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ABSTRACT 

 

 

Garcia Escorcia, Ani Emire. Mathematical Modeling of Two-Phase Arterial Blood Flow. Master 

of Science (MS), May, 2013, 38 pp., 26 figures, references, 6 titles. 

 Problem of blood flow in an artery with or without catheter and in the presence of single 

or multi stenosis will be considered. The presence of stenosis locally thickens the artery wall and 

the use of catheter in the affected area is very important to the diagnostic and treatment of the 

patient. The blood flow in the arterial tube is represented by a two-phase model composing a 

suspension of erythrocytes in plasma. The governing equations for both fluid and particles are 

solved subjected to reasonable modeling and approximations. The important quantities such as 

blood speed, blood pressure force, impedance (blood flow resistance), wall shear stress, the 

stress force, blood temperature and the heat flux on the artery are computed in the presence or 

absence of the catheter and in the presence of the axially located stenosis, gravity and the 

hematocrit due the red cells-plasma combination of the blood flow.  
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 Diseases in the blood vessels and in the heart, such as heart attack and stroke, are the 

major causes of mortality worldwide. The underlying cause of these events is the formation of 

lesions, known as stenosis. These lesions and plaques can grow and occlude the artery and hence 

prevent blood supply to the distal bed. Plaques with calcium in them can also rupture and initiate 

the formation of blood clots known also as thrombus. Theses clots can form as emboli and 

occlude the smaller vessels that can also result in interruption of blood supply to distal bed. Also, 

plaques formed in coronary arteries can lead to heart attacks and clots in the cerebral circulation 

can result in the stroke. There are number of risk factors for the presence of stenosis. The 

common sites for the formations of stenosis include the coronary arteries, the branching of the 

subclavian and common carotids especially in the carotid sinus region distal to the bifurcations, 

the renal arterial branching in the descending aorta and in the ileofemoral bifurcations of the 

descending aorta. The common feature in the location for the development of the lesion is the 

presence of curvature, branching and bifurcation present in these sites. The fluid dynamics at 

these sites can be anticipated to be vastly different from other segments of the arteries that are 

relatively straight and devoid of any branching segments.  
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

 

 

Several investigators have attempted to link the fluid dynamically induced stress with the 

formation of stenosis in the human circulation. By assuming the artery to be circularly in shape, 

Mishra (2003) discussed characteristics of blood in stenosed artery and the stenosis to be 

symmetric about the axis of artery. Mishra and Panda (2005) studied the flow of blood in 

stenosed artery for the Casson type fluid. Young and Tsai (1973) discussed some characteristics 

of flow of blood in stented arteries. Venkateswarlu and Rao (2004) studied and assumed 

oscillatory form of the blood flow through an indented tube in presence of steady single stenosis 

with a very simple shape. They used the so-called Einstein model for the viscosity of the blood 

but for variable volume flow rate and the prescribed value for the magnitude of the pressure 

gradient. Riahi (2011) investigated arterial blood flow in the presence of an overlapping stenosis 

using the variable viscosity model due to Einstein for the blood flow.  

In this study, an experimental based shape for the atherosclerosis shape in the artery is 

applied (Figure 1), where the blood is represented by a two-phase macroscopic model. Figure 1 

and Figure 2 show dimensional shape function R(z) of multi-stenosis and single stenosis 

respectively versus dimensional value of the axial variable of an artery based on the actual 

dimensional data determined from the experimental values of the cross-sectional area of the 

artery of a human (Back et al., 1984). Here and as in the more realistic cases, the blood flow is 



 

3 
 

composed of a suspension of erythrocytes in plasma. I also include the presence of gravity and 

prescribe temperature on the surface of the artery in order to determine information effects of 

gravity as well as presence of temperature in the blood flow and the total heat flux in the arterial 

blood flow system. (Garcia, Riahi 2013) 
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CHAPTER III 

 

 

METHODOLOGY AND FINDINGS 

 

 

Methodology and findings for single and multi-stenosis in artery 

I consider the problem of axisymmetric flow of blood in catheterized artery in the form of 

a circular cylindrical annulus tube with the outer radios R0 (radius of the artery) and the inner 

radius r1 (radius of the catheter) and in the presence of single or multi-stenosis whose shape is 

determined from the experimentally collected data (Back et al., 1984). Also, arterial blood flow 

in the absence of catheter (r1=0) is considered. 

