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ABSTRACT

Balderas, Roberto A., Automated Robotic Inspection System for Electronic 

Manufacturing. Master of Science (MS), May 2002, 66 pp.; 4 tables, 37 figures, 

references, 20 titles.

An automated robotic inspection system for electronic manufacturing has been 

developed to identify pin defects of IC packages mounted on printed circuit boards using 

surface mount technology. The automated robotic inspection system consists of two 

robots, a computer, a CCD camera with frame grabber for image acquisition, and a 

customized windows program using neural network for on-line defect identification. 

Gray scale images of the pins on IC packages are acquired using ambient light. The 

images are filtered and formatted to appropriate size, so that Matlab neural network tool 

could be used. The images are used to train neural networks using Matlab’s Bayesian 

Regularization module. Optimal network was found to be a single-layer network with 

three outputs for each IC investigated. The weights and biases of each of the ICs 

investigated and the matrices of gray scale values for the IC images are saved as text 

files. A customized winuows program uses these text files for on-line defect 

identification. The defect identification for the networks was found to be 100 percent for 

the two ICs investigated. The analysis and integration of an automated robotic inspection 

system for on-line monitoring of electronic manufacturing using neural networks is 

presented in this work.

iii
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CHAPTER 1

INTRODUCTION

Advancements in technology have led to miniaturization o f components, leading 

to smaller and more powerful electronics products. Some examples of such products are 

laptop computers, palm pilots, cellular phones, and pagers. Although these products are 

highlights of electronics breakthroughs, manufacturing of these products has lead to 

problems, which affects production yields and thus profitability. The most obvious 

problem is assembling these miniaturized components that has more connections in less 

space, thus increasing defects probability. Because, the components are so small, it is 

very difficult, if not impossible for a human operator to assemble; it is slow and not 

efficient, therefore not profitable or competitive. Because of these reasons, electronics 

manufacturers have switched from manual operations performed traditionally by human 

operators to automated systems. For example, surface mount devices (SMDs) are 

assembled onto printed circuit boards (PCBs) with robotic assembling machine that uses 

visual imaging for accurate placement of the components onto PCB. Furthermore, this 

technology is being used in automated visual inspection systems for defect identification.

Chapter 2 describes several technologies that are being utilized by the electronics 

industry today. All of these technologies have something in common; they focus on 

conventional image processing and pattern recognition for classification o f defects. The

1
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procedures are intuitive but difficult to develop and are limited to particular application. 

Furthermore, these techniques need to be setup carefully and monitored by a skilled 

operator to ensure good results. Also, these techniques are computational expensive, 

slowing down the inspection process; and thus, the production line. This is where neural 

network approach offers several advantages for automated inspection. Neural networks 

have been used experimentally for decades. Neural networks are robust and can be 

implemented on-line, and are highly parallel which allows simultaneous computation 

using several processors to reduce computational time and thus reduce inspection time.

In this work the neural network approach and mechatronics are applied to create 

an automated visual inspection system capable of identifying pin defects on gull wing 

surface mount components. The outline o f this thesis is as follows: in Chapter 2, the most 

relevant literature on manufacturing o f electronics products, manufacturing task 

breakdown of typical defects found during visual inspection, automated visual inspection 

systems used in Japan, automated inspection o f solder joint categories based on their 

operating principles, manufacturers experiences and solutions, and neural networks 

approach advantages over intuitive techniques. Chapter 3 gives a brief history on 

robotics, applications of robots for automation, description of the Scorbot ER-V 

specifications, and description of the vision system used in this work. Chapter 4 gives 

historical background on neural networks and applications, neural network architecture 

information, neural network topology used in this work, graphical device interface 

software developed, and defects in electronics manufacturing. Chapter 5 describes the 

training algorithm for inspection and classification used, how the data was obtained and 

generated, the network architecture chosen, and results of training neural network and its
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performance. Chapter 6 describes the on-line monitoring system developed. Chapter 7 

summarizes the results obtained in this study with suggestions for future analysis and 

improvements o f the neural network-based automated inspection system.
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CHAPTER 2

REVIEW OF LITERATURE

As stated in Chapter 1, the competitive nature o f electronics industry and 

advancements in technology have led to miniaturization of components, leading to 

smaller and more powerful electronics products. Some examples o f  such products are 

laptop computers, palm pilots, cellular phones, and pagers. Although these products are 

highlights o f electronics breakthroughs, manufacturing of these products has lead to 

problems, which affects production yields and thus profitability. The most obvious 

problem is assembling these miniaturized components that has more connections in less 

space, thus increasing defects probability. Because, the components are so small, it is 

very difficult, if  not impossible for a human operator to assemble; it is slow and not 

efficient, therefore not profitable or competitive.

In a typical manufacturing plant, approximately 30% o f all manufacturing tasks 

are related to inspection, of which 60% of inspection tasks are visual. The break down of 

typical defects found during visual inspection is approximately 30% part defects, 50% 

assembly defects (20% of which are incorrect parts or missing parts etc.), and 20% 

soldering defects (Hata 1990). It should be noted that, in order to maintain a certain level 

o f quality in electronics manufacturing process, an increase in the number of solder joints 

by a factor o f 10 requires that the number o f defects be reduced by a factor of 10.

4
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Therefore, the effectiveness of an inspection system used to control a process w 11 have a 

direct impact on the quality o f products shipped to customers. This places an 

extraordinary pressure on human inspectors who are trained to identify defective parts by 

visual examination. This is further compounded if the equipment is used by the military, 

which requires 100% inspection o f solder joint as required by MIL-STD 2000 for 

electronics assemblies. A study conducted by AT&T showed that a decision repeatability 

of only 44% for the same inspector inspecting solder joints, and only 6% agreement 

between their judgments with four inspectors checking the same board. This shows that 

the descriptions o f allowable variations are very qualitative and subject to interpretation 

by inspection experts and leads to increases in manual inspection costs which can be as 

high as 50% o f assembly costs in some cases (Sankaran et al. 1995).

If we take a typical manufacturing process from start to finish o f a typical device, 

a calculator, we can appreciate why there is a need for automation and inspection 

systems. The complexity, miniaturization, and mixed technologies, namely. Ball Grid 

Arrays (BGA), Pin Grid Arrays (PGA), Surface Mount Technology (SMT). Through 

Hole Technology (THT) and other technologies used in Printed Circuit Board (PCB) 

have lead to the creation of various commercial inspection and automated assembly 

systems in Japan. Some of these systems are Mask Pattern Inspection Machine. PCB 

Pattern Inspection Machine, Mounted Chip Visual Inspection Machine, Soldering 

Inspection Machine, and Assembled PCB Visual Inspection Machine (Hata 1990).

Competition, new technology, and miniaturization have led to automation using 

robotic equipment to assemble components, and automated visual inspection systems to 

reduce costs. Traditional methods once used to assemble, test, or repair are no longer
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feasible and new methods are being developed. To achieve high yields, extensive 

inspection and rework activities must take place to remain competitive.

From the discussions, we can infer that there is no one unified system applicable 

to inspect or assemble parts needed in electronics assembly manufacturing. Depending on 

the stage of manufacturing process, specialized machines are used for inspection and 

assembly. Examples of the technologies that are being developed are described below.

Automated inspection o f solder joints on PC boards can be categorized according 

to their operating principle as follows: digital image processing with CCD cameras, 

optical 3D sensor technology with laser scanners. X-ray techniques, and thermal laser- 

pulse infrared methods. All of these technologies have advantages and disadvantages. 

Digital image processing with CCD cameras are the fastest and can be implemented on­

line. They are limited by the resolution of CCD camera and optics, and can only extract 

2D data (picture) in either gray scale or color. Therefore, 2D data is useful where: 

orientation, alignment, and texture quality (surface defects) are needed from 2D images. 

