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ABSTRACT 

 

Woods, Sean M., Development of Algorithms and Criteria for Continuous Condition Monitoring 

of Railroad Bearings.  Master of Science (MS), December, 2012, 111 pp., 14 tables, 37 

illustrations, 5 equations, 29 references.   

This thesis summarizes research conducted at the University of Texas-Pan American to 

investigate the implementation of condition monitoring algorithms for use with railway roller 

bearings equipped with wireless temperature sensor nodes.  Current temperature based condition 

monitoring techniques utilize wayside detection equipment intermittently located along the track 

to garner sporadic bearing cup temperatures.  Such devices are not capable of detecting brief 

transient temperature trending events.  The developed algorithms were tested using a fleet of ten 

railway freight cars instrumented with wireless sensor nodes and operated by an Australian 

freight transportation company.  Eighteen months of continuous monitoring combined with the 

inspection of three setout bearings demonstrate the effectiveness and accuracy of the developed 

algorithms as a continuous bearing health monitoring system.   
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CHAPTER I 

 

 

INTRODUCTION AND MOTIVATION 

 

 

1.1  Introduction 

With increasing demand for freight car capacity and trains traveling at ever evolving 

speeds, the dangers associated with bearing failure in service are high, including possible bearing 

journal burn-off, derailment, and loss of human life.  During the period from 2002 – 2012 there 

were 290 derailments attributed to bearing failure costing the railroad industry a total of $77.7 

million [1].  Additionally, railroad operators may incur significant fines for delaying traffic on 

main lines while performing costly field repair of less severe bearing failures. 

In order to reduce the likelihood of bearing failure in service, the first attempts at wayside 

detection of distressed bearings were developed and implemented in the early 1960s; they 

utilized infrared temperature detectors stationed adjacent to the track that measure bearing cup 

temperature [2, 3].  These early wayside detectors, known as hot-box detectors (HBDs), continue 

to be the primary tool for detection of distressed bearings today.  To identify bearings that are 

operating at elevated temperatures, HBDs compare the measured bearing cup temperature to 

predetermined temperature thresholds.  HBDs are typically spaced 15-40 miles apart depending 

on track location, and can only provide sporadic monitoring of railroad bearings.  Furthermore, 

bearing operating temperature can rise very quickly between HBDs, causing the bearing to 

rapidly overheat and seize, initiating journal burn-off and possible railcar derailment [4].  

Consequently, the HBD system is only effective at identifying distressed bearings immediately 
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before or after failure has initiated.  In order to develop a comprehensive condition monitoring 

network, research has been conducted to promote communication between existing wayside 

detectors; however, progress has been hindered due to divided ownership of track and wayside 

detector installations [5].   

 Despite the implementation of wayside detectors, the persistence of bearing failures in 

service prompted research into new methods capable of identifying distressed bearings using the 

existing network of HBDs.  In 2002, Union Pacific employed a statistical algorithm that  detects 

bearings whose thermal performance deviates significantly from the rest of the train [6].  This 

system identifies outlier bearings which are operating at temperatures below the Association of 

American Railroads (AAR) alarm thresholds.  In the last decade, this more conservative 

monitoring algorithm has successfully reduced the number of bearing failures and related 

derailments.  However, the cost of this reduction in bearing failures is a significant increase in 

the number of non-verified bearings; these are bearings removed from service which upon 

inspection exhibit no signs of any defects.  According to data collected by Amsted Rail from 

2001 to 2007, an average of nearly 40% of bearing removals were non-verified [7].  This figure 

approached 60% in 2003 and 2004, indicating a significant increase in the number of non-

verified bearing removed from service following the introduction of Union Pacific’s statistical 

algorithm.  These non-verified bearings are a source of inconvenience and expense for railroad 

operators who must stop the train and either remove the car in question for maintenance or 

replace the entire wheel-axle assembly.   
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1.2  Motivation 

 Wayside detection has been the only widely utilized method of defect detection for 

freight car bearings in North America, whereas passenger rail operator Amtrak implemented on-

board bearing temperature monitoring for all railcars in the 1970s [8].  On-board temperature 

monitoring systems have the decisive advantage of continuous sampling, allowing the 

observation of all transient temperature trending events as well as routine temperature 

fluctuations caused by changes in train speed, braking, ambient temperature, etc.  The ability to 

sample continuously allows the application of rigorous statistical methods to determine the 

average operating temperature, standard deviation of temperature, skewness of temperature 

distribution, and other parameters of interest.  Research conducted since the 1970s sought to 

create an on-board bearing temperature monitoring system that could be economically retrofitted 

to freight cars [9-11].  Unfortunately, unreliable or very expensive battery sources and wireless 

communication devices plagued these efforts and rendered on-board monitoring of freight car 

bearings economically unfeasible.   

Within the last decade, major advances in wireless communications, micro-processor 

circuits, and battery technology has enabled engineers to create much more reliable and robust 

wireless temperature sensors.  Using these technologies, IONX, LLC has developed low power 

Wireless Sensor Nodes (WSNs) capable of measuring and transmitting temperature data once per 

minute.  Since the bearing adapter provides a convenient and secure location to mount the WSN, 

a correlation between adapter surface temperature and bearing cup temperature was developed 

prior to field testing [12].  The latter allows for comprehensive analysis of the temperature 

history in order to assess the bearing’s current condition as well as identify and predict 

degradation over time.  Bearing cup temperature analysis utilizes three alert levels of increasing 
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severity.  Level 1 alarms, the most urgent, are consistent with industry standards put in place by 

the AAR to prevent catastrophic bearing failure in service.  The two lower level alarms are 

generated using five statistical metrics developed at UTPA.  These metrics utilize comparisons 

with other bearings on the same railcar as well as all other bearings on that train.  This system 

enables rail operators to focus resources on predictive maintenance instead of reactive 

maintenance, resulting in fewer train stoppages, track delays, and costly field repairs [13].   

The following chapters of this thesis provide a description of the research conducted at 

UTPA to develop an on-board condition monitoring system capable of detecting unhealthy 

tapered-roller bearings prior to failure.  Chapter II gives a history of railroad bearing use as well 

as a thorough literature review discussing previous efforts to develop an on-board bearing 

temperature monitoring system.  Chapter III describes the instrumentation of railcars for a field 

test of prototype wireless temperature sensors and the laboratory testing apparatus used to 

evaluate bearings removed from field service.  Chapter IV presents the development and 

implementation of detailed statistical analyses used to estimate the current condition of railroad 

bearings as well as detection and prediction of degradation.  Chapter V discusses the results of a 

two-year field test and presents case studies for three bearings whose performance validates the 

developed algorithms and criteria.  Chapter VI summarizes conclusions regarding the reliability 

and accuracy of the developed algorithms and proposes future work in this area. 
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CHAPTER II 

 

 

HISTORY, BACKGROUND AND LITERATURE REVIEW 

 

 

 This chapter will provide a brief history of roller bearings and their use in railroad 

applications.  Background is provided in railroad bearing condition monitoring as well as a 

literature review of previous on-board condition monitoring technologies. 

 

2.1  History 

Rolling elements have been evolving over thousands of years now, and their development 

paralleled the invention of the wheel.  Early civilizations utilized rudimentary rolling elements as 

a means of moving heavy loads over long distances.  The earliest examples of this technology 

are cylindrical wooden logs used to transport large blocks of stone from quarries to distant 

construction sites.  As force is applied to the block, the logs would roll; creating much less 

resistance to motion than static friction (Figure 1).  These earliest examples of rollers are 

attributed to the Sumerians and date back to approximately 1,100 B.C [14].   
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Figure 1: Wooden rollers used by the Sumerians to transport heavy stone blocks [14] 

 

Figure 2 depicts a translational roller system with a stationary ground plate and a moving 

top plate used to carry a load.  This primitive system was widely used to convey heavy stone 

blocks over long distances and is still in use today for conveyor systems in factories and 

warehouses.  A transformation of this simple translational system yields the standard 

configuration of a modern enclosed roller bearing composed of two concentric circular races 

surrounding a set of rolling elements.   

 
Figure 2: Translational roller systems used to support a load (left), modern enclosed roller 

bearing (right) [14] 
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Leonardo Da Vinci drew one of the first modern ball bearings during the Renaissance, 

although journal bearings were used almost exclusively in heavy machinery until the early 20
th

 

century.  Early railroad bearing systems used journal bearings (Figure 3) to support the axle on a 

thin layer of lubricant, eliminating metal-to-metal contact while the axle is rotating.  Journal 

bearings are capable of supporting large radial loads but cannot withstand axial loads due to their 

geometry.  

 
Figure 3: Enclosed railcar axlebox with plain bore journal bearing [15] 

 

These early journal bearings were housed in a metal box attached to the end of the axle, 

known as an axlebox, and utilized a crude system for maintaining lubrication during operation.  

Rags or wood chips were soaked in oil or animal tallow and packed under the journal to wipe oil 
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onto the axle and maintain lubrication.  When these early bearings overheated, the axle boxes 

would occasionally catch fire and smoke excessively, providing a visual signal to alert the train 

operator of a failed bearing.  This was given the term “hot box” referring to an overheated 

bearing, and this term is still commonly used in the railroad industry today.  This system was 

only capable of identifying bearings that had already failed.  Preventative maintenance required 

visual and manual inspection of the oil level in each axle box; a very tedious and time consuming 

process.  

 
Figure 4: Several commonly used types of roller bearings [16] 
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Tapered-roller bearings were first used in 1895 by the Timken Company for use on 

horse-drawn carriages [17].  They were later adapted for use on rail cars and have proven to be 

more reliable than earlier journal bearing systems.  Unlike other types of bearings depicted in 

Figure 4, tapered-roller bearings can withstand both high radial and axial loads, making them a 

perfect choice for railroad applications.  Tapered-roller bearings are used around the world in a 

variety of sizes for both passenger and freight rail applications.  The majority of freight cars in 

the United States use Class F (6 ½ × 12), Class K (6 ½ × 9), or Class G (7 × 12) bearings, while 

international railcars and passenger cars use various bearing sizes depending on local track gauge 

and axle load limits.   

 
Figure 5: Expanded view of a double row tapered roller bearing [18] 

 

Figure 5 shows a typical Class F double row tapered-roller bearing assembly commonly 

used on freight cars in the United States.  The complete tapered-roller bearing consists of two 

cone assemblies (cone, 23 tapered rollers, and cage) separated by a spacer ring.  This design 

allows the double row tapered-roller bearing to withstand large axial loads in both directions, as 

there are two opposing cones to prevent the cup from translating.  The cones and spacer ring are 

Cup

Grease Seal

Cone
Rollers

Cage
Spacer

Wear Ring

Cup

Grease Seal

Cone
Rollers

Cage
Spacer

Wear Ring
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placed inside the bearing cup, grease is added, and seals are installed.  The finished bearing 

assembly is pre-lubricated, sealed, and ready for installation onto a railcar axle journal for long 

reliable service life.   

Although the new sealed tapered-roller bearings are more reliable than earlier journal 

bearings, the continual evolution of railcar weight and speed continues to stress bearings until 

failure.  Tapered-roller bearings, like all bearings, are susceptible to rolling contact fatigue (RCF) 

of the cup, cone, and roller contact surfaces [19].  RCF failure causes small flakes of metal to 

chip out of the raceway surface and leave a depression known as a “spall”.  Once a spall initiates, 

continued cyclic stresses combined with metal debris from the spall initiation will expedite RCF 

failure and enlarge the spall, resulting in increased noise, vibration, and elevated operating 

temperatures [19].   

 

2.2  Background: Current Standards and Practices 

As mentioned before, increased interest in detecting distressed bearings prior to failure 

led to the introduction of HBDs in the 1960s, and they continue to be the standard for bearing 

health monitoring.  HBDs use an infrared scanner to measure bearing cup temperature and 

identify overheated bearings by utilizing a predetermined threshold.  This method has been the 

standard for bearing condition monitoring for over 40 years and counting.  The AAR has 

identified specific temperature thresholds that are implemented through the network of wayside 

hot-box detectors.  These thresholds consider absolute bearing cup temperature, bearing 

temperature above ambient, and temperature differential between mate bearings on an axle 

(Table 1).   
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Table 1: AAR bearing temperature thresholds [20] 

Absolute Bearing Cup Temperature 160°C (320°F) 

Bearing-Ambient Temperature Differential  94.4°C (170°F) 

Axle Mate Bearing Differential 58.3°C (105°F) 

 

The primary disadvantage of using simple temperature thresholds to identify distressed 

bearings is that maintenance can only be scheduled reactively; meaning repairs can only take 

place once bearing failure is imminent or has already initiated.  This practice results in much 

higher operating costs for the rail operator and increased delays for other trains using the same 

track.   

Although the use of HBDs has reduced the number of bearing failures and related 

derailments, railroad engineers continue to develop more effective bearing monitoring 

algorithms that may be implemented using the existing network of HBDs, thus saving the 

substantial cost of installing new wayside detector stations.   

 
Figure 6: Illustration of a typical HBD installation with integrated wheel, and brake rim 

scanners [21]. 
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In 2002, Union Pacific Railroad employed an algorithm that sorts all bearing 

temperatures on a train into statistical quartiles in order to identify bearings operating at 

significantly elevated temperatures, before they exceed AAR condemnable standards listed in 

Table 1 [22].  The advantage of this approach is that distressed bearings are identified before 

their condition necessitates immediate removal, allowing rail operators to perform more 

economical predictive maintenance.  While this method is effective at identifying distressed 

bearings prior to failure, it has also resulted in a large number of non-verified bearings, which 

upon disassembly and inspection do not exhibit any apparent defects.  Research conducted by the 

UTPA Railroad Research Team indicates that a significant percentage of non-verified bearings 

are set-out due to inaccurate infrared scanner readings.  This inaccuracy is the consequence of a 

number of issues; namely, the scanner measures the bottom (unloaded portion) of the bearing 

cup, the emissivity of the cup can vary widely with dirt and grease deposits, and the scanner may 

read the temperature of the adjacent grease seal instead of the bearing cup, not to mention the 

uncertainty associated with calibrating these devices which usually only involves a one point 

calibration method. 

 

2.3  Literature Review 

2.3.1  On-Board Continuous Condition Monitoring 

Although research has been conducted to promote communication between existing 

wayside detectors to develop a condition monitoring network, progress has been hindered due to 

divided ownership of track and wayside detector installations [5].  This has encouraged industry 

engineers to create an on-board bearing condition monitoring system that can be economically 

retrofitted to existing equipment.   
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Ideally, on-board condition monitoring of a roller bearing should entail a correlation of 

bearing temperature to railcar speed and load; this could potentially provide a more accurate 

method of identifying bearings operating at significantly elevated temperatures.  If successful, 

this ideal monitoring system would even detect bearing defects at low speed operation when 

bearing temperatures are far below AAR condemnable standards.  Furthermore, the sampling 

rate for the sensors in such a system would be increased dramatically in order to capture brief 

transient temperature trending events and accurately determine the bearing condition.  

Unfortunately the sensors and instrumentation required to monitor railcar load, speed, and roller 

bearing temperatures is far too costly for widespread implementation in the field.   

A more economically viable solution is to monitor only bearing temperature and compare 

an individual bearing’s temperature with the performance of its peers and track these 

comparisons over time.  This approach has been used with great success for monitoring wind 

turbine rotor and gearbox bearing elements [23].   

2.3.2  Temperature Based Condition Monitoring 

Recent efforts towards monitoring tapered roller bearing condition over an extended 

period of time involves storing readings from multiple consecutive HBDs in order to identify 

bearings that operate at higher temperatures than their peers for an extended period of time [5].  

Using the existing network of approximately 5,000 HBDs is appealing for engineers and experts 

in the industry because of the relatively low cost to implement new monitoring algorithms.  

Another advantage of using stationary wayside detectors is their ability to scan many passing 

railcars with a single strategically placed wayside detector.  The latter reduces the cost to scan 

each car compared to early on-board temperature monitoring systems.  Unfortunately, the 

tradeoff for this lowered cost is reduced scanning frequency, which substantially lessens the 



14 

 

number of data points used to evaluate a bearing’s condition.  Decreasing the spacing between 

successive HBDs would require a dramatic increase in the number of wayside detectors nation-

wide, which will incur tremendous costs.   

On-board bearing temperature monitoring systems have been developed and tested for 

both freight and passenger railcars with varying results.  In 1970 Amtrak deployed wired bearing 

temperature sensors for their entire fleet of passenger cars, utilizing a simple temperature 

threshold of 93.3°C (200°F) algorithm, resulting in a significant reduction in bearing-related 

train delays and derailments [8].  Unfortunately, freight cars are used much differently than 

passenger cars, with freight cars being added and removed from a train at several stops along a 

specified route.  Consequently, any wired monitoring system would be impractical because of 

the frequent connection and disconnection of sensor wiring required to change out railcars.  A 

wireless system would have made the Amtrak system ideal; however wireless radios and battery 

systems of the time were unreliable and prohibitively expensive.   

The DOT-STAR program was a research project initiated in 1980 with the intention of 

creating a system capable of continuously monitoring bearing temperatures in order to detect 

failures between wayside detector stations [10].  The system used a thermal sensor and a small 

explosive charge integrated into the bearing adapter as shown in Figure 7.  A simple temperature 

threshold method was used to determine when the bearing temperature exceeded 250°F, 

triggering the explosive charge that activated the train’s air brake system.  Although this system 

was successful in field tests, it was not commercially viable due to the high equipment and 

installation costs associated with the non-reusable sensor design [24].  
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Figure 7: DOT-STAR thermal sensor design [10] 

 

A similar initiative in 1990 produced the Smart-Bolt (Figure 8); a temperature sensor and 

wireless transmitter integrated into the bearing end cap bolt [9].  The wireless transmitter is 

intended to send an alert message to the locomotive in the event of an overheated bearing.  The 

primary limitation of the Smart-Bolt is that the sensor measures the internal axle temperature and 

not the bearing cup temperature.  Internal axle temperature lags far behind changes in bearing 

temperature and is affected by heat transfer to and from the adjacent train wheel depending on 

operating conditions.  Furthermore, the electronic components are integrated within the end cap 

bolt and are subject to very high operating temperatures, above 200°C during extreme cases, 

which can destroy the radio transmitter and other critical electronic circuitry [24].  These factors, 

combined with the failure to obtain a satisfactory correlation between bearing cup and axle bolt 

temperatures, ultimately prevented wide-spread implementation.   
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Figure 8: SMART-BOLT sensor prototype [9] 

 

2.3.3  Frequency Domain Condition Monitoring 

In recent years, vibration and acoustic sensor arrays have been developed by railroad 

industry engineers for defect detection in tapered roller bearings.  Wayside acoustic microphone 

arrays are capable of early identification of defects before they grow large enough to cause the 

operating temperature to rise above HBD thresholds.  Development of the Trackside Acoustic 

Detector System (TADS) was initiated by researchers at the Transportation Technology Center, 

Inc. (TTCI) in conjunction with the AAR in 1995 [25].  These detectors utilize computer 

algorithms to analyze the frequency domain characteristics of the bearing’s acoustic signature.  

Although these systems can detect bearing defects before they become severe enough to cause 

overheating, some types of condemnable defects are not identifiable by acoustic detectors, such 

as incorrect grease fill, loss of grease, or geometric inconsistencies in the bearing raceways.  
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Furthermore, not all bearing defects identified by wayside acoustic detectors require removal by 

AAR standards.  

 
Figure 9: Trackside Acoustic Detection System (TADS) [26] 

 

Subsequent field testing indicated that the TADS (Figure 9) is most accurate for detection 

of mid-size roller and raceway defects.  Additionally, TADS can detect these defects before they 

grow large enough to overheat and be detected by a HBD.  Initial testing indicated that the 

TADS system became less accurate for detection of very large spalls, known in the railroad 

industry as “growlers” for the noise emitted during service, even though operating temperatures 

exceed AAR standards [27].  Subsequent research efforts improved the TADS algorithm to allow 
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for the detection of very severe growlers, though more research is required for the detection of 

small to mid-size growlers.   

 



19 

 

 

 

 

 

 

CHAPTER III 

 

 

EXPERIMENTAL SETUP AND INSTRUMENTATION 

 

 

 This chapter provides a thorough description of the railcars used in the Australian field 

test as well as the sensors used to instrument those railcars for bearing temperature monitoring.  