The two-phase flow system in artery is based on the original governing equations for the 

mass conservation and momentum (Batchelor, 1970) for both fluid plasma and the suspended 

particles as their steady axisymmetric form in cylindrical coordinate system with axial direction 

along the co-axial direction of the catheterized artery are given by (Sirvastava and Rastogi, 2010) 
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 is the Laplace operator. Here r (r1 r R0) and z are the cylindrical 

coordinates with the axial variable z along the tube axis and radial variable r along the direction 

perpendicular to the tube axis. Also, u is the axial velocity component, v is the radial velocity 

component, f and p are the fluid (plasma) and particle quantities (red cells),  is the density, P is 

pressure; C is the hematocrit % in the blood. Formulas for viscosity of suspension s and drag 

coe  icient o  interaction  ’ are also needed (Srivastava, 1996; Srivastava,2009)             

 
s
 

 
 

 1 m  
  m  .  e

 .    
11  
 

e 1.   
                                                                                                         1g  

 
 
  . 

 
 

a 
 
(
   √8     

   

(    ) 
)                                                                                                               (1 ) 

Where 0 is the plasma viscosity, a0 is radius of a red cell and T is the absolute temperature in 

Kelvin. Formula (1g) represents classical stokes drag valid for small particle Reynolds number 

and was first derived by Tam (1969) and is accurate up to 60% of hematocrit (Charm and 

Kurland 1974).  

 The inside of the boundary of the artery is partially structured within and axial distance 

L0 due to the presence of the stenosis. Figure 1 shows the geometry of the artery with multi-

stenosis on (z, r) plane in the absence of the catheter, also the flow system and the geometry is 

shown in the cylindrical tube over a distance L=3d+2L0 in the axial direction. It is important to 

consider t e maximum  eig t o  eac  stenosis into t e lumen  δ. And also we will consider a 

value very close to the maximum height, this will be the critical height of the stenosis at a 

distance z=d+L0/2 from the origin.  
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 Equations (1a-h) need to be made dimensionless. U, L0, R0  δ and 0U L0/
2
 are going to 

be used where U is the maximum velocity (White, 1991), L0 is the axial length, R0 is the radial 

lengt   δ and 0U L0/
2
 are the rate of radial change and pressure respectively. Next, simplify the 

dimensionless forms of the equations under the reasonable conditions for mild stenosis with 

/R0<<1, unidirectional flow assumption (White, 1991) where the axial velocity component 

dominates over the radial velocity component, and subjected to the assumptions that the inertial 

terms in the governing momentum equations (1a-b, d-e) are small and Re (/L0)<<1. Under these 

conditions and assumptions (Srivastava and Rastogi, 2010), the pressure is only a function of z 

and (1a-h) lead to simpler equations: 
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where =/a0. For equations (2a-b), consider the following no slip boundary conditions which 

hold in the presence of catheter: 

    uf =0 on r=r1 and uf =0 on r = R(z),         (2c) 

and 

             uf /z =0 at r =0 and uf =0 on r =R(z)        (2d) 

in the absence of the catheter. 

Using (2b) for (uf –up) in (2a) and integrating twice with respect to r and making use of the 

boundary conditions given in (2c), we find that in the presence of catheter            
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and the expression for the axial velocity for the red cells is found using (2b) in terms of axial 

velocity for the plasma: 
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In the absence of the catheter the results are found to be:  

up u  (
1

  
 
)(

d 

d 
)                                                                                                                                            

and  

u  (
1

 
) (

1 m 

1  
) (

d 

d 
) (r    )                                                                                                                      c  

            

 Expressions for the axial velocity of plasma and red cells given by (3a-c) are in terms of 

the pressure gradient denoted by dP/dz which can be solved if we use equations (3a-c) and if we 

assume a prescribe volume flow in the annulus given by                   
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Thus, we find an expression for the pressure gradient which is given by  
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which holds in the presence of the catheter, and in the absence of the catheter we have 
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The flow resistance, referred to as the impedance λ, is given by 
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            λ =ΔP/Q,           (6a)                                

where Δp is the pressure drop across the length L=1+2b for single stenosis case or L=2+3b for 

multi stenosis given by         

                                                                   ( )  ( ) ∫
d 

d 
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and b=d/L0. 

