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ABSTRACT

Lopez, Juan F., Jr., Compressed Sensing for Multiple Input - Multiple Output Radar Imaging.

Master of Science (MS), May, 2013, 33 pp., 8 figures, references, 22 titles.

Multiple input - multiple output (MIMO) radar utilizes the transmission of spatially diverse

waveforms from a static antenna array to gather information about the desired scene. We will

demonstrate how techniques from compressed sensing can be applied to image formation in MIMO

radar when in the presence of undersampling. We analyze the problem under the general theoretical

framework of inverse scattering.
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I

INTRODUCTION

Radar is an acronym that stands for Radio Detection and Ranging. It is a remote sensing

technology that uses electromagnetic radiation in the radio or microwave spectrum to detect objects

over large distances. From its name, it should be clear that a true radar system must be able to both

detect a target and determine its distance from the radar antenna. However, modern systems have

a number of other added capabilities. For example, some radar systems are able to measure the

velocity of a target in terms of the doppler-shift induced by the motion of the target, which may

be either linear or rotational. Another very important application of radar is the production of high

resolution images.

Multiple input - multiple output radar utilizes the transmission of multiple waveforms from

spatially diverse antennas to gather information about the desired scene [18]. Specifically, the

knowledge of the reflected waves are measured and the scene is by determined by the knowledge

of the incident and reflected waves. Hence, the imaging problem can be cast as an inverse scattering

problem.

The inverse scattering problem is then discretized to form a linear system. Solving this lin-

ear system yields the scene vector which is used to paint an approximation of the desired scene.

However, this system is typically overdetermined as the dimension of the data usually exceeds the

dimension of the discretized scene and various algorithms such as least squares minimization are

used to obtain an approximate solution.

The advent of compressed sensing in signal processing has enabled high accurate recovery of

signals when in the presence of undersampling [2]. The main requirement is that the signal needs

to be sparse. In the context of MIMO radar imaging, undersampling yields an underdetermined

linear system, i.e. the dimension of the data is much less than the dimension of the scene vector.
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The purpose of this thesis is to study the use of compressed sensing (CS) algorithms applied to

MIMO radar image formation. In particular we study the use of CS algorithms in reconstructing

scenes with small targets and scenes that can be approximated with piecewise constant objects. The

sensing matrix consisting of array parameters plays a crucial role in the success of these algorithms

and we will analyze, by virtue of numerical simulations, the role of these parameters in the success

of CS algorithms.

I.1 Thesis Chapter Outline

Here a basic outline of the thesis chapters is presented.

II:

The MIMO radar imaging problem problem is introduced. We consider the one dimensional

imaging problem when the targets lie at a known range and compare particular compressed sensing

techniques with other signal processing.

III:

We develop a mathematical model for the two dimensional imaging problem as an inverse

scattering problem and present the compressed sensing signal processing techniques we will apply.

IV:

We illustrate the success of compressed sensing signal processing for MIMO radar imaging in

the case of small, pointlike targets and extended two dimensional targets.

2



II

INTRODUCTION TO MIMO RADAR AND COMPRESSED SENSING

II.1 Multiple Input - Multiple Output (MIMO) Radar

The traditional problem of radar imaging concerns the remote detection of an object from the

reflected data of a probing signal. Multiple input-multiple output (MIMO) radar systems utilize

multiple antennas transmitting diverse waveforms to acquire information about the desired target

scene. Here we introduce the concept by discussing the 1-dimensional cross range imaging prob-

lem. In cross range imaging the targets and antenna array are coplanar and the targets lie at a fixed

known range away from the antenna array. Also the static transmitting antennas are colinear and

serve as receiving antennas as well. We also make the simplifying assumption that the targets are

pointlike. The problem then consists of estimating the cross range location of targets with nonzero

reflectivity and the relative strength of the reflecting targets.

