
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations - UTB/UTPA

5-2013

VizLab: The Design and Implementation of An Immersive Virtual VizLab: The Design and Implementation of An Immersive Virtual

Environment System Using Game Engine Technology and Open Environment System Using Game Engine Technology and Open

Source Software Source Software

Moises D. Carrillo
University of Texas-Pan American

Follow this and additional works at: https://scholarworks.utrgv.edu/leg_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Carrillo, Moises D., "VizLab: The Design and Implementation of An Immersive Virtual Environment System
Using Game Engine Technology and Open Source Software" (2013). Theses and Dissertations - UTB/
UTPA. 726.
https://scholarworks.utrgv.edu/leg_etd/726

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations - UTB/UTPA by an authorized administrator of ScholarWorks @ UTRGV. For
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/leg_etd
https://scholarworks.utrgv.edu/leg_etd?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F726&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F726&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/leg_etd/726?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F726&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

VIZLAB: THE DESIGN AND IMPLEMENTATION OF AN IMMERSIVE VIRTUAL

ENVIRONMENT SYSTEM USING GAME ENGINE TECHNOLOGY AND OPEN SOURCE

SOFTWARE

A Thesis

by

MOISES D. CARRILLO

Submitted to the Graduate School of the
University of Texas-Pan American

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2013

Major Subject: Computer Science

	

VIZLAB: THE DESIGN AND IMPLEMENTATION OF AN IMMERSIVE VIRTUAL

ENVIRONMENT SYSTEM USING GAME ENGINE TECHNOLOGY AND OPEN SOURCE

SOFTWARE

A Thesis
by

MOISES D. CARRILLO

COMMITTEE MEMBERS

Dr. Richard H. Fowler
Chair of Committee

Dr. Zhixiang Chen
Committee Member

Dr. Wendy Lawrence-Fowler
Committee Member

Dr. Emmett Tomai
Committee Member

May 2013

	

Copyright 2013 Moises D. Carrillo

All Rights Reserved

	

	

iii
	

ABSTRACT

Carrillo, Moises D., VizLab: The Design and Implementation of an Immersive Virtual

Environment System using Game Engine Technology and Open Source Software. Master of

Science (MS), May, 2013 98pp., 30 figures, references, 44 titles.

 Virtual Reality (VR) is a term used to describe computer-simulated environments that can

immerse users in a real or unreal world. Immersive systems are an essential component when

experiencing virtual environments. Developing VR applications is time-consuming, and

developers use many resources in creating VR applications. The separate components require

integration, and the challenges in using public domain open source software present complex

software development. The VizLab Virtual Reality System was created to meet these challenges

and provide an integrated suite of tools for VR system development.

 VizLab supports the development of VR applications by using game engine and CAVE

system technology. The system consists of software modules that provide rendering, texturing,

collision, physics, window/viewport management, cluster synchronization, input management,

multi-processing, stereoscopic 3D, and networking. VizLab combines the main functional

aspects of a game engine and CAVE system for an improved approach to developing VR

applications, virtual environments, and immersive environments.

	

	

iv	
	

ACKNOWLEDGMENTS

I would like to thank my parents, Maria E. Carrillo and Juan M. Carrillo, for all their

support throughout my undergraduate and graduate years. They inspired me throughout my life

and helped me accomplish my goals.

I would like to express my gratitude to my committee chair, Dr. Richard H. Fowler, for

supporting me throughout my graduate years. His never-ending support and guidance with

research and development in the visualization lab made this thesis possible.

I would like to thank my peers that helped and supported me throughout my career at The

University of Texas Pan-American. I would like to thank my girlfriend, Karla Lopez Bray, for

her support and advice when reading my thesis. I thank David Chavez for aiding in appendices

validation processes. I thank Raymundo Rivera for assisting with the integration of Bullet

Physics into VizLab. Finally, I would like to thank the Department of Defense, Army Research

Office, W911NF-11-1-0126 for funding this research.

	

	

 v

TABLE OF CONTENTS

Page	

ABSTRACT... iii

ACKNOWLEDGMENTS ... iv

TABLE OF CONTENTS………………………………………………………………………….v

LIST OF FIGURES ... viii

CHAPTER I. INTRODUCTION... 1

Motivation... 2

Goals ... 3

Organization of the Thesis .. 3

CHAPTER II. BACKGROUND ... 5

Hardware... 6

Display Hardware ... 6

Tracking Hardware ... 7

CAVE Systems ... 8

CAVELib .. 10

VRJuggler ... 10

CaveUT... 10

 vi

Game Engines ... 11

Textures, Lighting and Rendering .. 11

Physics and Effects ... 14

Input, Output and Networking .. 15

Game Editor .. 16

Game Engines ... 17

Modern Open Source Tools .. 18

OpenSceneGraph and OpenSG... 19

Bullet Physics Engine ... 20

OsgBullet .. 20

OsgWorks ... 21

OsgEdit ... 21

Virtual Reality Peripheral Network (VRPN).. 22

CHAPTER III. VIZLAB VR SYSTEM .. 23

VR Juggler .. 24

Modules... 24

Installation and Configuration .. 26

Applications .. 34

Rendering and Physics.. 37

GUI Capabilities ... 37

Scene Graph Integration ... 37

Physics and Collision Integration ... 39

Composing Scenes .. 40

 vii

Device Management ... 41

Device Integration... 41

VRPN Integration ... 43

Motion and Gestures ... 44

Microsoft Kinect ... 44

Nintendo WiiMote .. 45

CHAPTER IV. CONCLUSIONS .. 47

Conclusion .. 47

Future Work .. 48

REFERENCES ... 51

APPENDIX A... 55

APPENDIX B ... 59

APPENDIX C ... 76

APPENDIX D... 93

BIOGRAPHICAL SKETCH .. 98

	

	

	 viii	

LIST OF FIGURES

Page

FIGURE 1: CAVE SYSTEM……………………………………………………………………..9

FIGURE 2: LEVEL OF DETAIL………………………………………………………………..12

FIGURE 3: STATIC LIGHITNG………………………………………………………………..13

FIGURE 4: EFFECTS ENGINE…..…………………………………………………………….14

FIGURE 5: UDK GAME EDITOR……………………………………………………………...17

FIGURE 6: VIZLAB SOFTWARE ARCHITECTURE………………………………………...24

FIGURE 7: VRJUGGLER MODULES…………………………………………………………24

FIGURE 8. VRJUGGLER DEPENDENCIES…………………………………………………..28

FIGURE 9: WINDOWS SYSTEM PROPERTIES……………………………………………...29

FIGURE 10: ENVIRONMENT VARIABLES………………………………………………….29

FIGURE 11: CMAKE GUI……………………………………………………………………...29

FIGURE 12: VIZLAB WINDOWS INSTALLATION…………………………………………30

FIGURE 13: VIZLAB WINDOWS INSTALLATION PROCESS…………………………….30

FIGURE 14: UBUNTU PACKAGES…………………………………………………………..31

FIGURE 15. VIZLAB SYSTEM LAYOUT……………………………………………………33

FIGURE 16: VRJCONFIG……………………………………………………………………...34

FIGURE 17: VRJCONFIG PANEL…………………………………………………………….34

FIGURE 18: OPENGL APPLICATION………………………………………………………..35

FIGURE 19: OPENSCENEGRAPH APPLICATION………………………………………….36

	

	 ix	

FIGURE 20: OPENSCENEGRAPH AND BULLET APPLICATION………………………...36

FIGURE 21: OPENSCENEGRAPH APPLICATION RUNNING IN VRJUGGLER…………38

FIGURE 22: OPENSCENEGRAPH WITH BULLET PHYSICS ENGINE...….....……………40

FIGURE 23: OSGEDIT SAMPLE SCENE….………….……..….….………………………....41

FIGURE 24: VRJCONFIG DEVICE LAYOUT.…………...….………………………………..43

FIGURE 25: VRJCONFIG DEVICE PROXIES.…….…..….…………………………………..43

FIGURE 26: VRJCONFIG VRPN SERVER SETUP…………………………………………...44

FIGURE 27: FAAST GUI……………………………………………………………………….45

FIGURE 28: CWIID INTERFACE……………………………………………………………...46

FIGURE 29: VRJCONFIG AND OSGEDIT……………………………………………………49

FIGURE 30: OPENSCENEGRAPH & BULLET……………………………………………….50

	

1

CHAPTER I

INTRODUCTION

 Virtual reality (VR) is a term used to describe computer-simulated environments of a real

or unreal world. Physically immersive displays and interaction techniques are often employed to

enhance users' experiences in virtual environments. VR systems are often intricate systems built

using complex software and hardware systems and provide the experience of telepresence[2].

These systems are widely used in visualization, graphics, immersion, and presence research.

Among the system elements that must be integrated are display system, tracking system, data

management, networking, and scene management.

 This thesis focuses on the utilization of use of open source software to create an

immersive system development called the VizLab Virtual Reality System. The system supports

the development of virtual reality applications and immersive games by using a combination of

game engine methodology and CAVE system technology. This provides the foundation modules

for virtual reality system that can be configured and developed primarily through a graphic user

interface (GUI). The VizLab system consists of software modules that provide rendering,

texturing, collision, physics, window/viewport management, cluster synchronization, cluster data

sharing, input management, multi-processing, stereoscopic 3D, and networking. This thesis will

demonstrate how the VizLab Virtual Reality System combines the main functional aspects of a

2

game engine and CAVE system to serve as a basis for more efficient development VR

applications, as well as virtual environments (VEs), and immersive environments (IEs).

Motivation

 My interest in computer science lies in human computer interaction and gaming. I have

always been interested in computer graphics, VR, VEs, and measuring presence and immersion.

However, the Department of Computer Science at The University of Texas – Pan American

(UTPA) had yet to develop a CAVE system. During my undergraduate years I was part of a

group of students that were highly interested in games, graphics, and artificial intelligence. We

combined our passion for gaming technologies to create small games in hopes of having game

development and visualization courses started at UTPA.

 As I entered the Master's program at UTPA, Dr. Fowler introduced me to immersive and

interactive technologies. I began research in this field and became devoted to learning more

about the concepts of presence and immersion within virtual reality literature. At this time Dr.

Butler and Dr. Fowler received funding from the Department of Defense that allowed them to

build a relatively low cost CAVE system at UTPA. This provided an environment for

visualization and computer graphics applications. Given the system's budget, a commercial

CAVE system was not a viable option, due to the extremely expensive hardware and software

required.

The goal was set, and our challenge was to create a relatively low cost ($120k) virtual

reality system. Our approach was a practical one: use open source software, mid-level

professional computer graphics hardware, robust commodity workstations, and recently available

stereoscopic projection systems targeting the home theater market.

3

Goals

 The goals of the project center on design and implementation of an immersive system

that uses open source tools as the foundation for the efficient development and maintenance of

VR, VE, and information visualization (IV) applications. The use of open source software allows

the cost of the system to be lower and ensures that it can be maintained by future students

interested in these research fields. As with game engine technologies, the system should provide

foundation elements such as physics simulation, model rendering in a variety of formats,

collision detection, and scene graph implementations.

 A fundamental goal is that system be reconfigurable and extensible for both hardware

and software components. Because the system will be used for future research in VR, VE and IV

applications, it is essential to have a configuration that will provide dependable performance and

information. Having realistic simulation involves having dependable hardware and software

features. For many application the more realistic the simulation is, the greater the immersion the

user will experience[5]. In addition, the system should remain stable when adding new hardware

or software, since computing and graphics hardware equipment capabilities continually

increasing. Finally, the system should provide essential documentation of installation,

configuration, and basic standard applications.

Organization of the Thesis

 The following sections describe the background, design, implementation and material

used to create VizLab. First, a brief introduction describing the background of immersive

systems will cover hardware and software used in deployment of such systems. Next, game

engine technology is described and an overview of game engine modules followed by open

4

source software and its incorporation into immersive systems will be covered. Then, VizLab

software suite and its components will be described and explained. Finally, the conclusion will

provide an overview of the system and future work that could enhance development of VR

applications.

5

CHAPTER II

BACKGROUND

The Ultimate Display by Ivan Sutherland is often considered the starting point of

immersive systems[37]. It consisted of a head mounted display constructed from two cathode ray

tubes and a mechanical arm with early head tracking capabilities[36]. The system was heavy, and

the mechanics required it to be suspended from the ceiling. The graphics consisted of simple

wire frame models shapes and environments. Sutherland was pioneering and engineering a

visualization system, and in his work he describes the capabilities of a computer system

modeling a real world environment. He had the insight that computers were not just capable of

arithmetic and calculations, but also capable of simulating real world environments through the

use of virtual environments. Although the computing power and display technology at the time

were not powerful, he was able to accomplish his mission of portraying a virtual world using

wire frame objects and shapes with simulated physics and forces. Immersive systems and gaming

software emerged in the years following this landmark work.

 Immersive systems such as Cave Automatic Virtual Environment (CAVE) systems, head

mounted display systems, and simulators are complex systems with software and hardware

modules working together to create an immersive experience [10] [11]. Such systems can be traced

to the beginnings of computer graphics and are rooted in developing scientific visualizations and

scientific research for IV, VE, IE, and VR fields. Most immersive systems provide robust

6

execution through separate modules to help the development of immersive applications. This

approach can also be seen in game engine technologies that have the same modular approach [35].