The disadvantage is that the reliability o f the results can be considerably impaired by 

contrasts found on PCB board. To increase the reliability of results, optical 3D sensor 

technology with laser scanners has been developed. The advantages o f adding an extra 

dimension to the purely optical 2D. are the ability to calculate the maximum height 

gradient of a component, volume, shape, compute either a 2D or a 3D histogram, ability 

to identify 2D and 3D edges, identify 2D contours, and detection of 2D distortions. These 

extra features are important because it allows identification o f tombstone (tilt) defect of 

components, which is not possible by pure 2D image. Its 3D operations are able to 

distinguish reliably the quality of a surface of a joint (insufficient solder, excess solder,
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blow out etc...) and are applicable to both THT and SMT. It can be implemented on-line. 

The disadvantage is that it is limited to scanning speed and the resolution o f laser, which 

is about 70 micrometers/pixel. Improvement in laser technology can lead to scan rates of 

up to 2MHz and 3D sensor resolution o f about 10 micrometers/pixel but it is slower than 

pure optical CCD cameras. X-Ray techniques can perform all the operations of 3D sensor 

technology and identify voids in solder joints and its ability to inspect boards with 

components on both sides. The disadvantage is that it cannot be implemented on-line 

because the process is slow, thus it is used off-line with SPC charts to bring the process in 

control. Thermal Laser-Pulse (TLI) infrared method has been used for internal 

characterization o f solder joints. The disadvantages o f TLI method include: (i) not 

implementable for on-line operation; (ii) high dependency on surface impurities of solder 

joints, and on geometry and orientation o f component leads. It can only be used as 

supplemental information to some of the other technologies (Mengel 1990).

Over the years, many inspection systems have been developed to solve 

manufacturing inspection difficulties by integrating various disciplines including 

robotics, optics, sensors, thermal. X-ray, neural networks, CAD/CAM. databases and 

other techniques. The main reason is to reduce inspection cost because conventional 

inspection is no longer acceptable; it is slow, high labor costs, expensive, and unreliable.

To solve the problem o f inspecting Pin Grid Arrays (PGAs) solder joints, NEC 

corporation developed an automated system using a XYZ robot, a specially designed 0.9 

mm Optical Fiber Scope (OFS) witn light guides, a standard optical system (TV monitor, 

CCD camera, PC, Frame Graber), and customized software. The automated system’s 

objective was to identify defects on each joint on the PGA as good or bad (constricted or
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not soldered). The developed automated system correctly identified defects 100% of the 

time, but with 0.8% false alarm rate. The author states that by using thinner OFS scope 

the false alarm rate can be reduced to 0.1% (Kashitani et al. 1993).

A manufacturer of Large Scale Integrated (LSI) packages has developed an 

integrated automation system for final visual inspection. The inspection was the only 

process that was not automated and lagged behind all other manufacturing processes. The 

decision was made because the packages were becoming larger and the lead pitches were 

finer. Therefore, to reduce inspection cost, a standardized automated inspection system 

was developed. The inspection items were separated into three general categories based 

on appearance o f lead, mold, and mark. Inspection on leads were co-planarity, bend 

(pitch), evenness, marks, scratches, and foreign objects. Mold inspection criteria were 

voids, scratches, foreign object, and cracks. Mark inspection was based on off-center 

letters, broken characters, blurred characters, and overlapping characters. Based on the 

inspection criteria, six 2048-pixel CCD camera systems were developed for inspection of 

defects in parallel using six 2048-pixel DSP board and a computer with customized 

software. Parallel processing was used in order to be able to implement the system on­

line, and be synchronized with other manufacturing processes (Okabe ei al. 1993).

There have been attempts to use X-Ray Laminography for automated inspection 

of joints and application of neural networks for classification o f defects. It was found that 

neural networks achieved poor performance because the image resolution o f an X-Ray 

machine was poor and the imaging medium is still not well understood by the industry. 

Developing better imaging resolution would allow accurate three dimensional
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measurement o f solder joint structures and improved performance for neural networks 

(Sankaran et al. 1998).

All the above-mentioned literatures and techniques have something in common; 

they focus on conventional image processing and pattern recognition for classification o f 

defects. The procedures used are intuitive but difficult to develop and are limited to 

particular application. Furthermore, these techniques need to be setup carefully and 

monitored by a skilled operator to ensure good results. Also, these techniques are 

computationally expensive, slowing down the inspection process; and thus, the 

production line. Any automated inspection system has to be able to implement an 

inspection system on-line, and if possible give feedback to other automated processes for 

continuous improvement. Neural network approach offers several advantages for 

automated inspection.

Neural networks have been used experimentally for decades. Neural networks are

• Adaptive: infer solutions often capturing subtle relationships.

• Able to generalize: can handle imperfect or incomplete data.

• Nonlircar: can classify defects that are not linearly separable.

• Highly parallel: large networks can be realized using parallel processors to 

achieve real-time speeds.

• Tolerant of unusual noise distributions.

Although neural networks offer these advantages, the network performance suffers if the 

resolution o f the defect image is poor (blurry). Therefore, high-resolution images (clear) 

that accurately portray the defect being classified are preferred to yield higher detection 

performance. Higher resolution images require more memory and more processing time.
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For a large network, this can be prohibitive. Therefore, data compression techniques have 

been developed to preprocess the data before it is fed to the neural network, thus reducing 

processing and training time. The idea is to achieve maximum compression without 

affecting the neural networks performance adversely. Two compression techniques that 

have been applied to BGA joint images with good results are Histogram based and 

Fourier transform based techniques (Sankaran et al. 1995).

In addition to data compression techniques, the raw data should dictate the form 

of the multilayer neural networks. To accomplish this, several factors must be considered: 

the network topology, the number o f iterations during training, the learning rate, the 

training sample set, batch processing or continuous update o f the network weights, and 

the network initial weights (Hagan et al. 1996).

In this thesis, a visual inspection system using neural networks is used to identify 

common defects in electronics manufacturing. A single layer network with multiple 

neurons is used to classify the defects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3

ROBOTICS AND VISION SYSTEMS

The quest for an “Artificial Man” is not a new concept. As early as the 1500’s, 

man has attempted to mimic (model) himself. This is evident from historical artifacts. In 

1540 Giano della Tore created a figure of a girl playing a flute. In 1770 and 1773, Henry- 

Louis Jaquet-Droz created two mechanical dolls called a scribe and a musician playing a 

piano. In 1778 Wolfgang von Kempelen created a talking machine; the Philadelphia doll 

a writing mechanism created before the 1812 by Les Maillardet. The steam man created 

by George Moore in 1893; the automatic electromagnetic chess-playing machine created 

by Leonardo Tores Quevedo in 1912. In modem times, play writer Karel Capek coined 

the term robot from the Czech word robota meaning work. According to Capek, robots 

would be “mechanically perfect” and “highly intelligent.” Since the 1950’s, there have 

been three generations of robot design. The first generation had no computing or sensory 

capability. The second generation had limited computational power and feedback 

capabilities. The third generation design was considered as possessing intelligence and 

diverse sensing capabilities. Robotics has evolved to the point that different branches, 

such as industrial robots, mobile robots, legged transportation systems, medical 

prosthesis and orthosis. micro-robotics as well as autonomous (mobile) vehicles, have

. 1
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reached a remarkable level o f  maturity as evidenced by immense results and a variety of 

applications (Fukuda et al. 2001).

3.1 Application o f Robots for Automation

Robots come in many shape and sizes depending on the application. Usually, 

industrial robots are general-purpose machines that mimic human motion and are 

controlled by an intelligent system o f algorithms utilized by a computer to control robot 

motion via a servomechanism. Mechanically, a robot mimics a human arm doing useful 

work by providing a rigid mainframe (or arm), a wrist subassembly plus a tool (Figure

Figure 3.1 (a) Cincinnati Milacron T6 robot (b) PUMA 560 robot arm (Fu et al. 1987).

3.1).