II.2 MIMO Signal Model

Let x`.t/ denote baseband the time domain signal transmitted by the `th transmit antenna. The

`th transmit antenna transmits a frequency modulated form of x`.t/ with carrier frequency f0, so

the transmitted probing signal from the `th antenna has the form

s`.t/ D e
2�if0tx`.t/: (II.1)

Let dj .t/ denote the received signal data at antenna j . We discretize the cross range space into

Nk targets and let ˇk 2 C denote the reflectivity of a point target located at position zk; k D

1; : : : ; Nk . The received signal at antenna j is the superposition of the attenuated, time delayed

transmitted signals. IfNt andNk denote the number of transmit antennas and the number of targets

3



respectively then the received data dj .t/ has the form [18]

dj .t/ D

NkX
kD1

NtX
`D1

ˇke
�2�if0�

k
` e�2�if0 Q�

k
j x`.t � �

k
` � Q�

k
j / (II.2)

where

�k` D
jpl � zkj

c0
(II.3)

Q�kj D
j Qpj � zkj

c0
(II.4)

and p`; Qpj are the locations of the `th transmit and j th receive antennas respectively, c0 is the

speed of signal propagation. We assume the baseband signal x` is slowly varying for all ` in the

sense that

x`.t � �/ � x`.t/ (II.5)

when � is small. In our model c0 D 3 � 108 m/s so �k
`
; Q�kj are small, therefore we can apply this

approximation in II.2 to get

dj .t/ �

NkX
kD1

NtX
`D1

ˇke
�2�if0�

k
` e�2�if0 Q�

k
j x`.t/: (II.6)

Henceforth, we shall write this as an equality without confusion, i.e.

dj .t/ D

NkX
kD1

NtX
`D1

ˇke
�2�if0�

k
` e�2�if0 Q�

k
j x`.t/: (II.7)

Set

x.t/ D .x1.t/; : : : ; xNt
.t//T 2 CNt�1; (II.8)

ak D
�
e2�if0�

k
1 ; : : : ; e2�if0�

k
Nt

�T
2 CNt�1; k D 1; : : : ; Nk; (II.9)

bk D
�
e2�if0 Q�

k
1 ; : : : ; e2�if0 Q�

k
Nr

�T
2 CNr�1 k D 1; : : : ; Nk: (II.10)
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Then the total data received at time t has the form

d.t/ D
NkX
kD1

ˇk Nbka�kx.t/ (II.11)

where

d.t/ D .d1.t/; : : : ; dNr
.t//T 2 CNr�1: (II.12)

We write the totality of the data over all time samples ft1; : : : ; tN g in matrix form as

D D .d.t1/j � � � jd.tN // 2 CNr�N (II.13)

and then

D D Nbkˇka�kX (II.14)

where

X D .x.t1/j � � � jx.tN // 2 CNt�N : (II.15)

The matrix equation (II.14) is the form of data used in [18] for signal processing. We will write

(II.14) as an equivalent linear system to apply other signal processing techniques. Let dj be the

total data collected at receiver j ,

dj D .dj .t1/; : : : ; dj .tN //T 2 CN�1; (II.16)

and for each j , define �j 2 CN�Nk
as

�j D
�
e�2�if0 Q�

1
j XT Nak; : : : ; e�2�if0 Q�

Nk
j XT Nak

�
: (II.17)

Then

dj D �jˇ (II.18)

5



where ˇ D .ˇ1; : : : ; ˇNk
/T 2 CNk�1 is the scene vector. Stacking the dj ; �j yields the linear

system

d D ˆˇ (II.19)

where

d D

0BBBB@
d1
:::

dNr

1CCCCA 2 CNrN�1 (II.20)

and

ˆ D

0BBBB@
�1

:::

�Nr
:

1CCCCA 2 CNrN�Nk
(II.21)

II.3 MIMO Signal Processing

We will consider the case of undersampling so that the dimension of the data is less than the

dimension of the target vector ˇ, i.e. NrN � Nk. We will also suppose that received data is

corrupted by complex zero mean Gaussian noise of unit variance. Li and Stoica demonstrated in

[18] the success of least squares, CAPON, and APES signal processing in the case of oversampling.