As games have became more popular, gaming companies evolved such as Epic, Bioware,

Bungie, Crytek and Blizzard. These companies have created the gaming technologies and game

engines that we know today.

Hardware

Display Hardware

 Head mounted displays (HMDs) are a type of display device that has gone through a

series of changes since first used by Sutherland. Significant advances in HMDs have occurred in

resolution, color, brightness and design. The design has evolved from cathode ray tubes (CRT) to

LCD and OLED displays. However, the design still has the fundamental field of view constraint

that typically limits the user to a 25-45 degree viewing angle [36].

 Projection based displays provide many options and can be configured flexibly when

building a VR system. One can use multiple projectors to enhance visibility and provide multiple

projections of a scene or simulation. Using panoramic projectors to display a virtual environment

enhances visibility and field of view for the user. The use of multiple projectors can simulate the

panoramic view by integrating display pipelines and merging the displayed projections together

to provide a panoramic view [11] [19].

 The use of workbench projector can also be used in a VR system. A workbench projector

uses a rear projection screen flat like a table and the projector uses an offset length close to the

length of a human body. The user is tracked and views an image on the screen. These types of

7

setups mimic the setup of a drafting table and can be used with multiple sensors and equipment

that allow the user to interact with the virtual environment [42] [44].

 The use of desktop can also be used to create a VR system. With today’s graphics cards

and technology, it is manageable to connect multiple computer displays to a single computer and

have them set up by the operating system. No special software requirements are needed besides

the built in software and drivers that come with the graphic cards. Although this is one of the

cheapest solutions for creating a wide field of view such as used in immersive environments, it

has many disadvantages. Computer monitor displays do not fully surround or conceal the real

world. The objects are rendered to the display size and therefore do not fully represent the object

in real size, preventing the user from becoming fully immersed in the virtual world [44].

Limitations of desktop size can be addressed in a limited manner through the use larger flat panel

displays, such as used in commodity televisions.

Tracking Hardware

 Tracking hardware can be used to provide an interface that allows the user to manipulate

objects and for the system to track the user within the virtual environment. There are different

methods to track user’s actions and show them through software into the virtual environment.

One method is by using magnetic sensors to track the user is by using two magnetic sensors to

track a user within a limited range. The user has stay within a perimeter in order for the sensors

to track the user. Furthermore, the sensors might receive interference from other electronic

devices, since most electronic devices create magnetic fields, it may affect the sensors depending

on the magnetic sensitivity [44].

8

 The use of cameras for tracking has become an effective method for tracking. Along with

the motion detection software to track the individual, having more cameras provides better

accuracy of the tracking system because more angles can be covered and detected. Accuracy also

depends on the camera resolution; having a higher resolution camera will increase the system’s

mapping accuracy in a VE [33].

 A data glove is a device that allows the user to manipulate virtual objects or graphical

data within the VR system. Data gloves can motion sensors and accelerometers embedded

within, the user places the gloves on his or her hand and can directly manipulate the objects. The

software then maps the motion and direction of the glove and portrays those coordinates to a VE

[33].

 The VR community has adopted gaming peripherals and ported them into VR systems.

For example, using a Nintendo Wii wireless controller allows a measurement of actions using the

controller’s accelerometer and gyroscopic sensors. Gaming devices can provide an inexpensive

solution to high-end motion tracking devices [16] [42]. The use of Microsoft Kinect also provides

an inexpensive alternative to expensive camera tracking system and allows for full skeleton

tracking [16]. Also, much open source software is available allowing the programming needed to

adapt the device to a VR system.

CAVE Systems

A CAVE is an immersive system that consists of multiple projectors with each projector

displaying a part of a virtual environment to surround the user with the visual elements of a

simulation. Its origins are in the use of visualization and scientific research. CAVE designs vary,

but usually exhibit a variation of the original wall centric design[10] [11].. A CAVE can vary from a

9

V shape design, two walls at a 90 degree angle, to a fully enclosed CAVE system surrounding a

user, a cube like structure, as shown in Figure 1. Although the system may be front projected or

rear projected system, but most setups use a rear projection design.

CAVE systems are run by different software systems operating in unison to provide and

integrated system. Most CAVE software platforms consist of a multi-display system, networking

system, cluster management system, and input/output system.

An advantage to using a CAVE as a VR system is that the system provides a wide field

view to the user or multiple users. This allows the user the freedom to walk around within a

parameter, making it a conventional way to engage a user within a VR application. The main

disadvantage of CAVE system is that it is composed of various systems; the rendering of the

scene is done by multiple computers, one computer rendering one part of the scene. The

computers have to work together to bring the scene together and this brings forth other problems

that need to be handled by either software or hardware systems [19].

FIGURE 1: CAVE SYSTEM[11].

10

CAVELib

CAVELib is the original software platform used in the first CAVE system and was

designed to run on specific hardware. The system provides essential elements needed to create a

virtual reality system and provides support for multi-display, cluster design architecture, and

interaction device integration. At the time, the system provided an open source alternative to

expensive commercialized simulators making it a widely used platform. The system was later

upgraded by the research community to support a variety of platforms and architectures and

commercialized by Mechdyne, making it a licensed software platform [11].

VRJuggler

 VRJuggler is an open source CAVE platform developed by Iowa State University that

provides a package that combines different APIs to simplify the VR application development

process [13]. VR Juggler is built upon open source software libraries and is platform independent.

It provides the developer with the freedom to write an application that will work with many

different display and input devices without altering code or recompiling the application. It

provides a GUI for window and viewport management. It uses OpenGL standard for low level

application, and integrates OpenSceneGraph and OpenSG for rendering complex scenes and

virtual environments [1] [40].

CaveUT

 CaveUT is an open source extension of the Unreal Tournament 2004 game engine.

Developed by PublicVR, CaveUT takes advantage of gaming technologies to create a CAVE

environment. It uses Unreal Tournament's game engine to design virtual environments and

scenes. Within the game engine there is a spectator function that CaveUT utilizes to mimic real

11

life viewpoints and create virtual viewpoints around the player's head. Each viewpoint is

rendered separately and gives the illusion of a 3D environment when projected onto separate

walls [19] [23].

Game Engines

Formerly, video games used integrated purpose based rendering and display software as

opposed to separate interchangeable modules used in today’s video games. In 1993, the video

game Doom introduced a new game-programming standard; its design architecture was based on

the “game engine” concept. The game engine has become the foundation software module that

can be used to create new versions of the original game or even all-new games [23]. Today’s game

engines consist of a variety of different extensible modules that handle textures, lighting,

rendering, physics, effects, input, output, networking and game editor. These are discussed in the

following sections.

Textures, Lighting and Rendering

The procedure in which polygon objects are given detail by the application of images to

their surfaces is called texturing. Textures can provide the illusion of realistic objects, making the

scenes seem more real. However, a disadvantage in adding realistic features to a scene is that the

textures will occupy more memory in the system. Game engines and other computer graphics

approaches provide ways to minimize and reduce texture memory space in order to provide

better performance while playing a game. An example of optimization is the use of MIP mapping

textures within a scene. This allows the minimization of texture file size. The theory behind it is

that as the camera view moves away from an object, the object’s texture resolution will be

reduced and therefore increase performance. With the MIP mapping technique textures are

12

rescaled and saved at different resolutions ahead of time in order to avoid texture distortion as

the resolution is decreased when the distance between the object and the camera is

increased[24][26].

This is analogous to the level of detail (LOD) approach used in some game engines [15].

LOD systems use algorithms to scale the geometric detail of object models based on the camera

distance within the scene. They support the ability to alter the polygons used to render a model

within the camera view. In advanced LOD systems, different render models are used depending

on the distance between the object and the camera view or dynamically decrease the polygon

count in real time.

There are two different forms of lighting within a scene, static lighting and dynamic

lighting. Static lighting, like its name states, is lighting that does not move within the object. This

is best for rendering a scene where objects are not in motion, hence, allowing the lighting effects

to be pre-calculated in order to increase efficiency. This technique is known as “light maps” and

is widely used in game engines [3][24]. Light maps are static lights calculated within a scene; the

resulting shadows, brightness, directional static lights and ambient lights are then overlaid on a

FIGURE 2: LEVEL OF DETAIL [14].

13

scene’s pre-existing textures. It is then blended with the textures to create the final lighting effect

of the scene.

Dynamic lighting, on the other hand, is lighting that moves or changes within the scene.

It cannot be pre-calculated because it will change according to the actions in the scene. Dynamic

lights are calculated frame by frame in real time, though they are often stored using the same

light map algorithms but constantly replaced as needed [24] [27] [28]..

Rendering is the last process and consists of generating the display that will be viewed on

the screen. During this process, the lighting, shading and shadows, scene geometry, camera

viewpoints, and other scene details are used to create an image. The scene is rendered in real

time which allows the user to interact with the virtual world in real time, as well. There are some

constraints while rendering a virtual environment. Most of the issues are due to processing power

and memory. Because players expect more realistic scenes as computational technology

FIGURE 3: STATIC LIGHITNG [23].

14

advances each year, the renderer can be considered the most updated module within a game

engine[24][27] [28].

Physics and Effects

 When interacting with a virtual world, the user expects to be able to interact with the

virtual scene as they would with the real environment. A physics engine provides a general

physics simulation and supplies extensibility to provide game designers facilities to create

custom physics rules within a scene [3] [6] [24]. One element limiting the physics engine’s is the

precision of the “collision box”, which bounds individual objects in order to detect collision, or

overlap, as well as define the forces acting upon the objects, and determining the positional data

of those objects. Limitations occur and are commonly known as glitches in a game, often due to

not only the collision box not exactly matching the object, but also rounding errors within

calculations.

FIGURE 4: EFFECTS ENGINE [6].

15

 Game engines also have what is known as an “effect engine”, produced by the particle

effect generator found within the game engine [3] [6]. Particles are very small objects grouped

together to create effects such as fire, fog and smoke. Most particle effects are rendered in real

time, affecting performance of the renderer and physics engine. Each particle is bounded by the

physical interaction between each other and the virtual environment, making it a computationally

intensive, as well as requiring a large amount of memory. However, game engines provide

essential optimized particle effects and extensible tools for designers to create their own custom

effects.

Input, Output and Networking

 Game engines provide essential input and output device interfaces, along with

networking capabilities. Game engine designers often work with console manufactures to

incorporate their control devices into the game engine, providing the crucial necessities for cross

platform development that game developers need to create a game for a greater audience. Game

engines support keyboard commands, game controllers, mouse, Wii remotes and new touchpad

controls; in addition, they support audio and video, which make game engines a favorable game

development platform[3] [19] [24] [35] [38] [39].

 Display device standards are already set by the industry (Televisions, Monitors, etc),

alongside with audio industry standards such as 5.1 and 7.1 Dolby Digital; game engines meet

such standards to meet the consumer demands in the industry[19] [25] [35] [39]. Yet, some game

engines have built in APIs for multi-channel sound integration in the games, providing the

developer the necessary tools for an immersive sound experience.

16

 Network support is a huge concern when building a game. Multiplayer platforms drive

the game industry in different genres of games, making them become a very popular activity[35]

[21] [23] [38] [39]. The game engine sends information across the network using industry standards;

relaying information about location, actions and scores. Gaming engines mostly follow the

server/client model, where the host will provide most of the management concerning scores and

detecting game play abnormalities.

Game Editor

 Game engines provide a useful tool called a game editor which shields game designers

from low level programming and middle level programming when creating and designing a

game. Game editors use a GUI approach in game design; this allows them to import and create

objects and models, add lighting effects, textures, physics, particle effects, animation, scripts,

music and grants them access to other tools used in game design. It can import numerous formats

concerning video, audio and models. Game editors have become highly sophisticated in game

development; they now have built in capabilities for editing, executing, and debugging a game

without programming [24] [38] [21] [39]. A resource such as a game editor speeds up designing virtual

environment and game environments.

17

Game Engines

 Today’s game engines provide the essential framework of tools aiding in the

development of games. There is a variety of different game engines that provide different

development resources and approaches in game design.

Unreal Development Kit (UDK) is a game designer toolkit that is built on Epic’s Unreal

Engine; it provides game designers with a highly developed and extensible libraries aiding in

game development. It is a full software package, which allows the user to fully create, compile,

debug and play a game created with this software. It supports all the major platforms such as

Playstation, Xbox, Wii U, Windows, iOS and OS X. Although Unreal’s SDK package it is

available as free version software, a license is needed for commercialized games [24] [38] [35].

FIGURE 5: UDK GAME EDITOR[23] [37]

18

 Another commercial game engine is Crytek’s Cry Engine. Like Epic, Crytek’s engine

provides a free SDK called Sandbox Editor, which is a game editor and level creator. It is uses a

different approach in game editor as opposed to UDK game editor. UDK’s game editor uses a

“subtractive” game design while CryEngine uses an “additive” game design. Additive game

design is when objects are created by adding more polygons to a primitive object, meanwhile

subtractive design takes away from primitive models until the desired object is created. It

supports most platforms with the exception of iOS and OS X[21].

 The Unity Engine provides a cross platform for web centric game development. Unlike

Epic’s UDK and Crytek’s Sandbox SDK, Unity’s primary focus is mobile and web games. It

provides the same principles of game engine design, but uses both open source and proprietary

formats for multi-platform development. Since it is web focused, most of the gaming system

platforms are supported (Xbox, Wii U, Playstation), but requires effort on developer’s part

because of its web centric design. Although Unity provides both free and commercial licenses,

the developers don’t need a commercial license to commercialize their games [39].

