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ABSTRACT

Tian, Jing, Qualitative Analysis of the Burgers-Huxley Equation. Master of Science (MS), May,

2012, 89 pages, 27 references, 24 titles.

There are many well-known techniques for obtaining exact solutions of differential equations,

but some of them only work for a very limited class of problems and are merely special cases

of a few power symmetry methods. These approaches can be applied to nonlinear differential of

unfamiliar type; they do not rely on special “tricks." Instead, a given differential equation can be

made to reveal its symmetries, which are then used to construct exact solutions.

In this thesis, we briefly present the theory of the Lie symmetry method for finding exact so-

lutions of nonlinear differential equations, then apply it to the study of the generalized Burgers-

Huxley equation. Through analyzing the linearized symmetry condition and the associated deter-

mining system, we find two nontrivial infinitesimal generators, and obtain exact solutions by solv-

ing the reduced differential equation under certain parametric conditions. An approximate solution

of the generalized Burgers-Huxley equation is established by means of the Adomian decomposition

method.
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CHAPTER I

INTRODUCTION

There is the widespread existence of wave phenomena in physics, chemistry and biology [1,

15]. There has been a correspondingly rich development of mathematical concepts and techniques

to understand wave phenomena from the theoretical standpoint and to solve the problems that arise.

It is well recognized that a great number of such kind of problems can be modeled as nonlinear

differential equations and systems. Finding innovative methods to solve and analyze these equa-

tions has been an interesting subject in the field of differential equations and dynamical systems. In

these problems, it is not always possible and sometimes not even advantageous to express various

wave solutions of nonlinear partial equations explicitly in terms of elementary functions, but it is

possible to find and prove the existence of traveling wave solutions by the qualitative theory of

differential equations and dynamical systems [2, 5, 19]. Traveling wave solutions usually can be

characterized as solutions invariant with respect to translation in space, and determine the behavior

of the solutions of the Cauchy-type problems. From the physical point of view, traveling waves

usually describe transition processes. Transition from one equilibrium to another is a typical case

although more complicated situations can arise. These transition processes in many cases ignore

their initial conditions and reflect the properties of the medium itself. Different types of traveling

waves are of fundamental importance to our understanding of physical and biological phenomena

modeled differential equations. In fact, for any physical or biological system where the dynamics is

driven by, and mainly determined by, phase coherence of the individual waves, it has applications

and consequences [3, 15, 18].
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In this thesis, we consider the following equation of the form

∂u

∂t
+ αuδ

∂u

∂x
− ∂2u

∂x2
= βu(1− uδ)(uδ − γ), (1)

where α, β, γ and δ are real constants. This equation is referred to as the generalized Burgers-

Huxley equation [9, 20]. Here the choices of α = 0 and δ = 1 leads equation (1) to the reduced

Huxley equation
∂u

∂t
− ∂2u

∂x2
= βu(1− u)(u− γ). (2)

Equation (2) is originally reduced from the Hodgkin-Huxley model that explains the ionic mech-

anisms underlying the initiation and propagation of action potentials in the squid giant axon [12].

The model initially consists of a set of nonlinear ordinary differential equations that approximates

the electrical characteristics of excitable cells such as neurons and cardiac myocytes. Solitary wave

solutions of equation (2) have been investigated widely by the Hirota method [17], by the particular

ansatz [20], and by the Painlevé analysis [9] et al.

The choices of β = 0 and δ = 1 leads equation (1) to the Burgers equation [6, 7]

∂u

∂t
+ αu

∂u

∂x
− ∂2u

∂x2
= 0. (3)

Equation (3) describes the far field of wave propagation in nonlinear dissipative systems, and has

been chosen as a simplified form of the Navier-Stokes equations [6] and as the simplest one to

combine both nonlinear propagation effects and diffusive effects [7]. Exact solution of equation

(3) can be found directly through the Cole-Hopf transformation [7].

In the past two decades, there is considerable attention devoted to the study of solitary wave

solutions of equation (1). In [11], the Adomian decomposition method was applied to explore

an analytical solution to equation (1) in the form of a convergent series. Solitary traveling wave

solutions of equation (1) were presented explicitly by the particular ansatz [20] and the Painlevé

2



analysis [9], respectively. Recently, traveling wave solutions to equation (1) were studied by using

the first-integral method [8], which is based on the ring theory of commutative algebra [10], and

a class of traveling solitary wave solutions for the generalized Burgers-Huxley equation was de-

scribed in a straightforward manner. However, for various kinds of nonlinear differential equations

and systems, the particular ansatz method only works for a very limited class of problems. When

the first integral method [8] and the Painlevé analysis [9] are applied to the generalized Burgers-

Huxley equation (1), they work only under the assumption that δ is a positive integer. In this paper,

we extend the study of traveling wave solutions of equation (1) to a more general case with δ being

an arbitrary positive number through the Lie symmetry reduction method [21, 22].

The rest of the thesis is organized as follows. In Section 2, we give a short introduction of the

Lie symmetry method to the Ordinary differential equations and the Partial differential equations.

In Section 3, Lie point symmetries for the Burgers-Huxley equation are found by differentiating

the symmetry condition. Two nontrivial infinitesimal generators are obtained through analyzing

the determining system. A class of traveling wave solutions of equation is presented. Section 4 is

the process of using the Lie symmetry method to a special equation. Section 5 is the case for the

generalised Huxley equation. Section 6 is using the Adomian decomposition method to obtain the

approximate solutions.

3



CHAPTER II

PRELIMINARIES

Following references [4, 21, 22] , I will give the brief introduction of Lie symmetry.

2.1 The Partial Differential Equations

In this section, in order to present our results in a straightforward way, we start our attention by

briefly reviewing the basic concepts about the partial differential equations.

There are three types of PDEs: the heat equation/diffusion equation: ut = uxx ; the wave equa-

tion: utt = uxx ; the Laplace’s equation/potential equation: uxx + uyy = 0 . We consider about the

heat equation: ut = a2uxx .

Given the linear PDE L[u] = f , if f ≡ 0 , we say the PDE is homogeneous, otherwise, the

PDE is nonhomogeneous.

The standard form of the PDE([23]) is auxx + buxy + cuyy + dux + fuy + gu = 0.

Case 1: if b2 − 4ac > 0, it is Hyperbolic. The typical Hyperbolic PDE is the wave equation.

Case 2: if b2 − 4ac = 0, it is Parabolic. The typical Parabolic PDE is the heat equation.

Case 3: if b2 − 4ac < 0, it is Elliptic. The typical Elliptlic PDE is the Laplace’s equation.

4



Since we are more concern about the Heat equation. First, let us look at the simplest case of

the heat equation([23]):ut = uxx.

let

u(x, t) = X(x)T (t),

then

X(x)T ′(t) = X ′′(x)T (t),

so

T ′(t)/T (t) = X ′′(x)/X(t) = constant,

let

T ′(t)/T (t) = X ′′(x)/X(t) = −λ,

or

X ′′(x) + λX(x) = 0,

and

T ′(t) + λT (t) = 0.

Until now we have three cases to consider:

Case 1: λ > 0 , x = c cos(
√
λx) + d sin(

√
λx) , T = e−λt

5



and u = e−λt[c cos(
√
λx) + d sin(

√
λx)].

Case 2: a = 0 , x = cx+ d , T = 1

and u = cx+ d.

Case 3: λ < 0 , x = ce
√
−λt + de

√
−λt,T = e−λt

and u = e−λt[ce
√
−λt + de

√
−λt].

So from this example we can see that same simple heat equations we can use some method to

solve them. But in most cases, it is very hard to use the normal method to solve. We are trying to

use the Lie-method to solve the PDEs.

6



2.2 The Lie Symmetry Methods for Ordinary Differential Equations

In order to understand symmetries of ordinary differential equations, we give a brief introduc-

tion of prolonged infinitesimal generators and determining equations for the Lie point symmetries[21,

22] . Consider an ODE of the form

y(n) = ω
(
x, y, y′, · · ·, y(n−1)

)
, y(k) ≡ dky

dxk
, (4)

where ω is (locally) a smooth function of all of its arguments. A symmetry of equation (4) is a

diffeomorphism that maps the set of solutions of the ODE to itself. For a diffeomorphism:

Γ : (x, y) 7→ (x̂, ŷ),

it maps smooth planar curves to smooth planar curves. The diffeomorphism Γ on the plane induces

an action on the derivatives y(k) which is the mapping as

Γ :
(
x, y, y′, · · ·, y(n)

)
7→
(
x̂, ŷ, ŷ′, · · ·, ŷ(n)

)
,

where

ŷ(k) =
dkŷ

dx̂k
, k = 1, 2, · · · , n.

This mapping is usually called the nth prolongation of the diffeomorphism Γ. The functions ŷ(k)

can be found recursively through the chain rule

ŷ(k) =
dŷ(k−1)

dx̂
=
Dxŷ

k−1

Dxx̂
, ŷ(0) ≡ ŷ, (5)

where Dx is the total derivative with respect to x

Dx = ∂x + y′∂y + y′′∂y′ + · · ·.

7



The symmetry condition for the ODE (4) is given by

ŷ(n) = ω
(
x̂, ŷ, ŷ′, · · ·, ŷ(n−1)

)
, (6)

where the functions ŷ(k) (k = 1, 2, · · · , n) is given by formula (5).

For almost all ODEs, the symmetry condition (6) is nonlinear. Lie symmetries are obtained by

linearizing (6) when ε = 0. No such linearization is possible for discrete symmetries, which makes

them hard to find. However, it is usually easy to find out whether or not a given diffeomorphism is

a symmetry of a particular ODE. The trivial symmetry corresponding to ε = 0 leaves every point

unchanged. Thus, for ε sufficiently close to zero, the prolonged Lie symmetries take the form

x̂ = x+ εξ + O(ε2),

ŷ = y + εη + O(ε2), (7)

ŷ(k) = y(k) + εη(k) + O(ε2), k ≥ 1.