The least squares estimate is given by

. ǑLS/k D
bTk DX�ak

N kbkk2Œa�kRxxak�
(II.22)

where

Rxx D
1

N
XX�: (II.23)

The CAPON and APES estimators are given, respectively, by

. ǑCap/k D
bTk R�1ddDX�ak

NŒbTk R�1dd Nbk�Œa�kRxxak�
(II.24)
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and

. ǑApes/k D
bTk Q�1k DX�ak

NŒbTk Q�1k Nbk�Œa�kRxxak�
(II.25)

where

Rdd D
1

N
DD� (II.26)

and

Qk D Rdd �
DX�aka�

k
XD�

N 2a�
k
Rxxak

: (II.27)

Candes et.al. [2] showed the effectiveness of optimization for solving linear systems when the

target vector is known to be sparse, that is, has few nonzero entries and in the case of undersam-

pling. Intuitively, if the target vector ˇ is sparse, then all of the information in ˇ is contained

in only a few entries so sampling exceeding the dimension of ˇ is unnecessary. To be precise, a

vector v is called s-sparse if it has at most s nonzero entries. The reflecting targets in ˇ determine

the support of ˇ and ˇ is sparse in the present case since the targets are pointlike. In [2] it is shown

that ˇ can be recovered with overwhelming accuracy via the constrained optimization problem

min kˇk1 s.t d D ˆˇ (II.28)

in the absence of noise. Here k � k1 is the `1 norm

kvk1 D
X
i

jvi j: (II.29)

The problem II.28 is called basis pursuit (BP). In the case of noisy data, we solve basis pursuit

denoising (BPDN) [6]

min kˇk1 s.t kˆˇ � dk2 � � (II.30)

where � > 0 is a user parameter and k � k2 is the `2 norm

kvk2 D

sX
i

jvi j2: (II.31)
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II.4 Simulation

The MATLAB code for this simulation is given in Appendix A. For the following simulations

10 antennas were distributed randomly along a line through the origin and white Gaussian noise

modulated with carrier frequency 900 MHz was used as the transmitted baseband signal. The

targets are located at a known range of 500 m and the discrete cross range space ranges from -500

m to 500 m at 5 m increments. There are 13 reflecting targets with ˇk D 10 for each target. Here

16 time samples are collected. The data has dimension 160 and beta has dimension 201. The

vertical lines indicate the target positions. The results are shown in figure II.1. We have used the

MATLAB implementation of basis pursuit denoising by Friedlander and van den Berg [21, 20].

A picture of the scene can be inferred from the peaks in the recovered ˇ. The data is complex

valued so each signal processing technique gives a vector with complex entries, hence we plot the

modulus of each entry.

The signal processing done with basis pursuit denoising yields a very accurate image while the

images produced by least squares, CAPON, and APES are inaccurate due to undersampling. We

further investigate the robustness of by increasing the strength of the measurement noise. Figure

II.2 shows the results with complex Gaussian noise having mean �.1C i/ for � D 1; 3; 5; 10. All

other parameters are the same as in the previous simulation.

The higher noise levels yield noisier images, with small peaks blurring out the true locations

of the targets. However, the significant peaks of the reconstructed ˇ still correspond to the actual

locations of the targets.

II.5 Conclusion

We have illustrated the superiority of BPDN in signal processing for MIMO radar imaging in

the cross range with undersampling. Least squares, CAPON, and APES fail to accurately recon-

struct the target vector while BPDN accurately reconstructs the desired scene even with stronger

noise levels. This result is limited to the one dimensional case, but in the following chapters we

present a framework to apply compressed sensing techniques for two dimensional imaging.