Modern Open Source Tools

In recent years, the game industry has produced several software systems capable of

providing realistic sceneries and environments with an extensive toolset, minimizing time and

effort in creating visually attractive virtual environments. Alongside gaming engines, graphical

toolkits such as OpenSceneGraph and OpenSG have pioneered the way for the creation of IV,

VE, and VR applications. They have also influenced early research and development of VR

systems, which modern VR systems have adapted their technology such as peripheral devices,

clustering, networking, window management, and scene development into modern immersive

19

system infrastructure. This has driven the development of open source tools from the open

source community to provide a viable option in game and scene development. In correlation with

the gaming industry and graphical toolkits, hardware systems have dramatically increased in

their capabilities and decreased cost in recent years, driving graphical software to a new era of

concepts and integration.

With the introduction of computer games, people had access to games resource files,

which allowed a person to see the essential components of the game. Having access to the

components meant that people could develop their own games; this is known through the term

“Mod”, meaning modification of a game [3]. Mods gave way to the open source community and

allowed the creation of new tools and software based on these game modifications. With time the

open source community developed great resources aiding in rendering, texturing, window

management, display management, physics, networking, device management and scene

management based on gaming technology.

OpenSceneGraph and OpenSG

 OpenSceneGraph is a highly developed toolkit for rendering 3D graphics. It uses a

hierarchy graph of nodes describing graphical layout and objects that compose a scene[27]. This

provides a low level API which utilizes low level graphic primitives to create highly extensible

features. It provides basic features such as texture mapping, shaders, lighting, rendering, camera,

memory management, and modeling. OpenSceneGraph also supports advanced features such as

particle effects, animations and multi-thread support. It provides foundational elements for scene

development and is a highly extensible toolkit aiding in the creation of new platform independent

tools. Similar to OpenSceneGraph, OpenSG is an open source scene graph system for rendering

20

3D graphics. It uses some of the same foundations and provides a scene graph development

alternative to OpenSceneGraph [28]. Yet, OpenSG provides fewer supports on model formats,

clustering and advance rendering techniques.

 Both platforms are fully capable of creating robust clustered applications, but require

additional time in developing such applications. The low level API, clustered data management

and viewport handling capabilities of both toolkits need to be further developed for VR

applications.

Bullet Physics Engine

 Bullet is an open source cross platform physics engine equipped with a variety of gaming

and visual effect applications. This physics engine has been widely used by entertainment and

gaming industry because it provides customizable API handling animations, 3D collision

detection, rigid body dynamics (static objects), and soft body dynamics (deformable objects) that

can be used to model cloth, ropes or deformable volumes. The engine implements Newton’s laws

of motions and uses a simple friction model to simulate friction. Objects are prevented from

colliding with each other by automatically introducing constraints (creating a bounding box

around an object). These elements are used to simulate object interaction, allowing a scene to

provide a realistic feel to the environment [6].

OsgBullet

 OsgBullet provides libraries that extend OpenSceneGraph and Bullet. It uses Bullet

libraries for collision detection and physics simulations and OpenSceneGraph libraries for model

rendering and data management. OsgBullet provides concrete manipulation functions that allow

the programmer to import a model into OpenSceneGraph and automatically generate the Bullet

21

collision box based on the model’s matrices. It takes advantage of multi-threading operations for

interleaved and serial physics which handles the object’s mass and scaling operations. In

addition, it provides custom debugging tools regarding Bullet collision shapes and intersection

points between objects. OsgBullet is a crucial component for incorporating Bullet physics engine

in OpenSceneGraph applications [29].

OsgWorks

 OsgWorks is a package of applications and libraries used for extending OpenSceneGraph

capabilities when working with model matrix transformations. Its principle function is to extend

functionality of scene matrix and geometry manipulation. Its geometry modifier infrastructures

can reduce an object’s geometric data set or add new data sets to objects. It provides shape

manipulation functions for polygons, which is a useful tool when rendering objects. OsgWorks is

a rudimentary component for a system using OsgBullet toolkit and Bullet physics engine[31].

OsgEdit

 OsgEdit is an open source toolkit known as a scene composer which provides the

necessary tools to edit model positions in 3D space. It contributes essential actions that are

expected of game editor and isolates the user from the hassles of programming a scene in source

code because most of the functionality is provided in the form of a menu and toolbars. Object

manipulation is enabled in 3D space with standard attributes features like rotation, scaling,

translation, and lighting. OsgEdit provides extensibility of customizing your own features,

allowing you to directly customize objects and nodes. Most of its functionality is XML based,

providing an excellent foundation for extensibility [30].

22

Virtual Reality Peripheral Network (VRPN)

 VRPN is a system of libraries that provide a network transparent interface for device

integration in cross platform VR applications [34]. Through the use of TCP/IP protocols, it

establishes a server/client model to establish device connections making VRPN a reliable

platform against the use of conventional hardware drivers that are tightly coupled to an operating

system. VRPN allows for multiple peripherals like trackers, button devices, analog inputs,

sounds and wands to be used by an immersive system. There are pre-supported peripherals that

are widely used within the VR research community, making VRPN a must-have device

manager[41].

23

CHAPTER III

VIZLAB VR SYSTEM

 There are different things to consider when deciding to build a VR system; for example,

what are the goals of the VR system? What display technologies are best to use? How will

device integration be handled? What will aid scene development? These are just some of many

questions that need to be addressed when developing an immersive system. The development of

VR applications can be a burden because most of the documentation for open source software’s

can be sparse and outdated at times. This de-motivates developers, making them search for other

alternatives. However, the use of open source software can help developers create robust custom

software.

 VizLab VR System is built upon combining open source software to aid in the

development of VR applications. It is composed of VR Juggler handling display management,

system “clusterization”, data management, input management and output management[1] [40].

OpenSceneGraph and OpenSG provide the system with model rendering and scene integration,

while using OsgEdit for scene development as a primitive game editor. Scene physics and object

collisions are managed through a combination of OsgWorks, OsgBullet and Bullet layered above

OpenScenGraph. VRPN is used for extending device integration apart from VRJuggler own

24

device management. A system layout can be seen in Figure 6 and the following sections describe

the VizLab System.

VR Juggler

Modules

 VRJuggler modules are the core of VRJuggler and are what helps VRJuggler

build a robust VR system[1]. These modules are:

• Gadgeteer - device

management system used to handle the configuration, control, acquisition, and

representation of data from VR devices.

Gadgeteer

JCCL

Operating System

OpenGL Sonix VRJuggler Portable Run Time Tweek/CORBA

VRJuggler

FIGURE 7. VRJUGGLER MODULES

Bullet Physics Engine
OsgBullet OsgWorks

OsgEdit

OpenSceneGraph & OpenSG
VRPN OpenGL VRJuggler

Operating System
FIGURE 6. VIZLAB SOFTWARE ARCHITECTURE

25

• Juggler Configuration Control Library (JCCL) - XML-based configuration system with

multivariate types used internally by VR Juggler for all system configurations.

• Sonix - high-level simple abstraction for audio hardware or audio APIs that provides an

interface useful to many simple VR and entertainment applications such as trigger, 3D

position, etc.

• VRJuggler Portable Runtime (VPR)- provides platform-independent abstractions for

threads, sockets (TCP/UDP), and serial I/O primitives.

 Gadgeteer manages the hardware devices within VRJuggler. It contains a Remote Input

Manager that allows sharing of devices between computers and provides device input for use

with VR Juggler applications. Gadgeteer hides input device hardware from programmers during

the implementation of immersive software in order to shield them from low-level device drivers.

With Gadgeteer, applications can be easily migrated between different hardware configurations,

allowing the programmer to have no required knowledge on device’s vendors, models, drivers,

or hardware specific protocols. Gadgeteer categorizes input devices based on abstract input types

such as analog, command, digital, glove, gesture, position, simulator and string. In this

categorization, devices from different vendors may return data mapping to the same abstract

form. A single piece of hardware may even map to multiple input types, and more device types

can be added as new hardware becomes available. Programmers can write their code in terms of

abstract input types, so as long as a device is available that provides the needed input, the

application can function[1] [40].

 JCCL provides configuration and performance monitoring tools for applications,

allowing easy access to configuration information stored in XML-based files for the applications

built with JCCL. It provides a Java-based GUI called VJ Control for editing these configuration

26

files and then incorporates additional tools to monitor the performance of an application. The

JCCL GUI also provides facilities to edit and control the state of running applications[40].

 Sonix is a sound toolkit that is kept very simple in order to get sound running as fast as

possible. Sonix is reconfigurable, allowing audio APIs to be safely swapped out at runtime

without the dependent systems noticing. Systems using Sonix API layer can expect their sound

application to be completely portable[40].

 VPR provides a cross-platform object-oriented abstraction layer to common operating

system features. It is the key to the portability of Gadgeteer, Tweek (see GUI Capabilities), VR

Juggler, and other middleware included with VRJuggler. Software written on top of VPR can be

compiled on IRIX, Linux, Windows, FreeBSD, and Solaris, usually without modification.

Internally, VPR wraps platform-specific APIs such as BSD sockets, POSIX threads, Win32

threads, and Win32 overlapped I/O. Depending upon how it is compiled it may also wrap the

Netscape Portable Runtime, another cross-platform OS abstraction layer written in C[40]. In

summary, VPR is a collection of utility classes.

Installation and Configuration

 Like most open source software, the source code for compilation is provided. Installation

of VRJuggler can be challenging since it is dependent on different open source software. The

documentation does not clearly state what versions of the software are needed, which makes it

difficult when trying to acquire the correct version for building VRJuggler. Some of the required

dependencies for building VRJuggler are:

27

• Boost Library - consists of a C++ library that provides many powerful utility classes

and libraries[4]

• Generic Math Template Library GMTL - a generic math library that makes use of

C++ templates and STL paradigms[18].

• CPP Document Object Model (CppDOM)- a lightweight, easy-to-use XML parser

written in C++ [8].

• Java Developer Kit (or JDK) - used to compile all the Java code used in the Juggler

Project. Without it, none of the Java code in VR Juggler can be built[20].

• Java 3D – Java extension used for displaying three dimensional graphics. Version

1.5.2 of Java 3D was used for this particular project [20].

• omniORB - a C++ implementation of CORBA 2.3, required for the Tweek C++ API.

 The omniORB version required for this project is available as a pre-built snapshot[32].

• CppUnit - unit testing framework for C++. The Juggler C++ test suites make use of

extensions to CppUnit[9].

• Virtual-Reality Peripheral Network (VRPN) - a set of classes within a library and a

set of servers that are designed to implement a network-transparent interface between

application programs. VRPN is needed for Device Interface communication between

Devices and VR Juggler[41].

• Open Audio Library (OpenAL) and OpenAL Utility Toolkit - cross-platform 3D

audio API appropriate for use with gaming applications and many other types of

audio applications. OpenAL is required to add audio into VR Juggler Applications[25].

28

 These dependencies often require the use of environment variables to be set to specific

predefined parameters in order for them to work, as seen on Figure 9. Environment variables

help the application’s processes run, find, or execute required resources. This is often the case

with open source software, since it is not a package installation, which would take care of this

nuisance and makes working with open source software a considerable problem. The

compilation of the dependencies can take a considerable amount of time because everything

needs to be tracked by environment variables, as seen in Figure 10. Dependencies are often

based on others, so having to deal with different versions of the software and different

environment variables can be troublesome. When updating the software, the updated version will

update, delete, or add new functionality to the software, making it difficult for compilation. This

is often the case in layered multi-dependent software, as functions are updated or deleted,

software layers are may become dependent on such functionality that would make compilation

impossible.

Gadgeteer

JCCL

OpenGL Sonix VRJuggler Portable Run Time Tweek/CORBA

Operating System

Boost Java

CppDom CppUnit

VRPN OpenAL

OmniORB Java-3D

FIGURE 8. VRJUGGLER DEPENDENCIES

29

 Compilation will require compiling packages that are platform dependent. Since most

dependencies are platform independent, they use a cross compiler package called Cmake to build

software to specific platforms[7]. Figure 11 shows that Cmake is script-based with a nice

interface allowing to set up compiling flags, libraries, specific environment variables, installation

folder, and compiler. Most dependencies are compiled with Cmake; however, if a Cmake script

is not supplied, the dependency will mostly likely have a script for installation.

FIGURE 9: WINDOWS SYSTEM PROPERTIES FIGURE 10: ENVIRONMENT VARIABLES

FIGURE 11: CMAKE GUI [7]

30

 All dependencies have to be precompiled because VRJuggler only needs the binary files

of all the dependencies. After using Cmake or installation scripts, the software is compiled using

platform specific compilation tools. For Windows systems it is preferred to use Visual Studio for

compilation, while for Linux systems g++ and make are used. In the case of Windows, Cmake

scripts already create a Visual Studio project depending on which version is selected by the user

in the script. Figure 11 illustrates how this project will create the binaries for software. Based on

the architecture selected on the Cmake script, it will allow you to compile the build; it is

important to note that not all builds compile. It is in this section where it is most likely to fail if a

different version of the dependency software is needed. Because VizLab is packaged software, it

removes such difficulties. All dependencies are precompiled in this package, allowing

installation by just clicking a button. Figure 12 and figure 13, show what the GUI for installation

looks like.