Shoulder
swivel

Elbow
extension

Roll

ShouMcr rotttH«o 300*

W rin bend 200*

^  Cripper mounting 

Wrist rout ion 300*

Waist rotation 320*

ShouMcr rottUm 300*
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The robots shown in Figure 3.1 are considered six degrees o f freedom (DOF) robots. The 

base, shoulder, and elbow joints provide 3 DOF and the wrist subassembly provides the 

other 3 DOF the pitch, the yaw, and the roll. Since each joint has a mechanical limit and 

the base is attached to a fixed frame, the robot arm is constrained to work within this 

spherical work volume. Normally, industrial robots are categorized based on their 

motion. The four basic motions can be accomplished by using Cartesian, Cylindrical, 

Spherical, or Revolute (articulated) coordinates (Figure 3.2).

Cylindrical

Spherical Revoluie

Figure 3.2 Various robot arm configurations (Fu et al. 1987).
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A Cartesian robot has prismatic joints that can only move in the Cartesian x, y and z 

directions (e.g., IBM’s RS-1 robot). A cylindrical robot has two linear and one rotary axis 

(e.g., Versatran 600 robot). A spherical robot has one linear and two rotary axes (e.g., 

Unimate 2000B). A revolute robot has at least three rotary axes (Figure 3.1 and Figure

3.2). Today most industrial robots are used for simple positioning tasks that have been 

preprogrammed by a user via a hand-held teach pendant. Thus, these robots are usually 

not equipped with sensors for obtaining information that is vital to its working 

environment. Therefore, robots are used mainly in relative simple, repetitive tasks that 

would bore or endanger a human operator (Fu et al. 1987).

In the electronics industry robotic assembly o f PCBs reduce product cost and 

increase product quality. Cartesian and Scara robots are typically used for assembling 

large or irregularly shaped parts onto the PCBs (e.g., connectors, transformers, 

potentiometers, radial devices, crystals, light-emitting diodes, and large DIPs). To 

achieve accuracy and repeatability required in electronic assembly applications, 

mechatronics has become a necessity. Mechatronics is a term used to describe the 

combined technologies of electrical, mechanical, and computer engineering applied in 

design and development of high-precision machines, including assembly robots. 

Furthermore, machine vision technology is increasingly applied to assembly and 

inspection tasks traditionally performed by human operators. This is mainly because 

miniaturization of electronic components has increased circuit density and makes human 

assembly and inspection virtually impossible (Landers et al. 1994). Therefore in this 

thesis, the integration of several disciplines are exploited. A Scorbot ER-V robot and a 

vision system are used to develop an automated inspection system.
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3.2 Description o f Scorbot Model ER-V

The Scorbot ER-V is a light duty 5 DOF revolute robot (Figure 3.3).

15

Figure 3.3 Scorbot ER-V System (Eched Robotec et al. 1992).

It has maximum carrying capacity o f 1.0 kgf. The Scorbot robot motion positions can be 

programmed by an external teach pendant connected to the controller or via special 

software developed by a user or vendor. The user can develop the software using any 

high or low-level language (Basic, C++, Fortran, etc...). The programmed positions can 

be easily downloaded from the computer via the standard RS232C port. In order to 

position PCB boards accurately and consistently, the forward (Direct) and Inverse 

(Indirect) kinematics’ equations of the Scorbot ER-V robot are used. The forward 

kinematics equation is used to determine the end effector position, given that the user 

knows the joint angles. More realistically, the user knows the position o f an object and 

the trajectory an object is to follow. Thus, the user can define intermediate via points
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along the trajectory to accomplish the task and use inverse kinematics equations of the 

robot to find the joint angles to control the robot. The forward and inverse kinematics 

equations are given in Appendix A. The Scorbot ER-V robot is used for loading and 

unloading the PCB board for automated visual inspection. The visual system then 

determines if  there are any defects on the board. If  there are defects, it will instruct the 

Scorbot ER-V robot to place the PCB board on a rework conveyor, otherwise, it will be 

sent to the next process.

3.3 Description o f The Vision System

The vision system consists of a standard CCD camera, a PC computer with data 

acquisition board, a customized six DOF robot, a Scorbot ER-V robot, and a customized 

neural network software (Figure 3.4). The vision system uses multi-disciplines and 

standard manufacturing language to make the newly developed software easy to use in a 

manufacturing environment. A CCD camera is attached to the end effector of the robot.

The programmer uses the PCB board’s 2D CAD file to define the IC types and the 

centroid (x, y, z) o f the ICs. It is assumed that the IC type has been previously defined 

and stored in the software database. If the IC type exists in the database, then the 

directions and positions of inspection are predefined, so that the software can compute 

and store the optimal focal distances needed to obtain the largest clear image of the IC 

under inspection. Once the optimal focal distances have been computed for all required 

orientations o f the IC, the position of the camera can easily be found from the centroid 

(defined by the programmer), the shape and directions predefined for the IC, and the 

maximum magnification and resolution o f the CCD camera. With this information, the
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software usesjhe inverse kinematics equations of a six DOF robot to obtain the 

appropriate joint distances and angles. The software compensates for any delays and 

develops a sequence to achieve efficient movement and a clear image of the IC.

5 DOF Robot

6 DOF Robot

Figure 3.4 Automated Visual Inspection System

The information is then stored under the name of the PCB board inspected. When the 

program is executed, images are acquired from within a predefined window. All data 

outside this window will be discarded. The acquired image is saved and appended with 

additional information, namely, IC type, IC centroid position, direction of inspection, and 

number of pins. The previously trained and stored neural networks use this information to 

determine which IC identification network to use and how to preprocess the data, before 

it is fed to the IC network. The IC neural network will then output the pin number and the
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defect type. With all input and output information now available, it can be stored and 

identified with the same scan code o f the inspected PCB board. The program has to be 

executed once for each PCB board and all defects data are saved in a file containing the 

scan code for that PCB board. This file is then used to determine rework needed and to 

send signal to the Scorbot robot for appropriate placement o f the PCB board on the 

rework conveyor or the next process conveyor. Files associated with rework PCB boards 

are arranged sequentially in a database with date and time inspected. Information in the 

files advice an automated rework station what needs to be done or a manual operator of 

how to fix the problem. In the next chapter, the neural networks topology used in this 

thesis is explained as well as the graphical device interface (GDI) software.
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CHAPTER 4

NEURAL NETWORKS AND DEFECTS 
IN ELECTRONICS MANUFACTURING

The main inspiration of neural networks has been the biological neuron in our 

brain. It has approximately 1011 interconnected neurons (approximately 104 

interconnections per neuron), which allow us to breath, read, move and think. The human 

brain is able to do all these complex tasks because o f its parallel computational nature. 

Although circuits in computer systems operate 1 million times faster than biological 

neurons, they suffer because their architecture is sequential in nature and not highly 

parallel. Neural networks began to evolve in the late 19th and early 20th century by 

various scientists working in physics, psychology, and neurophysiology. This early work 

emphasized general theories of learning, vision, conditioning, etc. but did not include 

specific mathematical models of neuron operation. It was not until 1940’s with the work 

o f Warren McCulloch and Walter Pitts, who showed that networks o f artificial neurons 

could in principle compute any arithmetic or logical function, interest in neural networks 

research grew. Their work is often described as the origins o f modem neural networks. 

Work on neural networks continued by various researchers through the 1960s and was 

abandoned temporarily because of the work influence by Minsky and Papert and 

combined with the fact that there did not exist powerful digital computers on which to

19
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experiment. It was not until the 1980s when personal computers became available to 

experiment, neural network research dramatically increased and new concepts were

introduced (Hagen et al. 1996). Today neural networks have become a flexible and a

successful tool. It has been applied to aerospace, automotive, banking, defense, 

electronics, entertainment, financial, insurance, manufacturing, medical, oil and gas, 

robotics, speech, securities, telecommunication, and transportation.

4.1 Neural Network Architecture

An artificial neural network mimics several characteristics o f  a biological neuron. 

Information processing occurs at many simple elements called neurons. Signals are 

passed between neurons over connection links. Each link has an associated weight that 

multiplies the signal transmitted and each neuron applies an activation function (usually 

nonlinear), also referred to as a transfer function, to its net input (sum of the weighted 

input signals o f the links) to determine its output signal (Figure 4.1).