8
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Figure II.2: BPDN simulation with increasing levels of measurement noise.
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III

RADAR SIGNAL PROCESSING MODEL

III.1 Direct Scattering Problem for the Helmholtz Equation

Radar imaging utilizes the transmission of electromagnetic signals to gather information about

a desired scene, as such the proper base for a model is Maxwell’s equations [7, 15]. We also

assume that electric field E is polarized

E.x; t/ D .0; 0; E.x; t//; x D .x1; x2/ 2 R2: (III.1)

Then under appropriate assumptions on the background medium, E satisfies the scalar wave equa-

tion

4E �
1

c2.x/
@2tE D 0 (III.2)

where c.x/ is a function related to the medium inhomogeneities and 4 is the two dimensional

Lalplacian operator

4 D
@2

@x21
C

@2

@x22
: (III.3)

Here we consider time harmonic incident waves of the form

E.x; t/ D <
�
u.x/e�i!t

�
: (III.4)

Then u must satisfy the scalar Helmholtz equation

4uC
!2

c2.x/
u D 0: (III.5)

In the absence of scatterers and a homogeneous medium, the speed c D c0 D const. and the

11



incident field ui satisfies the homogeneous equation

4ui C k2ui D 0 in R2 (III.6)

where the wavenumber k is !=c0. In this case the imaging problem is trivial. We suppose that ui

propagates in an inhomogeneous medium characterized by a refractive index n.x/ with

n.x/ WD
c20
c2.x/

: (III.7)

The inhomogeneities are assumed to be contained some ball B , hence c D c0 outside of this ball

and 1 � n.x/ has compact support. The incident field is scattered by the inhomogeneities of the

medium producing a scattered field us. The energy from us scatters outward so us satisfies the

Sommerfeld radiation condition

lim
r!1
jr j1=2

�
@us

@r
� ikus

�
D 0 (III.8)

with r D x=jxj 2 S1.

Definition ([9]). The direct scattering problem for the total field u D ui C us is

4uC k2n.x/u D 0 (III.9)

u D ui C us (III.10)

where us satisfies the Sommerfeld radiation condition, and k D !=c0 > 0.

12



III.2 The Inverse Scattering Problem

For notational convenience we set �.x/ WD 1 � n.x/ and note that � has compact support.

We also suppose that n has nonnegative real and imaginary parts. The scattering problem for u is

equivalent to the Lippman-Schwinger integral equation (Theorem 8.3 in [9])

u.x/ D ui.x/ � k2
Z
ˆ.x; x0/�.x0/u.x0/ dx0; x 2 R2 (III.11)

where ˆ is the fundamental solution to the Helmholtz equation. This is equivalent to the equation

us.x/ D �k2
Z
ˆ.x; x0/�.x0/u.x0/ dx0; x 2 R2 (III.12)

for the scattered field. The Lippman-Schwinger equation combined with the Sommerfeld radiation

condition implies that us has the far field asymptotic

us.x/ D
eikjxj

jxj
A. Ox/CO

�
1

jxj2

�
; jxj ! 1 (III.13)

with Ox D x=jxj on the unit sphere where A is the far field pattern given by

A. Ox/ D �
k2

4�

Z
e�ik Ox�x

0

�.x0/u.x0/ dx0: (III.14)

The far field pattern will be the measured data of our scattering model. We apply the Born approx-

imation and replace the total field u with ui in the equation for A to get

A. Ox/ D �
k2

4�

Z
e�ik Ox�x

0

�.x0/ui.x0/ dx0: (III.15)

Definition ([9]). The inverse scattering problem is to determine � from the knowledge of A by

using III.15.

Thus, the Born approximation linearizes the inverse problem for � since the total field is not

13



known in a neighborhood of the medium inhomogenities.

