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ABSTRACT

Benitez, Juan G., 2-hyponormality on unilateral weighted shifts. Master of Science (MS), Au-

gust, 2019, 24 pp., 4 references, 3 titles.

Given the concept of a normal operator, several weaker notions have been proposed in order

to extend the properties of normal operators to a wider range of operators. One such notion is that

of k-hyponormal operators. In this document, we focus our attention on the 2-hyponormality of

weighted shift operators over a discrete Hilbert space. It will be shown that if a certain relation

between the weights a = (a0,a1, . . .) of a weighted shift Wa is satisfied, then the 2-hyponormality

of Wa implies the hyponormality of W
m
a for any m = 2,3, . . . .
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CHAPTER I

INTRODUCTION

Bounded normal operators are important and interesting operators; for instance, the spectral

theorem applies to them. Finding characterizations for these operators is a task that continues

under development, via weaker notions than normality. One such notion is that of subnormality,

which is to say that an operator is subnormal if it can be extended into a normal operator. In turn,

subnormality is characterized by means of k-hyponormality, which will be defined in the next

chapter together with other preliminary definitions. Suffice it to say that an operator is subnormal if

and only if it is k-hyponormal for all k = 1,2, . . . .

The contents of this document originates from the following open problem, posed as Problem

1.1 in When is hyponormality for 2-variable weighted shifts invariant under powers? by R. Curto

and J. Yoon in the Indiana University Mathematics Journal [2]:

Let T be a bounded operator on a separable Hilbert space H . If T is k-hyponormal, is it true that

T
m

is also k-hyponormal, for m = 1,2, . . .?

Looking to find either confirmation or a counterexample to the question above, in this

document we study the 2-hyponormality of the unilateral weighted shift Wa with weights denoted

by a = {a0,a1, . . .}, and find a characterization that shows how to construct a 2-hyponormal

weighted shift given any three consecutive weights ai,ai+1,ai+2. It will be shown that under a

special case, the 2-hyponormality of Wa implies that W
2
a also is 2-hyponormal. We conjecture that

the original question has a positive answer in the case of a weighted shift. The proof of this last

statement will be a topic for future research.
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CHAPTER II

PRELIMINARIES

Normal operators are linear operators that commute with their adjoint, that is, T is normal if

and only if T
⇤
T = T T

⇤. To characterize and/or extend these operators, concepts such as subnormal-

ity and hyponormality have been introduced relaxing the requirement of normality, in the hope of

extending the results for normal operators to operators that are almost normal in some sense.

Definition 2.0.1. A Hilbert space H is separable if it has a countable basis {e0,e1, . . .}.

Definition 2.0.2. An operator T : H ! H on a Hilbert space H is bounded if there exists a

constant c � 0 such that

kT xk  ckxk for all x 2 H.

The space of all bounded operators on a separable Hilbert space H is denoted B(H ).

Definition 2.0.3. T 2 B(H ) is subnormal on a Hilbert space H if T has a normal extension, that

is, T is subnormal if there exists a Hilbert space K such that H can be embedded in K and there

exists a normal operator S of the form

S =

0

B@
T A

0 B

1

CA

for some bounded operators A : H
? ! H and B : H

? ! H
?.

It is clear that every normal operator is subnormal.

For S,T 2 B(H ) let [S,T ] := ST �T S. Notice that T is normal if and only if [T ⇤,T ] =

T
⇤
T �T T

⇤ = 0.

2



Definition 2.0.4. A bounded linear operator T on a complex Hilbert space H is said to be k-

hyponormal if 0

BBBBBBB@

[T⇤,T]
⇥
(T⇤)2,T

⇤
. . .

⇥
(T⇤)k,T

⇤

⇥
T⇤,T2⇤ ⇥

(T⇤)2,T2⇤ . . .
⇥
(T⇤)k,T2⇤

...
... . . . ...

⇥
T⇤,Tk⇤ ⇥

(T⇤)2,Tk⇤ . . .
⇥
(T⇤)k,Tk⇤

1

CCCCCCCA

� 0 (2.1)

on the direct sum of k copies of H .