After inserting (7) into the symmetry condition (6), the O(ε) terms give the linearized symmetry

condition

η(n) = ξωx + ηωy + η(1)ωy′ + · · ·+ η(n−1)ωy(n−1) , (8)

where the functions ŷ(k) and η(k) (k = 1, 2, · · · , n) can be derived recursively from formula (5).

That is,

ŷ(1) =
Dxŷ

Dxx̂
=
y′ + εDxη + O(ε2)

1 + εDxξ + O(ε2)
,

= y′ + ε(Dxη − y′Dxξ) + O(ε2).

ŷ(k) =
y(k) + εDxη

(k−1) + O(ε2)

1 + εDxξ + O(ε2)
,

8



where from (7) we have

η(1) = Dxη − y′Dxξ, (9)

η(k)
(
x, y, y′, · · ·, y(k)

)
= Dxη

(k−1) − y(k)Dxξ. (10)

In order to find the symmetry group G admitted by a differential equation with infinitesimal

operator

X = ξ∂x + η∂y,

we introduce the prolonged infinitesimal generator

X(n) = ξ∂x + η∂y + η(1)∂y′ + · · ·+ η(n)∂y(n) . (11)

This can be used to express the linearized symmetry condition (8) in a compact form:

X(n)
(
y(n) − ω(x, y, y′, · · ·, y(n−1))

)
= 0 when equation (4) holds.

Consider a diffeomorphism of the form:

(x̂, ŷ) = (x̂(x, y), ŷ(x, y)) .

This type of diffeomorphism is called a point transformation. Any point transformation that is also

a symmetry is called a point symmetry. To find the Lie point symmetries of an ODE (4), one needs

to find η(k) (k = 1, 2, · · ·, n). The functions ξ and η depend upon x and y only. It follows from (9)

9



and (10) that

η(1) = ηx + (ηy − ξx)y′ − ξyy′2,

η(2) = ηxx + (2ηxy − ξxx)y′ + (ηyy − 2ξxy)y
′2 − ξyyy′3

+{ηy − 2ξx − 3ξyy
′}y′′, (12)

η(3) = ηxxx + (3ηxxy − ξxxx)y′ + 3(ηxyy − ξxxy)y′2 + (ηyyy − 3ξxyy)y
′3

−ξyyyy′4 + 3{ηxy − ξxx + (ηyy − 3ξxy)y
′ − 2ξyyy

′2}y′′

−3ξyy
′′2 + {ηy − 3ξx − 4ξyy

′}y′′′.

The number of terms in η(k) increases exponentially with k. Hence, to study the high-order ODEs,

computer algebra or symbolic package is recommended.

Now we consider about:

y′′ = F (x, y, y′).

The linearized symmetry condition can be deduced by plugging (12) into (8) and replacing y′′ by

F (x, y, y′). This yields

ηxx + (2ηxy − ξxx)y′ + (ηyy − 2ξxy)y
′2 − ξyyy′3 + {ηy − 2ξx − 3ξyy

′}F

= ξFx + ηFy + {ηx + (ηy − ξx)y′ − ξyy′2}Fy′ . (13)

Although equation (13) looks complicated, in some cases it can be solved without much trouble.

Both ξ and η are independent of y′, and therefore (13) can be decomposed into a system of PDEs,

which are called the determining equations for the Lie point symmetries.

An example using the Lie-method in ordinary differential equations:

Considering the equation: y′′ = y′2

y
− y2.

10



The linearized symmetry condition is

ηxx + (2ηxy − ξxx)y′ + (ηyy − 2ξxy)y
′2 − ξyyy′3 + {ηy − 2ξx − 3ξyy

′}(y
′2

y
− y2)

= ξ

(
(−y

′2

y2
− 2y) + ηx + (ηy − ξx)y′ − ξyy′2)

)
2y′

y
.

By comparing powers of y′, we obtain the determining equations:

ξyy +
1

y
ξy = 0,

ηyy − 2ξxy −
1

y
ηy +

1

y2
η = 0,

2ηxy − 2ξxx + 3y2ηy −
2

y
ηx = 0, (14)

ηxx − y2(ηy − 2ξx) + 2yη = 0.

The first of (14) is integrated to give

ξ = A(x) ln |y|+B(x),

then the second of (14) yields

η = A′(x)y(ln |y|)2 + C(x) ln |y|+D(x)y.

Here A,B,C, and D are unknown functions. After substituting and computing, we have:

ξ = c1 + c2x, η = −2c2y.

11



2.3 The Lie Symmetry Methods for Partial Differential Equations

Point symmetries of PDEs[21, 22] are defined in much the same way as those of ODEs. For

simplicity, let us start by considering PDEs with one dependent variable, u ,and two independent

variables, x and t. A point transformation is a diffeomorphism:

Γ : (x, t, u) 7→ (x̂(x, t, u), t̂(x, t, u), û(x, t, u)). (15)

This transformation maps the surface u = u(x, t) to the following surface (which is parametrized

by x and t):

x̂ = x̂(x, t, u(x, t)),

t̂ = t̂(x, t, u(x, t)), (16)

û = û(x, t, u(x, t)).

To calculate the prolongation of a given transformation,we need to differentiate(16) with respect to

each of the parameters x and t. To do this, we introduce the following total derivatives:

Dx = ∂x + ux∂u + uxx∂ux + uxt∂ut + · · ·,

Dt = ∂t + ut∂u + uxt∂ux + utt∂ut + · · ·. (17)

(Total derivatives treat the dependent variable u and its derivatives as functions of the independent

variables.)

The first two equation of (16) may be inverted(locally) to give x and t in terms of x̂ and t̂, provided

12



that the Jacobian is nonzero, that is,

H ≡

∣∣∣∣∣∣∣
Dxx̂ Dxt̂

Dtx̂ Dtt̂

∣∣∣∣∣∣∣ 6= 0 when u=u(x,t) (18)

If (18) is satisfied, then the last equation of (16) can be rewritten as

û = û(x̂, t̂) (19)

Applying the chain rule to (19), we obtain

Dxû

Dtû

 =

Dxx̂ Dxt̂

Dtx̂ Dtt̂


ûû
ût̂



and therefore(by Cramer’s rule)

ûx̂ =
1

H

∣∣∣∣∣∣∣
Dxû Dxt̂

Dtû Dtt̂

∣∣∣∣∣∣∣ , ût̂ =
1

H

∣∣∣∣∣∣∣
Dxx̂ Dxû

Dtx̂ Dtû

∣∣∣∣∣∣∣ (20)

Higher-order prolongations are obtained recursively by repreating the above argument. If ûJ is any

13



derivative of û with respect to x̂ and t̂, then

ûJx̂ = ∂ûJ/∂x̂ =
1

H

∣∣∣∣∣∣∣
DxûJ Dxt̂

DtûJ Dtt̂

∣∣∣∣∣∣∣ ,
ûJt̂ = ∂ûJ/∂t̂ =

1

H

∣∣∣∣∣∣∣
Dxx̂ DxûJ

Dtx̂ DtûJ

∣∣∣∣∣∣∣
For example, the transformation is prolonged to second derivatives as follows:

ûx̂x̂ =
1

H

∣∣∣∣∣∣∣
Dxûx̂ Dxt̂

Dtûx̂ Dtt̂

∣∣∣∣∣∣∣ , ût̂t̂ =
1

H

∣∣∣∣∣∣∣
Dxx̂ Dxût̂

Dtx̂ Dtût̂

∣∣∣∣∣∣∣ ,
ûx̂t̂ =

1

H

∣∣∣∣∣∣∣
Dxût̂ Dxt̂

Dtût̂ Dtt̂

∣∣∣∣∣∣∣ =
1

H

∣∣∣∣∣∣∣
Dxx̂ Dxûx̂

Dtx̂ Dtûx̂

∣∣∣∣∣∣∣ .

We are now in a position to define point symmetries of an nth order PDE:

∆(x, t, u, ux, ut, ...) = 0

For simplicity, we shall restrict attention to PDEs of the form

∆ = uσ − ω(x, t, u, ux, ut, ...) = 0 (21)

where uσ is one of the nth order derivatives of u and ω is independent of uσ.(More generally, uσ

could be of order k < n provided that ω does not depend upon uσ or any derivatives of uσ.)
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The point transformation Γ is a point symmetry of (21) if

∆(x̂, t̂, û, ûx̂, ût̂, ...) = 0, when(19) holds. (22)

Typically, the symmetry condition is extremely complicated, so we shall not try to solve it directly.

Nevertheless, it is quite easy to check whether or not a given point transformation is a symmetry of

a particular PDE.

Generally speaking,we do not know a priori what form the point symmetries of a given PDE

will take. However, it is usually possible to carry out a systematic search for one-parameter Lie

groups of point symmetries. The technique is essentially the same as for ODEs. We seek point

symmetries of the form

x̂ = x+ εξ(x, t, u) + O(ε2),

t̂ = t+ ετ(x, t, u) + O(ε2),

û = u+ εη(x, t, u) + O(ε2).

Just as for Lie point transformations of the plane, each one-parameter(local)Lie group of point

transformations is obtained by exponentiating its infinitesimal generator, which is

X = ξ∂x + τ∂t + η∂u.
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Equivalently,we can obtain (x̂, t̂, û) by solving

dx̂

dε
= ξ(x̂, t̂, û),

dt̂

dε
= τ(x̂, t̂, û),

dû

dε
= η(x̂, t̂, û),

subject to the initial conditions

(x̂, t̂, û)ε=0 = (x, t, u).

A surface u = u(x, t) is mapped to itself by the group of transformations generated by X if

X(u− u(x, t)) = 0 when u=u(x, t). (23)

This condition can be expressed neatly by using the characteristic of the group which is

Q = η − ξux − τut

The surface u = u(x, t) is invariant provided that

Q = 0 when u=u(x, t). (24)

Equation(24) is called the invariant surface condition; it is central to some of the main techniques

for finding exact solutions of PDEs.