III.3 Signal Processing by Compressed Sensing

Traditional synthetic aperture radar signal processing is done by viewing the equation III.12

as an operator T W � 7! us and applying an approximate inverse operator T � W us 7! � which

preserves the singularities of �, that is sing supp � � sing suppT �us [7, 1]. Krishnan et. al. [16]

adopt a similar approach for multistatic synthetic aperture radar. The approach we adopt is to

discretize the integral equation III.12 to obtain a linear system

Y D ˆX (III.16)

where Y is the data vector consisting of measurements of the far field pattern,ˆ is the measurement

matrix describing the geometry of data collection, and X is the discretized version of �. We will

focus on two different cases of �: the scene consists of small targets so � is a linear combination of

delta functions, and the case where the scene consists of extended objects that can be approximated

by a linear combination of step functions.

In the first case, the vector X will be sparse so the information determining X lies in only

few of its entries. Developments in compressed sensing have shown that if X is s-sparse then the

number of measurements required to determine X is of the same order as s, regardless if the actual

dimension of X is large. Thus the dimension of the data Y can be much less than the dimension of

X . A first guess at finding a sparse solution to III.16 is to find the sparsest solution by

arg min kXk0 s.t. Y D ˆX: (III.17)

Note that kXk0 is precisely the support of X . However, III.17 is a difficult combinatorial problem,

in fact it is NP hard [4, 19]. To remedy this, Chen, Donoho, and Saunders [5] instead propose

solving the `1 relaxtion called basis pursuit.
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Definition. The basis pursuit problem is

arg min kXk1 s.t. Y D ˆX: (III.18)

This is a convex optimization problem that is computationally contractible with many efficient

implementations. We will present the main results guaranteeing the success of basis pursuit in

obtaining the sparse solution to III.16, and in general, the success of basis pursuit is determined by

properties of the sensing matrix ˆ.

The first property we discuss is the null space property.

Definition. ˆ 2 Cn�m satisfies the null space property (NSP) of order k with constant  2 .0; 1/

if

k�T k1 � k�T ck1 (III.19)

for all sets T � f1; : : : ; mg; #T � k and for all � 2 kerˆ [13].

Here �T denotes the restriction of � to the indices determined by T

.�T /j D

8̂̂<̂
:̂
.�/j if j 2 T;

0 otherwise;
(III.20)

and T c D f1; : : : ; mg � T . We define

�k.X/1 D inf
Z2†k

kX �Zk1 (III.21)

where the infimum is taken over all k-sparse vectors Z. This is simply the best k-sparse approxi-

mation to X as measured by the `1 norm. It is easy to see that �k.X/1 D kX � XT �k1 where T �

indexes the k entries of X having the largest moduli. The NSP yields the following performance

guarantee for basis pursuit:
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Theorem (Theorem 1 in [13]). Let n < m and let ˆ 2 Cn�m satisfy the NSP of order k with

constant  2 .0; 1/. Let X 2 Cm and Y D ˆX and let X # be a solution of the basis pursuit

problem III.18. Then

kX �X#
k1 �

2.1C /

1 � 
�k.X/1: (III.22)

In particular if X is k-sparse then X # D X .

Cohen, Dahmen, and DeVore proved that if all basis pursuit recovers all k-sparse X in Y D

ˆX , then ˆ necessarily satisfies the NSP of order k with constant  2 .0; 1/ [8]. Hence the NSP

of order k is equivalent to the success of basis pursuit in perfectly recovering k-sparse vectors.

A drawback of the NSP is that it is not easy to show directly, however the restricted isometry

property (RIP) introduced by Tao and Candes [4] is easier to work with and establishes some

performance guarantees as well.

Definition. The restricted isometry constant of ˆ 2 Cn�m is the smallest number ık such that

.1 � ık/kZk
2
2 � kˆZk

2
2 � .1C ık/kZk

2
2 (III.23)

for all k-sparse vectors Z. ˆ is said to satisfy the restricted isometry property of order k with

constant ık if ık 2 .0; 1/.