In particular, when k = 1 we say that the operator T is hyponormal and in that case we only

need [T ⇤,T ] = T
⇤
T �T T

⇤ � 0. It follows from Definition (2.0.3) that every subnormal operator is

hyponormal and, more in general, k-hyponormal for k = 1,2, . . . since all the entries in matrix (2.1)

would be 0. In this paper we will focus all of our attention on 2-hyponormal weighted shifts, which

will be defined below.

Definition 2.0.5. For a ⌘ {an}•
n=0 a bounded sequence of positive real numbers (called weights),

let Wa : `2(Z+)! `2(Z+) be the associated unilateral weighted shift, defined by Waen := anen+1

for all n = 0,1, . . . where {en}•
n=0 is the canonical orthonormal basis in `2(Z+).

It is easy to see that Wa is never normal, and that it is hyponormal if and only if an  an+1

for all n = 0,1, . . . .

Next, some basic concepts will be defined in order to use a known characterization of

2-hyponormality for unilateral weighted shifts in terms of 3⇥3 Hankel matrices.

The moments of a are given by

gk ⌘ gk(a) :=

8
><

>:

1 if k = 0

a2
0 · ... ·a2

k�1 if k > 0
.

and they are important because of the following result, proved in Theorem 4 in [1]:

3



Theorem 2.0.1. Wa is k-hyponormal if and only for all n = 0,1, . . . the (k+1)⇥ (k+1) matrices

G(a,k,n) :=
�
gn+i+ j�2

�
k+1
i, j=1 (2.2)

are positive.

Notice that in the theorem above, the matrices G(a,k,n) corresponding to the characterization

of k-hyponormality are submatrices of the corresponding matrices G(a,k+1,n) characterizing (k+1)-

hyponormality. Hence (k+1)-hyponormality implies k-hyponormality.

4



CHAPTER III

CHARACTERIZATION OF 2-HYPONORMAL WEIGHTED SHIFTS

In order to characterize 2-hyponormal weighted shifts, let us first do a simple calculation.

Remember that a principal minor of an n⇥n matrix M is a submatrix obtained by deleting any k

rows and the correspond k columns of M (0  k < n).

Lemma 3.0.1. Given a matrix of the form

M =

0

BBBB@

1 a ab

1 b bc

1 c cd

1

CCCCA

where 0 < a < b < c < d, we have that all principal minors of M are non-negative if and only if

d � c

c�b
� a(c�b)

c(b�a)
() d � a(c�b)2

c(b�a)
+ c (3.1)

Proof: Indeed, it is clear that all the 1⇥1 principal minors 1,b,cd are positive. Also, the

2⇥2 principal minors satisfy b�a > 0, cd�ab > 0 and bcd�bc
2 > 0. Finally, the 3⇥3 principal

minor is the determinant of the matrix M, and it is non-negative if and only if

det(M) = bcd �bc
2 �a(cd �bc)+ab(c�b)

= bc(d � c)�ac(d � c)�ac(c�b)+ab(c�b)

= c(b�a)(d � c)+a(b� c)(c�b)� 0

() d � c

c�b
� a(c�b)

c(b�a)

5



() d � a(c�b)2

c(b�a)
+ c

which finishes the proof of this simple lemma.

In fact, a separate calculation for 0 < a = b  c  d under the assumption M � 0 yields:

a = b, det(M) = c(b�a)(d � c)+a(b� c)(c�b)� 0

=) a(b� c)(c�b)� 0

=) b = c

(3.2)

which is a result with the following implication:

Lemma 3.0.2. If Wa is a 2-hyponormal weighted shift with a j = a j+1 for some j = 0,1, . . . , then

an = an+1, for all n = j, j+1, . . . .

Proof: Theorem 2.0.1 with k = 2 says that if Wa is 2-hyponormal then

G(a,2,n) :=

0

BBBB@

gn gn+1 gn+2

gn+1 gn+2 gn+3

gn+2 gn+3 gn+4

1

CCCCA
=

0

BBBB@

a2
0 · · ·a2

n�1 a2
0 · · ·a2

n
a2

0 · · ·a2
n+1

a2
0 · · ·a2

n
a2

0 · · ·a2
n+1 a2

0 · · ·a2
n+2

a2
0 · · ·a2

n+1 a2
0 · · ·a2

n+2 a2
0 · · ·a2

n+3

1

CCCCA
� 0

for all n = 0,1, . . . .