Inputs Multiple-Input Neuron

Pr

J
a =  f ( \ \p + b )

Input Multiple-Input Neuron
'— r ----------------------------

. © r r r * /
1 x 1 1

1X1

a  = / ( W p + 6 )

(a) Schematic Representation (b) Matlab Representation

Figure 4.1 Multiple Input Neuron (Hagan et al. 1996).
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Figure 4.1 shows a schematic and Matlab representations o f multiple inputs. Bias being 

multiplied by corresponding input and bias weights are then summed up and results in a 

net value (n). The net value is then applied to a transfer function, which provides the 

neuron output (a). This is an example o f a single neuron network. If  we add S neurons in 

parallel each sharing the same input, the network is referred as a single-layer network 

with S neurons (Figure 4.2).

Inputs Layer of S  Neurons

a = f(Wp+b)

Figure 4.2 A single layer o f S neurons with R inputs (Hagan et al. 1996).

Note that the network has S outputs. If we add another single-layer network with S2 

neurons sharing the output o f the previous single-layer network as input, this network is 

referred as two layer network with S1 neurons in the first layer and S2 neurons in the 

second layer. If  we keep adding layers with Sn neurons to the previous layer and using its 

output as current input, the network is referred to as a multi-layer network. Figure 4.3 

shows a three layer network with R inputs and SJ outputs
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Inputs First Layer
r

Second Layer Third Layer

a 1 =  f 1 (VV'p+b1) a  ̂=  f  2(W2a'+b2) a* =  f  J(W*aJ+bJ)

a-' = f  (W T - (\V2f 1 (W ‘p+b')+b-)+b>)

Figure 4.3 Three layer network with R inputs and S3 outputs (Hagan et al. 1996).

A neural network is characterized by its architecture, training or learning 

algorithm, and its transfer function. The architecture is determined by the performance of 

the network. The goal is to find the minimum number of neurons in a layer necessary to 

accurately utilize the data to perform a particular function of interest, for example 

classifying the input data as belonging to one class or another. Determining how many 

layers and neurons to start with is usually determined by experience. Regardless, this is 

an iterative process. Start with a sufficiently large number of neurons and layers, train the 

network, and compare the performance. If the performance is good enough, try reducing 

the number of neurons or layers until the performance no longer meets the performance 

goal. At this point, the network should be optimal. The training or learning algorithm is
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usually a function of speed o f convergence. It is desired to implement the fastest 

algorithm available; which is especially true o f large networks that may require months to 

train. The transfer function is usually chosen to improve convergence speed. The user can 

choose any function he/she believes would improve convergence. Table 4.1 lists the 

commonly used transfer functions.

Table 4.1 Commonly used transfer functions and Matlab equivalent (Hagan et al. 1996).

Name Input/Output Relation Icon MATLAB
Function

Hard Limit a = 0 n < 0 
a = 1 n>0 m hardlim

Symmetrical Hard Limit a = —I n < 0 
a = +1 n > 0 a hardlims

Linear a = n 0 purelin

Saturating Linear
a = 0 n < 0 
a = n 0 < n < 1 
a = 1 n > 1

a satlin

Symmetric Saturating 
Linear

a — — 1 n < — 1 
a = n — 1 < n < 1 
a  = : n > 1

7̂ satlins

Log-Sigmoid
1

a  =  -------------
1 + e m logsig

Hyperbolic Tangent 
Sigmoid

n —ne - e  a = ---------------
n  ~ne + e m tansig

Positive Linear a — 0 n <  0 
a =  n 0 £  n a poslin

Competitive a =  1 neuron with max n 
a =  0 all other neurons c compet
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4.2 Neural Network Topology

The automated inspection system uses a six DOF robot to position and orient the 

robot camera at a constant focal distance and angle to acquire IC's pin image. The 

positions of the ICs centroids and direction of acquisition have been previously defined 

by the programmer for a particular PCB. The IC’s used for defect identification are gull- 

wing pin type. A schematic of this process is shown in Figure 4.4.

6 DOF Robot Joint

6 DOF Robot 
Not Shown,<>

Distance

Angle -  10 Degrees

Integrated
Circuit

PBC Board

Figure 4.4 Schematic of image acquisition of a six DOF robot
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The figure shows different regions o f the image. The region o f interest for defect 

identification is between the PCB board and the bottom bend o f the gull wing pin. The 

defects that can be identified are the quality o f solder joint, excessive pin bend, and lifted 

or missing pin. For solder quality, a resolution o f at least 0.025 mm/pixel is needed but 

the camera has a resolution o f only 0.1 mm/pixel. Therefore, the only defects that can be 

identified from the image are excessive bend and lifted pin defects.

The IC packages used for training, all had the same gull wing pin and same pin 

height, but the pitch varied. In real world applications the height and pitch for each 

different IC varies. Consequently, for the neural net topology, each IC that has different 

configuration will be trained individually and will have its own identification network.

The Graphical Device Interface GDI software and the automated visual inspection system 

will select which network to be used depending on the IC being inspected.

4.3 Graphical Device Interface (GDI) software

The GDI software has several features. One of the features is to keep a database 

of all the ICs network weights and biases that are trained. The training is performed 

offline with acquired image data using Matlab neural network toolbox. The GDI software 

has the capability o f adding new ICs network weights and biases. The GDI software will 

load a text program of a particular PCB that contains the number o f IC to inspect and a 

list o f text files containing the ICs inspection information (Figure 4.5).

3
ChipNumberl .txt 
ChipN umber2. txt 
ChipNumber3.txt

Figure 4.5 Information contained within PCBldata.txt file
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The files are read sequentially to extract information on an IC. The information extracted

contains the network type, inspection direction, number of images to acquire, and the

robot execution procedure (Figure 4.6).

Chip Number 1
Chip Type 1
Number o f Pins 40
Pin Height in Pixels 32
Pin Width in Pixels 3
Pin Gap in Pixels 3
Number o f Images 4
Inspection Direction Sequence L B T R
Chipl 1 l.txt Chip 112.txt Chipl 13.txt Chipl 14.txt
Chip Centroid (X,Y,Z) in mm 1 1 1
Mold Width in mm 120
Mold Height in mm 120
Mold Pin Separation in mm 1
Inspection Angle in (degrees) 10
Focal Length in mm 1000
Resolution in mm/pixel 0.1

Figure 4.6 File for the ChipNumberl.txt o f IC contained within PCBldata.txt file

The six DOF robot uses this information to move the camera and acquire four images and 

saves the data in files Chipl 11 .txt, Chipl 12.txt, Chipl 13.txt and Chipl 14.txt. The GDI 

software will then use the Chip Type to select the appropriate network and Chip data text 

files to identify defects. I f  defects are found, the GDI software reports the defect type and 

the pin number with additional information on the screen and to a report text file for the 

PCB being inspected. This file can be used by an automated rework station or a rework 

operator to correct the defect. The above procedure is repeated until all IC text files are 

read. At this point, the PCB is fully inspected and another PCB file can be loaded to 

continue inspection. This file could be different and corresponds to a different PCB
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board. Thus the GDI and inspection system are flexible and allows inspection of different 

PCB boards sequentially. In addition to this flexibility, the GDI software shows a visual 

simulation o f what is being inspected as the six DOF robot performs the task on-line.

This would allow monitoring of inspection process at a remote location with feedback 

provided to the operator. The next section discusses the defects in electronics 

manufacturing.

4.4 Defects in Electronics Manufacturing

The competitive nature of the electronics industry and improvements in 

technology have led to the miniaturization o f components, resulting in smaller and more 

powerful electronics products. Consequently miniaturization o f components leads to 

some manufacturing difficulties. The most obvious difficulty is assembling these 

miniaturized components that possess more connections in less space, thereby increasing 

the defect probability. Because the components are so small, it is very difficult if not 

impossible for a human operator to assemble, it is slow and not efficient. Machine vision 

and automation solve these problems. Machine vision systems are used in the placement 

of surface-mount devices (SMDs) with lead pitches of 0.025 inch (0.6 mm) or less. In 

addition, vision systems are used to inspect solder joints before and after solder 

operations. Common inspection tasks on PCBs can be classified into three groups: solder 

paste deposition, component alignment, and solder joint integrity.