Additionally, processing of temperature data acquired from the instrumented test fleet is 

discussed.  Lastly, the laboratory equipment and procedures used to evaluate tapered-roller 

bearings removed from the Australian field test is presented. 

 

3.1  Australian Test Fleet 

 Ten cars of an Australian railroad fleet were instrumented with IONX
1
 Wireless Sensor 

Nodes (WSNs) in March 2010.  Each railcar is equipped with eight Class E tapered-roller 

bearings making for a test fleet of 80 bearings.  These railcars and bearings had been in active 

service for varying lengths of time prior to instrumentation, creating a test fleet composed of 

both healthy and potentially defective bearings.  The test cars move freight between Perth and 

Melbourne, a round trip of approximately 4,000 miles through the hot deserts of remote Southern 

Australia (Figure 10) at speeds up to 120 km/h (74.6 mph).  This remote section of track has only 

                                                 

 

 

1
 A subsidiary of Amsted Rail Industries, Inc. responsible for the development of asset monitoring technologies 
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one hot-box detector (HBD) and one Trackside Acoustic Detector System (TADS) installation, 

highlighting the need for an on-board condition monitoring system.   

 
Figure 10: Map of Australia with the railroad track used by the test fleet highlighted in 

blue.  The red box indicates territory that does not have cellular phone service. 

 

3.2  WSN Design 

 IONX WSNs contain a temperature sensor, a microprocessor and related circuitry, a radio 

antenna, and a non-rechargeable battery encased in a weatherproof polymer housing.  The 

temperature sensor used is a silicon based voltage output device attached to the end of a brass 

plug (Figure 11) selected for its high thermal conductivity.  This configuration allows the 

temperature sensor to be safely imbedded in the core of the WSN, instead of being exposed near 
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the surface.  The temperature sensor produces a low voltage DC signal that is processed through 

an 8-bit analog to digital (A/D) converter to produce a discrete integer value.  This integer value, 

referred to herein as the number of “counts”, is then truncated to the nearest multiple of ten, and 

converted to a Celsius temperature.  Once the bearing adapter temperature is calculated, the 

bearing cup temperature is estimated using a predetermined calibration function.  Detailed 

analysis and development of the correlation between adapter surface and bearing cup 

temperatures is the main focus of a thesis by Zagouris [12].   

All calculations required for A/D conversion and temperature correlations are performed 

by the imbedded microprocessor.  WSNs sample the temperature sensor once every 15 seconds 

and average four consecutive readings to obtain an average bearing cup temperature over the past 

minute.  The cumulative effect of reading the temperature sensor and the ensuing A/D 

conversion results in a theoretically calculated accuracy of approximately ±6°C (±10.8°F).  The 

subsequent correlation of adapter surface temperature to bearing cup temperature increases the 

total uncertainty of the measurement to approximately ±10°C (±18°F) [12].  The bearing cup 

temperatures, acquired once per minute while the train is operating, are temporarily stored within 

the device’s internal memory until eight consecutive values are accumulated; at that time, they 

are transmitted via radio to the Communication Management Unit (CMU) on-board the railcar, 

which in turn sends this data wirelessly to specific computer servers.   
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Figure 11: Bottom side of a WSN with the brass plug and mounting holes shown 

 

3.3  WSN Field Installation 

 One WSN is mounted on each bearing adapter, as depicted in Figure 13, as well as one 

on the railcar undercarriage to record ambient temperature, for a total of nine WSNs per railcar.  

The WSNs are given identification numbers one through eight for the bearing positions shown in 

Figure 12, and WSN number nine for the ambient temperature sensor.   

Brass Plug 

Mounting 

Holes 
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Figure 12: Diagram indicating the WSN ID numbers assigned to each railcar bearing 

location. 
 

The WSNs are specifically designed to be easily retrofitted to existing railroad bearing 

adapters with minimum modifications.  Mounting the WSN directly on the exterior surface of the 

bearing cup was considered, since it would allow for direct measurement of the bearing cup 

temperature without the need for calibration.  However, this location is not suitable due to the 

tendency for the cup to rotate during field service.  The momentary unloading of the 

bearing/adapter contact when the car is traveling over uneven track causes this rotation of the 

bearing cup, known as indexing within the railroad industry.  Hence, installation on the bearing 

adapter surface was selected for greater survivability of the WSN.   

Node 1 Node 3 Node 5 Node 7 

Node 8 Node 6 Node 4 Node 2 
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Figure 13: Typical field installation of Wireless Sensor Node [27] 

 

Typical procedure utilized for field installation involves removing rust, dirt, and other 

debris from the adapter surface using a handheld grinder and wire wheel attachment.  The latter 

is done to reduce the thermal contact resistance between the brass plug and the adapter surface, 

enhancing heat transfer to the sensor and improving the accuracy of the temperature readings.  

Following surface preparation, thermal epoxy is applied generously to the installation location, 

shown in Figure 14, to further reduce the thermal contact resistance.  The WSN is then attached 

to the bearing adapter using four self-tapping metal screws driven through the device’s bolt holes 

shown in Figure 11.  The action of torqueing the screws presses the WSN firmly against the 

adapter surface, thinning the epoxy layer.  The installed WSN is given 24 hours for the thermal 
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epoxy to cure, improving thermal conductivity.  This installation procedure results in a minimum 

thermal contact resistance between the temperature sensing device and the adapter surface which 

is critical for accurate temperature measurements.   

 
Figure 14: Primed mounting surface with the thermal epoxy and mounting holes shown 

[12]. 

 

3.3  CMU Field Installation 

 Each railcar is equipped with one Communication Management Unit (Figure 15) with the 

purpose of maintaining radio communication with the nine WSNs, storing all temperature 

readings acquired from the WSNs, and transmitting the data from the railcar to the centralized 

data storage servers.   
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Figure 15: IONX CMU shown with mounting bracket [28] 

 

The CMU has both cellular and satellite antennas mounted internally.  This dual 

capability allows the unit to preferentially use the more economical cellular communication 

when service is available near developed areas.  When the railcar is operating in remote areas 

without cellular service (Figure 10), satellite communication is used to transmit the temperature 

data as well as emergency alarm messages.  The emergency alarms are generated anytime the 

bearing cup temperature exceeds the AAR standards (Table 1), requiring a train to be slowed or 

stopped to avoid catastrophic bearing failure.  In order to facilitate reliable cellular and satellite 

communication, the CMU is mounted near the top of the railcar, as shown in Figure 16.   

 



27 

 

 
Figure 16: Field installation of IONX CMU on a freight car [28] 

 

3.4  Pre-Processing Of Raw Data 

 Bearing cup temperature data is downloaded from centralized data storage servers in a 

formatted Comma Separated Value (.csv) file.  This file format is selected because it is easily 

read by Microsoft Excel®, Notepad®, and can be readily imported using MATLAB
TM

 for 

processing and analysis.  By default, the raw data is sorted first by WSN sensor ID number, and 

second by timestamp in ascending order as shown in Table 2.   

  

IONX CMU 
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Table 2: Format of temperatures downloaded from data storage servers 

Railcar ID Date Sensor ID Temp (°F) 

PBGY0050U 8/1/2011 15:00:15 1 81.016 

PBGY0050U 8/1/2011 15:01:21 1 81.016 

PBGY0050U 8/1/2011 15:02:33 1 81.016 

PBGY0050U 8/1/2011 15:03:41 1 81.016 

PBGY0050U 8/1/2011 15:04:43 1 83.608 

PBGY0050U 8/1/2011 15:05:35 1 83.608 

PBGY0050U 8/1/2011 15:00:05 2 81.016 

PBGY0050U 8/1/2011 15:01:09 2 83.608 

PBGY0050U 8/1/2011 15:02:24 2 83.608 

PBGY0050U 8/1/2011 15:03:19 2 83.608 

PBGY0050U 8/1/2011 15:04:30 2 86.2 

PBGY0050U 8/1/2011 15:05:49 2 86.2 

PBGY0050U 8/1/2011 15:00:36 3 78.424 

PBGY0050U 8/1/2011 15:01:49 3 78.424 

PBGY0050U 8/1/2011 15:02:14 3 78.424 

PBGY0050U 8/1/2011 15:03:26 3 81.016 

PBGY0050U 8/1/2011 15:04:15 3 81.016 

PBGY0050U 8/1/2011 15:05:40 3 83.608 

 

The WSN reporting times are not synchronized, meaning that the timestamps for 

temperature readings from all nodes vary by several seconds within the same minute.  The latter 

requires that the raw data be sorted and reordered so that all bearing temperatures acquired at 

approximately the same time are stored together on one row of a comprehensive data array 

(Table 3).  This process is accomplished using the MATLAB
TM

 program data_sorter_v4 

provided in the Appendix that first, rounds all timestamps to the nearest minute, next, searches 

for unique temperature timestamps, and then finds all temperatures recorded within each minute.  

All temperatures acquired within one minute are then stored on a single row for that timestamp, 

as shown in Table 3.    
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Table 3: Temperature data format after processing, with the Node ID numbers 

corresponding to bearing locations as depicted in Figure 12. 

Date 
Node#

1 

Node#

2 

Node#

3 

Node#

4 

Node#

5 

Node#

6 

Node#

7 

Node#

8 
Ambient 

8/1/2011 

15:00 
81.06 81.03 78.424 83.608 75.832 78.424 81.016 78.424 65 

8/1/2011 

15:01 
81.06 83.608 78.424 83.608 75.832 78.424 81.016 78.424 65 

8/1/2011 

15:02 
81.06 83.608 78.424 83.608 75.832 78.424 81.016 81.016 65 

8/1/2011 

15:03 
81.06 83.608 81.016 86.2 78.424 78.424 81.016 78.424 65 

8/1/2011 

15:04 
83.608 86.2 81.016 86.2 78.424 81.016 83.608 81.016 65 

8/1/2011 

15:05 
83.608 86.2 83.608 86.2 78.424 81.016 83.608 81.016 65 

 

This ordered dataset allows calculation of the mean temperature for all bearings at the 

same time (row-wise average) and mean temperature for a single bearing during a selected 

timespan (column-wise average).  Additionally, this reordered dataset facilitates a 

computationally efficient generation of temperature vs. time plots, statistical analysis, and other 

numerical operations using MATLAB
TM

.  

WSN power supply failures cause the CMU to interpret the WSN signal as a zero-voltage 

reading and the resulting A/D conversion algorithm produces readings of approximately -97°F, 

or -95°F for bearing cup temperatures, or 0°F for ambient temperatures as shown in Table 4.  

Moreover, radio communication failure between the WSN(s) and CMU results in no data being 

recorded, while other nodes on the same car are actively recording and transmitting.  The latter 

leaves gaps in the sorted data set.  The missing data is not used in the analysis algorithms; 
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however, the number of missing readings in the data set is noted and used to evaluate the 

reliability of the WSNs.   

Table 4: Example of ordered dataset with erroneous temperature readings highlighted in 

yellow. 

 
 

The locations of the erroneous temperature readings shown in Table 4 are identified by 

logical filters implemented using the MATLAB
TM

 program data_sorter_v4, and subsequently 

removed from the dataset.  The reordered and filtered temperature data is analyzed using the 

methods presented in Chapter IV to assess the current condition of field test bearings and 

identify degradation in condition over time.  Based on the results of these analyses, two bearings 

were selected for removal from active service and sent to UTPA for laboratory testing, 
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disassembly, and detailed visual inspection to determine the cause of the elevated operating 

temperatures.   

3.5  Laboratory Testing of Railroad Bearings 

 The dynamic bearing tester, related instrumentation and data acquisition used for 

laboratory testing of bearings removed from active service is described in this section.  The 

results of testing and cause of elevated operating temperatures observed in the field are discussed 

in Chapter V. 

3.5.1  Dynamic Bearing Tester 

The bearing tester housed at UTPA is designed to accommodate four tapered-roller 

bearings on a customized axle.  The axle is driven using a 30 horsepower Baldor-Reliance 

Inverter Drive Motor (IDM 4104T) controlled by a Hitachi Variable Frequency Drive (Model 

SJ700-22) and coupled to the test axle using a V-belt and pulley system, as shown in Figure 17.  

This configuration allows for testing of the bearings at a range of speeds from 0 to 138.4 km/h (0 

to 86mph).  Additionally, the Hitachi motor controller is configured to output the motor torque, 

speed, and power consumption to the data acquisition system, allowing for comprehensive 

monitoring of the bearings during testing.  Forced convection over the bearings is achieved using 

two 30˝ fans that produce air flow with an average speed of 5 m/s (11.2 mph).  Vertical load is 

applied to the test axle using a 7" bore hydraulic cylinder capable of applying loads from 0 to 

150% of a bearing’s rated load capacity.  For the Class E bearings tested, 100% load corresponds 

to 116,988 N (26,300 lbf) per bearing.   
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Figure 17: Dynamic bearing tester used for laboratory experiments conducted at UTPA 

 

3.5.2  Dynamic Bearing Tester Instrumentation 

 The Class E bearing adapters used to support the test axle are specifically machined at 

UTPA to accommodate temperature and vibration sensors, allowing for a comprehensive 

evaluation of the bearing performance during operation, as well as detection of degradation in 

condition.  Three K-type thermocouples are installed on each bearing; two are bayonet-type and 

one is standard-wire version (Figure 18).  The two bayonet thermocouples, which are centered on 

each cup raceway, are affixed to the bearing adapter and utilize a spring-loaded mount to 

maintain contact with the bearing cup.  The standard-wire thermocouple is centered between the 
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two cup raceways and is secured using a hose clamp.  Additionally, two standard-wire K-type 

thermocouples are used to monitor the ambient temperature of the air flow in front of and behind 

the test axle.   

 
Figure 18:  Sensor placement on the bearing cup with the bayonet-mount and the 

standard-wire thermocouples shown 

 

 Each bearing adapter is machined to accommodate one accelerometer used to capture the 

vibration signature of the bearing in the radial direction.  The accelerometers used (PCB 

Piezotronics, Inc. – Model 355B02) are single axis units with a measurement range of ±500 g 

and a maximum sampling frequency of 10 kHz.  Data recorded from the accelerometers are 

processed using Fast Fourier Transform (FFT) and Power Spectral Density (PSD) techniques to 

Bayonet-mount thermocouples 

Standard-wire thermocouple 
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determine the intensity of vibration at specific frequencies which are known indicators of bearing 

condition.   

 The data acquisition hardware used is a National Instruments® NI cDAQ-9174 chassis 

with the following cards installed; one NI 9213 card connected to all fourteen thermocouples, 

one NI 9234 card reading four accelerometers, and one NI cRIO-9215 card to record the motor 

speed and power consumption signals from the Hitachi motor controller.  LabView® software is 

used to collect and record data from the NI hardware, while MATLAB
TM

 is utilized exclusively 

for post-processing and analysis of the acquired laboratory test data. 
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CHAPTER IV 

 

 

DEVELOPED CRITERIA AND STATISTICAL METRICS 

 

 

This chapter introduces five statistical criteria that are used to assess the thermal 

performance of tapered-roller bearings in the Australian SCT Logistics test fleet.  These criteria 

are arranged into three alarm levels; the most urgent alarms, termed Level 1, are consistent with 

current Association of American Railroads (AAR) standards that are listed in Table 1 of Chapter 

II, Level 2 alarms are less urgent and used to schedule maintenance within 1-3 months, while 

Level 3 alarms are utilized to create a watch-list of potentially problematic bearings that require 

close monitoring.   

 

4.1  Level 3 Criteria 

 The Level 3 Criteria presented in this section utilize statistical metrics to quantify a 

bearing’s thermal performance.  These criteria analyze absolute bearing temperature, bearing-

ambient temperature differential, time rate of change of bearing temperature, as well as deviation 

of a bearing’s operating temperature from the average temperature of the railcar, and deviation 

from the average temperature of the entire train.  The developed Criteria identify bearings 

exhibiting atypical behavior by comparing the performance of a single bearing to fixed 

thresholds that are carefully selected based on analyses of SCT Logistics Australian field test 

data, current AAR standards, and extensive laboratory testing of tapered-roller bearings.  The 



36 

 

thresholds selected for use with these methods are summarized in Table 5 and are presented in 

detail in Section 4.2.   

Table 5: Summary of the thresholds used with Level 3 analyses and the selected threshold 

values 

Threshold Criterion Used Selected Threshold Value 

       Criterion 1 – Absolute bearing temperature limit 93.3°C (200°F) 

        
Criterion 2 – Bearing-Ambient temperature 

differential limit 
66.7°C (120°F) 

  
Criterion 3 – Deviation from average of railcar 

operating temperatures 
No Threshold Used 

  
Criterion 4 – Deviation from average of train 

operating temperatures 
No Threshold Used 

   
       

 
Criterion 5 – Time rate of change of bearing 

temperature limit 
0.69°C/min (1.25°F/min) 

 

The analysis of bearing temperature data is performed at regular intervals to assess 

bearing condition and identify degradation occurring in service.  All bearings in the test fleet are 

analyzed and ranked using the five developed criteria to create a watch list of potentially 

unhealthy bearings that require close monitoring and may be considered for regularly scheduled 

maintenance.   

4.1.1  Level 3 Criterion 1 

 Currently, the primary method utilized for health monitoring of tapered-roller bearings is 

measurement of bearing cup temperatures by hot-box detectors (HBDs).  Considering that all 

bearings on a railcar are operating at the same speed, load, and ambient temperature, it is 

expected that bearings of comparable condition would operate at similar temperatures.  

Preliminary analysis of the performance of railcar bearings consists of a visual inspection of 

temperature vs. time plots generated using the MATLAB
TM

 program RailcarTempPlot provided 
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in the Appendix.  The goal of this inspection is to identify bearings that are either operating at 

high temperatures for extended periods or operating significantly warmer than other bearings on 

the same railcar.   

 
Figure 19: Plot of temperature vs. time for railcar PBGY0112N (March 28-30, 2010). 

 

Figure 19 depicts the temperature history for railcar PBGY0112N between March 28, 

2010 and March 30, 2010, and is representative of temperature vs. time plots generated for other 

railcars in the test fleet.  The frequent rise and fall of the bearings’ operating temperatures is a 

result of several factors; changes in the train’s speed on different sections of the track, 

fluctuations in ambient temperature, train braking system engagement and release, and the 

presence or absence of sunlight warming bearings during the day.  Figure 19 demonstrates that 

the bearing in the R4 position consistently operates 30-40°F warmer than the next hottest 
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bearing, and 80-90°F hotter than the coolest bearing on the same railcar.  This deviation from the 

thermal performance of its peers is significant considering that all bearings shown are operating 

at the same speed, ambient temperature, and load; indicating that this bearing is likely to be 

unhealthy (possibly defective).  Based on the performance depicted in Figure 19, the bearing in 

the R4 position was selected for removal from railcar PBGY0112N shortly after instrumentation 

of the railcars in March 2010.   

 Visual inspection of temperature histories proved to be effective in identifying abnormal 

behavior.  However, this manual inspection procedure is time consuming and is not feasible for 

monitoring a large number of railcars.  Additionally, this procedure cannot be performed in real 

time on a railcar in active service.  In order to quantify the frequency of high temperature 

operation for each bearing, the percentage of temperature readings exceeding a fixed temperature 

threshold is calculated, according to Eq. (4.1),  

             
 {         }

 {  }
          (4.1) 

where  {         } is the number of bearing temperature readings exceeding the threshold 

      , and  {  } is the total number of temperature readings collected during the timespan being 

evaluated.   

4.1.2  Level 3 Criterion 2 

 Bearing-ambient temperature differential is also monitored as an indicator of bearing 

health.  Currently, this temperature differential is measured by HBDs and compared to a 

temperature threshold put in place by the AAR in order to identify potentially unhealthy 

bearings.  The value of monitoring temperature differential is that it effectively normalizes 

bearing cup temperatures with respect to the ambient temperature, whereas absolute bearing 

temperature is affected by fluctuations in ambient conditions.  This Criterion allows for the 
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detection of bearings exhibiting signs of distress before the absolute temperature increases to 

levels that can cause the bearing to seize and fail catastrophically.  Visual inspection of bearing-

ambient temperature differential plots is employed in order to identify bearings consistently 

exhibiting elevated temperature differentials.  Figure 20 illustrates the bearing-ambient 

temperature differential for railcar PBGY0112N during the same timespan depicted in Figure 19. 