If j = 0, consider

G(a,2,0) =

0

BBBB@

1 a2
1 a4

1

a2
1 a4

1 a4
1 a2

2

a4
1 a4

1 a2
2 a4

1 a2
2 a2

3

1

CCCCA

which has determinant �a8
1
�
a2

2 �a2
1
�2 � 0 since Wa is 2-hyponormal. Hence a1 = a2. This

proves the base case and now we can proceed by induction.

For the determinant of any matrix M, dividing a row of M by a positive constant does not

change the sign of the determinant, and it does not change the sign of any of its minors either. If

n � 1, in each matrix G(a,2,n) if we divide the first row by a2
0 · · ·a2

n�1, the second row by a2
0 · · ·a2

n
,

6



and the third row by a2
0 · · ·a2

n+1, the sign of each principal minor of G(a,2,n) is the same as the sign

of the corresponding minor in:

0

BBBB@

1 a2
n

a2
n
a2

n+1

1 a2
n+1 a2

n+1a2
n+2

1 a2
n+2 a2

n+2a2
n+3

1

CCCCA

which is of the form
✓

1 a ab

1 b bc

1 c cd

◆
.

The hypothesis that Wa is 2-hyponormal implies that the last matrix above has a non-negative

determinant. Suppose a j = a j+1 for some j � 1; then from n = j in the matrix above, together

with (3.2) we obtain

a2
n
= a2

n+1 =) a2
n+1 = a2

n+2

and the proof is finished.

Theorem 3.0.3. If Wa is 2-hyponormal, then exactly one of the following is true:

1. a0 = a1 = . . . ;

2. a0 < a1 = a2 = . . . ; or

3. a0 < a1 < a3 < .. . .

Proof: If a0 = a1, the previous lemma implies a j = a j+1 for all j = 0,1, . . . . On the other

hand, if a0 < a1 and a1 = a2, then again the previous lemma implies (2). Finally, if a0 < a1 < a2

then the determinant of G(a,2,0) shows that

a2
3 �

a2
0

a2
2
·
(a2

2 �a2
1 )

2

a2
1 �a2

0
+a2

2 > a2
2

and therefore a1 < a2 < a3.

7



Next, suppose that for some index j we have a j < a j+1 < a j+2. From (3.1) we have

a2
n+3 � a2

n+2 +
a2

n

a2
n+2

(a2
n+2 �a2

n+1)
2

a2
n+1 �a2

n

> a2
n+2

so that a j+1 < a j+2 < a j+3. This finishes the proof by induction.

Given the result in the theorem above, the weighted shifts Wa that are of interest in this

discussion are those with a satisfying ai < ai+1, i 2 N. From now on this will be part of the

hypothesis.

As we saw in the proof of Lemma (3.0.2), each minor of G(a,2,n) has the same sign as the

corresponding minor of a matrix of the form
✓

1 a ab

1 b bc

1 c cd

◆
. Hence we have the following result:

det(G(a,2,n))� 0 ()
a2

n+3 �a2
n+2

a2
n+2 �a2

n+1
� a2

n

a2
n+2

a2
n+2 �a2

n+1
a2

n+1 �a2
n

(3.3)

() a2
n+3 � a2

n+2 +
a2

n

a2
n+2

(a2
n+2 �a2

n+1)
2

a2
n+1 �a2

n

(3.4)

and we state the above as the following theorem:

Theorem 3.0.4. Wa is 2-hyponormal if and only if

a2
n+3 �a2

n+2
a2

n+2 �a2
n+1

� a2
n

a2
n+2

a2
n+2 �a2

n+1
a2

n+1 �a2
n

, n = 0,1, . . .

or equivalently

an+3 � an+2 +
an

an+2

(an+2 �an+1)2

an+1 �an

, n = 0,1, . . .