Solder paste deposition inspection tasks before component assembly on SMDs 

include; sufficient solder paste has been applied to solder paste screen and transferred to 

the PCB’s component pads before a component is accurately placed by a pick and place
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robot. Problems of insufficient solder on the pads or excessive solder paste on the pads 

causing shorts are common. The vision system inspects for these problems and 

automatically corrects solder quantity and squeegee pressure in the screening process. 

When the appropriate conditions are met, the component is placed on the PCB. Usually 

the sticky solder paste is sufficient to hold the component in place before it goes into the 

reflow process to bond the leads to the pads. Sometimes other factors cause the solder 

paste adhesion to be insufficient to maintain the component positioned correctly. Some o f 

these factors are foreign matter, mechanical vibration during process transfers, incorrect

paste chemistry, insufficient solder paste on pads, etc The vision system usually

checks for any missing components or misaligned components. If components are 

misaligned, the PCB is placed on a rework conveyor or scrap area depending on the 

automated vision system used. Otherwise, the PCB is transferred to a reflow process to 

bond the components to the PCB.

Vibration, improper temperature, and excess solder or insufficient solder tend to 

cause the components to move and misalign slightly. Slight misalignment is normal but 

should not exceed a set amount. Machine vision systems use high-resolution solid-state 

cameras capable of a field of view of 0.5 inch (1.3 cm) that can detect spatial changes of 

0.001 inch (0.025 mm) or less. This is sufficient resolution to measure leads and pads of 

0.004-inch (0.1 mm) pitch. Excess solder tend to short pins or pads o f components while 

insufficient solder degrades the integrity o f solder joints. Solder joint problems include; 

bridging of solder between solder connections, lifted leads due to contamination, bent 

leads, and shortage/absence o f soider ir. w etting angle (Landers et al. 1994).
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In addition to machine vision, other technologies such as X-rays and laser 

scanning methods have been developed to inspect the integrity of solder joints, refer to 

Chapter 2. Table 4.2 shows the inspection capabilities o f visual and X-ray systems 

(Sankaran et al. 1995).

Table 4.2 Defect types and inspection capabilities o f visual and x-ray systems.
R= Reliable; N = Not Possible

Defect Types Visual X-Ray

Excess Solder R R

Insufficient Solder R R

No Solder R R

Dull Solder R N

Cold or Disturbed Joint R N

Porosity and voids N R

Bridging R R

Lifted Lead R R

Improper Wettine
1

R N

It is obvious from Table 4.2 that a single sensing technique cannot determine all the 

possible defects that can occur during manufacturing. A practical solution would be to 

use a combination o f technologies where appropriate to detect all possible manufacturing 

defects.
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Vision systems have been developed for through-hole technology (THT). In many 

cases, the same SMT vision system can be used to inspect THT solder joints 

(Mengel 1990).
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CHAPTER 5

TRAINING ALGORITHM FOR 
INSPECTION AND CLASSIFICATION

With personal computers (PC) speed reaching 2 GHz, and the availability of 

commercial neural network software packages, the training algorithm selected for defect 

identification is only a matter o f  speed o f convergence and memory requirements. Table

5.1 shows the neural network algorithms that are available in Matlab and their speed of 

computation.

Table f 1 Matlab algorithm speed comparisons (Hagan et al. 1998).

Function T echn ique Time Epochs M fiops

traingdx Variable Learning Rate 57 .71 980 2 .5 0

trainrp Rprop 1 2 .9 5 185 0 .5 6

trainscg Scaled Conj. Grad. 1 6 .0 6 106 0 .7 0

traincgf Fletcher-Powell CG 1 6 .4 0 81 0 .9 9

traincgp Polak-Ribiere CG 19 .1 6 89 0 .7 5

traincgb Powell-Beale CG 15 .03 74 0 .5 9

trainoss One-Step-Secant 18 .4 6 101 0 .7 5

trainbfg BFGS quasi-Newton 1 0 .8 6 44 1 .02

trainlm Levenberg-M arquardt 1 .8 7 6 0 . 4 6

31
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The above speed comparisons were performed on a 1:10:1 network on a data set with 41 

input/output pairs until the mean square o f error performance of 0.01 was obtained 

(Matlab Neural Net Toolbox). The Matlab users guide recommends that the Levenberg- 

Marquardt algorithm be attempted first. If this algorithm requires too much memory, then 

the BFGS algorithm (trainbfg) be tried, or one o f the conjugate gradient methods, 

although the Rprop algorithm (trainrp) is also fast (Table 5.1).

One of the problems that occur during neural network training is called 

overfitting; that is, the error of the training set is driven to a very small value. When data 

is presented to the trained network, the error is large. Basically the network has 

memorized the training set, but it has not learned how to generalize to new situations.

One method that can solve this problem is to use a network large enough to provide an 

adequate fit (not to over or under fit the training data), which raises the question o f how 

large the network should be. This is a very difficult question to answer since it is difficult 

to know beforehand how large the network should be. There are also two other methods 

used in neural networks to improve generalizations. They are regularization and early 

stopping. Regularization is a technique used to modify the performance function of the 

algorithm, which is usually chosen to be the mean sum of squares of the network errors. 

Early stopping is what the name suggests; stop the network before it overleams the data 

set. These two techniques require that the user be competent and skilled using neural 

networks and know how to adjust the performance function or how early to stop the 

network to prevent over or under fitting the data set. This is an iterative process that takes 

time, experience, and lot of patience. Fortunately, Matlab’s toolbox provides a method 

for automatic regularization called Bayesian regularization to adjust the performance
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function optimally and Levenberg-Marquardt training algorithm for speed of 

convergence. The Matlab function to accomplish this is trainbr. Furthermore, one feature 

of this algorithm is that it provides a measure o f the number of network parameters 

(weights and biases) that are effectively utilized by the network. If we increase the 

network size, the number o f parameters should remain the same. Thus, it takes the 

guesswork out in determining the optimum network size. Although slower than the pure 

Levenberg-Marquardt training algorithm, the user does not have to be an expert on neural 

networks. He/she only needs to acquire adequate network size, weights and biases for the 

neural network, which generalizes new data adequately. Matlab’s trainbr function was 

used for training all the data sets in this work.

5.1 Acquisition of Data

Pin defects were created on ICs of PCB boards. Since there were insufficient 

boards available to create defects and obtain sufficient data, several images o f ICs with 

no defects were obtained and new images were created that simulates defects. Table 5.2 

shows the defect criteria used by Matlab defect generation program.

The Matlab defect generation program reads in a text file (containing one integer value 

for each pin defect wanted) and a real image containing no pin defects (Figure 5.1 (a)).

(a)

o.) E l

Figure 5.1 (a) Real image with no defect (b) Simulated defect image
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The defect generation program outputs an image file containing the defects (Figure 5.1

(b)) and a text file containing columns of the neural network responses corresponding to 

each pin defect shown as positive and negative ones in a row (Table 5.2).