 This installation wizard installs VRJuggler and all its dependencies. Therefore, the user

will not need to set up environment variables or destination paths because it is done through the

FIGURE 12: VIZLAB WINDOWS INSTALLATION FIGURE 13: VIZLAB WINDOWS INSTALLATION PROCESS

31

wizard, minimizing the installation process of an immersive system. There are two installation

versions that come with VizLab, a Microsoft installation package seen in Figure 12 and Figure

13, and in a Linux Ubuntu Debian packages shown in Figure 14. The Debian packages have to

be installed in a certain order; information on Windows platform installation is provided in

Appendix A and Appendix B for Ubuntu installation. It is important to note that these

installations minimize the effort and time from many hours to just a few minutes. The VizLab

used is a x64 build because the first release was x86 build and had performance issues. This was

not a wise decision since we are using mid to high end workstations with high end graphics

cards. The main issue was memory ussage; each workstation has 24GB of RAM but was not

fully utilized. When running intensive demo scenes, we saw a drop in performance; when using

the x86 build architecture, we could only access 4GB of space. Yet, you have to account that a

compiler may reduce memory allocation, so moving onto x64 build increases memory allocation

space.

FIGURE 14: UBUNTU PACKAGES

32

 After the VizLab is installed, the next step is to configure the immersive system. To do

this it is necessary to determine the hardware that will be used in the system. For example, how

many computers will form the immersive system and which of those computers will control

input and output peripherals? VizLab is a multi-configurable system that ranges from a standard

one display system to a multi-display system when needed. It can run from one computer or

multiple computers that form a system known as a cluster. An advantage of running a clusterized

system is that as the complexity of scenes increases, a cluster will better maintain performance

than a single computer. Having a multi-display system run on a single computer with one graphic

card can be done, but graphics performance will be significantly impactly for complex VEs.

The VizLab systems used for this project consists of five computers configured as a

cluster. In this system there are four slave nodes and one master node. The slave nodes in VizLab

handle the display of the VEs, while the last slave node handles the tracking software. The

master node keeps track of all slave nodes and syncs the system together and is in charge of

distributing input device data to the other nodes. It also keeps track of each viewport displayed

by each node and syncs the movement in the VE so that the movement through a VE can be

smooth throughout the displays. A viewport is the term used to describe the viewing region of a

scene in which each display slave node runs its own viewport.

The network for the cluster consists of a regular Netgear Router and a Linksys ethernet

switch. Although the whole network could be run with a switch leaving the master node handle

all communication, a router minimizes the effort in data routing, port forwarding, and resource

allocation. Today’s routers have built in tools for performance factors; in the event that a node

should fail, all IP settings are stored in the router, allowing for easier management should the

node be replaced. VizLab’s system layout can be seen in figure 15.

33

Configuring the system is straightforward and uses VRJuggler’s the VRJConfig system

as seen in Figure 16. VRJConfig system acts as middleware for configuring an immersive system

by providing detail about Cluster Nodes, Input and Output devices, Viewports, and Users that

make the system, as well as a method to relatively easily set parameters. VRJConfig has a GUI,

making the system easier to work with when configuring an immersive system. Although VizLab

comes with predefined configurations, the user can create other configurations. Figure 17 shows

a cluster configuration typical of VizLab’s configurations. As can be seen, it shows a five node

cluster and the user to add and delete nodes with the click of a button. Selecting a node would

give the user a detailed view for configuring the node on the right hand side, as shown of Figure

16. Each node can render different viewports. The user can set up all viewports’ attributes,

including 3D rendering, positional location within the scene, viewport size, trackers tied to the

viewport, as well a several other atrributes associated with each node. There are different devices

configured in the system that can be be added and configured through this editor. Adding devices

will be covered later , and more detail is provided in Appendix C. Note that the configuration

uses proxies, middleware between device input, to handle lower levels of communication

Master
Node

Router

Slave
Node

Slave
Node

Slave
Node

Tracking

Node

Kinect

Display

WiiMote

VRPN Device

Display Display

FIGURE 15. VIZLAB SYSTEM LAYOUT

34

between devices and data manipulation within an application. A proxy can contain any type of

device, analog, digital, positional, etc., and will have naming conventions easier to work with

within a programming environment. Setting up multiple users within the system allows different

tracking purposes and keeps information regarding each user. In summary, VRJConfig serves to

fully configure the system, and Appendix C contains further information regarding system

configuration.

Applications

 VizLab has some sample applications that are provided as VRJuggler sample

applications. Though they are inherited from VRJuggler, the applications in VizLab are modified

versions of the original applications. The main sample applications are OpenGL applications,

OSG applications, device applications and sound Applications. All are sample applications that

help developers become acquainted with VR application development. Typically, the principle

elements of the sample applications are combined to create fully immersive VR applications.

 OpenGL applications share the GLUT programming paradigm, which has drawing

functions, initialization functions, frame functions, and update functions [17] [26]. This object-

oriented structure is the base of VRJuggler’s programming paradigm. The main application runs

FIGURE 16: VRJCONFIG FIGURE 17: VRJCONFIG PANEL

35

the VRJuggler kernel, which controls the application execution. The kernel instance takes in the

configuration of the system and then calls the main execute function. This execute function will

call the application’s initialization, drawing, and update functions. By using this method, the

developer is removed from VRJuggler’s execution engine, and can focus on developing

immersive applications. Figure 18, illustrates MPApp application running in VRJuggler. Notice

that there is a ball and a stick within the display window, this is the simulated head and wand

position rendered by the application. By using the simple standard configuration, the user can

navigate using a keyboard and mouse. The programmer can incorporate full tracking to suit the

needs of a specific application. Application developed using OpenGL or GLUT can be easily

incorporated into VizLab.

FIGURE 18: OPENGL APPLICATION

36

 OpenGL applications are not that much different from OSG applications, as the same

programming paradigm is used to render OpenSceneGraph and OpenSG applications. There are

some added functions besides initialization, drawing, and update functions. The added functions

are for scene initialization, scene scale conversions, and scene navigation. In Figure 15, the head

and wand are simulated, as shown in the previous OpenGL application example. The scene can

be imported from various different models or a single model. A variety of major file formats are

supported, including .obj, .3ds, .dae, .wrl, .ftl, and native OSG binary formats[27]. Figure 19 is an

imported scene from the city of Boston running on VizLab.

 The last sample application is the OpenGL and OSG applications with Bullet physics

engine. Since a similar design structure is used in building both applications, Vizlab has a sample

application that covers both types of applications in one application. The integration of the Bullet

physics engine provides the developer a fully developed physics engine to assist in the building

of VE and VR applications. The Bullet integration is shown in Figure 20. This sample

application demonstrates how to add objects of different shapes that interact with all other

objects in the VE.

FIGURE 19: OPENSCENEGRAPH APPLICATION FIGURE 20: OPENSCENEGRAPH AND BULLET

APPLICATION

37

Rendering and Physics

GUI Capabilities

 VizLab can help developers build VR, VE, and information visualization (IV)

applications. It is extensible and allows for “clusterization” of VR applications, limited only by

the hardware controlled by the applications. It is also capable of creating OpenGL and Scene

Graph applications, as well as interactive VEs incorporating Bullet as a physics engine. Another

aspect of VRJuggler’s integration in VizLab is the use of Tweek to provide VR user interfaces

(UI) [1] [40]. The UI toolkit acts as middleware and addresses input hardware mapping for user

driven actions or interaction in a VR application. When using this tool, developers can create a

GUI that provides the capabilities users need for interacting with the VE. For example, a VR

application can track the user’s position and orientation with Tweek providing the tools

necessary for integrating GUIs in a VR application. Another use would be for an IV application

to display data at certain times or to keep track of data and display it to the user. Tweek can also

act as a spectator to the application, only extracting information from it, providing a tool that

does not affect performance of a VR application.

Scene Graph Integration

 Integrating Scene Graphs in a VizLab application is made possible by VRJuggler’s

integration of OSG functions. VRJuggler allows for both OpenSceneGraph and OpenSG

packages to work in conjunction with VRJuggler’s architecture. Note that OpenSceneGraph and

OpenSG are not fully integrated into VRJuggler and must be installed before VRJuggler in order

to create the bindings for a VRJuggler application. VRJuggler has built in wrappers to work with

OSG based applications which shields the developer from directly manipulating the VRJuggler

38

kernel for rendering scene graph applications[40]. This wrapper invokes running a scene graph

application, and in this way VRJuggler’s kernel API will call OpenSceneGraph directly from its

libraries. The wrapper’s main functions are initScene() and getScene(). The initScene() function

initializes and notifies the kernel to invoke OSG libraries. The scene is passed by a parameter

when getScene() is invoked, loading the scene into memory for rendering. After the scene is

loaded, the kernel loops until an update occurs, which will trigger the built in update function of

the wrapper. Figure 21 shows the traversal information (left) when traversing a scene together

with the scene (right). The figure also shows the position of the simulated head and wand,

however the simulated head and wand are simulated devices that are kernel based, so the scene

layer is later added to the rendering module running in the kernel. This will be explained later

when Bullet physics engine is working with scene graph applications.

FIGURE 21: OPENSCENEGRAPH APPLICATION RUNNING IN VRJUGGLER.

39

Physics and Collision Integration

Typically, when creating immersive games or virtual environments, the physical

interaction with virtual objects involves multiple processes and is time consuming to implement.

Using the Bullet physics engine minimizes development time for VR, VE, and IV applications.

In order to work with Bullet and scene graph toolkits, middleware is used to handle

communication between the two libraries. OsgWorks and OsgBullet provide that communication

layer needed for OSG objects model information (the objects’ matrices) to be passed to Bullet

for collision detection. Bullet takes the objects information and creates a 3D bounding box for

the object. The bounding box is what distinguishes one object from another. The other properties

of the object are its mass and whether the object is moveable or not. These are to Bullet as

parameters when the Bullet engine is invoked. It is important to note that Bullet is an

independent process from the VRJuggler kernel and is therefore not integrated with VRJuggler.

The isolation between the two has good and bad aspects for development and performance. First,

there is no performance penalty in that the VRJuggler kernel is not dependent on Bullet when

rendering. This means that the kernel can be rendering the scene while Bullet is calculating the

physics elements and performing the model transformations for the nodes of the scene graph.

When the OSG wrapper calls the update function, the scene graph is already updated by Bullet,

taking heavy calculations out of the kernel. If this were not the case, the kernel would be slower,

since physics calculations are often computationally intensive. A disadvantage to this isolation is

that it is not as easily developed. Most of the time will be spent transferring scene graph objects

to the Bullet engine. Also, since virtual devices are rendered apart from the scene graph, as noted

in previous section, the binding of virtual devices may result in imperfect rendering when next to

40

scene graph objects. For example, in Figure 22 the avatar is going through the object and not

colliding with it, even though the collision box is evident around the avatar.

Composing Scenes

 Making scenes within a coding environment is very time consuming and not an efficient

means to create non-trival scenes. OsgEdit provides an alternative for scene development as a

game editor that composes scenes[30]. Because it is open source it can be integrated with

VRJconfig since both handle information in XML format. Figure 23 shows the basic layout of a

scene project in OsgEdit. On the top of the screen displayed in the figure is the menu that

provides an interface for basic manipulation of objects in the scene, as well as creating basic

shapes like spheres, squares, cones, and cylinders. Within the application, there are window

layers that show the objects in 3D space and a scene graph node tree showing the components of

FIGURE 22: OPENSCENEGRAPH WITH BULLET PHYSICS ENGINE

41

the scene graph. It is necessary to create a node within the scene graph to add an object into a

scene. A node holds the object (information) and is used to identify the object for scene

rendering. Ultimately, a scene is composed of various nodes such as LOD nodes, light nodes,

transformation nodes, object nodes, surface nodes, etc. Within the component layer of OsgEdit,

facilities are provided to edit the properties of the node or nodes selected within the scene.

Device Management

Device Integration

 Devices are integrated using VRJConfig[1] [40]. VRjuggler supports multiple devices in

cluding datagloves, mouses, keyboards, joysticks, and trackballs. Figure 24 shows that the

described devices are subcategories of the several device categories seen in Figure 17. These

categories include the following. Analog devices stream data in a continuous range from a set of

defined minimum and maximum values. These input values range from 0.0 to 1.0 when using

analog devices with VRJuggler. Digital devices send information as on and off, or 1s and 0s and

FIGURE 23: OSGEDIT SAMPLE SCENE[30]

42

usually correspond to button devices. Positional devices are multi-input devices usually

employed for system tracking. Keyboard and mouse devices are bindings to keyboard and mouse

drivers. Digital Glove devices allow for the distinction of finger input, and Gesture Glove

devices allow for hand gestures based on knuckle angles. More in-depth information about

configuration is available in Appendix C.

 After configuring devices, the next step is creating the communication proxies. Proxies

are used to relay device information to specific predefined names. Device proxies introduce a

layer of abstraction and indirection needed to ensure that VR applications do not become tightly

coupled with specific devices. Instead, the proxy acts as a pointer to a single data source from the

actual device. This is also important when working with multi-input devices, as it distinguishes

inputs from one another. For example, a keyboard device consists of multiple keys, and since not

all keys might be used in an application, a Button Proxy that can take the value of a specific key.