Proof: Apply Lemma 3.0.1.

J. G. Stampfli proves in [3] the following result, which makes the importance of (3.3)

apparent:

8



Theorem 3.0.5. Given a0,a1,a2 where 0 < |a0| < |a1| < |a2|, then there exists a subnormal

completion of a0,a1,a2 . . . . Moreover, if S is any subnormal completion of a0,a1,a2, then

kSk2 = 1
2
|a1|2

|a2|2 � |a0|2

|a1|2 � |a0|2
+

1
2

vuut
"
|a1|2

|a2|2 � |a0|2

|a0|2

#2

�4 |a0|2 |a1|2
|a2|2 � |a1|2

|a1|2 � |a0|2

Further, there is (up to unitary equivalence) exactly one subnormal completion for which equality

holds.

Stampfli arrives to this result by assuming there is a normal extension of the weighted shift

Wa , that is, extending the operator 0

@
0

a1 0
a2 0

a3 ·
· ·
· ·

1

A

first into 0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 b
(2)
1

a(1)
1 0 b

(2)
2

a(1)
2 0 b

(2)
3

a(1)
3 · ·

· · ·

· · ·

0

a(2)
1 0

a(2)
2 0

a(2)
3 ·

· ·

· ·

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

with a(1)
n = an, and then he continues extending the operator recursively. Depending on the specific

value of the weights, this process might end after a finite number of steps, or require a countable

number of extensions.

9



It turns out that the subnormal completion which satisfies the equality in Theorem 3.0.5 is

given by the relation

a2
n+3 �a2

n+2
a2

n+2 �a2
n+1

=
a2

0
a2

n+2

a2
n+2 �a2

n+1
a2

n+1 �a2
0

, n = 0,1, . . .

hence if Wa is a 2-hyponormal weighted shift that satisfies the equality in (3.3) then Wa is also

subnormal. Since subnormality implies 2-hyponormality, this result seems trivial. But the fact that

we arrived to the same expression for hyponormality as Stampfli did in Theorem 3.0.5 brings us to

the question of how to relate k-hyponormality with Stampfli’s characterization of subnormality.

Back to the concept of 2-hyponormality, a little more can be said about Wa in this cir-

cumstance. First, W
2
a =Wa �Wa can be decomposed as the direct sum of two weighted shifts as

described next.

Split the Hilbert space H as the direct sum of the two orthogonal subspaces

H1 = spanhe0,e2, . . .i, H2 = spanhe1,e3, . . .i.

Then, from

W
2
a(en) =Wa(Wa(en)) =Wa(aken+1) = anan+1en+2

it is clear that W
2
a (H1) ✓ H1, W

2
a(H2) ✓ H2, and thus Wa(2:0) := W

2
a |H1 and Wa(2:1) := W

2
a |H2

satisfy

W
2
a =Wa(2:0)�Wa(2:1) : H1 �H2 �! H1 �H2 .

It will be shown next that Wa(2:0) and Wa(2:1) are also 2-hyponormal when (3.3) is an

equality.

Let e
0
n
= e2n, n= 0,1, . . . be a renaming of the basis for H1, and similarly let a 0

n
=a2na2n+1.

10



Then by definition of Wa(2:0) we have

Wa(2:0)(e
0
n
) =W

2
a(e2n) =Wa(a2ne2n+1) = a2na2n+1e2n+2 = a 0

n
e
0
n+1

making it clear that the weight sequence denoted a(2 : 0) for the weighted shift Wa(2:0) is given by

a(2 : 0) = (a 0
0,a 0

1, . . .) = (a0a1,a2a3, . . .)

and a similar calculation shows that the weight sequence for Wa(2:1) with weights denoted by

a(2 : 1) is

a(2 : 1) = (a1a2,a3a4, . . .).