Table 5.2 Criteria used for defect generation for data generation

Integer Defect Type Neural Net 
Response

0 Straight Pin and Not Lifted -1 -1 -1
1 Bent Pin 1 Pixel to the Left and not Lifted -1 1 -1
2 Bent Pin 1 Pixel to the Right and not Lifted -1 I -1
*■> Bent Pin 2 Pixel to the Left and not Lifted 1 -1 -1
4 Bent Pin 2 Pixel to the Right and not Lifted 1 -1 -1
5 Bent Pin 3 Pixel to the Left and not Lifted 1 1 -1
6 Bent Pin 3 Pixel to the Right and not Lifted 1 1 -1
7 Straight Pin and Lifted -1 -1 1
8 Bent Pin 1 Pixel to the Left and Lifted -1 1 1

9 Bent Pin ’ Pixel to the Right and Lifted -1 1 1
10 Ben in . P: vel ' tne Left and Lifted 1 -1 1
11 Bent Pin 2 Pixel to the Right and Lifted 1 -1 1
12 Bent Pin 3 Pixel to the Left and Lifted 1 1 1
13 Bent Pin 3 Pixel to the Right and Lifted 1 1 1

Note the first two columns of the network output response shown in Table 5.2, 

corresponds to a binary number. For example, -1-1 corresponds to a zero decimal value, 

which is used to classify a straight pin, not bent. A binary number -1 1 corresponds to a 

decimal value of one, bent pin 1 pixel to the right or left and so on. Also the last column 

of the network output response corresponds to a lifted or not lifted pin state, -1 for not
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lifted and 1 for lifted respectively. The image o f Figure 5.1 (a) was acquired from a quad 

package containing 40 gull wing pins on each side for a total o f 160 pins. The pitch o f 

this package is 0.3 mm. The image height is 32 pixels. The width o f the pin is 3 pixels, 

and the gap between pins is 3 pixels. Thus the pitch is 3 pixels (0.3 mm), which 

corresponds to 0.1 mm/pixel CCD camera resolution. Matlab’s imaging toolbox and 

functions were used to read the image file, convert the grayscale file into numerical 

values from 0-255 into an array o f numbers which has a 1 to 1 correspondence with row 

and column o f the pixel value in the image. Once this was accomplished and the locations 

of pin data (rows and columns) are known from the image, it is easy to generate bent pins 

to the left or to the right o f its central location, and also lifted or broken pins from the 

input text file. Soldering defects (insufficient or excess solder) were not generated 

because the resolution of the CCD camera was O.lmm/pixel, which is not sufficient to 

detect soldering defects. A resolution of at least 0.025mm/pixel is needed for solder 

defect identification. The newly generated numerical array o f pins with defects is then 

transformed to an image with Matlab image function and saved as an image file along 

with its neural network response text file. The defect image and the output response text 

files were then used to train several networks and to find the optimum network size and 

the network architecture.

5.2 Network Architecture

As stated earlier Bayesian regularization was used for training the neural 

networks with Matlab’s trainbr function. It was also discussed that every IC will have its 

own neural network used for defect identification. The main reason is that the pitches of
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IC packages vary. Also, pin height, pin configuration, and package technologies are 

different. It would be extremely difficult to find one neural network that can identify 

defects for all ICs with different package technologies, pin configuration, etc. Also due to 

limited resolution o f the CCD camera, only the defects shown in Table 5.2 were 

considered to be possible in a manufacturing environment. Obviously the network used in 

this work has three outputs corresponding to the defects shown in Table 5.2. Generally a 

network is started with sufficient neurons and layers. It is common to start with a three 

layer neural network and then reduce or increase the size as necessary to find an optimum 

network that has good performance and is able to generalize. The following networks 

were tried for one IC type o f the following sizes 288:6:3:3, 288:6:3, 288:3:3, 288:2:3 and 

288:3. The value o f 288 is the size o f the input vector corresponding to one pin inspection 

area. The inspection area consists of a width of 9 pixels (3 pixel gap + 3 pixel pin + 3 

pixel gap) multiplied by 32-pixel height for a pin totaling 288 pixel values or inputs. The 

input pixel values are each divided by 255 (max gray scale value) to keep the input 

normalized between 0 and 1. The numbers after each colon represent the number of 

neurons in its corresponding layer respectively. For example, a 256:6:3:3 neural network 

is composed o f an input vector o f 256 normalized pixel values with 6 neurons in the first 

layer 3 neurons in the second layer and 3 neurons in the output layer. All the networks 

above were successful in classifying the defects presented to the network, except 288:2:3 

network which consistently failed to identify the defects in Table 5.2 o f 3 pixels bent left 

or right and lifted. Therefore, the minimum network size was reduced to 288:3 neural 

network, 1 layer network with 3 neurons and 288 inputs and 3 outputs. The same 1 layer 

network with 3 neurons and different input vector size corresponding to a different IC
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pitch and pin height was used to train s im ila r  ICs with the same defects criteria given in 

Table 5.2. Figure 5 .1 (b) image and output response file generated were used to train the 

288:3 neural network. Figure 5. 2 (a), (b), and (c) show that each graph contains the 

corresponding outputs o f each output neuron, the correct output response for that neuron 

and the error corresponding to the defect generated.
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(c.) Output Performance of Third Neuron vs. Pin Number 

Figure 5.2 Classification performances for 288:3 neural network

Each graph has 3 lines - correct output response, network output response and the 

difference between the actual value and the network output for that neuron (error). It can 

be seen from the graphs, the error response is flat and very close to zero. This indicates 

perfect identification by the neural network. One other network was trained using the 

same procedure discussed previously on IC-two. Similar results were obtained (Appendix 

B). The training time for the networks was from 8 to 20 minutes on a 400MHz personal 

computer. The weights and biases for the ICs were saved as text files for use by an on­

line monitoring system discussed in Chapter 6.
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CHAPTER 6

ON-LINE MONITORING SYSTEM

The on-line monitoring system was developed using Pro-E, C++, and Scorbot ER- 

V language. Open Graphics Library (OpenGL) was used for high speed rendering o f the 

Scorbot ER-V robot and for the animation o f  the inspection system. Microsoft Visual 

C++ (ver. 6.0) compiler was used to compile and debug the software. Microsoft WIN32 

platform wa< use a foi ieve.oping high-speed rendering using OpenGL. Pro-Engineer 

(Pro-E) was used to create all solid models; for example, components of the robots, ICs, 

and PCB. The Pro-E models were exported as binary Stereo Lithography (STL) files and 

were used by the on-line monitoring system to create three-dimensional animations. Eye 

Image Calculator developers guide and software from IO industries was used to acquire 

gray scale images from the CCD camera and saved in TIF graphics format. The TIF files 

were used for training using Matlab and for defect identification by the on-line 

monitoring system. Matlab neural network modules were used to generate data for 

training the neural network, generate appropriate weights for the neural network, and 

export the weights, biases, and pixel data as ASCII files to the on-line monitoring system 

software. The Scorbot ER-V robot’s direct and inverse kinematics equations were used 

by the on-line monitoring system to synchronize the robot motions with the animation. 

The following sections discuss the graphical features o f the on-line monitoring system.

39
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6.1 Graphical Features

The on-line monitoring system is a typical windows program with its set of 

menus, windows, radio buttons, check boxes, edit boxes, etc. (Figure 6.1).

['-fcrixl

fl

Figure 6.1 Snapshot of the on-line monitoring system communications options

The program utilizes both Microsoft graphics libraries (slow) and OpenGL graphics (fast) 

and EYE IMAGE software libraries for image acquisition. The on-line monitoring system 

is capable of direct communication with the robot's controller using the RS232C 

communications port. The user selects the correct communications port, settings, text 

display format, font size, echo, etc. After this, the user simply selects connect. At this 

time the user can type any legal controller command, and the robot will execute the 

command. The user can also select the shift + ~ key, while connected, to shift from 

manual joint mode (press j key) to Cartesian mode (press c key). In joint mode the user
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can press the 1/Q combination to move the robot's base to the left or the right 

respectively; 2/W combination to move the robot’s upper arm up or down; 3/E 

combination to move the robot’s forearm up or down; 4/R combination to move the 

robot’s wrist pitch up or down; 5/T combination to move the robot’s wrist roll clockwise 

or counter clockwise; and 6/Y to open and close the jaw. Similarly in Cartesian mode, the 

same keys are used to move the robot’s hand in the +/- X, +/- Y, +/- Z, +/- pitch, and 

+/- roll. The user can press the shift + ~ key to exit manual mode and enter direct mode. 

In direct mode the user can define and save positions in the controller for future use by 

the on-line inspection system.