The RIP is in fact stronger than the NSP:

Theorem (Lemma 2 from [13]). Suppose that ˆ 2 Cn�m satisfies the RIP of order k C h DW K

with constant ıK 2 .0; 1/. Then ˆ has the NSP of order k with constant

 D

s
k

h

1C ıK

1 � ıK
: (III.24)

In particular, if ˆ satisfies the RIP of order 3k with constant ı3k < 1=3 implies  < 1 and

consequently basis pursuit will recover all k-sparse vectors. Candes, Romberg, and Tao established

in [3] that the RIP also guarantees the stability of recovery by basis pursuit when the measurements
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are corrupted by noise. In this case Y D ˆX C E where E is exogenous noise. Exact recovery

is, in general, not possible, so we look for a solution to a related problem called basis pursuit

denoising:

arg min kXk s.t. kˆX � Y k2 � �; (III.25)

where � > 0 is a user parameter specifying the desired tolerance level.

Theorem (Theorem 1.1 in [3]). Suppose thatˆ satisfies the RIP of orders 3k and 4k with constants

ı3k; ı4k respectively, and let X # be a solution to the basis pursuit denoising problem III.25. Then

if X is k-sparse and kEk2 � �,

kX #
�Xk2 � Ck� (III.26)

where the constant Ck depends only on ı4k .

The role of the coherence of ˆ was studied by Donoho and Elad in [10] and Gribonval in [14].

Definition. The coherence of ˆ, denoted �.ˆ/, is defined as

�.ˆ/ WD max
i¤j

j
P
l ĵ lˆ

�
li
jpP

l jˆli j
2
P
l jˆlj j

2
(III.27)

where ˆ� is the conjugate transpose of ˆ.

The first result from [14] guarantees the success of basis pursuit provided that kXk0 is small

enough.

Theorem (Theorem 1 in [14]). Let n < m and let ˆ 2 Cn�m such that the columns of ˆ span Cn.

If

kXk0 <
1

2

�
1C

1

�.ˆ/

�
(III.28)

then X is the unique solution to the `0 problem III.17 and the basis pursuit problem III.18.

Hence �.ˆ/ determines an upper bound on the sparsity of vectors that can be recovered via

basis pursuit and smaller values of �.ˆ/ will permit the recovery of X even if X is not “sparse”.

The main advantage of the coherence approach is that �.ˆ/ can be computed directly.
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A first immediate generalization of these results for sparse vectors X is the application to sig-

nals that are piecewise constant. Intuitively, such signals have sparse gradients; one first recovers

the sparse gradient and the original signal can be obtained through integration. This approach is

particularly useful when the signal X represents a two-dimensional image consisting of extended

objects which are well approximated by a linear combination of step functions. Suppose that X is

a piecewise constant one dimensional signal. Then the vector consisting of the forward differences

of X is sparse. Candes, Romberg, and Tao proved in [2] that X can be recovered as the solution to

arg min
X
j

jXjC1 �Xj j s.t. ˆX D Y: (III.29)

This approach is especially useful in two dimensions, where two-dimensional images can be ap-

proximated by a linear combination of characteristic function of the unit square.

Definition ([2]). Let g be a two-dimensional image represented by a matrix .gij /. The total vari-

ation norm of g is defined as

kgkTV WD
X
i;j

q
jD1gij j2 C jD2gij j2 (III.30)

where D1;D2 are the forward difference operators

D1gij WD giC1;j � gij ; D2gi;j WD gi;jC1 � gij : (III.31)

Let T be the linear measurement operator from the true image g to the measured data y. The total

variation minimization problem is

arg min kgkTV s.t. y D Tg: (III.32)