 From (3a), we find the wall shear stress τw to be 
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for the case where the catheter is present in the artery, and in the absence of catheter we find 

from (3c) the following result:  

                                                            w  
 (1 m )

 (1  )

d 

d 
                                                                   

and the shear stress force F over surface of the artery from z=0 to z=L=1+2b for single stenosis 

case or z=L=2+3b for the multi stenosis case is then given by 

   

                                                                     F   ∫  wd 

 

 

                                                                       c  

Calculations using the previous expressions are introduced for different values of hematocrit C, 

and different values for radius of catheter, and in the absence of catheter. For all calculations, 

  1     .   and   δ/ .    w ere δ 1-minimum value of R. 
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Figure 1. Geometrical view of the arterial segment with multi-stenosis. 

 

Figure 2. Shape of stenosis in the artery (single stenosis) 

 Figure 3 represents the pressure gradient dP/dz versus the axial variable z for single 

stenosis where C=0.1 was used as the hematocrit and for absence (r1=0) and presence of catheter 

(r1=0.1 and 0.3). From this figure, one can notice that the blood pressure gradient is negative 
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which makes sense since the blood pressure force is in the positive direction of the z-axis. Also, 

the magnitude of pressure gradient increases with the effect due to the presence of the catheter 

which intensifies notably under the stenosis location. Outside the stenosis zone, the pressure 

gradient does not change. These results are reasonable since the presence of catheter can 

intensify the blood pressure force in the artery when there is more severe stenosis.  

 

Figure 3. Pressure gradient versus axial variable for single stenosis case, C=0.1 and several 

values of r1=0, 0.1, 0.3 for cases with or without catheter. 

 Figure 4 shows the same as figure 3 but now with hematocrit parameter C=0.5. 

Comparing figure 3 and 4, one can notice that the pressure gradient increases with the hematocrit 

parameter for the case of presence of catheter with radius r1=0.3. This result is also reasonable 

since the pressure driven force is higher for higher percentage of red cells in the plasma.  
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Figure 4. Pressure gradient versus axial variable for single stenosis case, C=0.5 and several 

values of r1=0, 0.1, 0.3 for cases with or without catheter. 

Figure 5 and figure 6 shows pressure gradient now for multi-stenosis for C=0.1 and 

C=0.5 respectively with different values of radius for catheter, r1=0, 0.1 and 0.3. 

 

 Figure 5. Pressure gradient versus z for hematocrit C=0.1 with multi-stenosis 
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Figure 6. Pressure gradient versus z for hematocrit C=0.5 with multi-stenosis 

 

 Figure 7 shows the impedance also known as flow resistance versus hematocrit in the 

absence or presence of catheter. This figure shows that impedance increases with hematocrit, and 

it also increases with the presence of catheter. There is a small flow resistance when there is no 

catheter in artery. It can also be seen that for very small or large values of hematocrit, the rate of 

increase of the flow resistance is higher. 

-70

-60

-50

-40

-30

-20

-10

0

0 0.5 1 1.5 2 2.5 3 3.5
d

P
/d

Z 

z 

r1=0 

r1=0.1 

r1=0.3 



 

13 
 

 
 

Figure 7. Impedance λ versus C for r1=0, 0.1, 0.3 for single stenosis and with or without catheter. 

 

 Figure 8 shows the same as figure 7, impedance versus hematocrit but now in the 

presence of multi-stenosis. It can be seen that the impedance is significantly large when multi-

stenosis in the artery. It also shows that for absence of catheter, impedance is low compared to 

impedance when catheter is inserted into the artery. Similarly as in figure 7, for very small and 

very large values of hematocrit, the rate of increase of the impedance is higher.  
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Figure 8. Impedance λ versus C for r1=0, 0.1, 0.3 for multi-stenosis and with or without catheter. 