Since an < an+1 then a 0
n
< a 0

n+1, and formula (3.3) in Theorem 3.0.4 tells us that Wa(2:0) is

2-hyponormal if and only if for all n = 0,1, . . . ,

a2
2n+6a2

2n+7 �a2
2n+4a2

2n+5
a2

2n+4a2
2n+5 �a2

2n+2a2
2n+3

�
a2

2n
a2

2n+1
a2

2n+4a2
2n+5

a2
2n+4a2

2n+5 �a2
2n+2a2

2n+3

a2
2n+2a2

2n+3 �a2
2n

a2
2n+1

. (3.5)

We want to show that when equality holds for Wa in 3.3, then equality also holds in formula

(3.5) for Wa(2:0). That is

a2
n+3 �a2

n+2
a2

n+2 �a2
n+1

=
a2

n

a2
n+2

a2
n+2 �a2

n+1
a2

n+1 �a2
n

for all n = 0,1, . . . (3.6)

=)
a2

2n+6a2
2n+7 �a2

2n+4a2
2n+5

a2
2n+4a2

2n+5 �a2
2n+2a2

2n+3
=

a2
2n

a2
2n+1

a2
2n+4a2

2n+5

a2
2n+4a2

2n+5 �a2
2n+2a2

2n+3

a2
2n+2a2

2n+3 �a2
2n

a2
2n+1

for all n = 0,1, . . .

(3.7)

In fact, (3.6) will only be needed for n even, that is

a2
2n+3 �a2

2n+2
a2

2n+2 �a2
2n+1

=
a2

2n

a2
2n+2

a2
2n+2 �a2

2n+1
a2

2n+1 �a2
2n

for all n = 0,1, . . . (3.8)

11



The non-linear nature of the recurrence relation makes the calculations extremely long. Using

(3.8) and making Cn = a2
2n

a2
2n+1

a2
2n+2�a2

2n+1
a2

2n+1�a2
2n

it is possible to rewrite each term a2
2n+3, a2

2n+4, . . . ,

a2
2n+7 as follows:

a2
2n+3 �a2

2n+2
a2

2n+2 �a2
2n+1

=
a2

2n

a2
2n+2

a2
2n+2 �a2

2n+1
a2

2n+1 �a2
2n

=
Cn

a2
2n+1a2

2n+2
;

a2
2n+4 �a2

2n+3
a2

2n+3 �a2
2n+2

=
a2

2n+1
a2

2n+3

a2
2n+3 �a2

2n+2
a2

2n+2 �a2
2n+1

=
a2

2n+1
a2

2n+3

Cn

a2
2n+1a2

2n+2
=

Cn

a2
2n+2a2

2n+3
;

a2
2n+5 �a2

2n+4

a2
2n+4 �a2

2n+3
=

a2
2n+2

a2
2n+4

a2
2n+4 �a2

2n+3
a2

2n+3 �a2
2n+2

=
a2

2n+2
a2

2n+4

Cn

a2
2n+2a2

2n+3
=

Cn

a2
2n+3a2

2n+4
;

a2
2n+6 �a2

2n+5
a2

2n+5 �a2
2n+4

=
a2

2n+3
a2

2n+5

a2
2n+5 �a2

2n+4

a2
2n+4 �a2

2n+3
=

a2
2n+3

a2
2n+5

Cn

a2
2n+3a2

2n+4
=

Cn

a2
2n+4a2

2n+5
;

a2
2n+7 �a2

2n+6
a2

2n+6 �a2
2n+5

=
a2

2n+4
a2

2n+6

a2
2n+6 �a2

2n+5
a2

2n+5 �a2
2n+4

=
a2

2n+4
a2

2n+6

Cn

a2
2n+4a2

2n+5
=

Cn

a2
2n+5a2

2n+6
;