Candes et.al. proved [2] that TV-min III.32 is equivalent to III.18. In the case of noisy measure-

ments y D Tg C e where e is exogenous noise, Fannjiang in [11] proved performance guarantees
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based on the RIP for total variation denoising

arg min kf kTV s.t. kTg � f k2 � �: (III.33)

for inverse scattering problems. In the following chapter, we demonstrate the application of basis

pursuit and TV-min for two dimensional MIMO radar imaging based on the inverse scattering

model presented.
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IV

MIMO RADAR SIGNAL PROCESSING WITH COMPRESSED SENSING

IV.1 Point Targets and Basis Pursuit

Henceforth we regard the scattering problem in R2. We first consider the case where the

medium consists of m point scatterers in a square lattice of spacing ` so that the scattering am-

plitude is

A.Ox; d / D
!2

4�

mX
jD1

�ju
i.xj /e�i!xj �Ox (IV.1)

where X D .�j / 2 Cm is the target vector whose j th entry is the reflectivity of a point target at xj .

We aim to establish performance guarantees on the performance of basis pursuit so that X can be

recovered by solving

min kXk1 s.t ˆX D Y (IV.2)

where ˆ is the sensing matrix consisting of array parameters dependent on the geometry of data

collection, sampling rate, and signal type, and Y is vector of collected data. In our analysis we

consider probing signals that are plane waves ui
k

with

uik.x/ D e
i!.x cos �kCy sin �k/; x D .x; y/ 2 R2; (IV.3)

each having incident direction determined by the angle �k and each having the same frequency. We

suppose that the incident angles �k; k D 1; : : : ; n are i.i.d. uniform random variables on Œ��; ��.

We will consider the case where the transmit and receive arrays coincide, so if Q�k is a sampling

angle we have Q�k D �k C � . Let Yk be the vector of collected data due to the incident wave from

transmitter k; the measured data is the scattering amplitude scaled by a factor of .4�/=!/. The
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total data vector Y is formed by vertically stacking the Yk’s as

Y D

0BBBB@
Y1

:::

Yn

1CCCCA 2 Cn
2

: (IV.4)

From this we can infer that the sensing matrix ˆ has .n.k � 1/C l; j / entry given by

.ˆ/n.k�1/Cl;j D e
Œi!.xj .cos �kCcos �l /Cyj .sin �kCsin �l //� (IV.5)

so that ˆ 2 Cn2�m. The dimension of the scene will typically be much greater than the dimension

of the data, so the linear system Y D ˆX is underdetermined. Applying Fannjiang’s results [12]

to the present case, we obtain the following upper bound on the sensing matrix ˆ: if

m �
ı

8
eK

2=2 (IV.6)

for some ı;K > 0, then

�.ˆ/ <

 p
2

p
�!`

C

p
2K
p
n

!2
(IV.7)

with probability greater than .1 � ı/2. Then applying the coherence condition we conclude that

with probability greater than .1 � ı/2 BP perfectly reconstructs X if X is s-sparse and

s �
1

2
C
1

2

 
n
p
2

p
�!`

C

p
2K
p
n

!�2
: (IV.8)

IV.2 Piecewise Constant Targets

Here we consider the case where the target scene can be approximated by piecewise constant

objects. In this case

�.x/ D

mX
jD1

�j I
�x
`
� pj

�
(IV.9)
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where I is the indicator function of the unit square Œ�1=2; 1=2� � Œ�1=2; 1=2� in R2 and pj are

points in the square lattice as in section IV.1. It is important to note that the scattering amplitude

here is different than the case for a scene consisting of point targets that are clustered together. The

scattering amplitude measured at sampling angle �l due to the kth incident probe is given by

Ak.�l ; !/ D `
22 sinŒ.!`.cos �k � cos�l/�

!`.cos �k � cos�l/
2 sinŒ.!`.sin �k � sin�l/�
!`.sin �k � sin�l/

�

X
p

�pe
i!`.xp.cos �k�cos�l /Cyp.sin �k�sin�l //

(IV.10)

where �p D �j , p D pj ; j D 1; : : : ; m and p D .xp; yp/. We form the data vector as in the

previous section; scale the A0
k
s by 4�=.!2gl;k/ where

gl;k D
2 sinŒ.!`.cos �k � cos�l/�
!`.cos �k � cos�l/

2 sinŒ.!`.sin �k � sin�l/�
!`.sin �k � sin�l/

(IV.11)

and set

Y D

0BBBB@
Y1

:::