 
Figure 20: Plot of bearing-ambient temperature differential vs. time for railcar 

PBGY0112N (March 28-30, 2010). 

 

This visual inspection procedure is quantified by calculating the percentage of bearing-ambient 

temperature differential readings exceeding a predetermined threshold, as shown in Eq. (4.2).   

             
 {           }

 {   }
         (4.2) 
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where  {           }  s the number of bearing temperature differential readings exceeding the 

threshold        , and  {   } is the total number of temperature differential readings collected 

during the timespan being evaluated.   

4.1.3  Level 3 Criteria 3 and 4 

 Fluctuations in absolute temperature and bearing-ambient temperature differential, as 

shown in Figure 19 and Figure 20, respectively, are affected by changes in the train’s speed and 

the condition of the track.  Without monitoring the train speed and track condition, it is not 

possible to determine the effect of these factors on a bearing’s thermal performance.  However, 

knowing that all bearings on one railcar operate at the same speed and experience similar 

excitation from the track, it is reasonable to expect that bearings of similar condition would 

exhibit comparable operating temperatures.  Furthermore, bearings whose operating 

temperatures deviate significantly from their peers should be considered for detailed monitoring 

and possible maintenance.   

Comparative distributions are utilized to visually describe the statistical distribution of 

temperature readings acquired from a single bearing and compare that with the distribution of 

temperature readings for the remaining seven bearings on the same railcar.  These plots are 

generated by grouping temperature readings into bins with a fixed width of 2.78°C (5.0°F) for a 

single bearing on the railcar, as well as for the group composed of the remaining seven bearings 

on that same railcar.  This bin width is selected in order to maximize the accuracy of the 

resulting distribution.  This process is repeated for each of the eight bearings on the railcar, and 

all eight comparative distributions are grouped by axle and railcar side of the respective bearings, 

similar to the layout of bearing placement on the railcar illustrated in Figure 12 (Chapter II).   
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An example of a comparative distribution is presented in Figure 21, and is generated 

from data acquired from railcar PBGY0130L during the first six months of the Australian field 

test.  In Figure 21, the red line represents the distribution of temperature readings for a single 

bearing, while the blue line describes the distribution of temperature readings acquired from the 

remaining seven bearings on that railcar.  The distribution of temperature readings acquired from 

bearings experiencing atypical operation will be skewed to the left for lower than average 

operating temperatures, or to the right for above average temperatures.   

 
Figure 21: Comparative distribution showing bearing temperature (°F) distribution in red 

and railcar temperature (°F) distribution in blue. 

 

Figure 21 demonstrates that several bearings exhibit a clear tendency towards relatively 

low temperature operation, when compared with their peers, whereas, others consistently operate 

at higher temperatures.  For example, temperature readings acquired from the bearings in the L3 

and L4 positions display a peak above and to the right of the blue railcar distribution, indicating 

higher than average operating temperatures.  Conversely, L1 and R2 exhibit a greater number of 
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lower than average temperature readings, as indicated by the red line peaking to the left of the 

railcar distribution.  It is important to note that the statistical distributions shown in Figure 21 

portray the behavior of eight bearings on the same railcar, which are simultaneously subjected to 

the same operating speed, loads, ambient temperatures, and track excitation sources.   

A quantified statistical comparison between bearings on a railcar is made in terms of the 

deviation of a single bearing’s average temperature from the average temperature of its peers, 

and this is compared to the standard deviation of the peer bearings.  This quantity is calculated 

using Eq. (4.3),  

            
 ̅   ̅   

    
      (4.3) 

where  ̅  is the average operating temperature of an individual bearing over a predetermined time  

span,   ̅    is the average temperature of the remaining seven bearings on the railcar over the 

same time span, and      is the standard deviation of the remaining seven bearings.  This 

quantity describes the number of standard deviations that one bearing varies from its peers.   

The information gathered using Criterion 3 allows for identification of bearings 

exhibiting a significant and consistent tendency towards elevated operating temperatures, 

without waiting to exceed any fixed temperature thresholds.  However, the use of eight bearings 

on a railcar represents a relatively small sample population and may be influenced by mechanical 

or environmental factors affecting all bearings on that railcar.  Considering this possibility, the 

practice utilized for Criterion 3 is expanded to include all bearings on the same train, in order to 

obtain a larger sample population that is less susceptible to the previously mentioned factors.  

This statistical measure is calculated using Eq. (4.4),  

            
 ̅   ̅     

      
     (4.4) 
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where  ̅  is the average temperature of one bearing over a specified time span,  ̅      is the 

average temperature of the remaining bearings on the train over the same time span, and        is 

the standard deviation of the remaining bearings on the train.   

4.1.4  Level 3 Criterion 5 

Abrupt increases in bearing temperature, known within the railroad industry as 

temperature trending, has been shown by Maldonado [29] to be indicative of abnormal operation 

in tapered-roller bearings.  However, the transient nature of these brief thermal events makes 

detection by stationary HBDs unlikely, whereas, on-board temperature monitoring is well-suited 

for observation of this phenomenon.  In order to estimate the time rate of change of temperature 

increase in field service bearings, a linear curve fit is applied to an eight minute window of 

temperature data.  The percentage of operating time that a bearing is experiencing rapid heating 

is calculated using Eq. (4.5), 
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         (4.5) 

where  {
   

  
 
   

       
} is the number of heating rate values exceeding the threshold 

   

       
, 

and  {
   

  
} is the total number of heating rate values acquired for a single bearing over a 

specified time period. 

 

4.2  Determination of Level 3 Thresholds 

 The temperature thresholds selected for Level 3 Criteria are based in part on AAR 

standards, statistical analyses of field test data, and insights gained from extensive laboratory 

testing.  Additionally, one bearing was removed from the R4 position of railcar PBGY0112N 

shortly after instrumentation for excessively high operating temperature and significant deviation 
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from the performance of the remaining seven bearings on that railcar (see Figure 19 and Figure 

20).  Subsequent laboratory testing at UTPA demonstrated that this bearing did consistently 

operate at higher temperatures than its peers and a detailed visual inspection revealed that this 

bearing’s internal clearance was not within the allowable nominal range set by AAR standards.  

Chapter V provides a detailed analysis of the disassembly and subsequent inspection of this 

specific bearing.  The performance of this bearing during field service is used extensively as a 

benchmark for selection of other unhealthy bearings.   

MATLAB
TM

 is used to process more than twenty-four million temperature readings 

collected over eighteen months of monitoring the instrumented test fleet.  Histograms are 

generated that depict the statistical distribution of bearing cup temperature, bearing-ambient 

temperature differential, and approximate rate of temperature increase in order to determine 

appropriate thresholds that identify the worst performing bearings within the test fleet.   

4.2.1  Criterion 1 Threshold 

The statistical distribution of all bearing temperatures obtained from eighteen months of 

field testing is depicted in Figure 22.  Bearing temperature readings are grouped into fixed width 

bins of 2°C (3.6°F), this bin size was selected in order to maximize the resolution of the ensuing 

histograms.  MATLAB
TM

 is used to calculate the temperature thresholds that identify the hottest 

5%, 2%, and 1% of the data points acquired.  For the SCT Logistics Australian field test data 

considered here, the 5%, 2%, and 1% thresholds are approximately 71°C (159.8°F), 82°C 

(179.6°F), and 86°C (186.8°F), respectively.  Based on this statistical analysis, combined with 

the performance benchmark set by PBGY0112N-R4, the Criterion 1 temperature threshold (Tlimit) 

of 93.3°C (200°F) is selected.  This temperature threshold identifies the warmest 0.3% of the 
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entire dataset acquired from the test fleet; therefore, any bearing whose operating temperature 

consistently exceeds this threshold is likely to have some defect (abnormality) present.   

 
Figure 22: Statistical distribution of bearing temperatures acquired during the 18-month 

SCT Logistics Australian field test.  Temperature readings are grouped into bins with a 

fixed width of 2°C. 

 

4.2.2  Criterion 2 Threshold 

Statistical analysis of bearing-ambient temperature differentials is employed to select the 

temperature differential threshold (ΔTlimit) for use with Criterion 2, similar to the methodology 

followed to determine the Criterion 1 temperature threshold.  Bearing-ambient temperature 

differentials are grouped into fixed width bins of 2°C (3.6°F) in order to maximize the resolution 

of the histogram portrayed in Figure 23.  The statistical distribution of temperature differentials 
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is given in Figure 23, with the 5%, 2%, and 1% thresholds indicated for reference.  The 

temperature differential thresholds corresponding to these cut-offs are 53°C (95.4°F), 57°C 

(102.6°F), and 61°C (109.8°F), respectively.  Based on this statistical analysis, combined with 

the performance of PBGY0112N-R4, the Criterion 2 temperature threshold (ΔTlimit) of 66.7°C 

(120°F) is selected.  It is important to note that the temperature differential threshold selected for 

Criterion 2 identifies the warmest 0.3% of bearing-ambient temperature differentials for the 

entire fleet, comparable to the threshold selected for Criterion 1.  The latter illustrates the 

significance of identifying bearings that consistently operate above this threshold, and the 

likelihood of those bearings being potentially unhealthy. 

 
Figure 23: Statistical distribution of bearing-ambient temperature differentials collected 

during the 18-month SCT Logistics Australian field test.  Temperature differential 

readings are grouped into bins with a fixed width of 2°C. 
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4.2.3  Criteria 3 and 4 Thresholds 

The use of standard deviation as a method of identifying samples within a population 

which are exhibiting atypical behavior is widely accepted in statistics and engineering 

disciplines.  However, in order for this methodology to produce meaningful results, the 

distribution of data within the sample population must be characterized by a Gaussian, or 

normal, distribution.  Figure 24 presents the distribution of all temperature readings acquired 

from the Australian test fleet with a Gaussian distribution fitted to the dataset.  Figure 24 

suggests that the dataset used can be approximated by a normal distribution; however, this visual 

inspection is not sufficient to verify the use of standard deviation for identification of outliers.   

 
Figure 24: Histogram presenting the distribution of all bearing temperature readings with 

a Gaussian (normal) distribution shown in red.  Temperature differential readings are 

grouped into bins with a fixed width of 2°C. 
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Proving that a given dataset can be described by a normal distribution can be a non-trivial 

task, especially for a small sample size.  However, for a larger dataset, rigorous statistical 

measures such as skewness and kurtosis are employed to describe how closely a sample 

distribution is to a normal distribution.  The skewness of a dataset quantifies the degree of 

symmetry about the mean value, with a skewness of zero representing a perfectly symmetric 

normal distribution.  The dataset composed of all temperature readings acquired from the 

Australian field test has a skewness value of 0.1158, indicating minimal deviation from an ideal 

symmetric distribution.  Kurtosis is another statistical measure that is used to characterize the 

relative width and height of a sample distribution.  The kurtosis value of a Gaussian distribution 

is three, with a higher kurtosis value signifying a greater concentration of readings near the mean 

(a histogram with a taller central peak), and a lower kurtosis value representing less peaked and 

more widely distributed populations.  The calculated kurtosis value for the bearing temperature 

distribution of Figure 24 is 2.447, indicating a slightly wider distribution of temperature 

readings, compared to a Gaussian distribution.   

Considering that both the skewness and kurtosis values for the field test dataset are close 

to that of a normal distribution, the use of standard deviation is appropriate for identification of 

outliers in this case.  Based on a normal distribution, a threshold of one standard deviation is 

selected for both Criteria 3 and 4 to identify bearings whose average operating temperatures are 

deviating significantly from the railcar and train average temperatures, respectively. 

4.2.4  Criterion 5 Threshold 

Statistical analysis is utilized, similar to the procedure followed for the determination of 

Criteria 1 and 2 thresholds, in order to specify the appropriate threshold for use in Criterion 5 

analysis.  For this criterion, however, the approximate time rate of change of bearing temperature 
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is used, as calculated by a linear fit of an eight-minute moving window of data.  Figure 25 

provides the statistical distribution of all heat rate data collected from the test fleet, with the 5%, 

2%, and 1% thresholds shown in blue.   

 
Figure 25: Statistical distribution of time rate of change of temperature data for the 18-

month SCT Logistics Australian field test.  Data points are grouped into bins with a fixed 

width of 0.1°C/min (0.18°F/min). 

 

Utilizing an iterative procedure, several heat rate thresholds are considered and all 

bearings in the Australian test fleet are ranked by this Criterion to determine the effect of various 

threshold values on the relative ranking of bearings within the test fleet.  The thresholds 

considered here are based on analyses of extensive laboratory testing of tapered-roller bearings 

with various defects present.  These analyses indicate that, in more than 90% of defective 
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bearings tested, the rate of temperature increase observed during brief temperature trending 

events exceeds 1.25°F/min.  However, the laboratory test data analyzed was obtained from 

bearings whose condition had degraded far beyond what would be allowed to operate in the field 

without triggering an alarm from a TADS installation.  Furthermore, laboratory testing does not 

simulate all of the excitation sources experienced by bearings during field service.  Based on the 

latter, the heating rate threshold,  
   

       
, of 0.69°C/min (1.25°F/min) is selected for use with 

Criterion 5.  The value of this threshold identifies the warmest 2.5% of all heating rate readings, 

obtained from the Australian test fleet, and it is consistent with analyses of laboratory test data 

obtained from defective bearings. 

 

4.3  Level 2 Alarm Thresholds 

 Level 2 alarms utilize the same statistical metrics as Level 3 alarms; however, additional 

thresholds, listed in Table 6, are integrated to serve as a performance benchmark, facilitating the 

identification of bearings that represent a high priority for maintenance personnel.  The latter 

thresholds are limits placed on the results of Level 3 Criteria, which, if exceeded cause an alarm 

message to be generated and reviewed for consideration of further action.  Level 2 alarms are 

less urgent than Level 1 alarms, which require a train be slowed or stopped to avoid catastrophic 

bearing failure, and are consistent with current AAR standards summarized in Table 1 (Chapter 

II).   
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Table 6: Level 2 performance thresholds 

Criterion Description Level 2 Threshold 

1 Percent of Ti readings ≥ 93.3˚C (200.0˚F) 25% 

2 Percent of ∆Ti readings ≥ 66.7˚C (120.0˚F) 25% 

3 ( ̅   ̅   )/σcar 1.0 

4 ( ̅   ̅     )/σtrain 1.0 

5 Percent of dTi /dt readings ≥ 0.69°C/min (1.25°F/min) 4% 

 

Performance thresholds are established for all five Criteria, based in part on temperature 

data collected from the PBGY0112N-R4 bearing that was removed on April 7, 2010.  This 

bearing collected data for a total of 58.6 hours of continuous operation, and, based on its 

performance was recommended for removal due to excessive operating temperatures and 

significant deviation in temperature compared to its peers on the same railcar.  The developed 

algorithms are used to analyze this bearing’s temperature data, and the resulting scores obtained 

from Level 3 Criteria, displayed in Table 7, were employed as performance benchmarks to 

identify bearings likely to be experiencing unsafe operation.   

Table 7: Results of Level 3 Criteria for the PBGY0112N-R4 bearing during March 2010. 

Criterion Description Result 

1 Percent of Ti readings ≥ 93.3˚C (200.0˚F) 11.02% 

2 Percent of ∆Ti readings ≥ 66.7˚C (120.0˚F) 25.95% 

3 ( ̅   ̅   )/σcar 1.02 

4 ( ̅   ̅     )/σtrain 1.10 

5 Percent of dTi /dt readings ≥ 0.69°C/min (1.25°F/min) 5.26% 
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In July 2010, a second bearing was removed from field service based on analyses of the 

temperature readings acquired from railcar PBGY0130L.  This setout bearing had been one of 

the worst performing bearing in the Australian test fleet for several months prior to removal, and, 

during April 2010 its performance, summarized in Table 8, was worse than that of the 

PBGY112N-R4 bearing during March 2010.   

Table 8: Results of Level 3 Criteria for the PBGY0130L-L3 bearing during April 2010. 

Criterion Description Result 

1 Percent of Ti readings ≥ 93.3˚C (200.0˚F) 25.07% 

2 Percent of ∆Ti readings ≥ 66.7˚C (120.0˚F) 28.39% 

3 ( ̅   ̅   )/σcar 1.20 

4 ( ̅   ̅     )/σtrain 1.49 

5 Percent of dTi /dt readings ≥ 0.69°C/min (1.25°F/min) 6.68% 

 

Based on the results of Level 3 analyses for the 112N-R4 and 130L-L3 bearings, the 

Level 2 performance threshold for Criteria 1 is set at 25%.  This threshold is suitable for 

identification of potentially unhealthy bearings because approximately 0.3% of all absolute 

bearing temperatures acquired from the test fleet exceed 93.3°C (200°F), therefore, any bearing 

whose operating temperatures exceed 93.3°C (200°F) for at least 25% of the time is likely to be 

unhealthy.  The same rationale is used to justify the Level 2 Criteria 2 threshold of 25% for the 

analysis of bearing-ambient temperature differential readings.   

The Level 2 thresholds used for Criteria 3 and 4, the deviation of a bearing’s average 

temperature from its peers, are both set at one standard deviation of the railcar and train, 

respectively.  These thresholds are based primarily on the performance of the 112N-R4 and 
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130L-L3 bearings set out from field service, summarized in Table 7 and Table 8, as well as the 

widely accepted practice of identifying samples within a population that fall more than one 

standard deviation away from the population mean.   

The Level 2 threshold selected for use with Criterion 5 requires that an alert be generated 

if more than 4% of the entire heating rate dataset for one bearing exceeds 0.69°C/min 

(1.25°F/min).  In comparison to the performance of PBGY0112N-R4, assessed using Level 3 

Criteria, this threshold is more conservative than the 5.26% result listed in Table 7.  A more 

conservative threshold is selected because there is relatively little information available 

regarding the rate of temperature increase occurring in unhealthy bearings before initiation of 

failure in field service; of the 80 bearings monitored in the test fleet, none experienced in-service 

failure or any severe temperature trending events.  Moreover, the current network of HBDs can 

only provide intermittent measurement of bearing temperatures and cannot accurately estimate 

the rate of temperature increase experienced by an unhealthy bearing.  Experimental testing 

conducted at UTPA indicates that the rate of temperature increase for defective bearings exceeds 

0.69°C/min (1.25°F/min) in more than 90% of laboratory test scenarios.  Nonetheless, laboratory 

testing cannot simulate the excitation sources from the track and wheels which affect the rate of 

temperature increase.  In light of these factors, a more conservative threshold is judged 

appropriate, considering that these condition monitoring algorithms are designed to provide early 

identification of potentially unhealthy bearings, not detection of impending bearing failure.   
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CHAPTER V 

 

 

RESULTS AND DISCUSSION 

 

 

The statistical metrics presented in Chapter IV are employed on a monthly basis to 

analyze temperature data acquired from the SCT Logistics Australian field test.  The results of 

these metrics are utilized to assess the condition of tapered-roller bearings in service.  

Additionally, degradation of bearing condition occurring during field service is discussed for 

three case studies that validate the effectiveness of the developed algorithms as a continuous 

bearing health monitoring system.   

 

5.1  Introduction 

 During the course of the first eight months of monitoring the SCT Logistics Australian 

test fleet, two Class E tapered-roller bearings were removed from active service based on the 

results of the analyses presented in Chapter IV.  Following removal, these two bearings were 

sent to UTPA for laboratory testing and subsequent disassembly and detailed visual inspection.  

Based on this testing and inspection, it was determined that both bearings did have condemnable 

defects that caused the elevated operating temperatures observed during field service.  In 

addition to these two setout bearings, one Class E tapered-roller bearing that had been assessed 

as healthy using Level 3 Criteria was flagged by a Trackside Acoustic Detector System (TADS) 

installation and subsequently replaced.  However, ensuing disassembly and inspection performed 

by the maintenance crew of the Australian test fleet indicated that this bearing had no defects 
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present.  This non-verified bearing exemplifies the inherent limitations of intermittent monitoring 

to identify bearings in distress or in need of maintenance.   