The on-line monitoring system keeps an internal database o f all weights and 

biases used by the neural network for defect identification. The user can add or delete 

IC’s weights and biases as needed. The on-line system has an option to simulate the 

inspection process or to start monitoring an on-line process. If  on-line monitoring system 

option is selected, the computer directly controls the inspection process o f image 

acquisition of the PCB with the Scorbot ER-V robot, the visual inspection system 

movements, image acquisition by the CCD camera, defect reporting, and good/rework 

bin placement using the Scorbot ER-V robot if any defects are found on the PCB. While 

the Scorbot ER-V robot is being commanded on-line, a synchronized animation o f the 

process and the status report o f defects classification are displayed on the computer 

screen for monitoring. The on-line monitoring system keeps track o f the PCB and its 

defects for the re\ ork proc-cs.
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6.2 Simulation Option ^

The simulation options under the automated simulation menu (Figure 6.2 (a))

[m
i  f o r  Electronic* '"tanufacturinq

JLL

U pN

(a)

Set t m  AcOon AAuwateri Inipatttan System - Scoifrot 'flabo tP rcoao  About"

-3Ll I

(b)

Figure 6.2 Snapshots of (a) Simulation selection (b) Number of PCBs to simulate
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allow the user to animate the process of an actual system and estimate approximately the 

inspection time. When the user selects the simulation option, a pop up window appear 

and the user selects the number o f PCB boards to simulate Figure 6.2 (b).

As can be seen from Figure 6.2 (b), the number o f PCBs to simulate was chosen to be 

five. This means that the simulation will inspect five PCB boards. The inspection process 

involves four stations; PCBs station, inspection station, rework station, and shipping 

station. The Scorbot ER-V robot is in charge of transferring the PCBs to the appropriate 

stations. The Scorbot ER-V robot program needs only eight positions defined to make the 

appropriate movements; that is, two positions defined for each station. The station 

positions consist o f a retract position and an extend position. The retract positions are 

chosen to avoid collisions with objects and the extend positions are chosen for picking 

and placing the PCB board at the correct locations on the appropriate stations. Snapshots 

of the animation o f the inspection process are shown in Figure 6.3 (a), (b), (c), (d), (e),

(f), (g), and (h) for one inspection eye e. Ti. simulation starts at position 2 (retracted 

position), which faces the shipping station (Figure 6.3 (a)). The Scorbot ER-V robot 

rotates about its base joint -90 degrees (clockwise viewed from above) to position 3 

(retracted position), which faces the PCBs station (Figure 6.3 (b)). The Scorbot ER-V 

robot extends its arm to position 4 with its jaw open and roll joint at 90 degrees (Figure 

6.4 (c)). At position 4, the jaw closes gripping the PCB board. The Scorbot ER-V robot 

retracts back to position 3. The Scorbot ER-V robot then rotates about its base joint 180 

degrees counter clockwise (CCW) to position 5 towards the inspection station (Figure 6.3 

(d)). The Scorbot ER-V robot extends its arm to position 6 (Figure 6.3 (e)>, opens its jaw, 

placing the PCB board on the inspection station, and retracts back to position 5. The
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inspection station begins to inspect the ICs on the PCB board and reports any defects on 

the right half o f the inspection screen (Figure 6.3 (f))- Note, the IC under inspection is 

shown in red. When the inspection of the PCB board is complete, the inspection system 

signals the Scorbot ER-V robot to remove the PCB board. The robot picks-up the PCB 

board and places it in the rework or shipping station. In this case, the PCB board has 

some defects; hence it will go to the rework station. The Scorbot ER-V extends its arm to 

position 6  with its jaw open, closes its jaw at position 6 , gripping the PCB board, retracts 

to position 5, and then rotates to position 7 (Figure 6.3 (g)). Position 7 faces the rework 

station. The Scorbot ER-V robot extends its arm to position 8 (Figure 6.3 (f)), opens its 

jaw releasing the PCB board, retracts to position 7, and rotates to position 2 (Figure 6.3 

(a)). As mentioned earlier, position 2 faces the shipping station, and at this point the robot 

waits for another fetch PCB board command from the monitoring computer. The 

monitoring computer would instruct the Scorbot ER-V to repeat the inspection cycle until 

all the PCB boards are inspected.

Figure 6.3 (a) Position 2, retracted, and facing the shipping station
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Figure 6.3 (b) Position 3, retracted, and facing PCBs station

Figure 6.3 (c) Position 4, extended arm, and on PCBs station
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Figure 6.3 (d) Position 5, retracted, and facing inspection station
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Figure 6.3 (e) Position 6 , extended arm, and on inspection station
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Figure 6.3 (f) PCB Inspection station defect monitoring

Figure 6.3 (g) Position 7, retracted arm, facing rework station
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Figure 6.3 (h) Position 8 , extended arm, and on rework station 

Figure 6.3 Snapshots of the Scorbot ER-V inspection cycle

6.3 On-Line Option

To use the on-line option, the user has to select the communication settings 

correctly under the settings menu shown in Figure 6.1 and then select the connect option 

under the action menu (Figure 6.4). The settings shown in Figure 6 .1 are the default 

settings. At this point the user can type any legal controller command, for example home. 

If the Scorbot ER-V robot homes successfully, communication is set correctly. If 

everything has been set correctly and the user can communicate with the Scorbot ER-V 

controller, on-line monitoring of inspection of PCB could begin.
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Figure 6.4 Snapshot of action menu

The on-line option under the automated inspection system menu (Figure 6.2 (a)) uses 

real data (previously acquired using the EYE image software) and monitors the 

inspection system on-line while an animation of the process is visualized on the screen 

(Figure 6.3 (a)-(h)). A report of the pin data is saved in a report text file for the PCB 

under inspection. Figure 6.5 shows a sample of the report file.

Chip Number 1 
Chip Type 1
Inspection Direction Left 

Pin Number 1 Straight Pin
Pin Number 2 Bent Pin 2 Pixel To the Right or Left

Pin Number 37 Straight Pin
Pin Number 38 Bent Pin 3 Pixel To the Right or Left And Lifted 
Pin Number 39 Bent Pin 3 Pixel To the Right or Left And Lifted 
Pin Number 40 Straight Pin
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Chip Number 1 
Chip Type 1
Inspection Direction Bottom 

Pin Number 1 Straight Pin
Pin Number 2 Bent Pin 2 Pixel To the Right or Left 
Pin Number 3 Bent Pin 3 Pixel To the Right or Left

Chip Number 1 
Chip Type 1
Inspection Direction Left 

Pin Number 1 Straight Pin
Pin Number 2 Bent Pin 2 Pixel To the Right or Left 
Pin Number 3 Bent Pin 3 Pixel To the Right or Left

Chip Number 1 
Chip Type 1
Inspection Direction Right 

Pin Number 1 Straight Pin
Pin Number 2 Bent Pin 2 Pixel To the Right or Left 
Pin Number 3 Bent Pin 3 Pixel To the Right or Left

Chip Number 2 
Chip Type 2
Inspection Direction Right 

Pin Number 1 Straight Pin

Figure 6.5 PCB board defect report

If the on-line system inspects five PCB boards, there will be five PCB board defect 

reports. Currently, these reports are saved as text files, but in the future these files would 

be saved as binary files and possibly compressed to minimize disk space.
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6.4 Scorbot ER-V Menu Items

The Scorbot menu has two selection items; robot coordinates and clear screen 

(Figure 6 .6 ). The robot coordinates selection allows the user to select the physical 

coordinates of the Scorbot ER-V gripper (Figure 6.7) and have an animation drawn at 

that position (Figure 6 .8 ). This option is useful when the user is trying to decide where to 

define retract and extend positions described in section 6.2. Furthermore, as the user 

wants to try different positions, the user can connect to the controller and define the 

positions manually using the Scorbot ER-V language. This option has not been 

automated, but can be easily implemented in the future. The ‘clear’ screen option simply 

wipes any of the animations on the screen. The screen returns to its original white 

background.