The prolongation of the point transformation to first derivatives is
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ûx̂ = ux + εηx(x, t, u, ux, ut) + O(ε2),

ût̂ = ut + εηt(x, t, u, ux, ut) + O(ε2),

where,

ηx(x, t, u, ux, ut) = Dxη − uxDxξ − utDxτ,

ηt(x, t, u, ux, ut) = Dtη − uxDtξ − utDtτ

The transformation is prolonged to higher-order derivatives recursively, using (21). Suppose that

ûJ = uJ + εηJ + O(ε2),

where

uJ ≡
∂j1+j2u

∂xj1∂tj2
, ûJ ≡

∂j1+j2û

∂x̂j1∂t̂j2
,

for some numbers j1 and j2. The (21) yields

ûJx̂ = uJx + εηJx + O(ε2),

ûJt̂ = uJt + εηJt + O(ε2),
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where

ηJx = Dxη
J − uJxDxξ − uJtDxτ,

ηJt = Dtη
J − uJxDtξ − uJtDtτ. (25)

Alternatively, we can express the functions ηJ in terms of the characteristic, for example,

ηx = DxQ+ ξuxx + τuxt,

ηt = DtQ+ ξuxt + τutt.

The higher-order terms are obtained by induction on j1 andj2:

ηJ = DJQ+ ξDJux + τDJut,

where

DJ ≡ Dj1
x D

j2
t ,

The infinitesimal generator is prolonged to derivatives by adding all terms of the form ηJ∂uJ up to
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the desired order. For example,

X(1) = ξ∂x + τ∂t + η∂u + ηx∂ux + ηt∂ut = X + ηx∂ux + ηt∂ut ,

X(2) = X(1) + ηxx∂uxx + ηxt∂uxt + ηtt∂utt .

From now on, we adopt the convention that the generator is prolonged as many times as is needed

to describe the group’s action on all variables. (We shall not usually refer explicitly to the order of

prolongation.) To find the Lie point symmetries, we need explicit expressions for (25). Here are

some:

ηx = ηx + (ηu − ξx)ux − τxut − ξuux2 − τuuxut,

ηt = ηt − ξtux + (ηu − τt)ut − ξuuxut − τuut2.
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ηxx = ηxx + (2ηxu − ξxx)ux − τxxut + (ηuu − 2ξxu)ux
2

−2τxuuxut − ξuuux3 − τuuux2ut + (ηu − 2ξx)uxx

−2τxuxt − 3ξuuxuxx − τuutuxx − 2τuuxuxt

ηxt = ηxt + (ηtu − ξxt)ux + (ηxu − τxt)ut − ξtuux2

+(ηuu − ξxu − τtu)uxut − τxuut2 − ξuuux2ut − τuuuxut2

−ξtuxx − ξuutuxx + (ηu − ξx − τt)uxt − 2ξuuxuxt

−τuutuxt − τuuxutt

ηtt = ηtt − ξttux + (2ηtu − τtt)ux − 2ξtuuxut

+(ηuu − 2τtu)ut
2 − ξuuuxut2 − τuuut3 − 2ξtuxt

−2ξuutuxt + (ηu − 2τt)utt − ξuuxutt − 3τuututt.

Lie point symmetries are obtained by differentiating the symmetry condition with respect to

ε = 0. We obtain the linearized symmetry condition

X∆ = 0 when ∆ = 0 . (26)

The restriction (21) enables us to eliminate uσ from (25); then we split the remaining terms (ac-

cording to their dependence on derivatives of u) to obtain a linear system of determining equations

for ξ, τ,and η. The vector space L of all Lie point symmetry generators of a given PDE is a Lie

algebra, although it may not be finite dimensional.
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For a given PDE

∆ = 0. (27)

For now, let us restrict attention to scalar PDEs with two independent variables. Recall that a

solution u = u(x, t) is invariant under the group generated by

X = ξ∂x + τ∂t + η∂u.

if and only if the characteristic vanishes on the solution. In other words, every invariant solution

satisfies the invariant surface condition

Q = η − ξux − τut = 0. (28)

Usually (28) is much easier to solve than the original PDE.Having solved (28), we can find out

which solutions also satisfy. For example, the characteristic

Q = −cux − ut. (29)

The travelling wave ansatz u = F (x− ct) is the general solution of the invariant surface condition

Q = 0.

For now, suppose that ξ and τ are not both zero. Then the invariant surface condition is a first-order

quasilinear PDE that can be solved by the method of characteristics. The characteristic equations
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are
dx

ξ
=
dt

τ
=
du

η
. (30)

If r(x, t, u) and v(x, t, u) are two functionally independent first integrals of (30), every invariant of

the group is a function of r and v. Usually, it is convenient to let one invariant play the role of a

dependent variable. Suppose(without lose of generality) that vu 6= 0; then the general solution of

the invariant surface condition is

v = F (r). (31)

This solution is now substituted into the PDE (27) to determine the function F.

If r and v both depend on u, it is necessary to find out whether the PDE has any solution of the form

r = c. (32)

These are the only solutions of the invariant surface condition that are not (locally) of the form

(31). If r is a function of the independent variables x and t only, then (32) cannnot yield a solution

u = u(x, t).
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CHAPTER III

LIE-METHOD FOR THE BURGERS-HUXLEY EQUATION

In this chapter, we will consider the Burgers-Huxley equation.

3.1 Using the Lie-method to solve the Burgers-Huxley equation when δ = 2

The famous generalised Burgers-Huxley equation is as follows:

∂u

∂t
+ αuδ

∂u

∂x
− ∂2u

∂x2
= βu(1− uδ)(uδ − γ),

where α, β, γ and δ are parameters, β ≥ 0, δ > 0, γ ∈ (0, 1). Firstly, we consider the case δ = 2.

So our equation is:
∂u

∂t
+ αu2

∂u

∂x
− ∂2u

∂x2
= βu(1− u2)(u2 − γ).

Considering the Lie-method: a surface u = u(x, t) is mapped to itself by the group of transforma-

tions generated by X if

X(u− u(x, t)) = 0 when u=u(x, t). (33)

This condition can be expressed neatly by using the characteristic of the group which is

Q = η − ξux − τut
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The surface u = u(x, t) is invariant provided that

Q = 0 when u=u(x, t). (34)

For simplicity, we let τ = 1. So

ut = η − ξux.

And,
∂2u

∂x2
=
∂u

∂t
+ αu2

∂u

∂x
− β(1 + γ)u3 + βu5 + βγu.

So,we have the linearized symmetry condition for these non-classical symmetries:

ηt + 2αuηux + αu2ηx − ηxx = 3β(1 + γ)u2η − 5βu4η − βγη

Substituting these formulas, we get:

ηt − ξtux + ηu(η − ξux)− ξuux(η − ξux) + 2αuηux + αu2(ηu − ξx)ux

+αu2ηx − αu2ξuu2x − ηxx − (2ηxu − ξxx)ux + ξuuu
3
x − (ηuu − 2ξxu)u

2
x

−(ηu − 2ξx)(η − ξux + αu2ux − β(1 + γ)u3 + βu5 + βuγ) + 3ξuuxη

+3ξuux((αu
2 − ξ)ux − βu(1− u2)(u2 − γ)) = 3β(1 + γ)u2η − (5βu4 + βγ)η.

and then splitting the resulting equation by equating powers of ux, we obtain the determining
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equations for ξ and η as follows:

ξuu = 0,

ηuu − 2ξxu + 2ξuξ − 2αu2ξu = 0,

ξt − 2αuη + 2ηxu − ξxx + 2ξxξ − αu2ξx − 2ξuη + 3β(1 + γ)u3ξu − 3ξuβu
5 − 3ξuβuγ = 0,

ηt + αu2ηx − ηxx + ηuβ(1 + γ)u3 − ηuβu5 − ηuβuγ + 2ξxη − 2ξxβ(1 + γ)u3 (35)

+2ξxβu
5 + 2ξxβuγ = 3β(1 + γ)u2η − 5βu4η − βγη

Although the system(35) contains some non-linear equations and looks complicated, it is easily

solved since it happens to be inatriangle form. The general solution of the first equation is:

ξ = H(x, t)u+ V (x, t),

which leads to the solution of the second equation as:

η = Hxu
2 − 1

3
H2u3 −HV u2 +

1

6
αHu4 + Au+B.

Substituting those two equations into the third and fourth equations and equating powers of u, we

obtain:

H = 0;B = 0

so

ξ = V (x, t); η = A(x, t)u,
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and V (x, t),A(x, t) should satisfy this system:

Vx = −2A,

Vt + 2Ax − Vxx + 2VxV = 0,

αAx + 2Aβ(1 + γ) = 0, (36)

At − Axx + 2VxA+ 2Vxβγ = 0.

From the third equation of system (36),we get:

A = C(t)e−
2β(1+γ)x

α .

And then,from the first equation of system (36),we get:

V = C(t)e−
2β(1+γ)x

α
α

β(1 + γ)
+ ϕ(t).

Substituting into the second and last equation of system (36), we found that only if C(t) =

0, ϕ(t) = Const, the equation can hold. So ξ = const, η = 0.

We draw the conclusion that the Burgers-Huxley equation only has the travelling wave solution.