 

5.2  Case Study 1: Railcar PBGY0112N-R4   

Shortly after instrumentation, the bearing located in the R4 position of railcar 

PBGY0112N was recommended for removal based on high operating temperature, high bearing-

ambient temperature differential, and significant deviation in operating temperatures when 

compared to its peers on the same railcar and the entire train.  This bearing completed only 58.6 

hours of operation before being removed from railcar PBGY0112N on April 7, 2010.  The 

ensuing disassembly and inspection revealed that this bearing’s internal clearance was outside of 

the allowable range when it was originally assembled.   

5.2.1  Analysis of Field Test Data 

The average bearing temperatures and average bearing-ambient temperature differentials 

for the 58.6 hours of data collected is shown in Table 9.  As shown, the average bearing-ambient 

temperature differential of the bearing in the R4 position is 28.64°C (51.55°F) hotter than the 

coolest bearing on the railcar, and 14.57°C (26.23°F) hotter than the next warmest bearing.  

Similarly, the average bearing temperature of the R4 bearing is 14.01°C (25.22°F) to 27.22°C 

(49.99°F) hotter than its peers.   

Table 9: Average bearing temperature and bearing-ambient temperature differential for 

PBGY0112N (March 28-30, 2010) 

Bearing Position R1 L1 R2 L2 R3 L3 R4 L4 

Average Bearing 

Temperature [°F] 
150.28 136.12 151.62 142.63 134.08 126.80 178.35 152.12 

Average Bearing-

Ambient Differential 

[°F] 

78.21 64.50 79.69 71.04 62.48 55.65 105.64 80.42 
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 A plot of bearing temperature vs. time is presented in Figure 26 for the 58.6 hours of 

operation from March 28, 2010 to March 30, 2010.  The temperatures of all eight bearings on 

this railcar fluctuate together as train speed, ambient conditions, and wheel braking events 

influence their thermal performance.  However, the R4 bearing is always the hottest bearing on 

the railcar by a considerable margin, as demonstrated by the data in Table 9.  Although the 

operating temperature of this bearing is significantly higher than its peers, it does not exceed the 

AAR temperature threshold of 160°C (320°F) at any point during the monitored period.   

 
Figure 26: Bearing temperature vs. time with the AAR threshold of 160°C (320°F) shown 

in red (March 28-30, 2010). 
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 A plot of the bearing-ambient temperature differential was generated for the time span of 

March 28, 2010 through March 30, 2010 in order to illustrate the heat generation within the R4 

bearing relative to its peers.  Figure 27 depicts the history of temperature differentials for all 

eight bearings in service on railcar PBGY0112N, and clearly shows that the R4 bearing 

consistently exhibited the highest temperature above ambient, indicating significantly greater 

heating within the bearing.  Furthermore, the bearing-ambient temperature differential exceeded 

94.4°C (170°F), the AAR threshold for bearing removal, for 15 minutes.  If there had been an 

HBD installation within the 28.1 km (17.5 miles) of track covered while the temperature 

differential exceeded 94.4°C (170°F), this bearing would have been flagged for immediate 

removal.  Conversely, if that HBD was located anywhere else along the 6,450 km (~4,000 mi) 

route, this bearing would have been allowed to continue operation.  The fact that this bearing 

briefly exceeded the AAR standards for bearing-ambient temperature differential but not the 

threshold for bearing cup temperature exposes the discrepancies in the current AAR standards, 

and clearly highlights the need for better and more reliable condition-monitoring systems.   
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Figure 27: Bearing-Ambient temperature differential vs. time with the AAR threshold of 

94.4°C (170°F) shown in red (March 28-30, 2010). 

 

The data acquired from railcar PBGY0112N was analyzed using the Level 3 Criteria 

presented in Chapter IV and the results are used to assess the condition of the bearing in the R4 

position before and after replacement.  The condition of the R4 bearing, as evaluated by the 

Level 3 Criteria (see Table 10), indicated this to be a potentially distressed bearing, with high 

ranking among all five of the developed Criteria.  The results of Criteria 3 and 4 indicate a 

significant deviation from the average operating temperatures of both the railcar and the entire 

train, suggesting that this bearing is exhibiting excessive heat generation and elevated operating 

temperatures in comparison to its peers.  
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Table 10: Condition of the bearing in the R4 position of railcar PBGY0112N as assessed by 

the Level 3 Criteria before and after replacement on April 7, 2010. 

Month Criterion 1 Criterion 2 Criterion 3 (σcar) Criterion 4 (σtrain) Criterion 5 

March 2010 11.02% 25.95% 1.02 1.10 5.26% 

April 2010 0% 2.71% -0.097 -0.012 2.20% 

 

On April 7, 2010, the bearing in the R4 position was replaced based on analysis of 

temperature data acquired during the initial phase of the field testing of the WSNs.  Following 

replacement, the condition of this bearing, as assessed using the Level 3 Criteria, improved 

markedly, as can be seen in Table 10.  Specifically, the results of Criteria 1 and 2 indicate no 

bearing temperature readings exceeding 93.3°C (200°F) and only 2.71% of bearing-ambient 

temperature differentials exceeding 66.7°C (120°F), respectively.  The latter is a significant 

improvement in comparison to 11.02% of bearing temperature readings exceeding 93.3°C 

(200°F) and 25.95% of bearing-ambient temperature differentials exceeding 66.7°C (120°F) 

prior to replacement.  Furthermore, the results of Criteria 3 and 4 after replacement, with 

negative values for both Criteria, indicate that the replacement bearing is now operating below 

the average temperatures of both its railcar and the entire train.  Finally, the results of Criterion 5 

indicate that only 2.20% of the rate of temperature increase readings exceed 0.69°C/min 

(1.25°F/min) as compared to 5.26% before replacement.   

Prior to replacement of the R4 bearing, its performance violated four of the five Level 2 

alarms in March 2010, as shown in Table 11.  In the ensuing month, April 2010, the replacement 

bearing in the same position did not violate any of the Level 2 alarm thresholds, signifying a 

substantial performance improvement.   
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Table 11: Summary of Level 2 alarm violations before and after replacement of the R4 

bearing.  A “✖” denotes that a Level 2 alarm has been violated.   

Month Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5 

March 2010 ✔ ✖ ✖ ✖ ✖ 

April 2010 ✔ ✔ ✔ ✔ ✔ 

 

In summary, the state of the original bearing in the R4 position and its replacement 

depicts a clear improvement after replacement, thus, validating the assessment that the original 

bearing was potentially unhealthy and in need of removal.   

5.2.2  Laboratory Inspection and Analysis 

Following removal and replacement on April 7, 2010, the original bearing from the R4 

position was shipped to UTPA for disassembly and detailed inspection.  Upon receipt of the 

bearing, the exterior surfaces of the bearing were inspected and showed no obvious discoloration 

of metal or indications of any problems.  The assembled bearing was weighed prior to 

disassembly and inspection of all internal components.  Following disassembly, the internal 

components were cleaned thoroughly to remove all of the grease and each component was 

weighed separately.  Using this information, the total weight of all the components was 

subtracted from the weight of the assembled bearing in order to determine the weight of the 

grease that was present in the bearing during field service.  It was determined that the grease fill 

at that time was 439.98 g (15.52 oz.).  However, documents obtained from BRENCO
2
 reveal that 

the recommended grease fill for a Class E bearing is 396.9 g to 425.2 g (14 oz. to 15 oz.).  This 

indicates that the grease fill in the 112N-R4 bearing was 3.5% above the recommended 

                                                 

 

 

2
 A subsidiary of Amsted Rail Industries, Inc. responsible for the manufacture of tapered-roller bearings 
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maximum.  Although this bearing only had slightly more grease than the recommended 

maximum, bearings with excessive grease fill have been shown to exhibit elevated operating 

temperatures as seen in a series of laboratory tests conducted at UTPA.   

No spalls or other surface irregularities were found on any of the bearing components.  

However, the lateral spacing of the assembled bearing, a measure of the axial displacement of 

the bearing cup relative to the cones, was significantly lower than the recommended minimum 

value.  Measurements indicate that the lateral spacing was in the range of 0.3302 mm to 0.3356 

mm (0.013" to 0.014"), compared to a recommended nominal range of 0.6096 mm to 0.6604 mm 

(0.024" to 0.026").  This insufficient lateral spacing, known as short lateral within the railroad 

industry, is known to cause elevated operating temperatures by reducing the amount of clearance 

between the rollers and the cup and cone.  The insufficient clearance can prevent the rollers from 

turning freely and may induce roller misalignment, or skidding of the rollers, which usually 

results in a reduced lubricating film thickness.  All of these conditions are known to create 

elevated operating temperatures in tapered-roller bearings.   

Based on this detailed inspection and analysis, it was determined that the elevated 

operating temperatures exhibited by this bearing during field service were caused by two 

compounding factors; a combination of short lateral spacing caused by incorrect bearing 

assembly, and excessive grease fill.   

 

5.3  Case Study 2: Railcar PBGY0130L-L3 

 Following several months of careful monitoring, a second Class E bearing was 

recommended for removal due to inconsistent performance that varied from apparently healthy 

to worse than that of the first bearing removed from PBGY0112N (refer to Case Study 1).  
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Extensive laboratory testing conducted at UTPA accompanied by several inspections indicates 

that the cup of this bearing had a geometric inconsistency that is responsible for the observed 

elevated operating temperatures during field service and laboratory testing.  Furthermore, this 

bearing developed one spall on each cone raceway prior to seizing after approximately 85,778 

km (53,300 mi) of testing.   

5.3.1  Analysis of Field Test Data 

The results of the Level 3 Criteria were utilized to evaluate the condition of this bearing 

on a monthly basis, as well as identify degradation trends that occurred over a period of several 

months.  The condition of this bearing appeared to fluctuate considerably from month to month, 

as demonstrated in Table 12, though it consistently ranked among the top five worst performing 

bearings in the Australian test fleet since the railcars were instrumented in March 2010.   

Table 12: Condition of the bearing in the L3 position of railcar PBGY0130L as evaluated 

by the Level 3 Criteria prior to replacement on July 30, 2010. 

Month Criterion 1 Criterion 2 Criterion 3 (σcar) Criterion 4 (σtrain) Criterion 5 

March 2010 0.22% 0% 0.16 0.572  4.09% 

April 2010 25.07% 28.39% 1.20 1.491 6.68% 

May 2010 0.01% 0.91% 0.39 0.793 4.10% 

June 2010 1.15% 7.00% 0.76 1.115 4.35% 

July 2010 1.37% 6.96% 0.56 0.88 4.72% 

 

During April 2010, the L3 bearing exceeded the Level 2 alarm thresholds in all five 

Criteria and was the worst performing bearing in the Australian test fleet.  Furthermore, its 

performance was worse than that of the 112N-R4 bearing in March 2010.  However, this bearing 

was not recommended for removal at the time and was allowed to continue regular operation in 
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order to improve understanding of the rate of degradation experienced by bearings of this 

condition during field service.   

In May 2010, the performance of the L3 bearing appeared to improve dramatically, with 

almost zero temperature readings exceeding 93.3°C (200°F) and less than one percent of 

bearing-ambient temperature differentials exceeding 66.7°C (120°F).  The deviation of this 

bearing’s average temperature from the average operating temperatures of both the railcar and 

the train also decreased significantly, as described by Criteria 3 and 4 in Table 12.  The cause of 

this behavior was not understood at the time, and the bearing was allowed to continue in service 

while being monitored closely for any further changes in condition.   

 In the ensuing month, the L3 bearing exhibited an increase in the frequency of high 

temperature operation, as described by the results of Criteria 1 and 2 analyses.  This increase was 

relatively small in comparison to the noticeable increase in Criteria 3 and 4 results.  Due in part 

to the erratic performance of this bearing over a period of four months, in addition to the fact that 

it violated the Level 2 alarm for Criterion 5 in every month since March 2010, it was 

recommended for removal and replacement the next time the railcar was available for 

maintenance.   

 On July 30, 2010, the L3 bearing was removed from service and a replacement bearing 

installed in its position.  The performance of the replacement bearing that was installed in the L3 

position, summarized in Table 13, was similar to the performance of the original bearing in 

August 2010.  However, in the following three months, the condition of this bearing appeared to 

improve significantly, with a lower percentage of high temperature operation, lower deviation 

from railcar and train average temperatures, and steadily decreasing percentage of high heating 

rate readings.   
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Table 13: Condition of the replacement bearing in the L3 position of railcar PBGY0130L, 

as calculated using the Level 3 Criteria after replacement on July 30, 2010. 

Month Criterion 1 Criterion 2 Criterion 3 (σcar) Criterion 4 (σtrain) Criterion 5 

August 2010 2.82% 5.33% 0.77 0.98 4.96% 

September 2010 0.45% 0.93% 0.44 0.68 5.51% 

October 2010 0.92% 0.86% 0.45 0.58 4.75% 

November 2010 8.71% 8.20% 0.40 0.92 3.85% 

 

  This initial high temperature operation immediately after a new bearing is put into 

service is a commonly observed phenomenon known as the break-in period.  Following the 

initial break-in period, operating temperatures will gradually approach a steady operating range.  

Generally, a bearing will continue to operate within this predictable range until it approaches the 

end of its life and begins to degrade, resulting in elevated operating temperatures.   

5.3.2  Laboratory Testing and Inspection 

 The bearing that was removed from the L3 position was shipped to UTPA for laboratory 

testing followed by disassembly and detailed inspection.  Unlike the 112N-R4 bearing, which 

was disassembled and inspected immediately, the 130L-L3 bearing was installed onto a test axle 

with three other defective Class E bearings, used as controls to reference the performance of the 

setout bearing.  One control bearing was built with short lateral spacing, comparable to the 

112N-R4 bearing removed from the field test.  The second control had four cone spalls, and the 

third control had four cup spalls and multiple roller spalls.  These bearings were used in order to 

compare the operating temperature of the L3 bearing to other bearings with known defects that 

would require removal by current AAR bearing maintenance standards.  All four bearings were 
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pressed onto one customized Class E axle and tested using the dynamic bearing tester described 

in Chapter III.   

 During the first series of laboratory tests performed on this bearing, the vertical load 

applied to the bearing was alternated between two conditions; 17% load to simulate an empty 

railcar, as this scenario is known to promote roller misalignment and temperature trending, and 

100-110% load to simulate a fully loaded railcar, increasing the stress placed on the bearing’s 

internal components.  Additionally, the test speed was varied between 106.2 km/h (66 mph) and 

138.4 km/h (86 mph).  Figure 28 presents the temperature history of the L3 bearing along with 

the three defective bearings for reference, under these varied testing conditions.  This figure 

illustrates that the L3 bearing exhibited the highest operating temperature under 100-110% 

loading at both test speeds, and consistently operated warmer than the two spalled bearings, but 

cooler than the bearing with short lateral, under all other load and speed conditions utilized.   
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Figure 28: Bearing cup temperature vs. time for the first series of laboratory testing of the 

L3 bearing following removal from the Australian field test. 

 

Following this initial phase of testing, totaling 39,107 km (24,300 mi), the L3 bearing 

was removed from the test setup for disassembly and detailed inspection.  Visual inspection of 

the bearing cup revealed an abnormal wear pattern, shown in Figure 29, along the surface of both 

raceways.  This abnormal wear pattern was present along the entire circumference of both cup 

raceways, however, its width varied considerably with position, as can be seen in Figure 30.  

This abnormal wear pattern present on the bearing cup raceways, and the change in width with 

raceway position, is indicative of a geometric inconsistency created during manufacturing.  This 

inconsistency results in reduced contact area between the bearing cup and the rollers, causing a 

thinning of the hydrodynamic film thickness, which greatly increases heat generation and wear. 
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Figure 29: Abnormal wear pattern present on both raceways of the L3 bearing cup after 

the first teardown and inspection. 

 

 
Figure 30: Detailed view of one raceway of the L3 bearing cup with the varied width of the 

wear pattern indicated. 

Abnormal wear pattern 
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The L3 bearing was rebuilt and packed with new grease before being installed on the 

dynamic bearing tester to resume the evaluation process.  After careful inspection of the results 

from the first teardown, it was believed that the L3 bearing cup had a geometric inconsistency 

causing the abnormal wear patterns seen in Figure 29 and Figure 30.  Therefore, in the second 

series of the conducted tests, the test speeds and loads were systematically varied in order to 

determine their effect on the operating temperatures of the L3 bearing.  The vertical load was 

maintained at either 100% or 115%, and the speed was alternated between 106.2 km/h (66 mph) 

and 138.4 km/h (86 mph).  Additionally, the bearing cup was rotated periodically in order to load 

sections of the cup raceway exhibiting the greatest signs of distress.  The rotation of the cup 

through several positions indicated that one particular orientation resulted in a higher operating 

temperature.  The second iteration of tests were completed with this configuration.   

The operating temperature of the L3 bearing under these conditions, depicted in Figure 

31, clearly indicates that it was the hottest bearing when tested at 106.2 km/h (66 mph), in 

comparison to the two spalled bearings and one bearing with short lateral spacing.  It is worth 

noting that while the 130L-L3 bearing was cleaned and rebuilt with fresh grease during the first 

teardown, the other three bearings referenced in Figure 31 were tested in the same condition as in 

the first series of tests.  The fact that the L3 bearing continued to exhibit higher operating 

temperatures than its peers supports the assessment that it was unhealthy at the time of removal 

from field service.  
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Figure 31: Bearing temperature vs. time for tests conducted with vertical loads of 100-

115% load and speeds of 106.2-138.4 km/h (66-86 mph). 

 

The difference in operating temperature of the L3 bearing between tests conducted at 

106.2 km/h (66 mph) and 138.4 km/h (86 mph) is considerably greater than that of healthy Class 

E bearings tested at UTPA (~50°C).  Moreover, the process of rotating the bearing cup that was 

performed during laboratory testing, known as indexing within the railroad industry, occurs 

commonly in the field due to the dynamic vertical motion of the railcar and momentary 

unloading of the friction between the bearing cup and adapter.  The indexing of the bearing cup, 

combined with an increased sensitivity to higher operating speeds and loads, is the most likely 

cause of the significant variation in the performance of this bearing that was observed in the 

months prior to removal (see Table 12)   
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On November 12, 2010, after a total of 79,663 km (49,500 mi) of laboratory testing, the 

L3 bearing was removed from the tester and disassembled for the second time.  Detailed 

inspection of the internal components revealed that the abnormal wear patterns on both cup 

raceways had become more evident.  Additionally, one of the raceways exhibited a very shiny 

surface with brown circumferential streaks indicative of substantial metal-to-metal contact 

friction, as pictured in Figure 32.  This discoloration, referred to as heat tint, is likely caused by a 

significant reduction or absence of the lubricating film between the rollers and bearing cup 

raceway.  Similar brown streaking is present on the rollers corresponding with the discolored cup 

raceway, as seen in Figure 33.   

 
Figure 32: Picture showing the abnormal wear pattern present on one cup raceway and the 

brown heat tint present on the second raceway. 
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Figure 33: Picture depicting the brown heat tint that was present on the set of rollers 

associated with the discolored cup raceway (second raceway) of Figure 32. 

 

Following the second teardown and inspection, it was decided to run the bearing to 

failure in order to estimate the usable service life remaining from the time of removal from field 

service.  To this end, the L3 bearing was reinstalled on the test axle along with two new Class E 

bearings and the defective bearing with cup and roller spalls that was tested previously.  This test 

configuration was subjected to accelerated service life testing at 130% load and 138.4 km/h (86 

mph).  Approximately 60 hours into the accelerated service life testing, the bearing seized 

abruptly, causing the axle to crack, and preventing further testing.  The temperature history of 

this test is provided in Figure 34.  Note that the L3 bearing operated considerably hotter than the 

bearing with multiple cup and roller spalls, and on par with the two brand new bearings that were 

experiencing elevated operating temperatures during the break-in period.  The results of this test 

further support the evaluation that the 130L-L3 bearing was unhealthy at the time of removal 

from field service.   
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Figure 34: Plot of bearing cup temperature vs. time for the final 60 hours of testing prior to 

failure of the L3 bearing. 
 

Subsequent to the failure of the L3 bearing, all test bearings were removed from the axle 

for disassembly and detailed inspection in order to determine the cause of the sudden failure.  