Figure 25 shows that there are more proxies than there are devices shown in Figure 24, and there

are multiple proxies that use the same device. Here, buttons 0 through 5 are proxies that point to

keyboard device and are configured to refer to specific keys. Another element needed for the use

of specific inputs is a pointer pointing to the specific proxy. For example, VJButton0 is pointing

to Button0Proxy, and this VJButton will act as the communicator inside of the application. On

the programming side, the developer only needs to get information from VJButton0. This allows

for devices to be switched from a keyboard to another button device, such as a Wii controller,

not needing to change the application, just the configuration. For further information about

integrating devices into a VizLab application, please see Appendix C.

43

VRPN Integration

 Integrating a VRPN device is accomplished through VRJConfig by adding a VRPN

device[34] [40]. With VRPN devices, the user needs to configure the VRPN servers that are going

be used with a given VR application. Establishing VRPN servers is done by entering the

computer’s IP address in the corresponding field, as seen in Figure 22. There are three types of

servers that could be specified when setting up a VRPN device. A tracking server is a VRPN

server that sends information for tracking information and usually consists of multiple sensors.

The sensors consist of positional data and can be send with XYZ coordinates, quaternions or a

combination of the two. A VRPN Button Server is a server that sends digital information,

meaning 0 or 1. A VRPN Analog Server sends a constant stream of information and usually

consists of a mouse device or joystick device. In Figure 26 we can see that the developer must

specify the specific VRPN servers for the VR application with the sensor trackers, buttons, and

analog devices streamed with each server. It is also possible to specify the range of the analog

FIGURE 24: VRJCONFIG DEVICE LAYOUT FIGURE 25: VRJCONFIG DEVICE PROXIES

44

stream. With this configuration information, VRJuggler invokes the requested VRPN clients for

receiving data streams. Again, more detail is provided in Appendix C.

Motion and Gestures

Microsoft Kinect

 When introduced, Microsoft’s Kinect gaming peripheral showed promise as a low cost

alternative for full body tracking. This inspired the open source community to build toolkits for

its use, among which is the Flexible Action and Articulated Skeleton Toolkit (FAAST). FAAST

is a toolkit that provides enhancement for the motion, gesture, and body tracking capabilities for

VR applications[34]. It incorporates a VRPN server to stream up to four user skeletons by reading

skeletal joints as sensors using a VRPN client. The toolkit also emulates keyboard input

triggered by body posture and specific gestures, allowing the programmer to add custom body-

based controls to VR applications[16] [41]. Figure 27 displays FAAST GUI using Microsoft’s

Kinect for full skeleton tracking. The FAAST GUI provides an excellent means for creating

gestures, configuring gestures and motions, and handling Kinect sensor configurations. Gestures

are a sequence of movements based on joint positions. These sequences trigger the actions to be

FIGURE 26: VRJCONFIG VRPN SERVER SETUP

45

executed. Configuring gestures is accomplished by arranging specific sequences that are then

mapped to either buttons or events. It is possible for a gesture to consist of a series of events,

making complex gestures possible. FAAST can run all three VRPN servers (see VRPN section),

which allows all gestures and movements to be stream to corresponding VRPN servers. Detail is

provided in Appendix C.

Nintendo WiiMote

 Nintedo’s Wii and its gaming peripheral the WiiMote also has open source toolkits

availalbe. The WiiMote can be used as a head-tracking device with the use of infrared LEDs or a

wand. Figure 28 shows a toolkit called CWiid, which allows for the configuration of button and

the motion sensors to be mapped to keyboard keys and positional software[12] [13]. This toolkit

handles the communication and decrypts WiiMote’s peripheral codes from BlueTooth

connectivity. First, WiiMote is paired with Cswiid’s corresponding software. Then, it is possible

to configure its controls with the WMgui interface software provided by CWiid, as detailed in

Appendix C.

FIGURE 27: FAAST GUI[7]

46

FIGURE 28: CWIID INTERFACE[12]

47

CHAPTER IV

CONCLUSIONS

Conclusion

The popularity of video games has driven development of more sophisticated software

technology that supports higher programmer productivity to create visually attractive games

capable of displaying realistic scenery. Current game engines support cutting edge graphics and

sophisticated audio, physics, and network capabilities. Game engines are a significant

contributing factor in achieving realistic and visually attractive sceneries. However, commercial

game engines can have large licensing and software costs. This has led independent developers

and the open source community to develop alternative software toolkits to create realistic

scenery and support game development. At the same time, commercialization and licensing of

once open source VR toolkits has resulted in powerful software companies taking over the

market, turning VR systems into expensive packages using proprietary software. Such market

free market sources have driven many academic researchers and independent developer to open

source alternatives for VR development. As with all open source toolkits, public domain game

engines and VR development software are sometimes not well documented, toolkits have to be

custom tailored to specific applications, and development is a tedious process of combining open

source resources to fit the application.

The VizLab system is a packaged customized set of public domain toolkits focusing on

immersive system development that provides an open source solution to support the development

48

of VR applications. VizLab removes many of the challenges of integrating and configuring open

source toolkits by providing a packaged suite for VR, VE, and IV applications. VizLab uses

game engine tools, such as a game editor and physics module, integrated with open source VR

software to create the foundation of a relatively easy to configure system.. Since it is built on

open source tools, it provides developers the abilities capabilities to extend the capabilities of

VizLab. By integrating game engine methodology, it provides essential tools for creating VR,

VR, and IV applications. Having a graphical package integrated in VizLab allows creation of

realistic scenes and applications. The physics engine allows for seamless interaction between

virtual objects and virtual interaction within any application. Without these tools and their

integration in VizLab, creating open source applications with all of these capabilities can be

exceptionally time consuming. Having cross-platform capabilities make developers feel at home

because they can use their preferred IDE development kits to develop VR applications.

Future Work

 VizLab capabilities can be further refined. By combining several modules to work in

conjunction, configuring the system and scene development can be dramatically reduced.

OsgEdit’s API can be extended by adding new XML based middleware and VRJConfig is based

on XML schema. Combining the two modules would require building a new extension element

for OsgEdit that would emulate the VRJConfig with a window layer on OsgEdit. Figure 29

shows VRJConfig and OsgEdit GUI design. Combining the two would allow programmers to

configure the system as they view the scene and environment. This would apply when creating

multiple display configurations since it would allow the programmer to see calculations for each

viewport in 3D space. In developing with VizLab there have been times when even a minor error

in viewport calculation, especially in a clustered system, can cause a particular viewport to

49

malfunction and display odd camera angles. Combing these two modules would reduce such

problems and maximize efficiency when designing and configuring an application.

 Were OsgEdit capable of configuring an application, it would be useful to extend the

module for creating a higher layer of code for predetermined devices in the configuration and

tying them to specific scene objects. This would allow selecting a particular object in the scene

and tying it to a specific configuration element. For example, as you can see from Figure 26?,

there is an avatar simulating a user. The avatar consists of multiple objects: head, arms, legs,

hands, and feet. Within the configuration it is necessary to specify multiple instances for such

objects such as VJHead, VJArms, VJLegs, and VJFeet. In this example these objects are only

tied into parameters passed by a Kinect tracking device. Within the application the developer has

to connect each object configured in VRJConfig with the corresponding object in the scene

graph. This process is very tedious and can be minimized by extending OsgEdit. It can be further

improved by having OsgEdit provide a base code for the configuration, instead of editing

VizLab’s applications separately. These enhancements can be implemented. However, due to the

FIGURE 29: VRJCONFIG AND OSGEDIT

50

time constrictions of the project, it was not able to implement them. Nonetheless, all modules

could be extended, making VizLab a starting point that eliminates much of the effort required for

advanced VR, VE, and IV systems.

FIGURE 30: OPENSCENEGRAPH & BULLET

51

REFERENCES

1. A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker and C. Cruz-Neira, “VR Juggler:

A virtual platform for virtual reality application development;” Proc. IEEE Conf. Virtual

Reality, pp. 89–96, 2001.

2. Biocca, F., & Delaney, B. (1995). Immersive Virtual Reality Technology. In F. Biocca &

M. R. Levy (Eds.), Communication in the Age of Virtual Reality. (pp. 57-124). Hillsdale,

NJ: Lawrence Erlbaum Associates.

3. Bogacs, Hannes. Game Mods: a survey of modifications, appropriation and videogame

art.Vienna University of Technology, 2008.

4. Boost C++ Libraries, http://www.boost.org, 2013.

5. B. Insko. Measuring Presence: Subjective, Behavioral and Physiological Methods. Being

There: Concepts, effects and measurement of user presence in synthetic environments G.

Riva, F. Davide, W.A IJsselsteijn (Eds.) Ios Press, 2003

6. Bullet: Game Physics Simulation, http://bulletphysics.org/wordpress, 2013.

7. CMake, http://www.cmake.org, 2013.

8. CppDom, http://sourceforge.net/projects/xml-cppdom, 2013.

9. CppUnit, http://sourceforge.net/projects/cppunit/, 2013.

10. Cruz-Neira C., Sandin D., DeFanti T., Kenyon R. and Hart J., “The CAVE: Audio visual

experience automatic virtual Environment,” Communications of the ACM, vol. 35, no. 6,

pp. 64-72, 1992.

52

11. Cruz-Neira C., Sandin D. and DeFanti T., “Surround-screen projection-based virtual

reality: The design and implementation of the CAVE,” SIGGRAPH '93 Proc. 20th Ann.

Conf. on Computer Graphics and Interactive Techniques, pp. 135-142, 1993.

12. CWiid: WiiMote toolkit, http://abstrakraft.org/cwiid, 2013.

13. CWiid: WiiMote toolkit Ubuntu Documentation,

https://help.ubuntu.com/community/CWiiD, 2013.

14. D. Pape, C. Cruz-Neira and M. Czernuszenko, “CAVE user’s guide,” Electronic

Visualization Laboratory, University of Illinois at Chicago, 1997.

15. Erikson, Carl. Hierarchical Levels of Detail to Accelerate the Rendering of Large Static
and Dynamic Polygonal Environments.

16. E. Suma, B. Lange, A. Rizzo, D. Krum, and M. Bolas, “FAAST: The Flexible Action and

Articulated Skeleton Toolkit,” Proceedings of IEEE Virtual Reality, pp. 247-248, 2011.

17. OpenGL Utility Toolkit (GLUT), http://www.opengl.org/resources/libraries/glut, 2013

18. GMTL Libraries, http://ggt.sourceforge.net/gmtlReferenceGuide-0.6.1-html/main.html,

2013.

19. Jacobson J. and Lewis L., “Game engine virtual reality with CaveUT,” IEEE Computer,

vol. 38, no. 4, pp. 79-82, 2005.

20. Java Development Kit (JDK),

http://www.oracle.com/us/technologies/java/overview/index.html, 2013.

21. Juarez A., Schonenberg W. and Bartneck C., “Implementing a low-cost CAVE system

using the CryEngine2”, Entertainment Computing, vol. 1, pp. 157–164, 2010.

22. Luebke, D., Watson, B., Cohen J., Reddy M., Varshney A., Level of Detail for 3D

Graphics, Elsevier Science Inc., New York, NY, 2002

53

23. Lewis M., and Jacobson J., “Game Engines in Scientific Research” (Special Issue: Game

Engines in Scientific Research), Communications of the ACM 45, No. 1 (January 2002):

27.

24. Mooney, T. Unreal Development Kit Game Design Cookbook. Packt, 2012.

25. OpenAL, http://connect.creativelabs.com/openal/default.aspx, 2013.

26. OpenGL, http://www.opengl.org, 2013.

27. OpenSceneGraph, http://www.openscenegraph.org, 2013.

28. OpenSG, http://www.opensg.org, 2013.

29. OSGBullet, http://code.google.com/p/osgbullet, 2013.

30. OSGEdit: OpenScenegraph Scene Editor, http://osgedit.sourceforge.net, 2013.

31. OSGWorks, http://code.google.com/p/osgworks, 2013.

32. OmniORB, http://omniorb.sourceforge.net, 2013.

33. Preddy, S.M., Nance, R.E., "Key requirements for CAVE simulations," Simulation

Conference, 2002. Proceedings of the Winter , vol.1, no., pp. 127- 135 vol.1, 8-11 Dec.

2002

34. Taylor, R., Hudson, T., Seeger, A., Weber, H., Juliano, J., Helser, A., "VRPN: a device-

independent, network-transparent VR peripheral system." Proc. ACM Symposium on

Virtual Reality Software and Technology 2001:55-61.

35. Shiratuddin, M. F., & Thabet, W. (2002). Virtual Office Walkthrough using a 3D Game

Engine. International	 Journal	 of	 Design	 Computing, pp. 1 - 25.

36. Sutherland, I. E. “A Head Mounted Three Dimensional Display”, Proceedings of the Fall

Joint Computer Conference (1968).

54

37. Sutherland, I.E. The Ultimate Display. Proc. IFIP 65, 2, pp. 506-508,582-583.

38. UDK – Unreal Development Kit – Epic Games, http://udk.com/, 2013.

39. Unity Game Engine, http://unity3d.com, 2013

40. vrjuggler, http://code.google.com/p/vrjuggler/, 2013.

41. VRPN, http://www.cs.unc.edu/Research/vrpn/, 2013.

42. W. Krueger and B. Froehlich, "The Responsive Workbench: A Virtual Work

Environment," IEEE Computer Graphics and Applications, Vol. 14, No. 3, May 1994,

pp. 12-15.

43. Wingrave, C. A. et al. (2010). The Wiimote and Beyond: Spatially Convenient Devices

for 3D User Interfaces , IEEE Computer Graphics and Applications, March/April, 24-38.