Now we are going to search for the travelling wave solution:

Firstly, we make the transformation:

u = v
1
2

and let

v = v(x− ct) = v(z).
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So the equation becomes:

−cv′ + αvv′ − v′′ + 1

2
v−1(v′)2 = 2β(1 + γ)v2 − 2βv3 − 2βγv (37)

The linearized symmetry condition is

ηzz + (2ηzv − ξzz)v′ + (ηvv − 2ξzv)v
′2 − ξvvv′3 + {ηv − 2ξz − 3ξvv

′}(
−cv′ + αvv′ +

1

2
v−1(v′)2 − 2β(1 + γ)v2 + 2βv3 + 2βγv

)
= ηαv′ (38)

−η
(

1

2
v−2(v′)2 + (4(1 + γ)v − 6v2 − 2γ)β

)
+
(
ηz + (ηv − ξz)v′ − ξvv′2

)
(−c+ αv + v−1v′).

By comparing powers of v′, we obtain the determining equations:

ξvv +
1

2
v−1ξv = 0,

ηvv − 2ξzv −
1

2
v−1ηv − 2ξv(αv − c) +

1

2
v−2η = 0, (39)

2ηzv − ξzz − ξz(αv − c)− 3ξv
(
−2β(1 + γ)v2 + 2βv3 + 2βγv

)
− αη − ηzv−1 = 0,

ηzz + (ηv − 2ξz)
(
−2β(1 + γ)v2 + 2β(v3 + γv))− η(−4β(1 + γ)v + 6βv2 + 2βγ

)
− ηz(−c+ αv) = 0.

The first equation of system (39) is integrated to give

ξ = A(z)|v|
1
2 +B(z).

Case 1: if |v| = v,we have ξ = A(z)v
1
2 +B(z) then the second euqation of systme (39) yields

η = 2A′(x)v
3
2 − 2Acv

3
2 +

αA

3
v

5
2 + ϕv

1
2 + ψv,
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here A,B, ϕ, and ψ are unknown functions.

Substituting ξ and η into the fourth equation of system (39), we get: A = 0;ϕ = 0, and after

substituting and computing, and by comparing powers of v, we obtain the determining equations:

ψ′ −B′′ +B′c = 0,

ψ = −B′, (40)

ψ′′ − 4B′βγ + ψ′c = 0,

4B′β(1 + γ) + 2ψβ(1 + γ)− αψ′ = 0.

From the second and fourth equations of system (40), we get:

B = c1
α

2β(1 + γ)
e−

2β(1+γ)z
α + c2, ψ = c1e

− 2β(1+γ)z
α .

Substituting into the first and third equations of system (40),we found the condition:

c = −4β(1 + γ)

α
, −γ =

3β(1 + γ)2

α2
.

So under the condition: c = −4β(1+γ)
α

, −γ = 3β(1+γ)2

α2 ,we have:

ξ = c1
α

2β(1 + γ)
e−

2β(1+γ)z
α + c2, η = c1e

− 2β(1+γ)z
α v.

Case 2: if |v| = −v, we have ξ = A(z)(−v)
1
2 + B(z) then the second euqation of systme (39)

yields

η = −2A′(x)(−v)
3
2 + 2Ac(−v)

3
2 +

αA

3
(−v)

5
2 + ϕ(−v)

1
2 + ψ(−v),

here A,B, ϕ, and ψ are unknown functions.

Substituting ξ and η into the fourth equation of systme (39), we get: A = 0;ϕ = 0, and after
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substituting and computing, and by comparing powers of v, we obtain the determining equations:

ψ′ +B′′ −B′c = 0,

ψ = B′, (41)

ψ′′ + 4B′βγ + ψ′c = 0,

4B′β(1 + γ)− 2ψβ(1 + γ) + αψ′ = 0.

From the second and fourth equations of system (41), we get:

B = −c1
α

2β(1 + γ)
e−

2β(1+γ)z
α + c2, ψ = c1e

− 2β(1+γ)z
α .

Substituting into the first and third equations of system (41),we found the condition:

c = −4β(1 + γ)

α
, −γ =

3β(1 + γ)2

α2
.

So under the condition: c = −4β(1+γ)
α

, −γ = 3β(1+γ)2

α2 ,we have:

ξ = −c1
α

2β(1 + γ)
e−

2β(1+γ)z
α + c2, η = −c1e−

2β(1+γ)z
α v.

The invariant curve condition is :

Q = η − v′ξ = 0

Case 1: if |v| = v:

v′ =
v

α
2β(1+γ)

+ c2
c1
e

2β(1+γ)z
α
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Setting B = α
2β(1+γ)

+ c2
c1
e

2β(1+γ)z
α , so v′ = v

B
, and

v′′ =
v′

B
− v

c2
c1

2β(1+γ)
α

e
2β(1+γ)z

α

B2

Substiting into the equation (37) ,we get:

2βB2v2 + (Bα− 2βB2(1 + γ))v +

(
2βB2γ − 1

2
−Bc+

c2
c1

2β(1 + r)

α
e

2β(1+γ)z
α

)
= 0

So we get:

v =

2βB2(1 + γ)− αB ±
√

(Bα− 2βB2(1 + γ))2 − 8βB2
(

2βB2γ − 1
2
−Bc+ c2

c1

2β(1+r)
α

e
2β(1+γ)z

α

)
4βB2

Substituting into the condition :c = −4β(1+γ)
α

, −γ = 3β(1+γ)2

α2 , and simplify, we get:

v =
2β(1 + γ) c2

c1
e

2β(1+γ)z
α ±

√
4β2( c2

c1
e

2β(1+γ)z
α )

2
(1− γ)2

4βB

Since γ < 1,so

v =
2β(1 + γ) c2

c1
e

2β(1+γ)z
α ± 2β( c2

c1
e

2β(1+γ)z
α )(1− γ)

4βB

Substituting into B = α
2β(1+γ)

+ c2
c1
e

2β(1+γ)z
α , we have

v =
1

1 + α
2β(1+γ)

( c1
c2
e−

2β(1+γ)z
α )
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Or

v =
γ

1 + α
2β(1+γ)

( c1
c2
e−

2β(1+γ)z
α )

Similarly,

Case 2: if |v| = −v:

v′ =
v

α
2β(1+γ)

− c2
c1
e

2β(1+γ)z
α

Setting C = α
2β(1+γ)

− c2
c1
e

2β(1+γ)z
α , so v′ = v

C
, and

v′′ =
v′

C
+ v

c2
c1

2β(1+γ)
α

e
2β(1+γ)z

α

C2

Substiting into the equation (37),we get:

2βC2v2 +
(
Cα− 2βC2(1 + γ)

)
v +

(
2βC2γ − 1

2
− Cc− c2

c1

2β(1 + r)

α
e

2β(1+γ)z
α

)
= 0

So we get:

v =

2βC2(1 + γ)− αC ±
√

(Cα− 2βC2(1 + γ))2 − 8βC2
(

2βC2γ − 1
2
− Cc− c2

c1

2β(1+r)
α

e
2β(1+γ)z

α

)
4βC2

Substituting into the condition :c = −4β(1+γ)
α

, −γ = 3β(1+γ)2

α2 , and simplify, we get:

v =
−2β(1 + γ) c2

c1
e

2β(1+γ)z
α ±

√
4β2( c2

c1
e

2β(1+γ)z
α )

2
(1− γ)2

4βC
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Since γ < 1,so

v =
−2β(1 + γ) c2

c1
e

2β(1+γ)z
α ± 2β( c2

c1
e

2β(1+γ)z
α )(1− γ)

4βC

Substituting into C = α
2β(1+γ)

− c2
c1
e

2β(1+γ)z
α , we have

v =
1

1− α
2β(1+γ)

( c1
c2
e−

2β(1+γ)z
α )

Or

v =
γ

1− α
2β(1+γ)

( c1
c2
e−

2β(1+γ)z
α )

So in conclusion: under the condition:

c = −4β(1 + γ)

α
, −γ =

3β(1 + γ)2

α2
.

v =
1

1∓ 3(1+γ)c1
2c2γα

e
2γαz

3(1+γ)

Or

v =
γ

1∓ 3(1+γ)c1
2c2γα

e
2γαz

3(1+γ)

Since

u = v
1
2

32



and let

v = v(x− ct) = v(z).

So we get:

u =

 1

1∓ 3(1+γ)c1
2c2γα

e
2γα(x− 4γαt

3(1+γ)
)

3(1+γ)


1
2

Since
e2t

1 + e2t
=

1

2
tanh t+

1

2
,

and
e2t

e2t − 1
=

1

2
coth t+

1

2
.

Let c1
c2

= 2γα
3(1+γ)

,we get,

u =

(
1

2
tanh(− γα

3(1 + γ)
(x− 4γαt

3(1 + γ)
)) +

1

2

) 1
2

Or

u =

(
1

2
coth(− γα

3(1 + γ)
(x− 4γαt

3(1 + γ)
)) +

1

2

) 1
2

Or

u =

 γ

1∓ 3(1+γ)c1
2c2γα

e
2γα(x− 4γαt

3(1+γ)
)

3(1+γ)


1
2
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Similarly, we have

u =

(
γ

2
tanh(− γα

3(1 + γ)
(x− 4γαt

3(1 + γ)
)) +

γ

2

) 1
2

Or

u =

(
γ

2
coth(− γα

3(1 + γ)
(x− 4γαt

3(1 + γ)
)) +

γ

2

) 1
2

3.2 The Lie-method to solve the generalized Burgers-Huxley equation

The famous generalized Burgers-Huxley equation is as follows:

∂u

∂t
+ αuδ

∂u

∂x
− ∂2u

∂x2
= βu(1− uδ)(uδ − γ),

where α, β, γ and δ are parameters, β ≥ 0, δ > 0, γ ∈ (0, 1). Firstly, we make the transformation:

u = v
1
δ

So the equation becomes:

vt + αvvx − vxx − (
1

δ
− 1)v−1(vx)

2 = δβ(1 + γ)v2 − δβv3 − δβγv (42)

Considering the Lie-method: a surface v = v(x, t) is mapped to itself by the group of transforma-
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tions generated by X if

X(v − v(x, t)) = 0 when v=v(x, t). (43)

This condition can be expressed neatly by using the characteristic of the group which is

Q = η − ξvx − τvt

The surface v = v(x, t) is invariant provided that

Q = 0 when v=v(x, t). (44)

For simplicity, we let τ = 1. So

vt = η − ξvx.