 

 In the following figures 9 and 10, axial velocity of the blood plasma uf, versus the axial 

variable z for r=0.5 are considered, with different hematocrit parameters C=0.1, 0.5 respectively, 

for multi-stenosis and in the presence or absence of catheter. It can be seen that plasma velocity 

does not vary outside the stenosis zone; however its magnitude increases with the stenosis effect. 

Also, plasma velocity is positive since the blood pressure force is in the positive direction of the 

axis of the artery system. Bio-medically, this is reasonable since for higher stenosis, the pressure 

force increases leading to higher blood plasma speed. It can also be seen from the figures that the 

plasma velocity increases significantly with larger radius of catheter. Plasma velocity also 

increases with the hematocrit parameter.  
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Figure 9. Plasma velocity versus axial variable at r =0.5 for multi stenosis, C=0.1 and for cases 

with or without catheter.(r1=0, 0.3).  

 
 

Figure 10. Plasma velocity versus axial variable at r =0.5 for multi stenosis, C=0.5 and for cases 

with or without catheter.(r1=0, 0.3). 
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Figure 11 shows plasma velocity versus radial variable where z=2.5, hematocrit 

parameter C=0.5 and in the absence of catheter (r1=0). It can be seen from this figure that plasma 

velocity decreases with increasing the radial variable. The rate of decrease of the plasma speed is 

higher close to upper values of r close to the stenosis zone. Also, plasma velocity is zero at 

r=R(z), so it satisfies the no slip boundary conditions. 

 

 

Figure 11. Plasma velocity versus radial variable for multi stenosis, z=2.5, C=0.5, r1=0. 

  

 Figure 12 shows also plasma velocity versus radial variable for the same parameters as in 

figure 12 but now in the presence of catheter with radius of 0.3 (r1=0.3). It can be seen that, 

plasma velocity has its maximum value at some point in the annulus away from the boundary. It 

also satisfies its zero no slip boundary conditions of the catheterized artery system. Comparing 

the two figures, one can see that plasma velocity decreases radially when catheter is used in the 

patient.  
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Figure 12. Plasma velocity versus radial variable for multi stenosis, z=2.5, C=0.5, r1=0.3 

 

 Figure 13 shows the wall shear stress versus the axial variable for the multi-stenosis with 

hematocrit parameter C=0.1, 0.5 in the absence or presence of catheter. From this figure, it can 

be seen that wall shear stress is higher for hematocrit parameter C=0.5 in the presence of catheter 

with radius of 0.3 (r1=0.3). In the case of no catheter, wall shear stress is the same for hematocrit 

parameter of 0.1 and 0.5. Wall shear stress does not vary outside the affected zone; however, the 

rate of increase of wall shear stress is significantly higher with severity of stenosis. Also, wall 

shear stress values are positive which indicates that it is acted by the blood flow on the artery.  
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Figure 13. Wall shear stress versus z for C=0.1 (r1=0, 0.3) and C=0.5 (r1=0, 0.3). 

 

 Figures 14 and 15 present the wall stress force on the artery versus hematocrit with multi-

stenosis in the absence or presence of catheter respectively. It can be seen from figure 14 that for 

small values of hematocrit, the stress force decreases with increasing hematocrit, and for larger 

values of hematocrit this stress force increases significantly. Figure 15 shows the same results 

but wall stress force is higher than wall stress force in absence of catheter.  
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Figure 14. Stress force F versus C for r1=0. 

 

 
 

Figure 15. Stress force F versus C for r1=0.3 
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Methodology of heat transfer and gravity effects in artery with single stenosis   

 

 

 The problem to be considered here will be a two-phase thermal flow system in a 

catheterized artery, which is assumed to be in an inclined position with respect to the horizontal 

level in order to take into account the effect of gravity. For this purpose, the steady axisymmetric 

forms of the equations in cylindrical coordinate system with axial direction along the co-axial 

direction of the catheterized artery are given by (Srivastava and Rastogi, 2010) for the mass 

conservation and momentum and by Smadi et al. (2006) for the temperature. They are given 

below 
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is the Laplace operator. Here r, z, f, p, u, v, ρ, P, C, s are the same 

quantities used  e ore  g is t e acceleration due to gravity    is t e angle t at t e axis o  t e 

inclined artery makes with the horizontal direction,  is the thermal conductivity of plasma, and 
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Ch is specific heat at a constant pressure. Formulas for viscosity of suspension s and drag 

coe  icient o  interaction  ’ are also needed   rivastava  1   ;  rivastava       

 
s
 

 
 

 1 m  
  m  .  e

 .    
11  
 

e 1.                                                                                                            8   

    . 
  