'.if ! » j m  1 itMi fli!M£jiJjiiTJ* 11 h a t  -: '
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4
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Figure 6 .6  Scorbot menu items
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Figure 6.7 Robot coordinate selection pop up window

Figure 6 .8  Robot coordinate animation result of coordinate selection

6.5 Robot Program Menu Items

The robot program menu has two options: program load and program run
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(Figure 6.9). The program load option loads two text files; programl.txt and 

programlpos.txt. The programl.txt file contains the inspection systems instructions such 

as move 1, open 10, close 0, inspect 1, and rotate 4. The first instruction in the 

program 1 .txt file is the number o f instructions that follow. The programlpos.txt file 

contains the position number, x, y, z, pitch, roll, and speed position information. As 

before, the first instruction is the number o f positions that follow. These two files are 

loaded in memory, but no action takes place until the program run option is selected. Do 

not use the program run option if  no program is loaded into memory; an error will occur. 

Always load a program before using the program run selection. When the program run 

selection is made and the communications have been activated, all position data in 

memory is defined and stored in the Scorbot ER-V controller. If all the data has been 

successfully transferred, the program instructions in memory are executed and an 

animation of the process is displayed as described previously in section 6.2. Note, the pop 

up window used for on-line simulation pops up (Figure 6.2 (b)) and ask for the number of 

PCBs to inspect. As before, choose the number of PCBs to inspect. The difference 

between the on-line option discussed in section 6.2 and the robot program option is that 

the positions are hard coded and never change; whereas, the robot program options are 

flexible and can change, based on the user needs. The robot program menu is not a 

comprehensive menu; other selection items as program save, position save, position load, 

and program database can be included. These options should be included for future work 

to facilitate writing and testing the Scorbot ER-V inspection system programs, and 

probably even include some animation before the program is implemented on-line.
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Figure 6.9 Robot program menu items

6 .6  About Menu Item

The ‘about’ selection menu item creates a dialog window showing the developer 

information use as developer name and copyright information (Figure 6 .10).

SM bngt *ct»or» f rn n r tid  } Bcfaot Progrjww A bout

Figure 6.10 Developer information
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CHAPTER 7

CONCLUSIONS

Advancements in technology have led to miniaturization o f electronic 

components, leading to smaller and more powerful electronic products. Miniaturization 

of electronic products has lead to problems, which affects production yields and thus 

profitability. Because, the coi npoi.ents are so small, it is very difficult, if  not impossible 

for a human operator to assemble; it is slow and not efficient, therefore not profitable or 

competitive. This has led electronics manufacturers to switch from manual production 

operations performed traditionally by human operators to automated systems.

Chapter 2 reviewed several technologies being implemented in automated visual 

inspection systems and manufacturers approach to quality improvement o f automated 

visual inspection systems. From the literature review, it was found that defect data in the 

form of images acquired with a CCD camera is the fastest and has been used successfully 

in the electronics industry.

In this thesis, neural network tools were used to classify defects in integrated 

circuits. Neural network was chosen because it has been successfully used in various 

applications for decades. Neural networks are robust and can be implemented on-line 

and are highly parallel, which allows simultaneous computation using several processors 

to reduce computational time and thus reduce inspection time.

55
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Based on the defect criteria given in Table 5.2, it was determined that the 

optimum neural network size for the ICs being inspected was a single layer network with 

three outputs. Simulated and real defect data were used to test the robustness o f the neural 

network. The performance of the network was found to be 100 percent accurate. The 

defect criteria was kept constant for each IC. The only thing that varied was the 

inspection area used for each IC due to the fact that the ICs have varying lead pitches, 

lead heights, and number o f leads. Each o f the ICs was trained separately, with each IC 

having a varying input vector, and thus a different network with its own weights and 

biases. The weights and biases for each o f the networks were then saved as text files and 

used by an on-line monitoring system, which stores the information in an internal 

database.

The on-line monitoring system was developed using Pro-E, C++, and Scorbot ER- 

V language. Open Graphics Library (OpenGL) was used for high speed rendering o f the 

Scorbot ER-V robot and inspection system animation. Microsoft Visual C++ (ver. 6.0) 

compiler was used to compile and debug the software. Microsoft WIN32 platform was 

used to develop high-speed rendering using OpenGL. Pro-Engineer (Pro-E) was used to 

create all solid models; for example, components of the robots, ICs. and PCB. The Pro-E 

models were exported as binary' Stereo Lithography (STL) files and were used by the on­

line monitoring system to create three-dimensional animations. Eye Image Calculator 

developers guide and software from IO industries was used to acquire gray scale images 

from the CCD camera and saved in TIF graphics format. The TIF files were used for 

training using Matlab and for defect identification by the on-line monitoring system. 

Matlab's neural network modules were used to generate data for training the neural
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network, generate appropriate weights for the neural network, and export the weights, 

biases, and pixel data as ASCII files to the on-line monitoring system software. The 

Scorbot ER-V robot’s direct and inverse kinematics equations were used by the on-line 

monitoring system to synchronize the robot motions with the robot animation. The on­

line system simulation is by no means complete or perfect, but it lays the foundation for 

future development and work. Improvements in weight and bias database could be made. 

For example, instead of using text files binary files could be used and if necessary using 

data compression techniques. This will reduce disk space necessary to maintain a large 

database of weights and biases. Data management techniques could be explored to add 

and delete information from the database. The defect report database could be converted 

to binary files, eliminating unwanted information to reduce disk space. A CCD camera of 

at least 0.025 mm/pixel should be used if  identification o f the quality of solder joint leads 

is required.
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APPENDIX A 

DIRECT AND INVERSE KINEMATICS EQUATIONS 
FOR SCORBOT ER-V ROBOT

The following information was obtained from the Scorbot ER-V Laboratory 

manual sections 6-4 to 6-15 and the results are summarized below. Figure A-l shows the 

gripper location definition in XYZ coordinate system, which is used to derive the direct 

and inverse kinematics equations for the Scorbot ER-V.

p (x RrypiZp )

O - p o in t  of origin

Figure A-l Gripper location definition in XYZ coordinate system 
(Eched Robotec et al. 1982)
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The direct kinematics equations are shown below. Note that the joint angles are all 

measured from the horizontal plane, which is parallel to the floor.

Radius = Lj + L2*Cos(cr2) + L3* Cos(o 3) + L4*Cos(cj 4)

X = Radius*Cos(cr 1)

Y = Radius*Sin((j 1)

Z = Lo + L2*Sin(a 2) + L3*Sin(o 3) + L4*Sin(CT 4)

Pitch = o  4 

Roll = 0 5  

Where

Lo = height from the robot base to axis 2 = 349 mm 

Li = horizontal distance from base center to axis 2  = 16mm 

L2 =length o f link2 (shoulder) = 221 mm 

L3 = length o f link 3 (elbow) = 221 mm

L4 = distance from pitch axis to end of closed gripper = 145 mm 

Use Figure A-2 to reference the joint angles and link lengths.

Figure A-2 Relation of robot joint coordinates to XYZ coordinates 
(Eched Robotec et al. 1982)
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The inverse kinematics equations for the Scorbot ER-V are, 

cr i = ArcTan(Y/X)

if  X<0 and Y<0 cr t = ct i -  180 

if  X<0 and Y> 0 cr i = u  i + 180 

ct 2 = P + oc 

cr 3 = P - a

a  4 and cr 5 are specified in the XYZ position definition, they are the pitch and roll 

respectively.

Where

P = ArcTan(dz/dr) 

a  = ArcTan(tb/ta)

.dr = V (X2 + Y2) -  L, -  L4*Cos(cr 4)

.dz = Z -  Lo — L4*Sin(cr 4)

.ta = V (dr2 + dz2)/2 

tb = V (L22 + ta2)
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APPENDIX B 

PERFORMANCE RESULTS OF IC TWO

IC two has twenty pins, ten on each side. The pin width is three pixels. The pin 

gap is six pixels, and the pin height is thirty-two pixels. This gives an inspection area of 

(2*6 + 3) *32 = 480 pixels. Figure B-l (a) and (b) show the images of good and 

generated images used for training. Figure B-2 (a), (b) and (c) show the performance of 

480:3 neural network.

Figure B-l (a) Real image with no defects (b) Simulated defects image
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Figure B-2 Classification performances for 480:3 neural network
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