. The DWT-based up-sampling PSNR numbers resulting from multiplying 

the image by a factor of 3 were in the same range as the ones obtained using the bilinear 

and bicubic up-sampling methods for multiplication by a factor of 3. The PSNR results of 

two test images are summarized in the Table III.

Table III: PSNR COMPARISONS FOR IMAGE MULTIPLIED BY A FACTOR OF 

THREE

PSNR(dB)

R G B

Balloon

BL 29.60 29.81 32.43
BC 30.43 30.74 32.94

DWT 9/7 
+ BC 29.73 29.90 32.59

Flag

BL 25.64 25.38 25.50
BC 26.26 26.03 26.18

DWT 9/7 
+ BC 25.75 25.49 25.55
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CHAPTER IV

CONCLUSION

In this thesis, we proposed an interesting image interpolation algorithm for up-scaling 

the resolution in an image based on the Discrete Wavelet Transform. The proposed 

method can be adapted for use with any wavelet filter despite their different 

implementation techniques. It can be easily implemented in any DWT based hardware 

architecture using a DSP (Digital Signal Processor). We have tested the algorithm with a 

large number of images of different types and sizes. We obtained better results with the 

images that have greater edge content and richer detail.

The proposed algorithm is suitable for up-sampling the image by a factor of 2, a 

power of 2 , i.e. recursive multiplication by a factor of 2 , or any odd or even multiple of 

the image dimensions without a degradation of quality. In fact the image quality as 

measured by the analytical metrics, as well as overall subjective quality, is higher 

compared to the standard image up-sampling interpolation techniques, like the bilinear 

and bicubic methods in the case of multiplication of the image dimensions, by any power 

of 2. The image quality is also much improved in the edge regions obtained from the 

homogeneity or uniformity measure of the image, which contains most of the image edge 

and feature information.

In the case of multiplication of the image dimensions by an odd factor, the quality is

38
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on par with the standard techniques. The algorithm is suitable for interpolation of both 

color and gray level images. The experimental results establish that the proposed 

algorithm yields much better visual quality as compared to the current state-of-the-art in 

the literature.
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