Yn

1CCCCA 2 Cn
2

(IV.12)

where each Yk is the data collected due to the probe from �k . Then we define the sensing matrix

ˆ by having .n.k � 1/C l; j / entry

ei!`.xj .cos �k�cos�l /Cyj .sin �k�sin�l // (IV.13)

where pj D .xj ; yj / and the target vector X is defined by .X/j D `2�pj
; j D 1; : : : ; m. Then the

inverse problem for � can be posed as the underdetermined linear system

Y D ˆX: (IV.14)

22



The main difference between this sensing matrix and the matrix used for BP is the factor of ` in

the argument of the exponential. From the results in [11] we conclude that TV-min can effectively

recover X in the system (IV.14) for large enough n, but still with n� m. The success of TV-min

is illustrated in section IV.3.

IV.3 Numerical Simulations

Figure IV.1 shows the reconstruction of a scene with 30 point targets using basis pursuit. For

comparison, the least squares estimate is also shown. The parameter values are ! D 10; n D

20; ` D 10;m D 2601. In this case, BP has a high probability of exact reconstruction for the given

level of sparsity. The BP implementation used is from Van Den Berg and Friedlander [22]. The

results in figure IV.2 illustrate the failure of BP to accurately recover X when the sparsity exceed

the admissible level determined by �.ˆ/. For this simulation, the sparsity was increased to 100

while leaving all other parameters fixed. The successful results of TV-min are given in figure IV.3.

The same array parameter levels were used. The scene contains five extended two dimensional

objects. The results in IV.4 illustrate the blurry reconstruction arising when the number of samples

is reduced to n D 10. The implementation of TV-min used is by Li, et al.[17].

The previous simulations all neglect effects of exogenous noise. We can extend the model by

supposing the measured data is corrupted by white noise as

Y D ˆX CE: (IV.15)

In this case we apply BP denoising for small targets and TV-min denoising for extended two

dimensional targets. The results are shown in figures IV.5 and IV.6. The array parameters were the

same as those used by
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Figure IV.1: Scene reconstruction using basis pursuit with 30 point targets. The top is the ac-
tual scene, the middle is reconstruction using basis pursuit, and the bottom is the least squares
approximation.

24



Figure IV.2: Scene reconstruction using basis pursuit with 100 point targets. The top is the actual
scene and the bottom is the BP estimate. When the sparsity level exceeds the level permitted by
�.ˆ/ BP fails to accurately recover X .
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Figure IV.3: Scene reconstruction using TV-min with 5 piecewise constant objects. The top is
the actual scene, the middle is reconstruction using TV-min, and the bottom is the least squares
approximation.
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Figure IV.4: Blurry scene reconstruction using TV-min with 5 piecewise constant objects. The top
is the actual scene and the bottom is the TV-min reconstruction.
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Figure IV.5: Basis pursuit denoising applied to noisy data. The top is the actual scene and the
bottom is the BPDNs reconstruction.
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Figure IV.6: Scene reconstruction using TV-min denoising with 5 piecewise constant objects. The
top is the actual scene, the middle is reconstruction using TV-min, and the bottom is the least
squares approximation.
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V

CONCLUSION

In this thesis we have presented positive results for the application of compressed sensing

techniques in MIMO radar imaging. When compressed sensing techniques are applicable, they

yield highly accurate reconstructions of the desired scene while utilizing few sampling resources.

The results have a strong theoretical foundation being derived from an inverse scattering problem

for the Helmholtz equation. It was shown that the sensing matrix in MIMO radar can be designed

to yield positive results for using compressed sensing when the scene consists of small targets and

extended two dimensional targets approximated by step functions.
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