   

(
   √8     

   

(    ) 
)                                                                                                                  8i  

Where 0 is the plasma viscosity, a0 is radius of a red cell and T is the absolute temperature in 

Kelvin. Figure 26 shows the flow system and the geometry is shown in an inclined cylindrical 

annulus  w ere t e axis o  t e annulus is at angle   wit  respect to the horizontal level so that the 

effect of gravity can be taken into account. Similarly to the system discussed before, the 

catheterized arterial tube is given over a distance L=2d0+L0 in t e axial direction  δ is t e 

maximum height of the stenosis into the lumen, and the critical height is at a distance z=d0+L0/2 

form the origin of the coordinate system.  

 

Figure 26. Artery system and geometry.  

 It is needed first to make the governing equations (8a-h) dimensionless using U, L0, R0,  

and 0U L0/
2
, (Tw –T1) as scales for velocity, axial length, radial length, rate of radial change, 
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pressure and temperature, respectively, where U is the maximum velocity for the unidirectional 

flow in a cylindrical annulus (White, 1991), Tw is the temperature on the surface of artery and T1 

is a reference temperature in the absence of the catheter, while in the presence of the catheter it is 

assumed to be the temperature on the surface of catheter. It is assumed that Tw>T1. Next, simplify 

the dimensionless forms of the governing equations (8a-h) under the reasonable conditions for 

mild atherosclerosis with /R0<<1, unidirectional flow assumption (White, 1991) where the axial 

velocity component dominates over the radial velocity component, and subjected the 

assumptions that the inertial terms in the governing momentum equations (8a-b, d-e) as well as 

convective terms in (8g) are small and Re (/L0)<<1. Under these conditions and assumptions 

(Srivastava and Rastogi, 2010), the pressure is only a function of z and (8a-h) lead to simpler 

equations. These simpler equations in dimensionless form are given below using the same 

symbols for the variables as their dimensional ones for simplicity of notations, except that in the 

following equations (T-Tw)/(T1–Tw) is used as the non-dimensional form of the difference 

between the plasma temperature and the temperature on the artery wall  
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where Fr =(0 U)/(g f 
2
) is the Froude number, which is a non-dimensional parameter and 

inversely dependent on the gravity, E=(U
2
0)/[(Tw-T1)] is an Eckert number , which is an 

equivalent parameter with product of Prandtl number and a regular Eckert number (Smadi et al., 

2006), and
 
=/a0. The Eckert number represents the effect of the temperature.  
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For the artery flow with catheter, the equations (9a-c) are subjected to the following no slip 

boundary conditions  

             uf =0 and =1 on r=r1; uf ==0 on r = R(z),                               (9d) 

while for the artery flow in the absence of the catheter, (2a-c) are subject to the following 

boundary conditions 

   uf/r =/r =0 at r =0; uf ==0 on r =R(z).                    (9e) 

Using (9b) for (uf –up) in (9a) and integrating twice with respect to r and making use of the 

boundary conditions given in (9d), it can be shown that 

u  (
 1

 
) (

1 m 

1  
)  

d 

d 
 
sin( )

Fr
 [(   r ) 

(   r1
 ) ln (

r
 
)

ln (
 
r1
)

]                             1 a  

In the limit of r1 0, this solution turns out to be also the solution satisfying (9e) for the case in 

the absence of the catheter. 

The expression for the axial velocity for the red cells is then found from (9b) in terms of the axial 

velocity of the plasma in the form 

up u  (
1

  
 
) (
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d 
 
sin    

Fr
)                                                                  1    

Since both expressions for the axial velocity of plasma and red cells given by (10a-b) are in 

terms of the unknown pressure gradient (dP/dz), pressure gradient can be obtained by assuming a 

prescribed volume flow rate in the annulus given by 

         ∫ r[(1  )u   up]dr
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                                                                      11  

Using (10a-b) in (11) and solving for the pressure gradient, it can be obtained 
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In the limit of r10, the solution (12) represents the pressure gradient in the absence of the 

catheter. The flow resistance, referred to as the impedance λ, is given by 

            λ =ΔP/Q,                    (13a) 

where Δp is the pressure drop across the length 1+2b given by 
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and b=d/L0. 