44. Witmer, B. G. & Singer, M. J. (1998). “Measuring Presence in Virtual Environments: A

Presence Questionnaire”, Presence, Vol. 7, No. 3, June 1998, 225–240

	 55	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

APPENDIX A
	

	 56	

APPENDIX A

VIZLAB WINDOWS INSTALLATION
	
The	 VizLab	 Windows	 installation	 is	 done	 by	 a	 MSI	 Installer	 package.	 This	

installation	 provides	 all	 the	 binary	 dependencies	 for	 VRJuggler	 and	
OpenSceneGraph.	 It	 also	 sets	 up	 all	 the	 Environment	 Variables	 for	 all	 the	 software	 to	
work.	 The	 package	 contains	 all	 the	 dependencies	 and	 executables.	 This	 guide	 will	
makes	 a	 24-‐hour	 job	 and	 cuts	 it	 into	 a	 10-‐minute	 process.	 	

	
1.	 Double	 click	 on	 the	 VizLab_Software	 installation	 package.	 The	 VizLab	 Software	
Setup	 Window	 will	 pop	 up.	

	
2.	 Click	 Install	 for	 installation.	 	
3.	 The	 installation	 process	 will	 proceed.	 This	 can	 take	 up	 to	 10	 minutes	 depending	 	
on	 your	 hardware.	

	 57	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	
	
4.	 Installation	 finishes	 and	 will	 ask	 you	 if	 you	 want	 to	 view	 the	 read	 me	 file.	

	
5.	 There	 should	 be	 a	 VizLab_Software	 folder	 installed	 on	 the	 C:/	 drive.	

	

	 58	

6.	 Within	 the	 VizLab_Software	 Folder	 there	 should	 be	 VRJuggler	 folder,	
OpenSceneGraph	 folder	 and	 ReadMe.txt	 file.	

	
	
7.	 Double	 check	 the	 Environment	 Variables	 are	 pointing	 to	 the	 VizLab_Software	
Folder.	
Go	 To:	 Start	 -‐>	 Control	 Panel	 -‐>	 System	 -‐>	 Environment	 Variables	 	

	
9.	 If	 they	 are	 pointing	 to	 their	 respective	 parameters	 then	 the	 installation	 was	 done	
correctly.	
	
This	 installation	 package	 includes	 everything	 to	 get	 started	 developing	 VizLab	
applications.	 	
	
	

	

	 59	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

APPENDIX B

	

	

	 60	

	
	
	

APPENDIX B

VIZLAB LINUX INSTALLATION
	
The	 following	 Appendix	 is	 the	 installation	 of	 VizLab	 on	 UBUNTU	 Natty	 11.04.	
This	 installation	 is	 in	 the	 form	 of	 Ubuntu	 packages,	 which	 makes	 for	 an	 easier	
installation	 process.	 There	 are	 a	 couple	 dependencies	 that	 come	 directly	 packaged	
from	 Ubuntu	 repositories,	 so	 internet	 connection	 is	 required.	 The	 installation	
process	 should	 take	 around	 30	 to	 45	 minutes;	 it	 varies	 depending	 on	 Internet	
connection	 and	 processor	 speed.	 The	 installation	 guides	 you	 through	 a	 series	 of	
terminal	 commands	 and	 debian	 packeges	 to	 install	 VizLab	 software.	 All	 debian	
packages	 have	 to	 be	 double	 clicked	 and	 then	 installed	 through	 Ubuntu’s	 Software	
Center.	 The	 following	 steps	 are:	
	 First	 Copy	 the	 folder	 VIZLAB_Software	 folder	 into	 the	 Desktop	 and	 open	 up	
the	 Terminal	 Console.	 The	 terminal	 console	 can	 be	 reached	 by	 going	 into	
Applications	 menu,	 Accessories	 sub-‐menu,	 and	 then	 Terminal.	
Upgrade	 the	 packages:	
	
sudo	 apt-‐get	 update	

	
	
	
After	 getting	 the	 update,	 the	 next	 step	 is	 installing	 VRJuggler	 Dependencies.	
Install	 uuid	 packages	 from	 Ubuntu	 apt	 respository	
	
	
	 	 Command:	 sudo	 apt-‐get	 install	 uuid	
	 	 Command:	 sudo	 apt-‐get	 install	 uuid-‐dev	

	

	 61	

	
	
	
	
	
	
	
	
	
	
	

Install	 cmake	 packages	 from	 Ubuntu	 apt	 respository	
	
	 Command:	 sudo	 apt-‐get	 install	 cmake	
	

	
	
	
	
	
	
	
	

Install	 Autoconf	 packages	 from	 Ubuntu	 apt	 respository	
	
	 Command:	 sudo	 apt-‐get	 install	 autoconf	
	
	
	
	
	
	

	

	 62	

	
	
Install	 JDK(Java	 Libraries)	 from	 Ubuntu	 apt	 repository:	
	
	 Command:	 sudo	 apt-‐get	 install	 default-‐jdk	
	

	
	
Install	 Boost	 Libraries	 from	 the	 Ubuntu	 repository:	
	
	 Command:	 sudo	 apt-‐get	 install	 libboost-‐all-‐dev	

	
	
	
	

	

	 63	

Install	 OpenSceneGraph	 from	 the	 Ubuntu	 repository:	
	 Command:	 sudo	 apt-‐get	 install	 openscenegraph	
	 Command:	 sudo	 apt-‐get	 install	 libopenscenegraph-‐dev	
	

	
	
Install	 Omniidl	 from	 the	 Ubuntu	 repository:	
	
	 Command:	 sudo	 apt-‐get	 install	 omniidl	
	 Command:	 sudo	 apt-‐get	 install	 omniidl-‐python	

	
	
	
	
	
	

	

	 64	

	
Install	 Glut	 libraries	 from	 the	 Ubuntu	 repository:	
	
	 Command:	 sudo	 apt-‐get	 install	 freeglut3-‐dev	
	

	
	
	
	
	
	

Install	 VRPN	 Packages	 :	

	
This	 is	 in	 the	 VIZLAB_Software	 folder	 that	 you	 copied	 into	 the	 Desktop.	 In	 the	
VIZLAB_Software	 folder	 there	 is	 a	 sub-‐folder	 called	 VRPN	 Packages.	 There	 are	 a	
number	 of	 packages	 in	 the	 VRPN	 folder.	 The	 Packages	 have	 to	 be	 installed	 in	 this	
particular	 order.	
	
	 Double	 Click:	 libvrpn-‐quat-‐dev_amd64.deb	
	 Double	 Click:	 libvrpn-‐java_amd64.deb	
	 Double	 Click:	 python-‐vrpn_amd64.deb	
	 Double	 Click:	 libvrpn-‐dev_amd64.deb	
	 Double	 Click:	 vrpn-‐server_amd64.deb	
	 Double	 Click:	 libvrpn-‐server_amd64.deb	
	 Double	 Click:	 vrpn-‐clients_amd64.deb	
	 Double	 Click:	 libvrpn-‐doc_amd64.deb	
	 Double	 Click:	 vrpn_amd64.deb	
	

	

	 65	

	

	

	

	

	

	

	 66	

	
	
Install	 CppDom	 Packages:	

	
This	 is	 in	 the	 VIZLAB_Software	 Folder	 in	 a	 folder	 called	 cppDom.	
The	 Packages	 have	 to	 be	 installed	 in	 this	 particular	 order.	
	
	 Double	 Click:	 libcppdom_amd64.deb	
	 Double	 Click:	 libcppdom-‐dev_amd64.deb	
	

	
	
	
	
	
	
	
	
	

	

	 67	

Install	 Flagpoll	 Package:	

	
This	 is	 in	 the	 VIZLAB_Software	 Folder	 in	 a	 folder	 called	 flagpoll.	
	
	 Double	 Click:	 flagpoll_all.deb	

	
	
Install	 Gmtl	 Package:	

	
This	 is	 in	 the	 VIZLAB_Software	 Folder	 in	 a	 folder	 called	 Gmtl.	
	
	 Double	 Click:	 gmtl_all.deb	
	
	
	

	

	 68	

	
	
Install	 Doozer	 Package:	

	
This	 is	 in	 the	 VIZLAB_Software	 Folder	 in	 a	 folder	 called	 Doozer.	
	
	 Double	 Click:	 doozer_all.deb	

	
Through	 the	 Command	 line	 go	 into	 the	 Doozer/Doozer	 folder.	
	
	 Command:	 chmod	 777	 ./configure	
	 Command:	 chmod	 777	 ./install-‐sh	
	 Command:	 chmod	 777	 mkinstalldirs	
	 Command:	 ./configure	
	 Command:	 sudo	 make	
	

	

	 69	

	
	
	
Install	 VrJuggler	 Packages:	
	
This	 is	 in	 the	 VIZLAB_Software	 Folder	 in	 a	 folder	 called	 VRJuggler3.0	 Packages.	
This	 folder	 to	 composed	 of	 Gadgeteer,	 Jccl,	 Sonix,	 Tweek,	 Vpr,	 Vrj,	 Vrjuggler	 folders.	
	
The	 installations	 of	 these	 packages	 have	 to	 be	 installed	 in	 a	 particular	 order	 in	 order	
for	 VRJuggler	 to	 be	 installed.	 It	 is	 essential	 that	 you	 have	 already	 installed	 the	
previous	 Dependencies,	 if	 not,	 these	 packages	 cannot	 be	 installed	 due	 to	 the	
dependences	 to	 the	 previous	 packages.	
The	 order	 is	 following:	
	
Open	 VrJugglerCommons	 Folder:	

	
	 Double	 Click:	 vrjuggler-‐common-‐3.0_all.deb	
	 Double	 Click:	 vrjuggler-‐common-‐3.0-‐dev_amd64.deb	
	

	

	 70	

	
	
Open	 Vpr	 Folder:	

	
	 Double	 Click:	 libvpr-‐2.2_amd64.deb	
	 Double	 Click:	 libvpr-‐2.2-‐dev_amd64.deb	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	

	 71	

Open	 Sonix	 Folder:	

	
	 Double	 Click:	 libsonix-‐1.4_amd64.deb	
	 Double	 Click:	 libsonix-‐1.4-‐dev_amd64.deb	
	

	
	
Open	 Tweek	 Folder:	
	

	
	 Double	 Click:	 libtweek-‐1.4_amd64.deb	
	 Double	 Click:	 libtweek-‐1.4-‐dev_amd64.deb	
	 Double	 Click:	 libtweek-‐idl-‐1.4-‐dev_amd64.deb	
	

	

	 72	

	

	
	
Open	 Jccl	 Folder:	

	
	 Double	 Click:	 libjccl-‐1.4_amd64.deb	
	 Double	 Click:	 libjccl-‐1.4-‐dev_amd64.deb	
	 Double	 Click:	 libjccl-‐rtrc_amd64.deb	
	

	

	

	 73	

	
	
Open	 Gadgeteer	 Folder:	

	
	 Double	 Click:	 libgadgeteer-‐amd64.deb	
	 Double	 Click:	 libgadgeteer-‐dev_amd64.deb	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	

	 74	

Open	 Vrj	 Folder:	

	
	 Double	 Click:	 libvrj-‐3.0_amd64.deb	
	 Double	 Click:	 libvrj-‐3.0-‐dev_amd64.deb	
	 Double	 Click:	 vrjconfig-‐3.0_amd64.deb	
	

	

	
	
	
	
	
	
	
	
	
	
	
	
	

	

	 75	

Open	 Vrjuggler	 Folder:	
	

	
	 Double	 Click:	 vrjuggler-‐3.0_amd64.deb	
	 Double	 Click:	 vrjuggler-‐3.0-‐dev_amd64.deb	
	

	
	
	
VizLab	 Software	 should	 be	 installed	 after	 installing	 VRJuggler.	 Now	 you	 should	 be	
able	 to	 run	 VizLab	 Applications.	 All	 environment	 variables	 are	 set	 into	 the	 system	
and	 the	 application	 folders	 are	 installed	 into	 the	 /usr/bin,	 /usr/include,	 and	
/usr/share	 folders.	 	

	 76	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

APPENDIX C

	

	 77	

APPENDIX C

VIZLAB CONFIGURATION WITH VRJCONFIG

 This Appendix provides details for configuring VizLab system with VRJuggler’s
VRJConfig. VRJConfig can be found in Windows VizLab_Software -> VRJuggler ->Bin Folder
or Linux Platform in /usr -> bin Folder . In the folder you will see a file called
VRJConfig.bat(Windows) or VRJConfig.sh(Linux), this file is a batch executable or shell script
file, double clicking should start execution and should display VRJConfig GUI on the screen.

 VRJConfig starts with an empty project. You can create a new configuration, open a
configuration file, save configuration, cut, copy and paste within the menu bar on top.

	 78	

Creating a new Configuration will prompt you for the name and the path for the file to be saved.
Configurations are XML files and saved with a .jconf extension.

 After entering the name and the path of the file to be saved, the configuration editor
should appear within the right panel of VRJConfig window.

 A Configuration is a collection of configuration elements that provide a complete set of
parameters needed to execute a VR application. On the left hand side, you should see the
Configuration Element Navigator Panel; within the Element Navigation Panel you can add and
remove configuration elements. Configuration elements hold properties of the elements and their
corresponding values.