Upon inspection of the L3 bearing, it was discovered that the brown heat tint that had been 

previously observed on one raceway of the bearing cup had become more pronounced.  

Additionally, several small indentations had formed on the tinted raceway, as illustrated by 

Figure 35.  This pitting of the raceway is indicative of metal debris in the grease, typically from 

fragments that have flaked out of a developed spall on the bearing’s raceways or rollers.   



73 

 

 
Figure 35: One raceway of the L3 bearing cup illustrating the brown heat tint and pitting 

that developed during the final series of tests. 
 

 The second cup raceway exhibited extensive pitting, as pictured in Figure 36, although no 

visible signs of discoloration due to heat tint were present.  The more extensive pitting that was 

discernible on the non-tinted raceway suggested the presence of a significant spall within the 

bearing; however, there were no spalls on either cup raceway.  In order to determine whether any 

spalls had formed on the bearing’s cones (inner raceways), the steel cages were cut off, allowing 

for the inspection of the cone raceways.  The inspection revealed that one spall had formed on 

each cone raceway, in addition to a noticeable brown heat tint along the middle of one raceway, 

as portrayed in Figure 37.  The cone with the larger spall corresponds to the heavily dimpled cup 

raceway depicted in Figure 36, while the cone with the smaller spall and visible brown heat tint 

corresponds to the discolored cup raceway shown in Figure 35.  Both spalls that developed 

during laboratory testing were large enough to warrant removal under AAR bearing maintenance 

standards.   

Pitting 
Heat Tint 
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Figure 36: One of the cup raceways in the L3 bearing after the third and final teardown 

exhibiting extensive pitting. 

 

 
Figure 37: Both cones removed from the 130L-L3 bearing with large spalls and heat tint 

indicated. 

 

 

Spalls 

Heat Tint 
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 The formation and rapid growth of the cone spalls seen in Figure 37 led to failure after 

approximately 85,778 km (53,300 mi) of laboratory testing.  This distance is relatively small in 

comparison to the average mileage covered by freight cars in active service.  For example, the 

railcar that this bearing was removed from covered approximately 6,450 km (~4,000 mi) during 

one round trip across Southern Australia, and completed this route every four to six days.  This 

means that the 130L-L3 bearing, had it been allowed to continue in service undetected, could 

have failed catastrophically in eight to ten weeks of normal service.  Furthermore, the seizing of 

this bearing on the test axle is analogous to a full burn-off failure in field operation, and could 

have resulted in a catastrophic derailment.   

 

5.4  Case Study 3: Railcar PBGY0130L-R1 

On November 24, 2010, the bearing in the R1 position of railcar PBGY0130L was 

flagged for removal by a Trackside Acoustic Detector System (TADS) installation.  This bearing 

was removed from service when the railcar was available for maintenance, and a replacement 

bearing was installed.  The bearing removed from the R1 position was subsequently 

disassembled and thoroughly inspected for defects by the Australian test fleet maintenance crew.  

Following this inspection it was determined that this setout bearing did not have any defects 

present and it was rebuilt and returned to active service.   

The condition of this bearing, prior to being flagged by the TADS installation, 

demonstrates that it did not exhibit any signs of atypical operation.  On the contrary, this bearing 

operated below the average temperatures of both railcar PBGY0130L and the entire train, as 

demonstrated by the results of Criteria 3 and 4 listed in Table 14.  Furthermore, this bearing had 

never been highly ranked among Level 3 Criteria and had not triggered any Level 2 alarms prior 
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to being flagged for removal by the TADS installation.  Detailed analysis of this bearing’s 

temperature data, summarized in Table 14, indicates that the replacement bearing installed in the 

R1 position exhibited a slightly greater percentage of high temperature operation than the 

original bearing, as characterized by Criteria 1 and 2.  The results of the remaining three Criteria 

indicate that the performance of the replacement bearing was comparable to the healthy bearing 

that was removed.   

Table 14: Condition of the bearing in the R1 position, as assessed by the Level 3 Criteria, 

before and after replacement on November 24, 2010. 

Month Criterion 1 Criterion 2 Criterion 3 (σcar) Criterion 4 (σtrain) Criterion 5 

September 2010 0% 0% -0.36 0.01 1.72% 

October 2010 0% 0% -0.40 -0.11 2.10% 

November 2010 0.66% 0% -0.09 0.50  2.53% 

December 2010 4.19% 3.23% 0.16  0.39 2.41% 

January 2011 2.47% 0% -0.12 0.40 2.68% 

 

This non-verified bearing highlights the potential inaccuracies associated with assessing 

the health of in-service bearings based on intermittent monitoring by wayside equipment.  In 

comparison, the on-board condition monitoring system installed on this railcar indicated that this 

bearing was healthy at the time of removal, consistently operating below the average temperature 

of its peers; an assessment that is validated by the subsequent teardown and inspection performed 

by the maintenance crew of the Australian test fleet.  The expense incurred by SCT Logistics 

related to this non-verified bearing removal is considerable, including labor costs and shop time 

to remove the original bearing, the cost of a new replacement bearing, as well as the revenue that 

was lost while this car was not in service.    
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CHAPTER VI 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

6.1  Conclusions 

 The current system utilized for condition monitoring of tapered-roller bearings in service 

is composed solely of stationary detector installations placed on the wayside of the railroad track.  

In North America, this system consists of approximately 5,000 hot box detectors (HBDs) and 20 

Trackside Acoustic Detector System (TADS) installations, illustrating the overwhelming 

preference within the railroad industry for the use of thermal detection as an indicator of bearing 

health.  However, the spacing between successive HBDs may be 24-64 km (15-40 mi) apart, 

depending on the location and amount of traffic on the track.  The intermittent monitoring 

provided by these wayside installations is not capable of detecting brief temperature trending 

events, which have been shown through extensive laboratory testing to be an indicator of a 

potentially unhealthy bearing.  Continuous monitoring of bearing temperatures has been proven 

an effective method of detecting potentially unhealthy bearings for passenger rail operator 

Amtrak.  However, the wired temperature sensors utilized by Amtrak are not practical for freight 

car applications due to the frequent exchange of railcars on a train.   

 The development of IONX Wireless Sensor Nodes (WSNs) represents the first low-cost, 

durable, and accurate wireless temperature sensing device that can be easily retrofitted to 

existing freight car hardware.  This system allows for continuous monitoring of bearing and 

ambient temperatures, facilitating detailed statistical analyses of the acquired temperature data in 
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order to assess the condition of bearings in service.  Furthermore, the observation of brief 

temperature trending events, and determination of the frequency of these occurrences, greatly 

improves the accuracy of bearing condition assessments and identification of degradation trends 

occurring in service.   

 The statistical criteria and algorithms presented in Chapter IV have been organized into 

three levels, facilitating the classification of in-service bearings based on their maintenance 

priority.  Level 1 alarms indicate a potential imminent failure, requiring immediate attention by 

the train controller, and, are consistent with the Association of American Railroads (AAR) 

standards that are currently implemented using the network of HBDs.  Level 2 alarms are used to 

identify bearings that will require attention within a specified time span (e.g., 3-6 months out), 

while Level 3 alarms function as a means of generating a watch list of potentially problematic 

bearings.  Statistical analyses of more than 24 million temperature readings acquired over the 

course of 18 months of monitoring the Australian test fleet support the temperature thresholds 

established for use with Level 3 Criteria, as well as the performance benchmarks utilized in 

Level 2 Criteria.   

During the 18 month Australian field test, two Class E tapered-roller bearings were 

removed from service based on the results of the developed algorithms.  Following removal, 

these two bearings were sent to the University of Texas-Pan American (UTPA) for testing and 

subsequent disassembly, detailed visual inspection, and measurement of all internal dimensions 

and clearances.  These inspections revealed that both bearings had defects present at the time of 

removal, and these defects were responsible for the elevated operating temperatures observed 

during field service.  In a staggering validation of the developed algorithms, the second Class E 

bearing removed from the Australian test fleet failed on the dynamic tester after only 85,778 km 
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(53,300 mi) by abruptly seizing on the axle.  This distance is relatively small, equivalent to 

approximately eight to ten weeks of normal service for this bearing.  The seizing of this bearing 

on the test axle is analogous to a full burn-off failure in field operation, and could have resulted 

in a catastrophic derailment.   

 Moreover, a third Class E bearing was removed from service after being identified as 

defective by a Trackside Acoustic Detector System (TADS) installation.  This removal was in 

contradiction with the assessment that the bearing was healthy at the time of removal, based on 

the analysis of the temperature data acquired from this bearing utilizing the algorithms presented 

in Chapter IV.  Subsequent disassembly and inspection performed by maintenance technicians 

verified that this bearing did not have any defects present, and it was later returned to active 

service.  This non-verified bearing highlights the inherent limitations and inaccuracies associated 

with the use of intermittent monitoring to assess the health of bearings in service.   

 The current IONX system provides a proven, ready-to-use continuous bearing health 

monitoring system that can be readily installed onto existing freight car bearing adapters.  This 

system allows railcar operators to transition from high-cost reactive maintenance scheduling to a 

more cost-effective predictive maintenance system.  The latter facilitates more efficient use of 

railroad assets and infrastructure, reduced delays of trains and cargo, and safer operation of the 

railroad network.  The financial benefits associated with this increase in efficiency more than 

offsets the costs associated with the implementation of a continuous bearing health monitoring 

system.   
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6.2  Future Work 

 The IONX system, in its current state, has proven to be an effective continuous bearing 

health monitoring solution for Class E bearings and the service conditions experienced by SCT 

Logistics’ freight cars in Australia.  Although the basic statistical metrics and comparisons, 

which comprise the core of the developed algorithms, may be readily applied to railcars across 

the globe, the temperature limits and performance thresholds must be refined for other classes of 

bearings and different types of freight service.  The refinement of these thresholds would follow 

a methodology similar to the one described in Section 4.2, using temperature data acquired from 

the deployment of the IONX system in other services.   

 The existing prototype condition monitoring system records minute-by-minute and each 

minute of data is uploaded to the database.  To extend battery life, future systems may utilize a 

reduced sampling rate on the order of one reading every four to eight minutes.  This reduced 

sampling rate is relatively less than the time constant of a tapered-roller bearing, thus, allowing 

for the observation of brief temperature trending events.  In an effort to further extend battery 

life, full datasets may not be uploaded to the database, instead more sparse periodic 

measurements or metric calculations may be reported.  Work must be done to scale application of 

the existing metrics to a sparser data set while preserving the accuracy in the assessment of 

bearing condition.   
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APPENDIX 

 

 

MATLAB
TM

 COMPUTER CODE 

 

 

MATLAB
TM

 Program 1: The function data_sorter_v4.m is used to import the raw temperature 

data files (.csv format), and reorder the temperature readings so that all readings acquired within 

the same minute are stored on a single row of a master temperature data array.  Additionally, all 

temperature readings acquired from a single WSN are arranged into one column.  Logical filters 

are implemented in order to identify and remove erroneous temperature data from the ordered 

data array.  Statistical distributions are generated in order to visually depict the thermal 

performance of single bearings as well as groups of bearings on one railcar or within the entire 

train. 

 
 

function data_sorter_v4(filename,Alertfilenames) 

%% Function Settings 

Visibility='on'; 

PlotToggle=0; 

PlotToggleCombined=1; 

dTLimit=100; 

format long 

%% Import SCT Temperature data report 

ImportTempFile(filename); %User-defined func, returns 'data','textdata' 

fprintf('\n<%s> has been imported into MATLAB succesfully\n',filename) 

%% Create Master Data File Header 

NodeID=cell(1,10); 

NodeID(1)={'Time'}; 

for z=2:9 

    n=num2str(z-1); 

    NodeID(1,z)={strcat('Node #',n)}; 

end 

NodeID(1,10)={'Ambient'}; 

%% Extract Railcar name from filename 

RailcarName=textdata(2,1); 

assignin('base','RailcarName',RailcarName) 

DirName=strcat(pwd,'\Results\',RailcarName); 

%% Assign Imported Raw Data to workspace 

DataName={strcat(RailcarName,'_RawTempData')}; 

TextDataName={strcat(RailcarName,'_RawTempText')}; 

TextDataName{1}; 

assignin('base',char(DataName{1}),data) 

assignin('base',char(TextDataName{1}),textdata) 

%% Convert time string dates to date numbers. Remove repeated time/dates 

time_str=char(textdata(2:end,2)); 

timeVec=datevec(time_str,'mm/dd/yyyy HH:MM:SS PM'); 
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assignin('base','TimeVectors',timeVec) 

timeVec(:,5)=timeVec(:,5)+(timeVec(:,6)>=30); 

timeVec(:,6)=0; 

timeVec(:,4)=timeVec(:,4)+(timeVec(:,5)>=60); 

timeVec(:,5)=timeVec(:,5).*(~(timeVec(:,5)>=60)); 

if any(timeVec(:,4)>=24) 

    timeVec(:,3)=timeVec(:,3)+(timeVec(:,4)>=24); 

    timeVec(:,4)=timeVec(:,4).*(~(timeVec(:,4)>=24)); 

end 

times=datenum(timeVec); 

assignin('base','TimeNumbers',times) 

sensorID=data(:,1); 

temps=data(:,2); 

UT=unique(times); 

mast_data=zeros(length(UT),12); 

mast_data(:,1)=UT; 

%% Calculate time step between adjacent data points 

TimeDifference=diff(mast_data(:,1)); 

TimeLimit=1/24; 

DataBreaks=(TimeDifference>TimeLimit); 

SplitPoints=find(DataBreaks==1); 

NTimePlots=length(SplitPoints); 

%% Arrange all temperature values by reading time 

length_data=length(data); 

OverwriteCount=0; 

DuplicateCount=0; 

for i=1:length_data 

    SID=sensorID(i); 

    index=find(times(i)==UT); 

    if mast_data(index,SID+1)==0 

        mast_data(index,SID+1)=temps(i); 

    elseif (mast_data(index,SID+1)~=temps(i))&&(mast_data(index,1)==times(i)) 

        mast_data(index,SID+1)=temps(i); 

        OverwriteCount=OverwriteCount+1; 

    elseif (mast_data(index,SID+1)==temps(i)) 

        mast_data(index,SID+1)=temps(i); 

        DuplicateCount=DuplicateCount+1; 

    end 

end 

mast_data(mast_data==0)=NaN; 

mast_data(mast_data<0)=NaN; 

NaNCount=sum(sum(isnan(mast_data))); 

TemperatureCount=size(mast_data,1)*(size(mast_data,2)-1)-NaNCount; 

CountDiff=length_data-TemperatureCount; 

if (CountDiff~=0) 

    ResultsDirName=fullfile(pwd,'Results'); 

    if ~exist(ResultsDirName,'dir') 

        mkdir(ResultsDirName) 

    end 

    ErrorLogFileName=strcat(pwd,'\Results\ErrorLog_',date,'.txt'); 

    ErrorLogFileID=fopen(ErrorLogFileName,'a'); 

    fprintf(ErrorLogFileID,'Data File <%s> contains %6.0f temperature readings.\n',filename,length_data); 

    fprintf(ErrorLogFileID,'Reordered Data array contains %6.0f temperature readings.\n',TemperatureCount); 

    fprintf(ErrorLogFileID,'%5.0f temperature readings were lost\n',CountDiff); 

    fprintf(ErrorLogFileID,'Total Data Overwrite Errors Counted = %4.0f\n',OverwriteCount); 

    fprintf(ErrorLogFileID,'Total Duplicate Temperature Readings = %4.0f\n\n',DuplicateCount); 



87 

 

    fclose(ErrorLogFileID); 

end 

assignin('base','MasterTempData',mast_data) 

assignin('base','MasterData',mast_data) 

%% 8 Minute Moving Average 

rows=size(mast_data,1); cols=size(mast_data,2); 

MovingAverage=zeros(rows,cols); 

MovingAverage(:,1)=mast_data(:,1); 

for r=1:rows 

    for c=1:cols 

        if r<=8 

            MovingAverage(r,c)=mean(mast_data(1:r,c)); 

        else 

            MovingAverage(r,c)=mean(mast_data((r-7):r,c)); 

        end 

    end 

end 

assignin('base','MovingAverage',MovingAverage) 

%% Identify Temperature readings > 200 F 

Z=size(mast_data,1); 

row=1;      iter=1; 

OverTemp=[];    PlotTemps=[];   PlotTimes=[]; 

if ~exist('Results','dir') 

    mkdir('Results') 

end 

HighTempFileName1=fullfile(pwd,'Results','HighTempData1.txt'); 

HighTempFileName2=fullfile(pwd,'Results','HighTempData2.txt'); 

if exist(HighTempFileName1,'file') 

    HighTempFileID1=fopen(HighTempFileName1,'a'); 

else 

    HighTempFileID1=fopen(HighTempFileName1,'a'); 

    fprintf(HighTempFileID1,'RailcarName,Time,NodeID,AmbientTemp,BearingTemp\n'); 

end 

if exist(HighTempFileName2,'file') 

    HighTempFileID2=fopen(HighTempFileName2,'a'); 

else 

    HighTempFileID2=fopen(HighTempFileName2,'a'); 

    

fprintf(HighTempFileID2,'RailcarName,Time,Ambient,Node#1,Node#2,Node#3,Node#4,Node#5,Node#6,Node#7,

Node#8\n'); 

end 

RailcarName=char(RailcarName); 

for z=1:Z 

    if any(mast_data(z,2:9)>=200) 

        OverTemp(row,:)=mast_data(z,:); %[Time {Nodes1-8}] 

        Time=datestr(mast_data(z,1),'mm/dd/yyyy HH:MM PM'); 

        fprintf(HighTempFileID2,'%s,%s,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f\n',... 

            RailcarName,Time,OverTemp(row,10),... 

            OverTemp(row,2),OverTemp(row,3),OverTemp(row,4),... 

            OverTemp(row,5),OverTemp(row,6),OverTemp(row,7),... 

            OverTemp(row,8),OverTemp(row,9)); 

        INDEX=find(mast_data(z,2:9)>=200)+1; 

        ambient=mast_data(z,10); 

        Y=length(INDEX); 

        for y=1:Y 

            BearingTemp=mast_data(z,INDEX(y)); 
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            BearingID=char(NodeID(INDEX(y))); 

            OutlierBearingNames(iter,1)=strcat(RailcarName,'_',NodeID(INDEX(y))); 

            fprintf(HighTempFileID1,'%s,%s,%s,%4.2f,%3.4f\n',RailcarName,... 