 Using (9c), integrating twice with respect to r and making use of (9d),  can be obtained 

and it is given by 
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In order to calculate the total heat flux on the surface of the artery, first (14a) is used to 

determine the radial rate of change of  on the artery surface which is given below  
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which can hold also in the case without the catheter if the limit of r10 is taken. The heat flux q 

over surface of the artery from z=0 to z=1+2b is then given by 

q   ∫ [
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Calculations using the previous expressions are introduced for different values of 

hematocrit C, and different values for radius of catheter, and in the absence of catheter. For all 

calculations    1     .        and   δ/ .    w ere δ 1-minimum value of R. (Garcia, Riahi 

2013) 

Figure 16 represents the pressure gradient dP/dz versus the axial variable Z for single 

stenosis where C=0.3 was used as the hematocrit, Fr=0.1, 0.2 and for absence of catheter (r1=0). 

From this figure, one can notice that the blood pressure gradient is negative which makes sense 

since the blood pressure force is in the positive direction of the z-axis. Also, it can be seen that if 

the Froude number is smaller, the magnitude of the blood pressure force is higher implying that 

the effect of gravity can increase the magnitude of such force. Also, it can be shown that for 

values o     etween 0<<90, the magnitude of pressure gradient increases, and it will decrease 

 or values o     etween -90<<0. It can be also shown from the figure that the pressure 

gradient does not vary outside the stenosis zone; however it increases with the stenosis effect in 

the stenosis zone.  
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Figure 16. dP/dz versus z for r1 =0, C=0.3, Fr=0.1 (solid line) and Fr=0.2 (dashed line). 

 Figure 17 shows the same results for figure 16 but now in the presence of catheter (r1 

=0.3). It can be seen that the magnitude for pressure gradient is higher when a catheter is 

inserted. Also, additional generated data shows that magnitude of blood pressure force in the 

artery increases with catheter radius which is reasonable since when a catheter is inserted it leads 

to smaller annulus gap leading to higher values of such force.  
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Figure 17. dP/dz versus z for r1 =0.3, C=0.3, Fr=0.1 (solid line) and Fr=0.2 (dashed line). 

 Data for axial velocity of blood plasma versus the axial variable for different values of 

hematocrit and in the absence or presence of catheter is also calculated. It can be seen that 

plasma velocity does not vary outside the stenosis zone; however its magnitude increases with 

the stenosis effect. Also, plasma velocity is positive since the blood pressure force is in the 

positive direction of the axis of the artery system. Bio-medically, this is reasonable since for 

higher stenosis, the pressure force increases leading to higher blood plasma speed. The plasma 

velocity increases significantly with larger radius of catheter which is reasonable since higher 

catheter radius decreases the annulus gap leading to higher plasma speed.  

 Concerning the effect of the gravity on the plasma velocity, the expression for the axial 

velocity of the plasma indicated that the effect of gravity even though is notable for the pressure 

gradient; it is cancelled out for the axial velocity. This is reasonable physically since in the 

presence of gravity the pressure gradient generates additional value to counteract the presence of 
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the gravity force component along the axial direction leading to zero effect of the gravity on the 

plasma velocity (Garcia, Riahi 2013). 

 Figures 18-21 shows the difference between the blood temperature and the temperature 

on t e artery wall  θ  versus t e axial varia le (z) with r=0.5 and radial variable (r) with z=1 in 

the absence or presence of catheter with hematocrit parameter of 0.3, E=0.2,0.6. It can be seen 

from these figures that the blood temperature is higher than the temperature on the artery wall in 

the absence of catheter. However, in the presence of a catheter (r1=0.3), the blood temperature is 

lower than the temperature on the artery wall which indicates that the blood zone is smaller in 

the presence of the catheter leading to smaller viscous heating and so the artery temperature 

exceeds blood temperature. Additional generated data for the blood temperature versus the 

hematocrit parameter indicates that the blood temperature variation with respect to the 

hematocrit effect is insignificant. The expressions for  for both cases in presence and absence of 

the catheter indicate that the effect of the gravity is zero on the temperature which is consistent 

physically since gravity was found to have no effect on the plasma velocity and hence no effect 

on the viscous heating and, thus, no effect on the temperature profile (Garcia, Riahi 2013).  
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Figure 18. θ versus z in the artery with no catheter for C=0.3, r=0.5, E=0.2 (solid line) and E=0.6 

(dashed line). 