	 79	

 The main elements discussed in this appendix are Input Manager, Devices, Device
Proxies, Displays, Cluster, and User elements. These elements are enough to get you started
creating a configuration file and are the basic elements for a VR application.

Input Manager

 The Input Manager configuration element has three properties: a driver search path, a
driver DLL name, and a directory to scan for drivers to load. All three properties may have zero
or more values, but at least one must have a value in order for the configuration element to be
useful.

• The driver search path provides the Input Manager with a list of directories where driver

DLLs may be found.	 	
• The driver DLL name property is used to name specific device drivers to load.	 	
• The driver scan path provides a mechanism for loading all the device drivers found in the

named directory or directories.

 The Drivers are precompiled drivers provided by gadgeteer for the inclusion of old
devices. These Drivers can be found in:
 VizLab_Software-> VRJuggler -> lib ->gadgeteer -> drivers (Windows)
/usr -> lib -> gadgeteer -> drivers (Linux)
It is important to note that a non-standard device (mouse, keyboard, etc) needs a .dll/.so or a
VRPN server in order to work with VR applications.

Devices
 Gadgeteer supports two categories of devices physical devices and simulator devices. The
term physical device is arguable because simulator devices get their input from a keyboard and
mouse, and a keyboard and mouse are certainly physical input devices. The distinction is that
simulator devices mimic the behavior of physical devices such as trackers using input from a
keyboard and/or a mouse. The configuration of simulator devices differs from that of physical
devices when it comes to VRJConfig.
A key aspect that is common to all input devices handled by the Input Manager is that they
define input sources of one or more input categories. The input categories currently supported by
Gadgeteer are the following:

• Analog: Data in a continuous range with well-defined minimum and maximum values
and receive the data as normalized values in the range 0.0 to 1.0.

• Command: Discrete command input, often in the form of recognized spoken commands
or pre-defined gestures.

	 80	

• Digital: on/off input, usually corresponding to simple button presses and releases.
• Digital glove: Distinct combinations of fingers.
• Gesture glove: Recognizable hand gestures based on knuckle angles.
• Keyboard/mouse input handler: Source of keyboard and mouse events from the native

window system.
• Positional: Multi-degree tracker data that can track up to six axis.
• String: Arbitrary sequences of characters, usually corresponding to spoken words or

phrases.

 A device, physical or simulator, will fall into one or more of those categories.
Physical devices are those that provide what is traditionally considered immersive input. In terms
of the Gadgeteer Input Manager, physical devices require a device driver plug-in. The driver
implements in software the communication protocol with the hardware so that data can be read
from the device and interpreted before being passed on to the VR application. The drivers handle
configuration elements for device and if the Input Manager does not load a required device
driver, the configuration element cannot be processed. It is very important to remember to
configure the Input Manager as part of configuring a physical device.
 The configuration of simulator devices is much more involved than that required for
physical devices. All simulator devices read data from a traditional desktop keyboard and mouse
and translate the data into information that mimics the behavior of the various device types
supported by the Input Manager. To configure a simulator device, there are three pieces that
must be configured: a keyboard/mouse input handler, an input window, and the actual simulator
device.

The following are the possible Simulated Device Types and their properties:

 Simulated Analog Devices

• keyboard/mouse proxy- a pointer to another configuration element of type
keyboard_mouse_proxy.

• increment key- property defines a list of key pairs that are used to identify the key
presses for incrementing the value of the analog input sources.

• decrement key- property is the complement to the “increment key” property.
• Delta- The “delta” property defines the change in the analog value per key press.
• range minimum - property sets the minimum possible value for the device as a

floating-point value. The default is 0.0.
• range maximum - property sets the maximum possible value for the device as a

floating-point value. The default is 255.0.
• initial value - property sets the starting value for the device as a floating-point

value. This must be in the range [min, max].

	 81	

 Simulated Digital Devices

• keyboard/mouse proxy - property specifies a pointer to another configuration
element of type keyboard_mouse_proxy.

• digital button key - property defines a list of key pairs that provide digital input
sources.

 Simulated Digital Glove Devices

• keyboard/mouse proxy - property specifies a pointer to another configuration
element of type keyboard_mouse_proxy.

• left glove position - property sets a pointer to a position proxy that provides
tracker information for the left hand.

• right glove position - property sets a pointer to a position proxy that provides
tracker information for the right hand.

 Simulated Positional Devices

• keyboard/mouse proxy - property specifies a pointer to another configuration
element of type keyboard_mouse_proxy.

• key pairs - property has twelve values that define the key pairs that are translated
into changes in the 4×4 transformation matrix.

• initial position- property has three values that specify the initial position in three-
dimensional space of this positional device.

• initial rotation- property has three values that define the rotation about the X, Y,
and Z axes for this device.

• translation delta - property sets the change in translation per key press received
from the keyboard/mouse input handler.

• rotation delta - property sets the change in rotation per key press. translation
coordinate system - property has two possible values: Local or Global. The value
chosen indicates whether translations occur in the local coordinate frame or in the
global coordinate frame.

• rotation coordinate system - property has two possible values: Local or Global.
The value chosen indicates whether rotations occur in the local coordinate frame
or in the global coordinate frame.

• position filters - property defines zero or more position filters to apply to data
received from this device.

	 82	

Device Proxies
 Device proxies introduce the layer of abstraction and indirection needed to ensure that
VR applications do not become tightly coupled with specific devices. The proxy acts as a pointer
to a single data source from the actual device. Device proxies are tied in to the input devices
described earlier. This makes them have corresponding proxy type for each device.

 It can be seen from the top figure that Button0Proxy is selected. Within the property
fields there is a Digital Device property and it is pointing to SimWandButtons, which is a device
within our Devices. The Unit property specifies the value of the button when this button is
pressed. This shows the main idea of configuring a Device Proxy to a particular Device Element.

Proxy Aliases
 Proxy aliases provide more abstract identifiers for use at the level of VR applications. In
a VR application, there will invariably be at least one device interface object, and that object
must be initialized with a symbolic identifier used by the Input Manager to connect the device

	 83	

interface with a proxy. While the specific proxy name can be used, aliases offer some additional
flexibility because a single proxy may have many aliases.

 For example, we had already created a proxy for a button in SimWandButtons device
called Button0Proxy. I have created a VJButton0 proxy alias. A proxy alias only has one
property field called Proxy Pointer. This property will point to a specific Proxy, in this particular
case Button0Proxy. It is important to not that when working with application code, you will only
have to reference the proxy alias to retrieve the value of a specific device element.

Position Filters
 When dealing with data from a tracker, the positional references of the tracker or its
sensors may not be what you might expect. Most of the time, tracking data needs to be
transformed into common coordinates.

 We can use the figure up above to describe this process. This application has a Positional
Device that gets the head position. SimHeadPos is the device that retrieves head positional data.
The properties can be set to the desired positions.

 Next, a head proxy is created called HeadProxy. HeadProxy points to SimHeadPos.
Within the HeadProxy we can add a position filter that will convert device coordinate data to our
defined coordinate system. It is important to note that it is better to make positional changes
within a Proxy than in the Device. This is because a same device can be used with multiple VR
applications at the same time.

	 84	

Displays
	

Display System
 When configuring displays, the Display Manager is the first piece that must be
configured. The Display Manager is configured by the Display System element. Except in the
case of a cluster configuration, there must always be one and only one “Display System”
configuration element in a configuration. The Display System configuration element has only
two properties: “Number of Pipes” and “X11 displays (Pipe Identifier).” These are explained
below.

• Number of Pipes – property tells the Display Manager how many physical graphics pipes
the host machine has.

• Pipe/Pipe Indentifier – property that defines a list of available pipe identifiers available
for opening windows of any type.

• Swap Group - property that defines if the display needs to be sync with other displays.
(Note: This is if your running more than one display with one computer or a System
cluster.)

 There must always be one Display System configuration element in a non-cluster
configuration with an accurate value set for the number of available graphics pipes. The Display
Manager configuration impacts the number of rendering threads created. For a multi-pipe
configuration, there will be one rendering thread created per pipe. If more than one display
window is opened on a single pipe, all the windows in that pipe will render in the same thread.

Display Windows
 Display windows are used for rendering graphics. Display windows are capable of
displaying OpenGL graphics, and make use of the platform-specific (depending if Windows or
Linux) API for opening and managing OpenGL-aware windows. The details are hidden behind
the abstract concept of a display window, therefore making the configuration process the same
through all platforms. The display window is made out of several-nested configuration elements,
making it the most configurable element when configuring a system.

	 85	

• Origin - property defines the (X,Y) coordinate for the window origin(Top Left).
• Size - property defines the width and the height of the window.
• Pipe - property is an index into the zero-based list of graphics pipes (rendering threads)

defined in the Display System configuration element.
• Use border – property that will display window border if set to true.
• Hide Mouse Pointer – property that will hide the mouse displaying on window.
• Stereo - property indicates where the display window should be opened with active stereo

rendering capabilities enabled.
• Full Screen Window - property indicates whether the window should be opened full screen. If

it is set to true, the origin and size properties are ignored and the window is opened to the
maximum resolution of the display.

• Always on Top - property indicates whether the window is to be positioned above all other
windows on the desktop. If it is set to true, no other windows will be able to be opened above
the display window. (Note: There is an issue when using NVidia framelock it will cause a
deadlock or block for long periods of time. It’s recommended that this property be set to false
when used with NVidia framelock.

• Use this Window- property defines whether the display window should be used or not.
• Keyboard/Mouse Input Handler - property points to another configuration element of type

keyboard_mouse_device.
• Allow Mouse Locking - property that will mouse pointer into the center of the window. (Note:

This is done by pressing a key that is configured by “Lock Key”.)
• Lock Key - property defines a key that, when pressed, causes the mouse pointer to be locked

to the center of the window.

	 86	

• Start Locked - property indicates where the mouse pointer should be locked to the center of
the window as soon as the window opens.

• Sleep Time - property sets a sleep time (milliseconds) for the input window thread. (Note: To
prevent the display window from starving other event threads.)

OpenGL Frame Buffer
 Each display window has a unique OpenGL frame buffer configuration. The nested
configuration element has a direct correspondence to the way that the window API works, so
familiarity with WGL, GLX, or AGL is helpful when understanding what values to use for the
frame buffer settings. Users must understand what is meant by color depth in order to configure
the frame buffer correctly, those who do not should leave all values to the default settings.

• Visual ID - property, a specific GLX or WGL visual ID can be chosen for the display.

(Note: glxinfo for Linux and wglinfo for Windows)
• Red Channel Size - property specifies the minimum number of bits per pixel to use for the

red channel.
• Green Channel Size - property specifies the minimum number of bits per pixel to use for

the green channel.
• Blue Channel Size - property specifies the minimum number of bits per pixel to use for

the blue channel.
• Alpha Channel Size - property specifies the minimum number of bits per pixel to use for

the alpha channel.
• Number of Auxiliary Buffers - property specifies the minimum number of bits to use for

the Auxiliary buffer. (Note: It's typically used for accumulating a series of images into a
final, composite image.)

	 87	

• Depth Buffer Size - property specifies the minimum number of bits to use for the depth
buffer.

• Stencil Buffer Size - property specifies the minimum number of bits to use for the stencil
buffer. (Note: stencil buffer is to restrict drawing to certain portions of the screen.)

• Acc. Buffer Red Channel Size - property specifies the minimum number of bits per pixel
to use for the Acc. red buffer channel.

• Acc. Buffer Green Channel Size - property specifies the minimum number of bits per
pixel to use for the Acc. green buffer channel.

• Acc. Buffer Blue Channel Size - property specifies the minimum number of bits per pixel
to use for the Acc. blue buffer channel.

• Acc. Buffer Alpha Channel Size - property specifies the minimum number of bits per
pixel to use for the Acc. alpha buffer channel.

• Number of Multisample Buffers - property that enables the number of multisample buffers
can be configured and used.

• Number of Samples - property that enables the number samples per buffer can be used.
• Use create context attribs - property specifies whether to use OpenGL 3.0 functions such

as glwCreateContextAttribsARB() or glXCreateContextAttribsARB() when creating the
OpenGL context. (Note: Setting this property to true, the user must have OpenGL 3.0 or
newer)

• Context Major Version - property can be used to set the major version for the OpenGL
context.

• Context Minor Version - property can be used to set the minor version for the OpenGL
context.

• Context Flags - property can be used to flags for the creation of the OpenGL context.

Viewports

 Viewport can be perceived as a window into the graphical display or scene. There are two
types of viewports when configuring a system; a Simulator Viewport and Surface Viewport.
Both type of viewports have common configuration properties, these properties are as followed:

• Origin - property defines the (X,Y) coordinate for the viewport origin(Top Left). (Note:
This is within the window frame)

• Size - property defines the width and the height of the viewport. (Note: this is from value
0 - 1. It is the percentage of how much the viewport will take out of the window space.)

• View - property defines which eye will be rendered by the Draw Manager's rendering
thread for the display window. Possible elements are Left Eye, Right Eye, and Stereo (if
stereo option is chosen). (Note: The default setting is to render on the left eye.)

• User - property points to a configuration element defining a single User.

Simulator Viewports
 Simulator viewports are used for rendering a simulator interface. The default simulator
interface has three components: a head, a wand, and a detached, movable camera.