                Time,BearingID,ambient,BearingTemp); 

            PlotTimes(iter,1)=mast_data(z,1); 

            PlotTemps(iter,1)=BearingTemp; 

            iter=iter+1; 

        end 

        row=row+1; 

    end 

end 

HighTempCountFileName=fullfile(pwd,'Results','HighTempCount.txt'); 

HighTempCountFileID=fopen(HighTempCountFileName,'a'); 

fprintf(HighTempCountFileID,'RailcarName,NodeID,Temp.Count,Percent,n-Sigma\n'); 

K=length(mast_data); 

all_temps=mast_data(1:end,2:9); 

all_temps=all_temps(all_temps>0); 

CarAverage=mean(all_temps); 

CarSTD=std(all_temps); 

for z=2:9 

    HighTempCount(1,(z-1))=sum(mast_data(:,z)>=200); 

    Percentage=HighTempCount(1,(z-1))/(sum(~isnan(mast_data(:,z))))*100; 

    NodeTemps=mast_data(:,z); 

    NodeTemps=NodeTemps(NodeTemps>0); 

    NodeAverage=mean(NodeTemps); 

    nSigma=(NodeAverage-CarAverage)/CarSTD; 

    fprintf(HighTempCountFileID,'%s,%s,%4.0f,%2.3f,%1.3f\n',RailcarName,... 

        char(NodeID(z)),HighTempCount(1,(z-1)),Percentage,nSigma); 

end 

fclose(HighTempFileID1); 

fclose(HighTempFileID2); 

fclose(HighTempCountFileID); 

assignin('base','OverTemp',OverTemp) 

%% Calculate Bearing Temperature above Ambient 

delTempFileName1=fullfile(pwd,'Results','delTempData1.txt'); 

if ~exist(delTempFileName1,'file') 

    delTempFileID1=fopen(delTempFileName1,'w'); 

    fprintf(delTempFileID1,'RailcarName,Time,NodeID,AmbientTemp,BearingTemp,deltaTemp\n'); 

else 

    delTempFileID1=fopen(delTempFileName1,'a'); 

end 

delTempFileName2=fullfile(pwd,'Results','delTempData2.txt'); 

if ~exist(delTempFileName2,'file') 

    delTempFileID2=fopen(delTempFileName2,'w'); 

    fprintf(delTempFileID2,'RailcarName,Time,Ambient,dT#1,dT#2,dT#3,dT#4,dT#5,dT#6,dT#7,dT#8\n'); 

else 

    delTempFileID2=fopen(delTempFileName2,'a'); 

end 

delTempCountFileName=fullfile(pwd,'Results','delTempCount.txt'); 

delTempCountFileID=fopen(delTempCountFileName,'a'); 

fprintf(delTempCountFileID,'RailcarName,NodeID,delTempCount,Percent\n'); 

Z=size(mast_data,1); 

row=1;      iter=1; 

delTemp=[]; 

for z=1:Z 

    del_Temp=mast_data(z,2:9)-mast_data(z,10); 
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    TempRise(z,:)=cat(2,mast_data(z,1),del_Temp,mast_data(z,10)); 

    if any(del_Temp>=dTLimit) 

        delTemp(row,:)=cat(2,mast_data(z,1),del_Temp,mast_data(z,10));%[Time {Nodes1-8} Ambient] 

        Time=datestr(mast_data(z,1),'mm/dd/yyyy HH:MM PM'); 

        fprintf(delTempFileID2,'%s,%s,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f\n',... 

            RailcarName,Time,delTemp(row,10),delTemp(row,2),delTemp(row,3),... 

            delTemp(row,4),delTemp(row,5),delTemp(row,6),delTemp(row,7),... 

            delTemp(row,8),delTemp(row,9)); 

        INDEX=find(delTemp(row,2:9)>=dTLimit); INDEX=INDEX+1; 

        ambient=mast_data(z,10); 

        Y=length(INDEX); 

        for y=1:Y 

            NODEdt=delTemp(row,INDEX(y)); 

            BearingID=char(NodeID(INDEX(y))); 

            BearingTemp=mast_data(z,INDEX(y)); 

            fprintf(delTempFileID1,'%s,%s,%s,%3.2f,%3.2f %3.2f\n',RailcarName,... 

                Time,BearingID,ambient,BearingTemp,NODEdt); 

            iter=iter+1; 

        end 

        row=row+1; 

    end 

end 

Z=size(TempRise,1); 

for z=Z:-1:1 

    if all(isnan(TempRise(z,2:10))) 

        TempRise(z,:)=[]; 

    end 

end 

if (~isempty(delTemp)) 

for z=2:9 

    delTempCount(1,(z-1))=sum(delTemp(:,z)>=dTLimit); 

    Percentage=delTempCount(1,(z-1))/(sum(~isnan(mast_data(:,z))))*100; 

    fprintf(delTempCountFileID,'%s,%s,%4.0f,%2.3f\n',RailcarName,char(NodeID(z)),delTempCount(1,(z-

1)),Percentage); 

end 

end 

fclose(delTempFileID1); 

fclose(delTempFileID2); 

fclose(delTempCountFileID); 

assignin('base','DeltaTemp',TempRise) 

%% Histograms-Per Wheel 

if PlotToggle 

DirName=strcat(pwd,'\Results\',RailcarName); 

if exist(DirName,'dir') 

    rmdir(DirName,'s') 

    mkdir(DirName) 

else 

    mkdir(DirName) 

end 

for z=2:10 

figure('Visible',Visibility) 

set(gcf,'PaperSize',[6 5],'PaperPositionMode','auto') 

  

nbins=round((max(mast_data(:,z))-min(mast_data(:,z)))/5); 

[n,xout]=hist(mast_data(:,z),nbins); 

n=n/sum(n)*100; 
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bar(xout,n) 

if z==10 

    axis([45 125 -Inf Inf]) 

else 

    axis([50 235 -Inf Inf]) 

end 

NTotal=sum(n); 

if NTotal<99.95 || NTotal>100.05 

    warning('Error plotting %s histogram in %s\n',char(NodeID(z)),filename); 

end 

TitleName=char(strcat('Temperature Distribution - ',NodeID(z))); 

SubTitleName=char(strcat('Rail Car ID (',RailcarName,')')); 

title({TitleName;SubTitleName},'FontWeight','bold',... 

    'FontName','Times','FontSize',14) 

xlabel({'Temperature (^oF)'},'FontWeight','bold',... 

    'FontName','Times','FontSize',14) 

ylabel({'Time Distribution (% of Readings)'},'FontWeight','bold',... 

    'FontName','Times','FontSize',14) 

FigFileName=strcat(RailcarName,'_',char(NodeID(z))); 

FullFileName=fullfile(DirName,FigFileName); 

saveas(gcf,FullFileName,'pdf') 

saveas(gcf,FullFileName,'fig') 

close gcf 

end 

end 

%% Histograms-Bearing & Ambient 

if PlotToggle 

figure('Visible',Visibility) 

set(gcf,'PaperSize',[12 10],'PaperPositionMode','auto') 

for z=2:10 

nbins=round((max(mast_data(:,z))-min(mast_data(:,z)))/5); 

[n,xout]=hist(mast_data(:,z),nbins); 

n=n/sum(n)*100; 

if z==10 

    subplot(3,3,1) 

else 

    subplot(3,3,z) 

    axis([50 235 -Inf Inf]) 

end 

bar(xout,n) 

NTotal=sum(n); 

TitleName=char(NodeID(z)); 

title(TitleName,'FontWeight','bold','FontName','Times','FontSize',14) 

end 

FigFileName=strcat(RailcarName,'_AllvsAmbient'); 

FullFileName=fullfile(DirName,FigFileName); 

saveas(gcf,FullFileName,'pdf') 

saveas(gcf,FullFileName,'fig') 

close gcf 

end 

%% Histograms-Per Axle 

AxleName={'Axle #1';'Axle #2';'Axle #3';'Axle #4'}; 

if PlotToggle 

for z=1:4 

    Z=2*z; 

figure('Visible',Visibility) 
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set(gcf,'PaperSize',[6 5],'PaperPositionMode','auto') 

AxleData=cat(1,mast_data(:,Z),mast_data(:,Z+1)); 

nbins=round((max(AxleData)-min(AxleData))/5); 

[n,xout]=hist(AxleData,nbins); 

n=n/sum(n)*100; 

bar(xout,n) 

axis([50 235 -Inf Inf]) 

NTotal=sum(n); 

TitleName=char(strcat('Temperature Distribution - ',AxleName(z))); 

SubTitleName=char(strcat('Rail Car ID (',RailcarName,')')); 

title({TitleName;SubTitleName},'FontWeight','bold',... 

    'FontName','Times','FontSize',14) 

xlabel({'Temperature (^oF)'},'FontWeight','bold',... 

    'FontName','Times','FontSize',14) 

ylabel({'Time Distribution (% of Readings)'},'FontWeight','bold',... 

    'FontName','Times','FontSize',14) 

FigFileName=strcat(RailcarName,'_',char(AxleName(z))); 

FullFileName=fullfile(DirName,FigFileName); 

saveas(gcf,FullFileName,'pdf') 

saveas(gcf,FullFileName,'fig') 

close gcf 

end 

end 

%% Histograms-Per Railcar 

if (1)%PlotToggle 

all_temps=mast_data(1:end,2:9); 

all_temps=all_temps(all_temps>0); 

figure('Visible',Visibility) 

set(gcf,'PaperSize',[6 5],'PaperPositionMode','auto') 

nbins=round((max(all_temps)-min(all_temps))/5); 

[N,allTout]=hist(all_temps,nbins); 

N=N/sum(N)*100; 

bar(allTout,N) 

axis([50 235 -Inf Inf]) 

NTotal=sum(n); 

if iscell(DirName) 

    DirName=char(DirName); 

end 

TitleName=char(strcat('Temperature Distribution for all wheels')); 

SubTitleName=char(strcat('Rail Car ID (',RailcarName,')')); 

FigFileName=strcat(RailcarName,'_All Wheels'); 

FullFileName=fullfile(DirName,FigFileName); 

title({TitleName;SubTitleName},'FontWeight','bold',... 

    'FontName','Times','FontSize',14) 

xlabel({'Temperature (^oF)'},'FontWeight','bold',... 

    'FontName','Times','FontSize',14) 

ylabel({'Time Distribution (% of Readings)'},'FontWeight','bold',... 

    'FontName','Times','FontSize',14) 

close gcf 

end 

%% Histograms-Bearing & RailCar 

if PlotToggleCombined 

FigHandle=figure('Visible',Visibility); 

set(gcf,'PaperSize',[10 12],'PaperPositionMode','auto') 

%set(gcf,'PaperPosition',[0 0 9 5.5],'PaperPositionMode','manual') 

for z=2:9 
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    position=z-1; 

    subplot(4,2,position) 

    hold on; 

    CarHandle=plot(allTout,N,'-b','LineWidth',2); 

    nbins=round((max(mast_data(:,z))-min(mast_data(:,z)))/5); 

    [n,xout]=hist(mast_data(:,z),nbins); 

    n=n/sum(n)*100; 

    BearingHandle=plot(xout,n,'-r','LineWidth',2); 

    box on 

    axis([50 235 0 Inf]) 

    TitleName=NodeNameID(position); 

    title(TitleName,'FontWeight','bold','FontName','Times','FontSize',14,... 

        'BackgroundColor',[1 1 1]) 

end 

    TitleHandle=uicontrol('Style', 'text', 'String',... 

        strcat('Absolute Temperature Distribution (',RailcarName,')'),... 

        'HorizontalAlignment', 'center', 'Units', 'normalized', ... 

        'Position', [0.38 .9  .28 .05], 'BackgroundColor', [1 1 1]); 

    set(TitleHandle,'FontName','Times','FontSize',18,'FontWeight','Bold'); 

    Axle1Handle=uicontrol('Style','Text','String','Axle 1',... 

        'horizontalAlignment','left','Units','normalized',... 

        'Position',[.05 .8 .05 .03],'BackgroundColor',[1 1 1]); 

    set(Axle1Handle,'FontName','Times','FontSize',18,'FontWeight','Bold'); 

    Axle2Handle=uicontrol('Style','Text','String','Axle 2',... 

        'horizontalAlignment','left','Units','normalized',... 

        'Position',[.05 .58 .05 .03],'BackgroundColor',[1 1 1]); 

    set(Axle2Handle,'FontName','Times','FontSize',18,'FontWeight','Bold'); 

    Axle3Handle=uicontrol('Style','Text','String','Axle 3',... 

        'horizontalAlignment','left','Units','normalized',... 

        'Position',[.05 .36 .05 .03],'BackgroundColor',[1 1 1]); 

    set(Axle3Handle,'FontName','Times','FontSize',18,'FontWeight','Bold'); 

    Axle4Handle=uicontrol('Style','Text','String','Axle 4',... 

        'horizontalAlignment','center','Units','normalized',... 

        'Position',[.05 .14 .05 .03],'BackgroundColor',[1 1 1]); 

    set(Axle4Handle,'FontName','Times','FontSize',18,'FontWeight','Bold'); 

    hold off; 

    FigFileName=strcat(RailcarName,'_Bearing_Temp_Comparison'); 

    FullFileName=fullfile(pwd,'Results',FigFileName); 

    saveas(gcf,FullFileName,'fig') 

    close gcf 

end 

%% Histograms-DeltaTemp Per RailCar 

all_delTemp=TempRise(1:end,2:9); 

all_delTemp=all_delTemp(all_delTemp>0); 

nbins=round((max(all_delTemp)-min(all_delTemp))/5); 

[N,alldTout]=hist(all_delTemp,nbins); 

N=N/sum(N)*100; 

%% Histograms-DeltaTemp Overlaid Plots 

if PlotToggleCombined 

FigHandle=figure('Visible',Visibility); 

set(gcf,'PaperSize',[10 12],'PaperPositionMode','auto') 

for z=2:9 

    CarHandle=[]; 

    BearingHandle=[]; 

    position=z-1; 

    subplot(4,2,position) 
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    hold on; 

    CarHandle=bar(alldTout,N); 

    set(get(CarHandle,'children'),'facea',0.75) 

    nbins=round((max(TempRise(:,z))-min(TempRise(:,z)))/5); 

    if (nbins~=0) 

    [n,xout]=hist(TempRise(:,z),nbins); 

    n=n/sum(n)*100; 

    BearingHandle=bar(xout,n,'FaceColor','yellow'); 

    set(get(BearingHandle,'children'),'facea',0.5) 

    end 

    box on; 

    TitleName=char(NodeID(z)); 

    title(TitleName,'FontWeight','bold','FontName','Times','FontSize',10) 

    axis([0 150 -Inf Inf]) 

    NTotal=sum(n); 

end 

    TitleHandle=uicontrol('Style', 'text', 'String',... 

        strcat('Temperature Increase Comparison (',RailcarName,')'),... 

        'HorizontalAlignment', 'center', 'Units', 'normalized', ... 

        'Position', [0 .95  1 .025], 'BackgroundColor', [.8 .8 .8]); 

    set(TitleHandle,'FontName','Times','FontSize',14,'FontWeight','Bold'); 

     

    Axle1Handle=uicontrol('Style','Text','String','Axle 1',... 

        'horizontalAlignment','left','Units','normalized',... 

        'Position',[.05 .8 .05 .03],'BackgroundColor',[.8 .8 .8]); 

    set(Axle1Handle,'FontName','Times','FontSize',10,'FontWeight','Bold'); 

     

    Axle2Handle=uicontrol('Style','Text','String','Axle 2',... 

        'horizontalAlignment','left','Units','normalized',... 

        'Position',[.05 .58 .05 .03],'BackgroundColor',[.8 .8 .8]); 

    set(Axle2Handle,'FontName','Times','FontSize',10,'FontWeight','Bold'); 

     

    Axle3Handle=uicontrol('Style','Text','String','Axle 3',... 

        'horizontalAlignment','left','Units','normalized',... 

        'Position',[.05 .36 .05 .03],'BackgroundColor',[.8 .8 .8]); 

    set(Axle3Handle,'FontName','Times','FontSize',10,'FontWeight','Bold'); 

     

    Axle4Handle=uicontrol('Style','Text','String','Axle 4',... 

        'horizontalAlignment','center','Units','normalized',... 

        'Position',[.05 .14 .05 .03],'BackgroundColor',[.8 .8 .8]); 

    set(Axle4Handle,'FontName','Times','FontSize',10,'FontWeight','Bold'); 

    hold off; 

    FigFileName=strcat(RailcarName,'_Bearing_DeltaTemp_Comparison'); 

    FullFileName=fullfile(pwd,'Results',FigFileName); 

    saveas(gcf,FullFileName,'fig') 

    close gcf 

end 

%% TimeSeries-Temperature vs. Time 

if PlotToggle 

figure('Visible',Visibility) 

set(gcf,'PaperSize',[12 10],'PaperPositionMode','auto') 

plot(mast_data(:,1),mast_data(:,2),mast_data(:,1),mast_data(:,3),... 

    mast_data(:,1),mast_data(:,4),mast_data(:,1),mast_data(:,5),... 

    mast_data(:,1),mast_data(:,6),mast_data(:,1),mast_data(:,7),... 

    mast_data(:,1),mast_data(:,8),mast_data(:,1),mast_data(:,9),... 

    mast_data(:,1),mast_data(:,10)) 
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set(findobj('Type','line'),'MarkerSize',0.25) 

tmin=min(mast_data(:,1));   tmax=max(mast_data(:,1)); 

ymin=min(mast_data(:,10));  ymax=max(max(mast_data(:,2:9))); 

axis([tmin tmax ymin ymax]) 

datetick('x',2) 

TitleName=char(strcat('Node Temperature vs. Time')); 

SubTitleName=char(strcat('Rail Car ID (',RailcarName,')')); 

title({TitleName;SubTitleName},'FontWeight','bold','FontName','Times','FontSize',14) 

xlabel('Time','FontWeight','bold','FontName','Times','FontSize',14) 

ylabel('Temperature (^oF)','FontWeight','bold','FontName','Times','FontSize',14) 

FigFileName=strcat(RailcarName,'_','TimeSeries_TempPlot'); 

FullFileName=fullfile(DirName,FigFileName); 

saveas(gcf,FullFileName,'pdf') 

saveas(gcf,FullFileName,'fig') 

close gcf 

end 

%% TimeSeries-Temperature increase vs. time 

if PlotToggle 

figure('Visible',Visibility) 

set(gcf,'PaperSize',[6 5],'PaperPositionMode','auto') 

plot(TempRise(:,1),TempRise(:,2),TempRise(:,1),TempRise(:,3),... 

    TempRise(:,1),TempRise(:,4),TempRise(:,1),TempRise(:,5),... 

    TempRise(:,1),TempRise(:,6),TempRise(:,1),TempRise(:,7),... 

    TempRise(:,1),TempRise(:,8),TempRise(:,1),TempRise(:,9)) 

set(findobj('Type','line'),'LineWidth',0.5) 

tmin=min(TempRise(:,1));        tmax=max(TempRise(:,1)); 

ymin=min(TempRise((size(TempRise,1)+1):end)); 

ymax=max(TempRise((size(TempRise,1)+1):end)); 

axis([tmin tmax ymin ymax]) 

datetick('x',2) 

TitleName=char(strcat('Temperature Above Ambient vs. Time')); 

SubTitleName=char(strcat('Rail Car ID (',RailcarName,')')); 

title({TitleName;SubTitleName},'FontWeight','bold','FontName','Times','FontSize',14) 

xlabel('Time','FontWeight','bold','FontName','Times','FontSize',14) 

ylabel('Temperature (^oF)','FontWeight','bold','FontName','Times','FontSize',14) 

legend('Node #1','Node #2','Node #3','Node #4','Node #5','Node #6',... 

    'Node #7','Node #8') 

FigFileName=strcat(RailcarName,'_','TimeSeries_TempRise_Plot'); 

FullFileName=fullfile(DirName,FigFileName); 

saveas(gcf,FullFileName,'pdf') 

saveas(gcf,FullFileName,'fig') 

close gcf 

end 

%% TimeSeries-Temperatures > 200F vs. Time 

if PlotToggle 

figure('Visible',Visibility) 

set(gcf,'PaperSize',[6 5],'PaperPositionMode','auto') 

plot(PlotTimes,PlotTemps,'.r') 

set(findobj('Type','line'),'MarkerSize',5) 

tmin=min(OverTemp(:,1));        tmax=max(OverTemp(:,1)); 

ymin=min(OverTemp((size(OverTemp,1)+1):end)); 

ymax=max(OverTemp((size(OverTemp,1)+1):end)); 

axis([tmin tmax ymin ymax]) 

datetick('x',2) 

  

TitleName=char(strcat('Temperature > 200F vs. Time')); 



95 

 

SubTitleName=char(strcat('Rail Car ID (',RailcarName,')')); 

title({TitleName;SubTitleName},'FontWeight','bold','FontName','Times','FontSize',14) 

xlabel('Time','FontWeight','bold','FontName','Times','FontSize',14) 

ylabel('Temperature (^oF)','FontWeight','bold','FontName','Times','FontSize',14) 

  

FigFileName=strcat(RailcarName,'_','TimeSeries_HighTemp_Plot'); 

FullFileName=fullfile(DirName,FigFileName); 

saveas(gcf,FullFileName,'pdf') 

saveas(gcf,FullFileName,'fig') 

close gcf 

end 

  

%% TimeSeries-8 Minute Moving Average vs. Time 

if PlotToggle 

figure('Visible',Visibility) 

set(gcf,'PaperSize',[6 5],'PaperPositionMode','auto') 

plot(MovingAverage(:,1),MovingAverage(:,2),MovingAverage(:,1),MovingAverage(:,3),... 

    MovingAverage(:,1),MovingAverage(:,4),MovingAverage(:,1),MovingAverage(:,5),... 