(3.9)

that is

a2
2n+k

�a2
2n+k�1

a2
2n+k�1 �a2

2n+k�2
=

Cn

a2
2n+k�1a2

2n+k�2
, n = 3,4, . . . ,7

=) a2
2n+k

= a2
2n+k�1 +

 
1

a2
2n+k�2

� 1
a2

2n+k�1

!
Cn, n = 3,4, . . . ,7 (3.10)

which means that to obtain an expression for a2
2n+k

we need to substitute recursively a2
2n+k�1 and

a2
2n+k�2. We can do a little better replacing recursively the last expression above in (3.9) after

solving there for the highest index, resulting in

a2
2n+3 = a2

2n+2 +

 
1

a2
2n+1

� 1
a2

2n+2

!
Cn;

a2
2n+4 = a2

2n+3 +

 
1

a2
2n+2

� 1
a2

2n+3

!
Cn
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= a2
2n+2 +

 
1

a2
2n+1

� 1
a2

2n+2

!
Cn +

 
1

a2
2n+2

� 1
a2

2n+3

!
Cn

= a2
2n+2 +

 
1

a2
2n+1

� 1
a2

2n+3

!
Cn; (3.11)

a2
2n+5 = a2

2n+4 +

 
1

a2
2n+3

� 1
a2

2n+4

!
Cn

= a2
2n+2 +

 
1

a2
2n+1

� 1
a2

2n+3

!
Cn +

 
1

a2
2n+3

� 1
a2

2n+4

!
Cn

= a2
2n+2 +

 
1

a2
2n+1

� 1
a2

2n+4

!
Cn; (3.12)

a2
2n+6 = · · ·= a2

2n+2 +

 
1

a2
2n+1

� 1
a2

2n+5

!
Cn;

a2
2n+7 = · · ·= a2

2n+2 +

 
1

a2
2n+1

� 1
a2

2n+6

!
Cn.

or simply put,

a2
2n+k

= a2
2n+2 +

 
1

a2
2n+1

� 1
a2

2n+k�1

!
Cn, for all k = 3,4, . . . ,7 (3.13)

It is clear now that substituting a2
2n+3 in a2

2n+4 as given by (3.11) makes a2
2n+4 into an

expression of only a2
2n
,a2

2n+1 and a2
2n+2; subsequently, substituting a2

2n+4 in a2
2n+5 as given by

(3.12) makes a2
2n+5 into an expression of the same a2

2n
,a2

2n+1 and a2
2n+2; repeating this process,

the same can be said of a2
2n+6 and a2

2n+7. We can see the expressions for a2
2n+3 and a2

2n+4 in terms

of a2
2n
,a2

2n+1 and a2
2n+2 below:

a2
2n+3 =

a2
2n+1

�
a4

2n+2 �2a2
2n

a2
2n+2 +a2

2n
a2

2n+1
�

�
a2

2n+1 �a2
2n

�
a2

2n+2
;

a2
2n+4 =

a2
2n+1(a6

2n+2 �4a2
2n

a4
2n+2 +2a2

2n
a2

2n+1a2
2n+2 +a4

2n
a2

2n+2 �a4
2n

a2
2n+1)+a4

2n
a4

2n+2�
a2

2n+1 �a2
2n

��
a4

2n+2 �2a2
2n

a2
2n+2 +a2

2n
a2

2n+1
� ;
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but clearly the calculations become long very fast. In Appendix A the corresponding formulas for

a2
2n+5,a2

2n+6 and a2
2n+7 will be given.

Substituting these expressions in terms of a2
2n

, a2
2n+1 and a2

2n+2 on the left and right-hand

sides of (3.7) shows that equality holds. The calculations are substantially long, hence we ask the

reader to take our word for it at the moment. In Appendix B, code to verify (3.7) using a computer

algebra system will be provided.

All of the calculations made for Wa(2:0) are valid for Wa(2:1); an increment in the indexes

by +1 is sufficient. Hence if Wa satisfies (3.6) then both Wa(2:0) and Wa(2:1) also do. In summary,

applying Theorem 3.0.5 we have the following result:

Theorem 3.0.6. If the weighted shift Wa satisfies (3.6), then W
2
a , Wa(2:0) and Wa(2:1) are subnormal.

As a corollary we obtain a partial answer to the open problem given in the introduction:

Corollary. If Wa is 2-hyponormal and satisfies (3.6), then W
2
a = Wa(2:0) �Wa(2:1) is also 2-

hyponormal.
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CHAPTER IV

FUTURE WORK

To address the original question posed in the introduction, the work made in the previous

chapter can be expanded as follows:

• We found that when formula (3.3) is satisfied as an equality, then the weighted shift in

question is subnormal. There is still the possibility that if (3.3) is met with > instead, then

although 2-hyponormality is guaranteed, k-hyponormality is not given for k = 3,4, . . . .