 

Figure 19. θ versus z  for the artery with catheter, C=0.3, r=0.5 and E=0.2. 
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Figure 20. θ versus r for r1 =0, C=0.3, z =1, E=0.2 (solid line) and E=0.6 (dashed line). 

 

Figure 21. θ versus r for r1=0.3, C=0.3, z =1, E=0.2 (solid line) and E=0.6 (dashed line). 
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 Figure 22 and 23 presents the flow resistance also known as impedance versus hematocrit 

parameter in the absence or presence of catheter for Fr=0.1and 0.2. It can be seen from these two 

figures that impedance increase linearly with the increase of the hematocrit parameter. Also, 

impedance increases in the presence of catheter (r1=0.3) and it also increases with the effect of 

gravity.  

 

Figure 22. Impedance λ versus C for r1 =0, Fr= 0.1 (solid line) and Fr= 0.2 (dashed line). 
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Figure 23. Impedance λ versus C for r1 =0.3, Fr= 0.1 (solid line) and Fr= 0.2 (dashed line). 

 Figures 24-25 show the heat flux q versus hematocrit parameter in the absence or 

presence of catheter with E=0.2, 0.6. It can be seen that heat flux increases linearly with 

increasing of hematocrit parameter. In figure 24, for absence of catheter, it can be seen that the 

heat flux is positive implying that the flow of heat goes from the blood zone to the outside of the 

artery. However, figure 25 shows that for presence of catheter, the heat flux is negative which 

indicates that heat flow goes from outside of the artery into the blood zone. In addition, the 

magnitude of the heat flux is higher in the presence of catheter.  
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Figure 24. Heat flux q versus C for r1=0, E=0.2 (solid line) and E=0.6 (dashed line). 

 

 

Figure 25. Heat flux q versus C for r1=0.3, E=0.2 (solid line) and E=0.6 (dashed line). 
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CHAPTER IV 

 

 

SUMMARY AND CONCLUSION 

 

 

 First, arterial two-phase blood flow with or without a catheter in the presence of single or 

multiple stenosis was investigated. The modeling for the stenosis was based on the available 

experimental data  or a  uman’s artery wit  stenosis. Important quantities were calculated, such 

as the pressure gradient force, the plasma velocity, the impedance, the wall shear stress and the 

wall stress force in the artery which contained either a single or multiple stenosis zones and in 

the presence or absence of the catheter. It was found that pressure gradient force, plasma 

velocity, impedance, wall shear stress and wall stress force increase with increasing the 

hematocrit if percentage of red cells in plasma is too small. In addition, it was shown that in the 

presence of catheter, the plasma speed, magnitude of pressure gradient, wall shear stress, stress 

force and impedance increase. 

Also, effects due to the presence of gravity and heat transfer in arterial blood blow system 

for single stenosis were taken into consideration. And quantities such as pressure gradient force, 

flow velocity, impedance, and blood temperature and wall heat flux were calculated. It was 

found that that the force gravity introduce additional contribution in the pressure gradient which 

can enhance the blood pressure force for upslope direction of the artery, while it can reduce the 

effect of the blood pressure force in the case of down-slope artery. The effect of viscous heating 

leads to heat flow out of the blood zone for the artery system in the absence of the catheter, while 
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the heat flow is into the blood zone in the presence of the catheter. It is also found that the 

pressure gradient force, flow velocity and the impedance are stronger in the stenosis. In addition 

the magnitude of the heat flux increases with the hematocrit parameter. These conditions could 

be relevant to the corresponding conditions for certain patients, which can require higher care 

and attention (Garcia, Riahi 2013) 
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