    MovingAverage(:,1),MovingAverage(:,6),MovingAverage(:,1),MovingAverage(:,7),... 

    MovingAverage(:,1),MovingAverage(:,8),MovingAverage(:,1),MovingAverage(:,9)) 

datetick('x',2) 

  

TitleName=char(strcat('8 Minute Moving Average vs. Time')); 

SubTitleName=char(strcat('Rail Car ID (',RailcarName,')')); 

title({TitleName;SubTitleName},'FontWeight','bold','FontName','Times','FontSize',14) 

xlabel('Time','FontWeight','bold','FontName','Times','FontSize',14) 

ylabel('Temperature (^oF)','FontWeight','bold','FontName','Times','FontSize',14) 

  

FigFileName=strcat(RailcarName,'_','TimeSeries_MovingAverage_Plot'); 

FullFileName=fullfile(DirName,FigFileName); 

saveas(gcf,FullFileName,'pdf') 

saveas(gcf,FullFileName,'fig') 

close gcf 

end 

  

%% Save data file as .CSV 

%%%All Data 

  

FullFileName=fullfile(DirName,RailcarName,'_Sorted_Data.csv'); 

%%%Temperatures over 200F 

FullFileName=fullfile(DirName,RailcarName,'_HighTemp_Data.csv'); 

fprintf('<%s> was analyzed succesfully\n',filename) 

close('all'); 

fclose('all'); 

end 

%% Function Functions 

function ImportTempFile(fileToRead1) 

%IMPORTFILE(FILETOREAD1) 

%  Imports data from the specified file 

%  FILETOREAD1:  file to read 

  

%  Auto-generated by MATLAB on 25-May-2010 12:01:12 

  

% Import the file 

newData1 = importdata(fileToRead1); 
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% Create new variables in the base workspace from those fields. 

vars = fieldnames(newData1); 

for i = 1:length(vars) 

    assignin('caller', vars{i}, newData1.(vars{i})); 

end 

end 

  

function ImportAlertFile(fileToRead1) 

%IMPORTFILE(FILETOREAD1) 

%  Imports data from the specified file 

%  FILETOREAD1:  file to read 

  

 

% Import the file 

newData1 = importdata(fileToRead1); 

  

% Create new variables in the base workspace from those fields. 

vars = fieldnames(newData1); 

for i = 1:length(vars) 

    assignin('caller', vars{i}, newData1.(vars{i})); 

end 

end 
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MATLAB
TM

 Program 2: The RailcarTempPlot.m program is used to generate temperature vs. 

time plots for a single railcar.  The program loads the master temperature data file created using 

data_sorter_v4  and prompts the user to select a railcar from with fleet, followed by the desired 

start and end times of the plot. 

 
 

%% RailcarTempPlot.m plots railcar temperature data for a specified timespan 

% Written by Sean Woods (updated 2/20/2011) 

% This script loads the processed FleetData temperature datafile and plots 

% the temperature history for the selected railcar and during 

% the specified time period. 

%% Function Settings 

PrintData=0;    %PrintData=1 will create csv data file 

RemoveNegs=0;   %RemoveNegs=1 will remove negative values from data 

DirName='Plots'; 

%% Intialize Data and Create Output Directory 

if ~exist('FleetData','var');load FleetData;end 

if ~exist(DirName,'dir');mkdir(DirName);end 

if ~exist(fullfile(pwd,DirName,'CSVs'),'dir');mkdir(fullfile(pwd,DirName,'CSVs'));end 

%% Set Node Colors 

NodeNames=['R1';'L1';'R2';'L2';'R3';'L3';'R4';'L4']; 

NodeColors=[31 119 180;255 127 14;... 

           188 200 188;214 39 40;... 

           148 103 189;140 86 75;... 

           227 119 194;127 127 127;... 

           188 189 34;1 1 1]/255; 

%% Print List of Cars to Plot 

sheets=size(FleetData,3); 

N=size(FleetData,3); 

for n=1:N 

    fprintf('%2.0f - %s\n',n,FleetData{1,1,n}) 

end 

%% Select Car from List 

Page=input('Select Railcar # from list above\n'); 

CarName=FleetData{1,1,Page}; 

if Page<1 || Page>N 

    error('Invalid Railcar Selection\n') 

end 

%% Input Specified Timespan to Plot 

time1=input('Enter Start Date (mm/dd/yyyy HH:MM (Military Time)):\n','s'); 

time2=input('Enter End Date (mm/dd/yyyy HH:MM (Military Time)):\n','s'); 

%% Convert input time sptring to time number 

if ischar(time1);time1=datenum(time1,'mm/dd/yyyy HH:MM');end 

if ischar(time2);time2=datenum(time2,'mm/dd/yyyy HH:MM');end 

%% Find indices of specified times in CarData 

[~,index1]=min(abs(FleetData{1,3,Page}(:,1)-time1)); 

[~,index2]=min(abs(FleetData{1,3,Page}(:,1)-time2)); 

%% Select Data to be Plotted 

plotTimes=FleetData{1,2,Page}(index1:index2,1); 

plotNodeTemps=FleetData{1,2,Page}(index1:index2,2:end); 

plotTempDiff=FleetData{1,4,Page}(index1:index2,2:end); 

%% Prompt for Trip Direction 

Direction=questdlg('Is this trip East or westbound?','Select Direction',... 

    'Eastbound','Westbound','Unknown','Unknown'); 

%% Remove Negative Readings 
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if RemoveNegs;plotNodeTemps(plotNodeTemps<=0)=NaN;end 

%% Plot Absolute Temp 

h=figure; 

set(gcf,'PaperPosition',[0 0 9 5.5],'PaperPositionMode','manual') 

hold on 

h1=plot(plotTimes,plotNodeTemps,[min(plotTimes) max(plotTimes)],[320 320],'r'); 

hold off 

% Set Axes 

axis([-Inf Inf 60 330]) 

% Set Axis Labels and Tickmarks 

xTicks=get(gca,'XTick');    yTicks=get(gca,'YTick'); 

xTicks=linspace(xTicks(1),xTicks(end),4); 

yTicks=linspace(yTicks(1),yTicks(end),10);  yTicks=round(yTicks/10)*10; 

set(gca,'XTick',xTicks);    set(gca,'YTick',yTicks); 

datetick('x','mm/dd HH:MM','keepticks','keeplimits') 

legend('R1','L1','R2','L2','R3','L3','R4','L4','Ambient','Location','EastOutside') 

xlabel('Timestamp','FontWeight','bold','FontName','Times','FontSize',12) 

ylabel({'Temperature [^oF]'},'FontWeight','bold','FontName','Times','FontSize',12) 

for z=1:(length(h1)-1) 

    set(h1(z),'Color',NodeColors(z,:))%,'MarkerSize',6) 

end 

% Create Figure Filename 

switch Direction 

    case 'Unknown' 

        TitleName='Temperature vs. Time'; 

        title(TitleName,'FontWeight','bold','FontName','Times','FontSize',12) 

        FigID=strcat(upper(CarName),'_Temps_',... 

            datestr(plotTimes(1),'mm.dd'),'_',... 

            datestr(plotTimes(end),'mm.dd'),'.png'); 

        FigID=fullfile(pwd,DirName,FigID); 

    otherwise 

        TitleName='Temperature vs. Time'; 

        SubTitleName=char(Direction); 

        title({TitleName;SubTitleName},'FontWeight','bold','FontName','Times','FontSize',12) 

        FigID=strcat(upper(CarName),'_Temps_',... 

            datestr(plotTimes(1),'mm.dd'),'_',... 

            datestr(plotTimes(end),'mm.dd'),'_',Direction,'.png'); 

        FigID=fullfile(pwd,DirName,FigID); 

end 

% Save figure 

print(h,'-dpng','-r300',FigID) 

%% Plot Temp-Ambient Differential 

h=figure; 

set(gcf,'PaperPosition',[0 0 9 5.5],'PaperPositionMode','manual') 

hold on 

h1=plot(plotTimes,plotTempDiff,[min(plotTimes) max(plotTimes)],[170 170],'r'); 

hold off 

% Set Axes 

if max(max(plotTempDiff))>135 

    axis([-Inf Inf min(min(plotTempDiff))-5 max(max(plotTempDiff))+10]) 

else 

    axis([-Inf Inf min(min(plotTempDiff))-5 140]) 

end 

% Set Axis Labels and Tickmarks 

xTicks=get(gca,'XTick');    yTicks=get(gca,'YTick'); 

xTicks=linspace(xTicks(1),xTicks(end),4); 
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yTicks=linspace(yTicks(1),yTicks(end),10);  yTicks=round(yTicks/10)*10; 

set(gca,'XTick',xTicks);    set(gca,'YTick',yTicks); 

datetick('x','mm/dd HH:MM','keepticks','keeplimits') 

legend('R1','L1','R2','L2','R3','L3','R4','L4','Location','EastOutside') 

xlabel('Timestamp','FontWeight','bold','FontName','Times','FontSize',12) 

ylabel({'Bearing-Ambient Temperature Differential [ 

\Delta^oF]'},'FontWeight','bold','FontName','Times','FontSize',12) 

for z=1:(length(h1)-1) 

    set(h1(z),'Color',NodeColors(z,:))%,'MarkerSize',6) 

end 

% Create Figure Filename 

switch Direction 

    case 'Unknown' 

        TitleName='Bearing-Ambient Temperature Differential vs. Time'; 

        title(TitleName,'FontWeight','bold','FontName','Times','FontSize',12) 

        FigID=strcat(upper(CarName),'_TempDiff_',... 

            datestr(plotTimes(1),'mm.dd'),'_',... 

            datestr(plotTimes(end),'mm.dd'),'.png'); 

        FigID=fullfile(pwd,DirName,FigID); 

    otherwise 

        TitleName='Bearing-Ambient Temperature Differential vs. Time'; 

        SubTitleName=char(Direction); 

        title({TitleName;SubTitleName},'FontWeight','bold','FontName','Times','FontSize',12) 

        FigID=strcat(upper(CarName),'_TempDiff_',... 

            datestr(plotTimes(1),'mm.dd'),'_',... 

            datestr(plotTimes(end),'mm.dd'),'_',Direction,'.png'); 

        FigID=fullfile(pwd,DirName,FigID); 

end 

% Save figure 

print(h,'-dpng','-r300',FigID) 

%% Write CSV file with Node-Temperature Data for Selected Timespan  

if PrintData==1 

    

filename=strcat(upper(CarName),'_Temps_',datestr(plotTimes(1),'mm.dd'),'_',datestr(plotTimes(end),'mm.dd'),'.csv')

; 

    filename=fullfile(pwd,DirName,'CSVs',filename); 

    TempFileID=fopen(filename,'w'); 

    fprintf(TempFileID,'RailcarName,Time,Node1,Node2,Node3,Node4,Node5,Node6,Node7,Node8,Ambient(F)\n'); 

    Times=datestr(plotTimes,'mm/dd/yyyy HH:MM'); 

    Z=length(plotNodeTemps); 

    for z=1:Z 

        fprintf(TempFileID,'%s,%s,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f\n',... 

            CarName,Times(z,:),plotNodeTemps(z,1:9)); 

    end 

    fclose(TempFileID); 

end 
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MATLAB
TM

 Program 3: The MATLAB
TM

 Level3 function is used to split the processed master 

temperature data array into discrete time periods based on dates supplied by the user.  These 

intervals of temperature data are subsequently evaluated using the algorithms and thresholds 

presented in Chapter IV.  The output of this function is a qualitative ranking of the thermal 

performance of all bearings in the instrumented test fleet. 

 
 

function Level3 (EndDate,varargin) 

% Created by Sean Woods 

%This program is used to divide processed temperature data array into  

% discrete time segments and evaluate the condition of all bearings 

% within the fleet of railcars using the developed Level 3 algorithms 

tic 

%% Initialize variables and load files 

if ~exist('FleetData','var');load FleetData;end 

load NetData 

%% Input Temperature Thresholds 

global TempLimit dTLimit SlopeLimit 

SlopeLimit=1.25;    %Moving Average threshold 

TempLimit=200;      %Absolute Bearing Temperature Threshold 

dTLimit=120;        %Bearing Temperature above ambient threshold 

%% Check for/create old directories 

if ~exist('Checklists','dir');mkdir('Checklists');end 

%% Calculate Fleet Average and Standard Deviation 

Z=size(FleetData,3); 

FleetTemps=[]; 

DataRange=10*24*60; 

for z=1:Z 

    [~, EndIndex(z)]=min(abs(FleetData{1,3,z}(:,1)-EndDate)); 

    if isempty(varargin) 

        StartIndex(z)=EndIndex(z)-DataRange; 

        if StartIndex(z)<1 

            StartIndex(z)=1; 

        end 

    else 

        [~, StartIndex(z)]=min(abs(FleetData{1,3,z}(:,1)-varargin{1})); 

    end 

    StartDate(z)=FleetData{1,3,z}(StartIndex(z),1); 

    DataEndDate(z)=max(FleetData{1,3,z}(:,1)); 

    FleetTemps=cat(1,FleetTemps,FleetData{1,3,z}(StartIndex(z):EndIndex(z),[2:10])); 

end 

% Remove Temperatures when dTemp<20F 

indexA=cat(2,(FleetTemps(:,1:8)-repmat(FleetTemps(:,9),1,8))<20,false(size(FleetTemps,1),1));%find dTemps<20F 

indexB=cat(2,isnan(FleetTemps(:,1:8)),false(size(FleetTemps,1),1));%find NAN temps, excluding ambient 

indexD=FleetTemps(:,end)<=1; 

index=logical(indexA+indexB); 

indexC=or(all(index(:,1:8),2),indexD); 

FleetTemps(:,end)=[];%remove ambient readings before computing FleetAvg and FleetSTD 

  

fprintf('Fleet average temp with ambient bearing temps is %3.3f\n',mean(FleetTemps(~isnan(FleetTemps))))    

fprintf('Fleet standard deviation with ambient bearing temps is %3.3f\n',std(FleetTemps(~isnan(FleetTemps))))  

FleetTemps(indexC,:)=[]; 

  

StartDate=mean(StartDate); 

global FleetAvg FleetSTD 
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FleetAvg=mean(FleetTemps(~isnan(FleetTemps))); 

FleetSTD=std(FleetTemps(~isnan(FleetTemps))); 

  

fprintf('The average temperature for the fleet was %3.2f F between %s and %s\n',... 

    FleetAvg,datestr(StartDate,'mm/dd/yy'),datestr(EndDate,'mm/dd/yy')) 

fprintf('The standard deviation of the temperature for the fleet was %2.3f F between %s and %s\n',... 

    FleetSTD,datestr(StartDate,'mm/dd/yy'),datestr(EndDate,'mm/dd/yy')) 

%save 'FleetStats.mat' FleetAvg 

  

%% Identify data window for each RailCar 

  

if exist('Phase1Checklist.mat','file');delete('Phase1Checklist.mat');end 

Phase1Checklist=cell(1,8);save('Phase1Checklist.mat','Phase1Checklist') 

  

if exist('Phase2Checklist.mat','file');delete('Phase2Checklist.mat');end 

Phase2Checklist=cell(1,4);save('Phase2Checklist.mat','Phase2Checklist') 

  

for z=1:Z 

    [~, EndIndex(z)]=min(abs(FleetData{1,2,z}(:,1)-EndDate)); 

     

    if isempty(varargin) 

        if EndIndex(z)>14400 

            StartIndex(z)=EndIndex(z)-14400; 

        else 

            StartIndex(z)=1; 

        end 

    else 

        [~, StartIndex(z)]=min(abs(FleetData{1,2,z}(:,1)-varargin{1})); 

    end 

    CarName(z,:)=FleetData{1,1,z}; 

    StartEndDate(z,1)=FleetData{1,3,z}(StartIndex(z),1); 

    StartEndDate(z,2)=FleetData{1,3,z}(EndIndex(z),1); 

     

    TempData=FleetData{1,3,z}(StartIndex(z):EndIndex(z),[1:10]); 

    indexA=cat(2,(TempData(:,2:9)-repmat(TempData(:,10),1,8))<20,false(size(TempData,1),1));%find dTemps<20F 

    indexB=cat(2,isnan(TempData(:,2:9)),false(size(TempData,1),1));%find NAN temps, excluding ambient 

    indexD=TempData(:,end)<=1; 

    index=logical(indexA+indexB); 

     

    indexC=or(all(index(:,1:8),2),indexD); 

     

    TempData(indexC,:)=[]; 

     

    fprintf('%6.0f rows removed from railcar %s data\n',sum(indexC),FleetData{1,1,z})  

     

    MovingAvgData=FleetData{1,5,z}(StartIndex(z):EndIndex(z),[1:9]);  

    MovingAvgData(indexC,:)=[]; 

     

    PHASE1_10Day(FleetData{1,1,z},z,TempData); 

    PHASE2(FleetData{1,1,z},MovingAvgData); 

end 

  

    %% Load and store unsorted results of Phase 1 Analysis 

    load Phase1Checklist 

     

    CarNameList=Phase1Checklist{1,1}; 
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    NodeList=Phase1Checklist{1,2}; 

    HighTempPercent=Phase1Checklist{1,3}; 

    TempRisePercent=Phase1Checklist{1,4}; 

    nSigma=Phase1Checklist{1,5}; 

    nSigmaFleet=Phase1Checklist{1,6}; 

    ReadCount=Phase1Checklist{1,8}; 

     

    K=length(NodeList); 

    OutlierNodeScore=zeros(size(NodeList)); 

     

    %% Sort and Score Bearings by Phase 1.1 Analysis (Temp>200F) 

    %Replace NaNs with Zeros 

    index=isnan(HighTempPercent); 

    HighTempPercent(index)=0; 

    %Sort 

    [sHighTempPercent Index11]=sort(HighTempPercent,'descend'); 

    snHighTempPercent=sHighTempPercent/max(sHighTempPercent)*100; 

    %Assign Scores 

    N=find(snHighTempPercent<=0,1,'first'); 

    for n=1:N 

        OutlierNodeScore(Index11(n))=snHighTempPercent(n); 

    end 

    %% Sort and Score Bearings by Phase 1.2 Analysis (>+120F) 

    %Replace NaNs with Zeros 

    index=isnan(TempRisePercent); 

    TempRisePercent(index)=0; 

    %Sort 

    [sTempRisePercent Index12]=sort(TempRisePercent,'descend'); 

    snTempRisePercent=sTempRisePercent/max(sTempRisePercent)*100; 

    %Assign Scores 

    N=find(sTempRisePercent<=0,1,'first'); 

    for n=1:N 

        OutlierNodeScore(Index12(n))=OutlierNodeScore(Index12(n))+snTempRisePercent(n); 

    end 

    %% Sort and Score Bearings by Phase 1.3 Analysis (# Sigmas deviation) 

    %Replace NaNs with Zeros 

    index=isnan(nSigma); 

    nSigma(index)=0; 

    %Sort 

    [sSigma Index13]=sort(nSigma,'descend'); 

    snSigma=sSigma/max(sSigma)*100; 

    %Assign Scores 

    N=find(sSigma<=0,1,'first'); 

    for n=1:N 

        OutlierNodeScore(Index13(n))=OutlierNodeScore(Index13(n))+snSigma(n); 

    end 

    %% Sort and Score Bearings by Phase 1.4 Analysis 

    %Replace NaNs with Zeros 

    index=isnan(nSigmaFleet); 

    nSigmaFleet(index)=0; 

    %Sort 

    [sSigmaFleet Index14]=sort(nSigmaFleet,'descend'); 

    snSigmaFleet=sSigmaFleet/max(sSigmaFleet)*100; 

    %Assign Scores 

    N=find(sSigmaFleet<=0,1,'first'); 

    for n=1:N 
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        OutlierNodeScore(Index14(n))=OutlierNodeScore(Index14(n))+snSigmaFleet(n); 

    end 

    %% Store Phase 1 Analysis Outlier Scores in "Phase1Checklist" 

    OutlierNodeScore=OutlierNodeScore/4; 

    Phase1Checklist(1,7)={OutlierNodeScore}; 

    save('Phase1Checklist.mat','Phase1Checklist') 

     

    %% Sort Bearings by Total Score 

    [sOutlierScore Index1]=sort(OutlierNodeScore,'descend'); 

    sOutlierScorePercent=sOutlierScore; 