And, So,we have the linearized symmetry condition for these non-classical symmetries:

ηt+αηvx+αvηx−ηxx+(
1

δ
−1)v−2η(vx)

2− (
1

δ
−1)v−1ηx2vx = 2δβ(1+γ)vη−3δβv2η−δβγη

Substituting these formulas, we get:
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ηt − ξtvx + ηv(η − ξvx)− ξvvx(η − ξvx) + αηxv + αηvx + αv(ηv − ξx)vx

−αvvx2ξv − ηxx − (2ηxv − ξxx)vx + ξvvv
3
x − (ηvv − 2ξxv)v

2
x − (ηv − 2ξx)η

−(ηv − 2ξx − 3ξvvx)

(
−ξvx + αvvx − δβ(1 + γ)v2 + δβv3 + δβvγ − (

1

δ
− 1)v−1(vx)

2

)
+3ξvvxη + (

1

δ
− 1)v−2ηvx

2 − (
1

δ
− 1)v−12vx

(
ηx + (ηv − ξx)vx − ξvvx2

)
= 2δβ(1 + γ)vη − (3δβv2 + βδγ)η.

and then splitting the resulting equation by equating powers of vx, we obtain the determining

equations for ξ and η as follows:

ξvv − (
1

δ
− 1)v−1ξv = 0,

ηvv − 2ξxv + (
1

δ
− 1)v−1ηv − 2ξv(αv − ξ)− (

1

δ
− 1)v−2η = 0, (45)

2ηxv − ξxx − ξx(αv − 2ξ)− 3ξvβ(−δ(1 + γ)v2 + δv3 + δγv)− αη + 2(
1

δ
− 1)ηxv

−1 + ξt − 2ξvη = 0,

ηxx + (ηv − 2ξx)βδ(−(1 + γ)v2 + v3 + γv)− ηδβ(−2(1 + γ)v + 3v2 + γ)− ηxvα− ηt − 2ξxη = 0.

Although the system contains some non-linear equations and looks complicated, it is easily solved

since it happens to be inatriangle form. The general solution of the first equation of system (45) is:

ξ = A(x, t)|v|
1
δ +B(x, t).

Case 1: if |v| = v,we have ξ = A(x, t)v
1
δ +B(x, t) then the second euqation of system (45) yields

η = δAxv
( 1
δ
+1) − δABv(

1
δ
+1) − δA2

3
v(

2
δ
+1) +

2αδA

(1 + δ)(2 + δ)
v(

1
δ
+2) + ϕv(1−

1
δ
) + ψv,

here A,B, ϕ, and ψ are unknown functions.
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Substituting ξ and η into the fourth equation of system (45) , we get: A = 0;ϕ = 0, and after

substituting and computing, and by comparing powers of v, we obtain the determining equations:

2
1

δ
ψx −Bxx +Bt + 2BBx = 0,

ψ = −Bx, (46)

ψxx − 2Bxδβγ − 2Bxψ − ψt = 0,

Bxδβ(1 + γ)− αψx = 0.

From the second and fourth equations of system (46) , we get:

B = b(t)
α

δβ(1 + γ)
e−

δβ(1+γ)x
α + f(t), ψ = b(t)e−

δβ(1+γ)x
α .

Substituting into the first and third equations of system (46) ,we found that only if b(t) = 0, ϕ(t) =

Const, the equation can hold. So ξ = const, η = 0.

Similarily,

Case 2: we have : ξ = const, η = 0 So we draw the conclusion that the Burgers-Huxley equation

only has the travelling wave solution.

Now we are going to search for the travelling wave solution:

Firstly, we make the transformation:

u = v
1
δ

So the equation becomes:

vt + αvvx − vxx − (
1

δ
− 1)v−1(vx)

2 = δβ(1 + γ)v2 − δβv3 − δβγv (47)
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and let

v = v(x− ct) = v(z).

So the equation becomes:

−cv′ + αvv′ − v′′ − (
1

δ
− 1)v−1(v′)2 = δβ(1 + γ)v2 − δβv3 − δβγv (48)

The linearized symmetry condition is

ηzz + (2ηzv − ξzz)v′ + (ηvv − 2ξzv)v
′2 − ξvvv′3 + (ηv − 2ξz − 3ξvv

′)(
−cv′ + αvv′ − (

1

δ
− 1)v−1(v′)2 − δβ(1 + γ)v2 + δβv3 + δβγv

)
= η

(
αv′ + (

1

δ
− 1)v−2(v′)2 +−δβ(2(1 + γ)v − 3v2 − γ)

)
+
(
ηz + (ηv − ξz)v′ − ξv(v′)2

)(
−c+ αv − 2(

1

δ
− 1)v−1v′

)
.

By comparing powers of v′, we obtain the determining equations:

ξvv − (
1

δ
− 1)v−1ξv = 0,

ηvv − 2ξzv + (
1

δ
− 1)v−1ηv − 2ξv(αv − c)− (

1

δ
− 1)v−2η = 0, (49)

2ηzv − ξzz − ξz(αv − c)− 3ξvβ(−δ(1 + γ)v2 + δv3 + δγv)− αη + 2(
1

δ
− 1)ηzv

−1 = 0,

ηzz + (ηv − 2ξz)βδ(−(1 + γ)v2 + v3 + γv)− ηδβ(−2(1 + γ)v + 3v2 + γ)− ηz(αv − c) = 0.
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When δ is even,the first equation of system (49) is integrated to give

ξ = A(z)|v|
1
δ +B(z).

When δ is odd,the first equation of system (49) is integrated to give

ξ = A(z)v
1
δ +B(z).

Firstly, let us consider about δ is even

Case 1: if |v| = v,we have ξ = A(z)v
1
δ +B(z) then the second euqation of system (49) yields

η = δAxv
( 1
δ
+1) − δAcv(

1
δ
+1) +

2αδA

(1 + δ)(2 + δ)
v(

1
δ
+2) + ϕv(1−

1
δ
) + ψv,

here A,B, ϕ, and ψ are unknown functions.

Substituting ξ and η into the fourth equation of the system, we get: A = 0;ϕ = 0, and after

substituting and computing, and by comparing powers of v, we obtain the determining equations:

2
1

δ
ψ′ −B′′ +B′c = 0,

ψ = −B′, (50)

ψ′′ − 2δB′βγ + ψ′c = 0,

ψδβ(1 + γ) + αψ′ = 0.

From the second and fourth equations of system (50) , we get:

B = c1
α

δβ(1 + γ)
e−

δβ(1+γ)z
α + c2, ψ = c1e

− δβ(1+γ)z
α .
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Substituting into the first and third equations of system (50) ,we found the condition:

c = −(2 + δ)β(1 + γ)

α
, −γ =

(1 + δ)β(1 + γ)2

α2
.

So under the condition: c = − (2+δ)β(1+γ)
α

, −γ = (1+δ)β(1+γ)2

α2 ,we have:

ξ = c1
α

δβ(1 + γ)
e−

δβ(1+γ)z
α + c2, η = c1e

− δβ(1+γ)z
α v.

Case 2: if |v| = −v,we have ξ = A(z)(−v)
1
δ + B(z) then the second euqation of system (49)

yields

η = −δAx(−v)(
1
δ
+1) + δAc(−v)(

1
δ
+1) +

2αδA

(1 + δ)(2 + δ)
(−v)(

1
δ
+2) + ϕ(−v)(1−

1
δ
) + ψ(−v),

here A,B, ϕ, and ψ are unknown functions.

Substituting ξ and η into the fourth equation of system (49), we get: A = 0;ϕ = 0, and after

substituting and computing, and by comparing powers of v, we obtain the determining equations:

2
1

δ
ψ′ +B′′ −B′c = 0,

ψ = B′, (51)

ψ′′ + 2δB′βγ + ψ′c = 0,

ψδβ(1 + γ) + αψ′ = 0.

From the second and fourth equations of system (51) , we get:

B = −c1
α

δβ(1 + γ)
e−

δβ(1+γ)z
α + c2, ψ = c1e

− δβ(1+γ)z
α .
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Substituting into the first and third equations of system (51),we found the condition:

c = −(2 + δ)β(1 + γ)

α
, −γ =

(1 + δ)β(1 + γ)2

α2
.

So under the condition: c = − (2+δ)β(1+γ)
α

, −γ = (1+δ)β(1+γ)2

α2 ,we have:

ξ = −c1
α

δβ(1 + γ)
e−

δβ(1+γ)z
α + c2, η = c1e

− δβ(1+γ)z
α (−v).