• We have conjectured that 2-hyponormality of Wa implies that of W
m
a for any natural m.

Evidence towards this was obtained by generating several 2-hyponormal weighted shifts with

different rates of growth among its weights. Whenever (3.3) was met with > sign, the same

was true for formula (3.5). We are optimistic that using formula (3.3) it is possible to prove

formula (3.5). The fact that (3.13) was derived in our calculations is encouraging in that

sense.

• It remains to be proved that the above is also true for k-hyponormality in general. Possibly

a characterization from the case k = 2 will emerge once a proof is found; perhaps the

calculations can be extended in such a way that the general case is confirmed. We are inclined

to think this could be the case.

• If the general case is proved, it means we could not use weighted shifts as a source to generate

counterexamples to the original question proposed in [2]. To attack this question, it would be

necessary to look at other operators in search for confirmation or counterexamples.
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APPENDIX A

EXPLICIT EXPRESSIONS FOR THE WEIGHTS

The weights a2n, a2n+1 and a2n+2 are the weights used to express all subsequent weights in

terms of them by applying formula (3.13) recursively:

a2
2n+k

= a2
2n+2 +

 
1

a2
2n+1

� 1
a2

2n+k�1

!
Cn, for all k = 3,4, . . . ,7

where Cn = a2
2n

a2
2n+1

a2
2n+2�a2

2n+1
a2

2n+1�a2
2n

.

After factoring as polynomials in the integers, the corresponding expressions are as follows:

a2
2n+3 =

a2
2n+1

�
a4

2n+2 �2a2
2n

a2
2n+2 +a2

2n
a2

2n+1
�

�
a2

2n+1 �a2
2n

�
a2

2n+2
;

a2
2n+4 =

a2
2n+1(a6

2n+2 �4a2
2n

a4
2n+2 +2a2

2n
a2

2n+1a2
2n+2 +a4

2n
a2

2n+2 �a4
2n

a2
2n+1)+a4

2n
a4

2n+2�
a2

2n+1 �a2
2n

��
a4

2n+2 �2a2
2n

a2
2n+2 +a2

2n
a2

2n+1
� ;

a2
2n+5 =

a2
2n+1

a2
2n+1 �a2

2n

· Pn

Qn

,

Pn = a2
2n+1a8

2n+2�6a2
2n

a2
2n+1a6

2n+2 +2a4
2n

a6
2n+2 +3a2

2n
a4

2n+1a4
2n+2 +6a4

2n
a2

2n+1a4
2n+2

�3a6
2n

a4
2n+2 �6a4

2n
a4

2n+1a2
2n+2 +2a6

2n
a2

2n+1a2
2n+2 +a4

2n
a6

2n+1,

Qn = a2
2n+1a6

2n+2 �4a2
2n

a2
2n+1a4

2n+2 +a4
2n

a4
2n+2

+2a2
2n

a4
2n+1a2

2n+2 +a4
2n

a2
2n+1a2

2n+2 �a4
2n

a4
2n+1;

a2
2n+6 =

1
a2

2n+1 �a2
2n

· Rn

Pn

,
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Rn =a4
2n+1a10

2n+2 �8a2
2n

a4
2n+1a8

2n+2 +3a4
2n

a2
2n+1a8

2n+2 +4a2
2n

a6
2n+1a6

2n+2

+15a4
2n

a4
2n+1a6

2n+2 �10a6
2n

a2
2n+1a6

2n+2 +a8
2n

a6
2n+2 �15a4

2n
a6

2n+1a4
2n+2

+2a6
2n

a4
2n+1a4

2n+2 +3a8
2n

a2
2n+1a4

2n+2 +3a4
2n

a8
2n+1a2

2n+2 +6a6
2n

a6
2n+1a2

2n+2

�4a8
2n

a4
2n+1a2

2n+2 �2a6
2n

a8
2n+1 +a8

2n
a6

2n+1;