	 88	

• Vertical Field of View - property accepts real-numbered (float-point) values representing
the degrees of the viewport’s field of view.(Note: Default is 80.0 degrees)

• Simulator Plugin - property that configures OpenGL Drawing Manager and consist of
multiple elements.
⇒ Camera Position - property points at a position device proxy config element that can

move the detached camera around in the scene.
⇒ Wand Position - property points at a position device proxy config element that can

move the wand around in the scene.
⇒ Draw Projections - property that indicates whether projections for surface viewports

should be rendered within the simulator interface.
⇒ Surface Color - property has three real-numbered values that provide the red, green,

and blue settings for the color of the rendered projection surfaces.
⇒ Head Model - property that names the model to be loaded by the simulator plug-in.

(Note: The default model is in (VRJuggler main folder then
/share/vrjuggler/data/models/head.flt)

⇒ Wand Model - property that names the model to be loaded by the simulator plugin.
(Note: The default model is in (VRJuggler main folder then
/share/vrjuggler/data/models/wand.flt)

	 89	

Surface Viewports
 These are used for projection surfaces such as the walls for a CAVE, the surface of an
immersive desk, or the eyes of an HMD. In these viewports, the user's eyes and the camera are
permanently attached. The rendered view is for the perspective of the tracked user. The manner
by which the view is calculated depends on one key factor; whether the surface is at a fixed point
or if it can move. Those surfaces that are in fixed positions are typically CAVE walls or
immersive desk and those that can move have a tracker associated with them in some way.

• Corners - property that positions the four corners of the projection surface. The surface

must be rectangular in shape, but it may be at any orientation. The settings for the corners
represent the actual position of the physical surface's corners, and the units for the corners
are always entered in meters. The origin point for the corners takes on a different
meaning depending on whether the surface is fixed or movable, however. For a fixed-
position projection surface, the origin will be the origin set by the tracker configuration.
If there is no tracker, then choose an origin and set the corners relative to it.

• Is tracked - property indicates whether the surface is fixed in place (false) or movable
(true).

• tracker proxy - property to set the position device proxy for the tracker sensor that will
provide the viewing information. (Note: “Is Tracked” should be true.)

Cluster Configuration

 Cluster configurations have two required pieces; one or more cluster nodes and a single
Cluster Manager.

	 90	

Cluster Nodes
 A cluster configuration makes use of a cluster node configuration element. A cluster node
captures aspects of the hardware and software that are unique to each node(A computer in a
cluster configuration) in the cluster, and only the node identified in the configuration element
will handle the information intended for it. All the cluster nodes in the cluster make up the
cluster network that is handled by the Cluster Manager.

• Display system - property sets up the graphics pipe information, just as was presented in
Display System. There must be only one display system configuration per node, even if
display windows will not be opened.

• Display windows - property that lists 0 or more display windows to be opened on the
local node. This is where each rendering node in the cluster defines its window(s). The
windows themselves are configured exactly as described in Display Windows.

• Listen port - property that identifies the port on which the cluster node will listen for
incoming connections from the other nodes in the cluster. (Note: On most operating
systems, port numbers below 1024 are not allowed for user-level applications, it is best to
pick a port in the range 10000–65536).

• Host Name - property identifies the node of the cluster. The value must be either a valid
host name of the node.

	 91	

Cluster Manager
 Configuring the Cluster Manager is very straightforward. First, any cluster plug-ins that
will be needed for the cluster configuration should be identified. Then, the list of cluster nodes
must be built up using pointers to the cluster node configuration elements.

• Plug-in path - property that provides path information for loading cluster plugins. (Note:
The path for Windows is VizLab_Software-> VRJuggler -> lib ->gadgeteer -> plugins or
Linux is /usr -> /lib -> /gadgeteer -> /plugins folder.)

• Plug-in - property can have zero or more values with each value providing the abstract
name of a cluster plug-in to load. (Note: depends on the drivers on the folder from plug-
in path)

• Cluster node - property lists all the nodes of the cluster, regardless of whether they are
rendering nodes, input nodes, or both.

• Use Software swap lock - property indicates whether a software-level swap lock based
on TCP/IP should be used. If false, it is expected that some other software- or hardware-
level swap lock solution is in place. Otherwise, there will be no swap locking, and
visual “tearing” will likely be seen between screens.

	 92	

Cluster Plug-Ins
 Remote Input Manager(RIM):

 Remote Input Manager is required for sharing data from input devices among all
the cluster nodes.	 Without this plug-in, input device data is only available on the node
where the device is physically connected. If the applications are expecting to get input
from devices, then this plug-in must be loaded. This plug-in does not have a
configuration element, so including it with the list of plug-ins for the Cluster Manager to
load is sufficient to enable its use.

 Application Data Manager:

 Application Data Manager is required when applications have custom data
structures that will be shared among the cluster nodes. The Application Data Manager
itself requires no configuration, but applications making use of the Application Data
Manager features may require additional configuration information (GUID and
hostname).

globally unique identifier (GUID) - Every data type that will be shared by the clustering
subsystem must be registered at run time. Globally unique identifiers are 128-bit values
that are guaranteed to be statistically unique. They provide a means for giving every user-
defined data structure a unique identifier.

responsible host(hostname) - The “data-local” cluster node is identified using this
property. This is a string value type that will be used to match against the host name of
each cluster node. When the value of this property matches the host name of a cluster
node, that cluster node will be the data-local node for the shared data structures.

Users

In the configuration, users are configurable and this includes the separation between the
user's eyes, which is also called the interocular distance. A configuration element for a user
names the position device proxy for the user's head as well. At least one user must be defined per
configuration because the viewports contained within a display window must refer to the user.

For more information in configuring the system please look at VRJuggler’s Documentation at
vrjuggler.org/documentation.php.

	

	 93	

APPENDIX D

	

	 94	

APPENDIX D

VIZLAB APPLICATIONS

 This Appendix describes VizLab’s Applications, which are extensions of VRJuggler’s
sample applications. There are three applications, which are going to be covered:
 MPapp – OpenGL application
 OsgNav – OpenSceneGraph and OpenSG applications
 OsgNav_Bullet – Scene Graph applications with Bullet Physics Engine

These applications have something in common, which is the main.cpp file. This file consists of
calling VRJuggler kernel, it follows more or less the GLUT programming paradigm. The main
program just runs a VRJuggler kernel instance; the kernel takes care of input handling,
rendering, clustering, networking, etc.

MPapp

 MPapp is an OpenGl application made to run with VRJuggler Kernel Engine. It consists
of the following files:

• Main.cpp – The main program which runs in VRJuggler Kernel.
• Mesh.h – Header file used for a mesh implementation.
• MPApp.h – Header file that declares OpenGL functions and integrates them with

VRJuggler.
• MPApp.cpp `– Implementation file for MPApp.h functions.

Within the MPApp.h file there are the following functions:

• Init()
• apiInit()
• bufferPreDraw()
• preFrame()
• intraFrame()
• postFrame()
• contextInit()
• draw()

The Init() function serves as the initialization function for Devices and Interfaces, this is

where you would link the devices to the proxy aliases that were declared in the configuration
process and also serves as initialization for non-OpenGL functionality.

	

	 95	

 The apiInit() function serves as initialization function for any API that you may have
added to the application; you can also use it to initialize any non-OpenGL functionality. This
function can be used to initialize any Tweek interface that you may have developed for an
OpenGL application, as it is called before the drawing manager.

 The bufferPreDraw() function is designed for updating any functionality when working
with stereoscopic stereo; it is called before each buffer (left and right).

 The preFrame() function is designed for updating any functionality within your OpenGL
application before the frame is called to the drawing manager. This is where you would want to
update any camera, user positions, matrix transformations, devices, etc.

 The intraFrame() function is designed for updating any functionality while the fram is in
the drawing manager and it is rendering. This can be used for updating information or can trigger
any Tweek applications. It is mostly used if your application runs multiple frames.

 The postFrame() function is designed for updating any functionality when the frame has
finished rendering, but before any kernel updates are applied(Device and Cluster functionality).

 The initGLState() function is designed for initializing OpenGL state information, this
includes lighting, shading, ambient lighting, etc.

 The draw() function is designed for the drawing manager. This is the function used to
draw the scene within the drawing manager. It can be called once or more times per frame
according to your specifications.

Implementation occurs within the MPApp.cpp. This is where you would implement the
functionality of the functions declared on the MPApp.h file. A GLUT imported to MPApp
example application can be reached in: http://dchavez.net/?p=703

OsgNav
 OsgNav is a Scene Graph based application made to run with VRJuggler Kernel Engine.
The project consists of six files.

• Main.cpp – The main program which runs in VRJuggler’s Kernel.
• Nav.h – Header file that provides Navigation properties.
• OsgNav.h – Header that declares OsgNav.h functions.
• OsgNav.cpp – Implementation of the OsgNav.h Navigation functions.
• RemoteNavSubject.h – Header if running a Cluster Configuration. It declares

functions needed for sharing navigation information across a cluster using RIM
plug-in.

• RemoteNavSubject.cpp – Implementation of Cluster functions declared in
RemoteNavSubject.h.

It is important to note that the make file will compile RemoteNavSubject.h and
RemoteNavSubject.cpp, even if you’re not running a cluster configuration.

	

	 96	

 Navigation in OsgNav is handled by Nav.h and there are 4 main function that you would
need to get familiar in working with Nav.h and are as follows:

• setWalkMode – sets if the user will be bound to the bottom of the scene or if he
can fly around the scene.

• setVelocity – sets how fast the user will travel within in the scene.
• seRotationVelocity – sets how fast the user will rotate within the scene (angular

velocity).
• setCurPosition- will set the starting position of the user when the scene initializes.

 The application itself is within OsgNav.h and OsgNav.cpp. As MPApp, it uses GLUT
paradigmn for programming the application. The following are the functions within the
application:

• initScene – This function initializes the scene; where lighting, ambient lighting,
and other properties are initiated.

• myInit - This function is for any API other than OSG initialization.
• initTweek - is for any java interfaces that uses Tweek
• getScene – initiates the root of the Scene Graph.
• bufferPreDraw – This function provides updates for each eye if your rendering in

3D.
• latePreFrame – This function is used to update any information before the scene

gets drawn.
• intraFrame – This function is used to do anything while the scene is drawn but is

still in the pipeline.
• postFrame – This function is used to update any information when the scene is

drawn.
• setModelFilename – gets a model from the string path.

More information about OsgNav application can be reached in: http://dchavez.net/?p=739

OsgNav_Bullet
 OsgNav_Bullet is a Scene Graph based application with Bullet physics engine made to
run with VRJuggler Kernel Engine. The project is derived from OsgNav and uses the same files
but with added functionality for Bullet integration. It uses OsgWorks and OsgBullet libraries to
join Scene Graphs with Bullet.

• Main.cpp – The main program, which runs in VRJuggler’s Kernel.
• Nav.h – Header file that provides Navigation properties and declaration of Bullet

physics functions.
• OsgNav.h – Header that declares Navigation functions and where bullet instances

are joined with OsgWorks and OsgBullet.
• OsgNav.cpp – Implementation of the OsgNav.h Navigation functions and Bullet

interactions.

	

	 97	

• RemoteNavSubject.h – Header if running a Cluster Configuration. It declairs
functions needed for sharing navigation information across a cluster using RIM
plug-in.

• RemoteNavSubject.cpp – Implementation of Cluster functions declared in
RemoteNavSubject.h.

• Ragdoll.h – Declare the functionality for a ragdoll avatar
• Ragdoll.cpp – Implementation for the Ragdoll avatar

 OsgNav and OsgNav_Bullet have the same foundations, but differ in that OsgNav_Bullet
includes Bullet physics engine. In order for them to work together OsgWorks and OsgBullet are
needed. OsgWorks and OsgBullet provide the communication layer between OpenSceneGraph
and Bullet.

• initScene – This function initializes the scene; where lighting, ambient lighting,
and other properties are initiated.

• initPhysics – Initializes Bullet, OsgWorks, OsgBullet libraries to use in the
application

• myInit - This function is for any API other than OSG initialization.
• initTweek - is for any java interfaces that uses Tweek
• getScene – initiates the root of the Scene Graph.
• bufferPreDraw – This function provides updates for each eye if your rendering in

3D.
• latePreFrame – This function is used to update any information before the scene

gets drawn.
• intraFrame – This function is used to do anything while the scene is drawn but is

still in the pipeline.
• postFrame – This function is used to update any information when the scene is

drawn.
• setModelFilename – gets a model from the string path.

More information about OsgNav application can be reached in: http://dchavez.net/?p=749

	 98	

BIOGRAPHICAL SKETCH

Moises D. Carrillo, raised in Mission, Tx, graduated in Spring 2011 from University of

Texas – Pan American with a degree in Computer Science. He entered the Masters program at

University of Texas – Pan American in Fall 2011. During his time as a graduate student, he

worked as a Teacher Assistant and Research Assistant for the Department of Computer Science.

After he graduates in May 2013, Moises will move to Austin, Tx, where he will work for IBM as

a Software Engineer. You may contact Moises D. Carrillo at carrillo_moises@hotmail.com

	

	VizLab: The Design and Implementation of An Immersive Virtual Environment System Using Game Engine Technology and Open Source Software
	Recommended Citation

	Title
	BlackPage
	Title2
	BlackPage
	Copyright
	BlackPage
	Abstract
	BlackPage
	Acknowledgments
	BlackPage
	TableofContents
	BlackPage
	ListofFigures
	Thesis
	AppendixA
	AppendixB
	AppendixC
	AppendixD
	Biographical Sketch