The invariant curve condition is :

Q = η − v′ξ = 0

Case 1: if |v| = v:

v′ =
v

α
δβ(1+γ)

+ c2
c1
e
δβ(1+γ)z

α

Setting B = α
δβ(1+γ)

+ c2
c1
e
δβ(1+γ)z

α , so v′ = v
B

, and

v′′ =
v′

B
− v

c2
c1

δβ(1+γ)
α

e
δβ(1+γ)z

α

B2

Substiting into the equation (48) ,we get:

δβB2v2 + (Bα− δβB2(1 + γ))v +

(
δβB2γ − 1

δ
−Bc+

c2
c1

δβ(1 + r)

α
e
δβ(1+γ)z

α

)
= 0
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So we get:

v =

δβB2(1 + γ)− αB ±
√

(Bα− δβB2(1 + γ))2 − 4δβB2
(
δβB2γ − 1

δ
−Bc+ c2

c1

δβ(1+r)
α

e
δβ(1+γ)z

α

)
2δβB2

Substituting into the condition :c = − (2+δ)β(1+γ)
α

, −γ = (1+δ)β(1+γ)2

α2 , and simplify, we get:

v =
δβ(1 + γ) c2

c1
e
δβ(1+γ)z

α ±
√
δ2β2( c2

c1
e
δβ(1+γ)z

α )
2
(1− γ)2

2δβB

Since γ < 1,so

v =
δβ(1 + γ) c2

c1
e
δβ(1+γ)z

α ± δβ( c2
c1
e
δβ(1+γ)z

α )(1− γ)

2δβB

Substituting into B = α
δβ(1+γ)

+ c2
c1
e
δβ(1+γ)z

α , we have

v =
1

1 + α
δβ(1+γ)

( c1
c2
e−

δβ(1+γ)z
α )

Or

v =
γ

1 + α
δβ(1+γ)

( c1
c2
e−

δβ(1+γ)z
α )

Similarly,

Case 2: if |v| = −v:

v′ =
v

α
δβ(1+γ)

− c2
c1
e
δβ(1+γ)z

α
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Setting C = α
δβ(1+γ)

− c2
c1
e
δβ(1+γ)z

α , so v′ = v
C

, and

v′′ =
v′

C
+ v

c2
c1

δβ(1+γ)
α

e
δβ(1+γ)z

α

C2

Substiting into the equation (48) ,we get:

δβC2v2 +
(
Cα− δβC2(1 + γ)

)
v +

(
δβC2γ − 1

δ
− Cc− c2

c1

δβ(1 + r)

α
e
δβ(1+γ)z

α

)
= 0

So we get:

v =

δβC2(1 + γ)− αC ±
√

(Cα− δβC2(1 + γ))2 − 4δβC2
(
δβC2γ − 1

2
− Cc− c2

c1

δβ(1+r)
α

e
δβ(1+γ)z

α

)
2δβC2

Substituting into the condition :c = − (2+δ)β(1+γ)
α

, −γ = (1+δ)β(1+γ)2

α2 , and simplify, we get:

v =
−δβ(1 + γ) c2

c1
e
δβ(1+γ)z

α ±
√
δ2β2

(
c2
c1
e
δβ(1+γ)z

α

)2
(1− γ)2

2δβC

Since γ < 1,so

v =
−δβ(1 + γ) c2

c1
e
δβ(1+γ)z

α ± 2β( c2
c1
e
δβ(1+γ)z

α )(1− γ)

2δβC

Substituting into C = α
δβ(1+γ)

− c2
c1
e
δβ(1+γ)z

α , we have

v =
1

1− α
δβ(1+γ)

( c1
c2
e−

δβ(1+γ)z
α )
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Or

v =
γ

1− α
δβ(1+γ)

( c1
c2
e−

δβ(1+γ)z
α )

So in conclusion: When δ is even,under the condition:

c = −(2 + δ)β(1 + γ)

α
, −γ =

(1 + δ)β(1 + γ)2

α2
.

v =
1

1∓ (1+δ)(1+γ)c1
δc2γα

e
δγαz

(1+δ)(1+γ)

Or

v =
γ

1∓ (1+δ)(1+γ)c1
δc2γα

e
δγαz

(1+δ)(1+γ)

Since

u = v
1
δ

and let

v = v(x− ct) = v(z).

So we get:

u =

 1

1∓ (1+δ)(1+γ)c1
δc2γα

e
δγαz

(1+δ)(1+γ)

 1
δ
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Since
e2t

1 + e2t
=

1

2
tanh t+

1

2
,

and
e2t

e2t − 1
=

1

2
coth t+

1

2
.

Let c1
c2

= δγα
(1+δ)(1+γ)

,we get,

u =

(
1

2
tanh(− δγα

2(1 + δ)(1 + γ)
(x− (2 + δ)γαt

(1 + δ)(1 + γ)
)) +

1

2

) 1
δ

Or

u =

(
1

2
coth(− δγα

2(1 + δ)(1 + γ)
(x− (2 + δ)γαt

(1 + δ)(1 + γ)
)) +

1

2

) 1
δ

Or

u =

 γ

1∓ (1+δ)(1+γ)c1
δc2γα

e
δγα(x− (2+δ)γαt

(1+δ)(1+γ)
)

(1+δ)(1+γ)


1
δ

Similarly, we have

u =

(
γ

2
tanh(− δγα

2(1 + δ)(1 + γ)
(x− (2 + δ)γαt

(1 + δ)(1 + γ)
)) +

γ

2

) 1
δ

Or

u =

(
γ

2
coth(− δγα

2(1 + δ)(1 + γ)
(x− (2 + δ)γαt

(1 + δ)(1 + γ)
)) +

γ

2

) 1
δ
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Following the same procedure, when δ is odd , it is the sames as Case 1, so we have the same

conclusion.
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CHAPTER IV

A SPECIAL CASE SYSTEM

In this chapter, we are going to find the solution of a special equation by the method of Lie

symmetry theory.

4.1 The Lie-method for the equation:
∂u
∂t
−D ∂2u

∂x2
= Pu(1− ua)(ua + 1)

Consider:
∂u

∂t
−D∂

2u

∂x2
= Pu(1− ua)(ua + 1),

where D,P, and a are parameters, D ≥ 0, P ≥ 0, a ≥ 0.

Considering the Lie-method: a surface u = u(x, t) is mapped to itself by the group of transforma-

tions generated by X if

X(u− u(x, t)) = 0 when u=u(x, t). (52)

This condition can be expressed neatly by using the characteristic of the group which is

Q = η − ξux − τut
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The surface u = u(x, t) is invariant provided that

Q = 0 when u=u(x, t). (53)

And,
∂2u

∂x2
=

1

D

(
∂u

∂t
+ Pu2a+1 − Pu

)
. (54)

So,we have the linearized symmetry condition for these non-classical symmetries:

ηt −Dηxx = −(2a+ 1)Pu2aη + Pη (55)

Substituting these formulas, we get:

ηt − ξtux + (ηu − τt)ut − ξuuxut − τuut2 + 2Dτxuuxut +Dτuuux
2ut

−Dηxx −D(2ηxu − ξxx)ux +Dτxxut +Dξuuu
3
x −D(ηuu − 2ξxu)u

2
x

−(ηu − 2ξx − τuut − 3ξuux)(ut + Pu2a+1 − Pu) = −P
(
(2a+ 1)u2a − 1

)
η.

Once uxx has been replaced by the right-hand side of (54), the highest-order derivative terms in

(55) have a factor uxt. We start by writing down those terms alone:

0 = −2Dτxuxt − 2Dτuuxuxt
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This leads to:

τx = τu = 0,

which removes many terms from the linearized symmetry condition; the remaining terms are:

ηt − ξtux + (ηu − τt)ut − ξuuxut −Dηxx −D(2ηxu − ξxx)ux +Dξuuux
3

−D(ηuu − 2ξxu)u
2
x − (ηu − 2ξx − 3ξuux)(ut + Pu2a+1 − Pu) = −P

(
(2a+ 1)u2a − 1

)
η.

In particular,the terms multiplied by ut are:

(ηu − τt)ut − ξuuxut − (ηu − 2ξx − 3ξuux)ut = 0.

This yields two determining equations:

ξu = 0, ξx =
1

2
τ ′(t)

Hence

ξ =
1

2
τ ′(t)x+ α(t),

for some function α, the remaining linearized symmety condition becomes:

ηt − ξtux −Dηxx −D(2ηxu − ξxx)ux +Dξuuux
3 −D(ηuu − 2ξxu)u

2
x

−(ηu − 2ξx − 3ξuux)(Pu
2a+1 − Pu) = −P

(
(2a+ 1)u2a − 1

)
η.

And then splitting the resulting equation by equating powers of ux, we obtain the determining
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equations for ξ and η as follows:

Dξuu = 0,

D(ηuu − 2ξxu) = 0,

ξt + 2Dηxu −Dξxx3Pξuu2a+1 + 3ξuPu = 0, (56)

ηt −Dηxx − Pu2a+1ηu + ηuPu+ 2ξxPu+ 2Pu2a+1ξx − 2Pξxu = −(2a+ 1)Pu2aη + Pη

For the first and second equation of system(56), we get:

ηuu = 0

From the third equation , we get:

−1

2
τ ′′x− α′ − 2Dηxu = 0

So we have:

η =

(
− 1

8D
τ ′′x− 1

2D
α′x+ C1

)
+ C2

Substituting those into the fourth equations and equating powers of u, we obtain:

τ ′′ = 0;α′ = 0, C1 = 0, C2 = 0

So ξ = C4, η = 0, τ = C3, where C3, C4 are arbitrary constants.

So we have:

Q = −C4ux − C3ut
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It is the same to:

ut = −cux.

Substituting into the equation, we get:

−c∂u
∂x
−D∂

2u

∂x2
= Pu(1− ua)(ua + 1),

So it turns to search for the travelling wave solution.

Now we are going to search for the travelling wave solution:

Let

v = v(x− ct) = v(z).

So the equation becomes:

−cv′ −Dv′′ −D(
1

a
− 1)v−1(v′)2 = −Pav3 + Pav (57)

The linearized symmetry condition is

51



ηzz + (2ηzv − ξzz)v′ + (ηvv − 2ξzv)v
′2 − ξvvv′3 + (ηv − 2ξz − 3ξvv

′)

1

D

(
−cv′ −D(

1

a
− 1)v−1(v′)2 + Pav3 − Pav

)
= η

1

D

(
D(

1

a
− 1)v−2(v′)2 − Pa(−3v2 + 1)

)
+
(
ηz + (ηv − ξz)v′ − ξv(v′)2

) 1

D

(
−c− 2D(

1

a
− 1)v−1v′

)
.

By comparing powers of v′, we obtain the determining equations:

ηvv − (
1

a
− 1)v−1ξv = 0,

ηvv − 2ξzv + (
1

a
− 1)v−1ηv + 2

c

D
ξv − (

1

a
− 1)v−2η = 0 (58)

2ηzv − ξzz +
c

D
ξz − 3ξv

P

D
(av3 − av) + 2(

1

a
− 1)v−1ηz = 0,

ηzz + (ηv − 2ξz)
P

D
a(v3 − v)− η P

D
a(3v2 − 1) +

c

D
ηz = 0.