a2
2n+7 =

a2
2n+1

a2
2n+1 �a2

2n

· Sn

Rn

,

Sn = a4
2n+1a12

2n+2 �10a2
2n

a4
2n+1a10

2n+2 +4a4
2n

a2
2n+1a10

2n+2 +5a2
2n

a6
2n+1a8

2n+2

+28a4
2n

a4
2n+1a8

2n+2 �21a6
2n

a2
2n+1a8

2n+2 +3a8
2n

a8
2n+2 �28a4

2n
a6

2n+1a6
2n+2

�8a6
2n

a4
2n+1a6

2n+2 +20a8
2n

a2
2n+1a6

2n+2 �4a10
2n

a6
2n+2 +6a4

2n
a8

2n+1a4
2n+2

+30a6
2n

a6
2n+1a4

2n+2 �23a8
2n

a4
2n+1a4

2n+2 +2a10
2n

a2
2n+1a4

2n+2 �12a6
2n

a8
2n+1a2

2n+2

+4a8
2n

a6
2n+1a2

2n+2 +2a10
2n

a4
2n+1a2

2n+2 +a6
2n

a10
2n+1 +a8

2n
a8

2n+1 �a10
2n

a6
2n+1.
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APPENDIX B

COMPUTER ALGEBRA SYSTEM CODE

The following follows the syntax of the computer algebra system Maxima, and can be used

in Maxima to verify all calculations.

The function a(x) defined below calculates a2
2n+k

in terms of a2
2n

, a2
2n+1 and a2

2n+2 re-

cursively, as derived from the hypothesis (3.6) in (3.10). To make the code simpler, we let a_j

represent a2
2n+ j

.

(% i2) C_n : a_0 * a_1 * (a_2 - a_1) / (a_1 - a_0);

a(x) :=

block (

if x = 0

then return(a_0)

else

if x = 1

then return(a_1)

else

if x = 2

then return(a_2)

else

return((a_1 + C_n * (1/a_0 - 1/a(x-1) ) ))

);

a0a1 (a2 �a1)

a1 �a0
(C_ n)
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a(x) := block(ifx = 0thenreturn(a0)else ifx = 1thenreturn(a1)else ifx = 2 . . . (% o2)

(% i3) factor(a(3));

a1
�
a2

2 �2a0a2 +a0a1
�

(a1 �a0)a2
(% o3)

(% i4) factor(a(4));

a1a2
3 �4a0a1a2

2 +a0
2
a2

2 +2a0a1
2
a2 +a0

2
a1a2 �a0

2
a1

2

(a1 �a0)(a22 �2a0a2 +a0a1)
(% o4)

(% i5) factor(a(5));

(a1(a1a2
4�6a0a1a2

3+2a0
2
a2

3+3a0a1
2
a2

2+6a0
2
a1a2

2�3a0
3
a2

2�6a0
2
a1

2
a2+2a0

3
a1a2+ . . .

(% o5)

(% i6) factor(a(6));

(a1
2
a2

5�8a0a1
2
a2

4+3a0
2
a1a2

4+4a0a1
3
a2

3+15a0
2
a1

2
a2

3�10a0
3
a1a2

3+a0
4
a2

3�15a0
2
a1

3 . . .

(% o6)

(% i7) factor(a(7));

(a1(a1
2
a2

6�10a0a1
2
a2

5+4a0
2
a1a2

5+5a0a1
3
a2

4+28a0
2
a1

2
a2

4�21a0
3
a1a2

4+3a0
4
a2

4�28 . . .

(% o7)

If formula (3.7) holds, solving for a2
2n+7 should give us an exact representation of a2

2n+7 in terms of

a2
2n
, . . . ,a2

2n+6 and the following difference should be equal to 0.

(% i8) difference : a(7) - 1/a(6) * (a(4)*a(5) + a(0)*a(1)/(a(4)*a(5))

( (a(4)*a(5) - a(2)*a(3))ˆ2 / (a(2)*a(3) - a(0)*a(1)) )) ;
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(% i9) ratsimp(expression);

0 (% o9)
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