     

    %% Create Output Directory 

    if ~isempty(varargin) 

        Date=(varargin{1}+EndDate)/2; 

        DirName=datestr(Date,'mmmmyyyy'); 

        DirName=strcat(datestr(varargin{1},'mmddyy'),'_',datestr(EndDate,'mmddyy')); 

        DirName=fullfile(pwd,'Checklists',DirName) 

    else 

        DirName=fullfile(pwd,'Checklists',datestr(EndDate,'mmddyy')) 

    end 

  

    %% Print Level 3 Analysis Statistics, Window Start/End Dates 

    %Create Output Directory 

    if ~exist(DirName,'dir');mkdir(DirName);end 

     

    %Open Text file and print headers/titles 

    L3Statsfn=fullfile(DirName,'Level3Stats.csv'); 

    L3Statsfid=fopen(L3Statsfn,'w'); 

     

    fprintf(L3Statsfid,'Average Fleet Temperature (F),Fleet Standard Deviation(F)\n'); 

    fprintf(L3Statsfid,'%3.2f,%3.2f\n\n',FleetAvg,FleetSTD); 

     

    % Print Node Statistics 

    fprintf(L3Statsfid,'Railcar,Node,Start Date,End Date,Average Temp(F),Standard Deviation(F),Average Delta 

Temp(F),Standard Deviation(F),nSigma from Fleet,# Total Readings,Valid Readings,Negative 

Readings(%%),Missing readings(%%),Reliability(%%),R-S-L,IsLive(%%)\n'); 

    for z=1:Z 

         

        CarTemps=FleetData{1,3,z}(StartIndex(z):EndIndex(z),[1:10]); 

        indexA=cat(2,(CarTemps(:,2:9)-repmat(CarTemps(:,10),1,8))<20,false(size(CarTemps,1),1));%find 

dTemps<20F 

        indexB=cat(2,isnan(CarTemps(:,2:9)),false(size(CarTemps,1),1));%find NAN temps, excluding ambient 

        index=logical(indexA+indexB); 

        indexC=all(index(:,1:8),2); 

        CarTemps(indexC,:)=[]; 

         

        Car_dTemps=FleetData{1,4,z}(StartIndex(z):EndIndex(z),[1:9]); 

        Car_dTemps(indexC,:)=[]; 

         

        for c=2:10 

            Temps=CarTemps(:,c); 

            if (c<10) 

                dTemps=Car_dTemps; 

            elseif (c==10) 

                dTemps=nan(size(Temps)); 

            end 
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            TotalReadings=EndIndex(z)-StartIndex(z)+1;%Count total readings (time intervals) in dataset 

            ValidReadings=sum(~isnan(Temps));%count total number of valid, processed readings 

            NegativeReadings=100*(sum(FleetData{1,2,z}(StartIndex(z):EndIndex(z),c)<=0)/TotalReadings);%count 

number of negative/zero readings 

            NaNReadings=100*(sum(isnan(FleetData{1,2,z}(StartIndex(z):EndIndex(z),c)))/TotalReadings);%count 

missing readings in original dataset 

             

            Temps(isnan(Temps))=[]; 

            dTemps(isnan(dTemps))=[]; 

             

            % Find NetData indices 

            [~, NetEnd]=min(abs(NetData{1,2,z}(:,1)-EndDate)); 

            if isempty(varargin) 

                [~, NetStart]=min(abs(NetData{1,2,z}(:,1)-(EndDate-10))); 

            else 

                [~, NetStart]=min(abs(NetData{1,2,z}(:,1)-varargin{1})); 

            end 

             

            % Parse NetData for time window 

            Data=NetData{1,2,z}(NetEnd:NetStart,:); 

             

            NodeMatches=Data(:,2)==(c-1); 

            Data=Data(NodeMatches,3:end); 

            Averages=mean(Data,1); 

             

            StartDateStr=datestr(FleetData{1,3,z}(StartIndex(z),1),'mm/dd/yy'); 

            EndDateStr=datestr(FleetData{1,3,z}(EndIndex(z),1),'mm/dd/yy'); 

            if (c<10);NodeName=strcat('Node#',num2str(c-1)); 

            elseif (c==10);NodeName='Ambient';dTemps=NaN;end 

            

fprintf(L3Statsfid,'%s,%s,%s,%s,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%3.2f,%s,%3.3f\n',... 

                FleetData{1,1,z},NodeName,StartDateStr,EndDateStr,... 

                mean(Temps),std(Temps),mean(dTemps),std(dTemps),... 

                (mean(Temps)-FleetAvg)/FleetSTD,... 

                TotalReadings,ValidReadings,NegativeReadings,NaNReadings,... 

                abs(100*(ValidReadings/TotalReadings)),... 

                strcat(num2str(Averages(1),3),' - ',num2str(Averages(2),3),... 

                ' - ',num2str(Averages(3),3)),100*Averages(4)); 

        end 

        fprintf(L3Statsfid,'\n'); 

    end 

     

    %% Create Array to store results (rank+percent) of L3C1-L3C5 

    Results=zeros(K,10); 

  

    %% Print detailed results of Level 3 Crit 1 (Phase 1.1 Analysis) 

         

        L3C1fn=fullfile(DirName,'Level3Criteria1.csv'); 

        L3C1fid=fopen(L3C1fn,'w'); 

        fprintf(L3C1fid,'Railcar,Node,Rank,Score(%%),%%Counts>%3.0fF,Counts\n',TempLimit); 

         

        N=find(snHighTempPercent<=0,1,'first')-1; 

        for n=1:K 

            J=Index11(n); 

            if isnan(sHighTempPercent(n)) 
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                Value=0; 

            else 

                Value=sHighTempPercent(n); 

            end 

            Results(J,[1 2])=[n Value]; 

            if n<=N 

                fprintf(L3C1fid,'%s,%s,%2.0f,%2.3f,%2.3f,%5.0f\n',char(CarNameList(J,:)),... 

                    strcat('Node#',num2str(NodeList(J))),n,snHighTempPercent(n),Value,ReadCount(J)); 

            end 

        end 

  

        %% Print detailed results of Level 3 Crit 2 (Phase 1.2 Analysis) 

        L3C2fn=fullfile(DirName,'Level3Criteria2.csv'); 

        L3C2fid=fopen(L3C2fn,'w'); 

        fprintf(L3C2fid,'Railcar,Node,Rank,Score(%%),%%Counts>%3.0fF,Counts\n',dTLimit); 

        N=find(sTempRisePercent<=0,1,'first')-1; 

        for n=1:K 

            J=Index12(n); 

            if isnan(sTempRisePercent(n)) 

                Value=0; 

            else 

                Value=sTempRisePercent(n); 

            end 

            Results(J,[3 4])=[n Value]; 

            if n<=N 

                fprintf(L3C2fid,'%s,%s,%2.0f,%2.3f,%2.3f,%5.0f\n',char(CarNameList(J,:)),... 

                    strcat('Node#',num2str(NodeList(J))),n,snTempRisePercent(n),Value,ReadCount(J)); 

            end 

        end 

         

        %% Print detailed results of Level 3 Crit 3 (Phase 1.3 Analysis) 

        L3C3fn=fullfile(DirName,'Level3Criteria3.csv'); 

        L3C3fid=fopen(L3C3fn,'w'); 

        fprintf(L3C3fid,'Railcar,Node,Rank,Score(%%),#StdDev,Counts\n'); 

        N=find(sSigma<=0,1,'first')-1; 

        for n=1:K 

            J=Index13(n); 

            if isnan(sSigma(n)) 

                Value=0; 

            else 

                Value=sSigma(n); 

            end 

            Results(J,[5 6])=[n Value]; 

            if n<=N 

                fprintf(L3C3fid,'%s,%s,%2.0f,%2.3f,%2.3f,%5.0f\n',char(CarNameList(J,:)),... 

                    strcat('Node#',num2str(NodeList(J))),n,snSigma(n),Value,ReadCount(J)); 

            end 

        end 

  

        %% Print detailed results of Level 3 Crit 4 (Phase 1.4 Analysis) 

        L3C4fn=fullfile(DirName,'Level3Criteria4.csv'); 

        L3C4fid=fopen(L3C4fn,'w'); 

        fprintf(L3C4fid,'Railcar,Node,Rank,Score(%%),#StdDev,Counts\n'); 

        N=find(sSigmaFleet<=0,1,'first')-1; 

        for n=1:K 

            J=Index14(n); 
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            if isnan(sSigmaFleet(n)) 

                Value=0; 

            else 

                Value=sSigmaFleet(n); 

            end 

            Results(J,[7 8])=[n Value]; 

            if n<=N 

                fprintf(L3C4fid,'%s,%s,%2.0f,%2.3f,%2.3f,%5.0f\n',char(CarNameList(J,:)),... 

                    strcat('Node#',num2str(NodeList(J))),n,snSigmaFleet(n),Value,ReadCount(J)); 

            end 

        end 

  

%% Phase 2 (Level 3 Critrion 5) 

  

%% Load and store unsorted results of Phase 2 Analysis 

load Phase2Checklist    %Needs Rank and %Slope>1.25 when Phase 2 is integrated 

  

CarNameList=Phase2Checklist{1,1}; 

NodeList=Phase2Checklist{1,2}; 

HighSlopePercent=Phase2Checklist{1,3}; 

  

K=length(NodeList); 

  

%% Sort and Score Bearings by Phase 2.1 Analysis (Moving Average Slope > SlopeLimit) 

%Replace NaNs with Zeros 

HighSlopePercent(isnan(HighSlopePercent))=0; 

  

%Sort 

[sHighSlopePercent Index1]=sort(HighSlopePercent,'descend'); 

sHighSlopePercentScore=sHighSlopePercent/sHighSlopePercent(1)*100; 

  

%% Store Phase 2 Analysis Outlier Scores in "Phase2Checklist" 

Phase2Checklist(1,4)={sHighSlopePercentScore}; 

save('Phase2Checklist.mat','Phase2Checklist') 

  

%% Print Level 3 Criteria 5 Results (Phase 2) 

  

L3C5fn=fullfile(DirName,'Level3Criteria5.csv'); 

L3C5fid=fopen(L3C5fn,'w'); 

fprintf(L3C5fid,'Railcar,Node,Rank,%%Slope>%1.2f,Score(%%)\n',SlopeLimit); 

%Print top ranking outlier bearing information 

N=length(Index1); 

for n=1:K 

    J=Index1(n); 

    if isnan(sHighSlopePercent(n)) 

        Value=0; 

    else 

        Value=sHighSlopePercent(n); 

    end 

    Results(J,[9 10])=[n Value]; 

    if n<=N 

        fprintf(L3C5fid,'%s,%s,%2.0f,%3.2f,%3.2f\n',char(CarNameList(J,:)),... 

            strcat('Node#',num2str(NodeList(J))),n,... 

            sHighSlopePercent(n),sHighSlopePercentScore(n)); 

    end 

end 
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%% Print Level 3 Summary CSV from "Results" array 

        L3Sfn=fullfile(DirName,'Level3Summary.csv'); 

        L3Sfid=fopen(L3Sfn,'w'); 

        %Print Header 

        

fprintf(L3Sfid,'Railcar,Node,Rank,%%Counts>200F,Rank,%%Counts>120F,Rank,#StdDev,Rank,#StdDev,Rank,%

%Slope>1.25F/min\n'); 

        for k=1:K 

            fprintf(L3Sfid,'%s,%s,%2.0f,%2.3f,%2.0f,%2.3f,%2.0f,%2.3f,%2.0f,%2.3f,%2.0f,%2.3f\n',... 

                char(CarNameList(k,:)),strcat('Node#',num2str(NodeList(k,:))),... 

                Results(k,1:10)); 

        end 

  

%% Close Phase 2 Checklist text file 

fclose('all'); 

toc 

fprintf('\n\n') 

end 

  

%% Function Functions 

%% 

function PHASE1_10Day ( RailcarName, iter, mast_data ) 

%% PHASE1_10Day Evaluates Phase 1 Bearing Health Analysis Algorithms 

%   Phase 1 function and algorithm developed and implemented by 

%   UTPA - Railroad Research Team 

%   Sean Woods 

%   Dr. Tarawneh 

%   Dr. Kypuros 

%This function requires that the temperature input "mast_data" have reading 

%times in the first column, bearing node readings in the next column, and 

%the last column must be ambient temperatures 

%% Input Temperature Thresholds 

global TempLimit dTLimit nCars 

%% Initialize Variables 

load Phase1Checklist 

global FleetAvg FleetSTD 

%Count the number of nodes 

nNodes=size(mast_data,2)-2; 

nReadings=size(mast_data,1); 

if nReadings==0 

    fprintf('warning: Zero Temperature readings for <%s>\n',RailcarName) 

end 

%Create arrays to be appended to "Phase1Checklist" 

CarNodes=zeros(nNodes,1); 

HighTempCount=zeros(nNodes,1); 

PercentCount=zeros(nNodes,1); 

nSigma=zeros(nNodes,1); 

nSigmaFleet=zeros(nNodes,1); 

dTPercent=zeros(nNodes,1); 

  

%% Phase 1.1 - Percent of Temperatures above 200F 

%Calculate number of readings > 200F and percent of total readings 

for z=2:nNodes+1 

    HighTempCount(z-1,1)=sum(mast_data(:,z)>=TempLimit);%Count # of readings > Temperature Limit 

    ReadingCount(z-1,1)=sum(~isnan(mast_data(:,z))); 
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    PercentCount(z-1,1)=HighTempCount(z-1,1)/ReadingCount(z-1,1)*100;%Calculate percent  

    CarNames(z-1,:)={RailcarName};%Stores RailcarName 

    CarNodes(z-1,1)=z-1;%Stores Node Number 

end 

  

%% Phase 1.2 - Percent of Readings > 120F above Ambient 

Z=size(mast_data,1); 

TempRise=zeros(Z,nNodes+1); 

TempRise(:,1)=mast_data(:,1); 

for c=2:nNodes+1 

    %Calculate (node temperature-ambient) 

     TempRise(:,c)=mast_data(:,c)-mast_data(:,end); 

     %Calculate the percent of readings with temp  increase (>=dTlimit) 

     dTPercent(c-1,1)=sum(TempRise(:,c)>=dTLimit)/... 

            sum(~isnan(TempRise(:,c)))*100; 

end 

  

%% Phase 1.3 - Calculate the number of standard deviations between node 

% average temperature and railcar average temperature 

for z=2:nNodes+1 

    %Calculate average temp of one bearing 

    NodeTemps=mast_data((~isnan(mast_data(:,z))),z); 

    if size(NodeTemps,2)~=1 

        NodeTemps=reshape(NodeTemps,[],1); 

    end 

    index=isnan(NodeTemps); 

    NodeTemps(index)=[]; 

    NodeAverage(z-1,1)=mean(NodeTemps); 

  

    %Store all readings for other 7 bearings 

    CarTemps=mast_data(:,2:9); 

    CarTemps(:,z-1)=[]; 

    %Reshape temperature matrix into column vector 

    CarTemps=reshape(CarTemps,[],1); 

    %Remove Empty readings (NaNs) 

    CarTemps(isnan(CarTemps))=[]; 

    size(CarTemps); 

    any(isnan(CarTemps)); 

         

    %Calculate Standard Deviation of the other 7 bearings 

    CarSTD=std(CarTemps); 

    CarAverage=mean(CarTemps); 

  

    %% Phase 1.4 - Calculate number of standard deviations between node and fleet 

    %Calculate the # of stds between car and bearing averages 

    if isnan(NodeAverage(z-1,1)) 

        nSigma(z-1,1)=0; 

        nSigmaFleet(z-1,1)=0; 

    else 

        nSigma(z-1,1)=(NodeAverage(z-1,1)-CarAverage)/CarSTD; 

        nSigmaFleet(z-1,1)=(NodeAverage(z-1,1)-FleetAvg)/FleetSTD; 

    end 

end 

%% Store Existing PHASE 1 Results from "Phase1Checklist" 

if ~isempty(Phase1Checklist{1,1}) 

    CarNameList=Phase1Checklist{1,1};   %size(CarNameList) 
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end 

NodeList=Phase1Checklist{1,2};      %size(NodeList) 

HighTempList=Phase1Checklist{1,3};  %size(HighTempList) 

TempRiseList=Phase1Checklist{1,4};  %size(TempRiseList) 

stdList=Phase1Checklist{1,5};       %size(stdList) 

stdFleetList=Phase1Checklist{1,6}; 

FleetReadingsCount=Phase1Checklist{1,8}; 

  

%% Append Results of Phase 1 Analysis to "Phase1Checklist" 

if isempty(Phase1Checklist{1,1}) 

    CarNameList=CarNames; 

else 

    CarNameList=cat(1,CarNameList,CarNames); 

end 

NodeList=cat(1,NodeList,CarNodes); 

HighTempList=cat(1,HighTempList,PercentCount); 

TempRiseList=cat(1,TempRiseList,dTPercent); 

stdList=cat(1,stdList,nSigma); 

stdFleetList=cat(1,stdFleetList,nSigmaFleet); 

FleetReadingsCount=cat(1,FleetReadingsCount,ReadingCount); 

  

%% Replace Phase 1 Analysis Results and return to workspace 

Phase1Checklist(1,1)={CarNameList}; 

Phase1Checklist(1,2)={NodeList}; 

Phase1Checklist(1,3)={HighTempList}; 

Phase1Checklist(1,4)={TempRiseList}; 

Phase1Checklist(1,5)={stdList}; 

Phase1Checklist(1,6)={stdFleetList}; 

Phase1Checklist(1,8)={FleetReadingsCount}; 

  

%% Save Modified "Phase1Checklist" 

save('Phase1Checklist.mat','Phase1Checklist') 

end 

  

function PHASE2 (RailcarName, MovingAverage) 

%% PHASE2 Evaluates Phase 2 Bearing Health Analysis Algorithms 

%   Phase 2 function and algorithms developed and implemented by 

%   UTPA - World Bearing Research Centre 

%   Sean Woods 

%   Dr. Tarawneh 

%   Dr. Kypuros 

% 

%This function requires that the temperature input "mast_data" have reading 

%times in the first column, bearing node readings in the next column, and 

%the last column must be ambient temperatures 

%% Input Temperature Thresholds 

global SlopeLimit 

  

%% Initialize Variables 

load Phase2Checklist 

%Count the number of nodes 

nNodes=size(MovingAverage,2)-1; 

%Create arrays to be appended to "Phase2Checklist" 

CarNodes=zeros(nNodes,1); 

HighSlopeCount=zeros(nNodes,1); 

HighSlopePercent=zeros(nNodes,1); 
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%% Phase 2.1 - Percent of moving Average Slope Values > Threshold ("T" Method) 

%Calculate number of readings > 200F and percent of total readings 

for z=1:nNodes 

    HighSlopeCount(z,1)=sum(MovingAverage(:,z+1)>=SlopeLimit); 

    HighSlopePercent(z,1)=HighSlopeCount(z,1)/sum(~isnan(MovingAverage(:,z+1)))*100; 

    CarNames(z,:)={RailcarName};%Stores RailcarName 

    CarNodes(z,1)=z;%Stores Node Number 

end 

%% Load Existing PHASE 2 Results from "Phase2Checklist" 

if ~isempty(Phase2Checklist{1,1}) 

    CarNameList=Phase2Checklist{1,1}; 

end 

NodeList=Phase2Checklist{1,2}; 

HighSlopeList=Phase2Checklist{1,3}; 

  

%% Append Results of Phase 2 Analysis to "Phase2Checklist" 

if isempty(Phase2Checklist{1,1}) 

    CarNameList=CarNames; 

else 

    CarNameList=cat(1,CarNameList,CarNames); 

end 

NodeList=cat(1,NodeList,CarNodes); 

HighSlopeList=cat(1,HighSlopeList,HighSlopePercent); 

%% Store New Phase 2 Analysis Results 

Phase2Checklist(1,1)={CarNameList}; 

Phase2Checklist(1,2)={NodeList}; 

Phase2Checklist(1,3)={HighSlopeList}; 

  

%% Save Modified "Phase2Checklist" 

save('Phase2Checklist.mat','Phase2Checklist') 

  

end 
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