When a is even,the first equation is integrated to give

ξ = A(z)|v|
1
a +B(z).

When a is odd,the first equation is integrated to give

ξ = A(z)v
1
a +B(z).

Firstly, let us consider about a is even
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Case 1: if |v| = v,we have ξ = A(z)v
1
a +B(z) then the second euqation yields

η = aAxv
( 1
a
+1) − aA c

D
v(

1
a
+1) + ϕv(1−

1
a
) + ψv,

here A,B, ϕ, and ψ are unknown functions.

Substituting ξ and η into the fourth equation of system (58), we get: A = 0;ϕ = 0, and after

substituting and computing, and by comparing powers of v, we obtain the determining equations:

2
1

a
ψ′ −B′′ + c

D
B′ = 0,

ψ = −B′, (59)

ψ′′ + 2
P

D
aB′ +

c

D
ψ′ = 0,

From the first and second equations of system (59), we get:

B = −c1
a+ 2

a c
D

e
a c
D

a+2
z + c2, ψ = c1e

a c
D

a+2
z.

Substituting into the third equations of system (59),we found the condition:

c = ±(a+ 2)

√
PD

a+ 1
.

So

a c
D

a+ 2
= ±a

√
P

D(a+ 1)
.

Setting,

s =
a c
D

a+ 2
= ±a

√
P

D(a+ 1)
.

So, we get
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B = −c1
1

s
esz + c2, ψ = c1e

sz.

And,

ξ = −c1
1

s
esz + c2, η = c1e

szv.

The invariant curve condition is :

Q = η − v′ξ = 0

v′ =
v

−1
s

+ c2
c1
e−sz

Setting H = −1
s

+ c2
c1
e−sz, so v′ = v

H
, and

v′′ =
v′

H
+ v

c2
c1
se−sz

H2

Substiting into equation (57),we get:

aPH2v2 − (PaH2 +D
1

a
+Hc+D

c2
c1
se−sz) = 0

So we get:

v2 =
PaH2 +D 1

a
+Hc+D c2

c1
se−sz

PaH2
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Substituting into the condition :c = ±(a+ 2)
√

PD
a+1

, and simplify, we get:

D
1

a
+Hc+D

c2
c1
se−sz = −Da+ 1

a
(1− 2s

c2
c1
se−sz)

So,

v2 =
( c2
c1
se−sz)2

(1− c2
c1
se−sz)2

So, we have

v = ±
c2
c1
se−sz

1− c2
c1
se−sz

Substiting : s = ±a
√

P
D(a+1)

We get,

v =

c2
c1
a
√

P
D(a+1)

e
∓a

√
P

D(a+1)
z

1∓ c2
c1
a
√

P
D(a+1)

e
∓a

√
P

D(a+1)
z

Since u = v
1
a ,so

u =

(
c2
c1
a
√

P
D(a+1)

) 1
a

e
∓
√

P
D(a+1)

z

(
1∓ c2

c1
a
√

P
D(a+1)

e
∓a

√
P

D(a+1)
z

) 1
a

Let c2
c1

= 1
a

√
D(a+1)

P
’

We have,

u =
e
∓
√

P
D(a+1)

z(
1∓ e∓a

√
P

D(a+1)
z

) 1
a
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Case 2: if |v| = −v,we have ξ = A(z)(−v)
1
a +B(z) then the second euqation yields

η = −aAx(−v)(
1
a
+1) + aA

c

D
(−v)(

1
a
+1) + ϕ(−v)(1−

1
a
) + ψ(−v),

here A,B, ϕ, and ψ are unknown functions.

Substituting ξ and η into the fourth equation of system , we get: A = 0;ϕ = 0, and after substituting

and computing, and by comparing powers of v, we obtain the determining equations:

−2
1

a
ψ′ −B′′ + c

D
B′ = 0,

ψ = B′, (60)

ψ′′ − 2
P

D
aB′ +

c

D
ψ′ = 0,

From the first and second equations of system (60), we get:

B = c1
a+ 2

a c
D

e
a c
D

a+2
z + c2, ψ = c1e

a c
D

a+2
z.

Substituting into the third equations of system (60),we found the condition:

c = ±(a+ 2)

√
PD

a+ 1
.

So

a c
D

a+ 2
= ±a

√
P

D(a+ 1)
.
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Setting,

s =
a c
D

a+ 2
= ±a

√
P

D(a+ 1)
.

So, we get

B = c1
1

s
esz + c2, ψ = c1e

sz.

And,

ξ = c1
1

s
esz + c2, η = c1e

sz(−v).

The invariant curve condition is :

Q = η − v′ξ = 0

v′ =
−v

1
s

+ c2
c1
e−sz

Setting C = 1
s

+ c2
c1
e−sz, so v′ = v

C
, and

v′′ = −

(
v′

C
+ v

c2
c1
se−sz

C2

)

Substiting into equation (57),we get:

aPcC2v2 − (PaC2 +D
1

a
− Cc−Dc2

c1
se−sz) = 0
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So we get:

v2 =
PaC2 +D 1

a
− Cc−D c2

c1
se−sz

PaC2

Substituting into the condition :c = ±(a+ 2)
√

PD
a+1

, and simplify, we get:

D
1

a
− Cc−Dc2

c1
se−sz = −Da+ 1

a
(1 + 2s

c2
c1
se−sz)

So,

v2 =
( c2
c1
se−sz)2

(1 + c2
c1
se−sz)2

So, we have

v = ±
c2
c1
se−sz

1 + c2
c1
se−sz

Substiting : s = ±a
√

P
D(a+1)

We get,

v =

c2
c1
a
√

P
D(a+1)

e
∓a

√
P

D(a+1)
z

1± c2
c1
a
√

P
D(a+1)

e
∓a

√
P

D(a+1)
z

Since u = v
1
a ,so

u =

(
c2
c1
a
√

P
D(a+1)

) 1
a

e
∓
√

P
D(a+1)

z

(
1± c2

c1
a
√

P
D(a+1)

e
∓a

√
P

D(a+1)
z

) 1
a

Let c2
c1

= 1
a

√
D(a+1)

P
’
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We have,

u =
e
∓
√

P
D(a+1)

z(
1± e∓a

√
P

D(a+1)
z

) 1
a

Also, we can change it into:

u =

(
1

2
+

1

2
tanh(∓a

2

√
P

D(a+ 1)
(x∓ a+ 2

a+ 1

√
PD(a+ 1)t)

) 1
a
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CHAPTER V

GENERALIZED HUXLEY EQUATION

Following the previous procedure, we can apply this Lie symmetry method to solve the gener-

alized Huxley equation. In this section, we consider the generalized Huxley equation :

∂u

∂t
−D∂

2u

∂x2
= Pu2(1− ua)(ua + 1), (61)

with the parametric assumption

D > 0, P > 0, a > 0.

Lie point symmetries are obtained by differentiating the symmetry condition with respect to ε = 0.

We obtain the linearized symmetry condition

X(2)∆ = 0 when ∆ = 0, (62)

where

X(2) = ξ∂x + η∂u + ηx∂ux + ηt∂ut + ηxx∂uxx + ηxt∂uxt + ηtt∂utt ,

60



So the surface u = u(x, t) is invariant provided that

η − ξux − τut = 0 when u = u(x, t). (63)

Also, we have:
∂2u

∂x2
=

1

D

(
∂u

∂t
+ Pu2a+2 − Pu2

)
. (64)

So,we have the linearized symmetry condition:

ηt −Dηxx = −(2a+ 2)Pu2a+1η + 2Puη (65)

5.1 Classical symmetries

If X generates classical symmetries of the PDE, it satisfies the linearized symmetry condition

(62).

Also, we have the formulas:

ηt = ηt − ξtux + (ηu − τt)ut − ξuuxut − τuut2

ηxx = ηxx + (2ηxu − ξxx)ux − τxxut + (ηuu − 2ξxu)ux
2

−2τxuuxut − ξuuux3 − τuuux2ut + (ηu − 2ξx)uxx

−2τxuxt − 3ξuuxuxx − τuutuxx − 2τuuxuxt
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Substituting these formulas into the linearized condition, we get:

ηt − ξtux + (ηu − τt)ut − ξuuxut − τuut2 + 2Dτxuuxut +Dτuuux
2ut + 2Dτxuxt

−Dηxx −D(2ηxu − ξxx)ux +Dτxxut +Dξuuu
3
x −D(ηuu − 2ξxu)u

2
x + 2Dτuuxuxt

−(ηu − 2ξx − τuut − 3ξuux)(ut + Pu2a+2 − Pu2) = −P
(
(2a+ 2)u2a+1 − 2u

)
η.

Once uxx has been replaced by the right-hand side of (64), the highest-order derivative terms in

(65) have a factor uxt. We start by writing down those terms alone:

0 = −2Dτxuxt − 2Dτuuxuxt

This leads to:

τx = τu = 0,

which removes many terms from the linearized symmetry condition; the remaining terms are:

ηt − ξtux + (ηu − τt)ut − ξuuxut −Dηxx −D(2ηxu − ξxx)ux +Dξuuux
3 (66)

−D(ηuu − 2ξxu)u
2
x − (ηu − 2ξx − 3ξuux)(ut + Pu2a+2 − Pu2) = −P

(
(2a+ 2)u2a+1 − 2u

)
η

In the equation(66),the terms multiplied by ut are:

(ηu − τt)ut − ξuuxut − (ηu − 2ξx − 3ξuux)ut = 0.
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This yields two determining equations:

ξu = 0, ξx =
1

2
τ ′(t)

Hence

ξ =
1

2
τ ′(t)x+ α(t),

for some function α, the remaining linearized symmety condition becomes:

ηt − ξtux −Dηxx − 2Dηxuux −Dηuuu2x

−(ηu − 2ξx)(Pu
2a+2 − Pu2) = −P

(
(2a+ 2)u2a+1 − 2u

)
η.

And then splitting the resulting equation by equating powers of ux, we obtain the determining

equations for ξ and η as follows:

[ux]
2 : Dηuu = 0,

[ux]
1 : ξt + 2Dηxu = 0, (67)

[ux]
0 : ηt −Dηxx − Pu2a+2ηu + ηuPu

2 + 2Pu2a+2ξx − 2Pξxu
2 = −(2a+ 2)Pu2a+1η + 2Puη

For the first and second equation of system(67), we get:

ηuu = 0

From the second equation , we get:

1

2
τ ′′x+ α′ + 2Dηxu = 0
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So we have:

η =

(
− 1

8D
τ(t)′′x2 − 1

2D
α(t)′x+ C1(t)

)
u+ C2(x, t)

Substituting those into the third equation of system(67) and equating powers of u, we obtain:

[u]0 : C2t −DC2xx = 0,

[u]1 : − 1

8D
τ(t)′′′x2 − 1

2D
α(t)′′x+ C1t(t) +

1

4
τ(t)′′ = 2PC2(x, t),

[u]2 :

(
− 1

8D
τ(t)′′x2 − 1

2D
α(t)′x+ C1(t)

)
− τ(t)′ = 2

(
− 1

8D
τ(t)′′x2 − 1

2D
α(t)′x+ C1(t)

)
,

[u]2a+1 : −(2a+ 2)C2 = 0, (68)

[u]2a+2 :
1

8D
τ(t)′′x2 +

1

2D
α(t)′x− C1(t) + τ(t)′ = −(2a+ 2)

(
− 1

8D
τ(t)′′x2 − 1

2D
α(t)′x+ C1(t)

)
.

Since if a = 1
2
, we can combine the third and fourth equations together, so we have two cases:

Case 1: when a = 1
2
, the system(68) becomes:

[u]0 : C2t −DC2xx = 0,

[u]1 : − 1

8D
τ(t)′′′x2 − 1

2D
α(t)′′x+ C1t(t) +

1

4
τ(t)′′ = 2PC2(x, t),

[u]2 : − 1

8D
τ(t)′′x2 − 1

2D
α(t)′x+ C1(t) + τ(t)′ − 3C2(x, t) = 0,

[u]3 : 2

(
1

8D
τ(t)′′x2 +

1

2D
α(t)′x− C1(t)

)
− τ(t)′ = 0.

Solving this system, we obtain:

τ ′ = 0;α′ = 0, C1 = 0, C2 = 0

So ξ = C4, η = 0, τ = C3, where C3, C4 are arbitrary constants.
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Case 2: when a 6= 1
2
, we have the system(68).

So from the fourth equation of system(68), we get C2 = 0. The system turns to:

[u]1 : − 1

8D
τ(t)′′′x2 − 1

2D
α(t)′′x+ C1t(t) +

1

4
τ(t)′′ = 0,

[u]2 : − 1

8D
τ(t)′′x2 − 1

2D
α(t)′x+ C1(t)− τ(t)′ = 2

(
− 1

8D
τ(t)′′x2 − 1

2D
α(t)′x+ C1(t)

)
, (69)

[u]2a+2 :

(
− 1

8D
τ(t)′′x2 − 1

2D
α(t)′x+ C1(t)− τ(t)

)
= (2a+ 2)

(
− 1

8D
τ(t)′′x2 − 1

2D
α(t)′x+ C1(t)

)
.

Solving this system, we obtain:

τ ′ = 0;α′ = 0, C1 = 0, C2 = 0

So ξ = C4, η = 0, τ = C3, where C3, C4 are arbitrary constants.

So we have:

Q = −C4ux − C3ut

It is the same to:

ut = −cux.

Substituting into the equation, we get:

−c∂u
∂x
−D∂

2u

∂x2
= Pu2(1− ua)(ua + 1),
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So it turns to search for the traveling wave solution.

Also, we can find that in the system(68),if a = −1
2
, we can combine the first and fourth equations

together, second and fifth equations togeter. The equation(61) becomes the generalized Fisher’s

equation, which is:
∂u

∂t
−D∂

2u

∂x2
= Pu(u− 1).

Following the same procedure, it turns to search for the traveling wave solution for it.

5.2 Nonclassical symmetries

If X generates the nonclassical symmetries of the PDE, it satisfies the linearized symmetry

condition (62) and (63).

There are two sorts of nonclassical symmetries , those where the infinitesimal τ is zero, and those

where it is non-zero.

Case 1: τ = 0, without loss of generality, we can assume that ξ ≡ 1.

Now , we have ξ = 1; τ = 0.Since

Q = η − ξux − τut = 0

ux = η.

Also the linearized condition becomes:

ηt −Dηxx − 2Dηxuη −Dηuuη2 − ηu(Pu2a+2 − Pu2) = −P
(
(2a+ 2)u2a+1 − 2u

)
η.

In order to solve for η, we can try the ansatze that η = P2u
2 + P1u + P0. Substituting into the

above equation, and comparing the powers of u.
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Subcase 1: when a 6= 1
2
,we have:

[u]4 : −2DP2
3 = 0,

[u]3 : −4DP1P2
2 = 0,

[u]2 : −2DP2P1
2 − 4DP0P2

2 = PP1,

[u]1 : −4DP0P2P1 = 2P0P,

[u]0 : −2DP0
2P2 = 0,

[u]2a+3 : −2PP2 = −(2a+ 2)PP2,

[u]2a+2 : −PP1 = −(2a+ 2)PP1,

[u]2a+1 : −(2a+ 2)PP0 = 0.

Solving this system, we obtain:

P0 = 0;P1 = 0;P2 = 0.

So η = 0, u = u(t). Equation(61) turns to:

du

dt
= Pu2(1− ua)(ua + 1).

Subcase 2: when a = 1
2
, we have :
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[u]4 : −2DP2
3 − 2PP2 = −3PP2,

[u]3 : −4DP1P2
2 − PP1 = −3PP1,

[u]2 : −2DP2P1
2 − 4DP0P2

2 = PP1 − 3P0P,

[u]1 : −4DP0P2P1 = 2P0P,

[u]0 : −2DP0
2P2 = 0.

Solving this system, we get:

1: P0 = 0;P1 = 0;P2 = 0, the equation(61) becomes:

du

dt
= Pu2(1− u).

Soving it , we get the implicit solution:

1

u
+ ln

−Pu+ P

u
= −P (t+ c1),

where c1 is an arbitrary number.

2: P0 = 0;P1 = 0;P2 = ±
√

P
2D

, so η = ±
√

P
2D
u2. We have the system:
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ux = ±
√

P

2D
u2,

∂u

∂t
−D∂

2u

∂x2
= Pu2(1− u).

Solving the system:

u =
1

−Pt±
√

P
2D
x+ c1

3: P0 = 0;P1 = ∓
√

P
2D

;P2 = ±
√

P
2D

, so η = ±
√

P
2D
u(u− 1). We have the system:

ux = ±
√

P

2D
u(u− 1),

∂u

∂t
−D∂

2u

∂x2
= Pu2(1− u).

Solving the system:

u =
1

1 + c1e
−P

2
t∓
√

P
2D
x

Case 2:τ equals a nonzero constant. For simplicity, we can set τ = 1.

ut = η − ξux.
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We have the formulas:

ηx = ηx + (ηu − ξx)ux − ξu(ux)2,

ηt = ηt − ξtux + ηuut − ξuuxut,

ηxx = ηxx + (2ηxu − ξxx)ux + (ηuu − 2ξxu)(ux)
2

−ξuu(ux)3 + (ηu − 2ξx)uxx − 3ξuuxuxx,

ηxt = ηxt + (ηtu − ξxt)ux + ηxuut − ξtu(ux)2

+(ηuu − ξxu)uxut − ξuu(ux)2ut − ξtuxx

−ξuutuxx + (ηu − ξx)uxt − 2ξuuxuxt,

ηtt = ηtt − ξttux + 2ηtuut − 2ξtuuxut

+ηuu(ut)
2 − ξuuux(ut)2 − 2ξtuxt

−2ξuutuxt + ηuutt − ξuuxutt.

After substitution, rewriting equation (62) gives

ηt −Dηxx = −(2a+ 2)Pu2a+1η + 2Puη

Substituting these formulas, we get:

ηt − ξtux + ηu(η − ξux)− ξuux(η − ξux)

−Dηxx −D(2ηxu − ξxx)ux +Dξuuu
3
x −D(ηuu − 2ξxu)u

2
x

−(ηu − 2ξx)(η − ξux + Pu2a+2 − Pu2) + 3ξuuxη

+3ξuux(−ξux + Pu2a+2 − Pu2) = −P (2a+ 2)u2a+1η + 2Puη.
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Splitting the resulting equation by equating powers of ux, we obtain the determining equations for

ξ and η as follows:

[ux]
3 : Dηuu = 0,

[ux]
2 : D(ηuu − 2ξxu) + 2ξuξ = 0,

[ux]
1 : ξt + 2Dηxu −Dξxx + 2ξxξ − 2ξuη − 3Pξuu

2a+2 + 3ξuPu
2 = 0, (70)

[ux]
0 : ηt −Dηxx − Pu2a+2ηu + ηuPu

2 + 2ξxη + 2Pu2a+2ξx − 2Pξxu
2 = −(2a+ 2)Pu2a+1η + 2Puη

Although the above system contains some nonlinear equations and looks complicated, it can be

solved since it happens to be of a triangle form. Solving the first equation of system (70) gives

ξ = A(x, t)u+B(x, t). (71)

Substituting (71) into the second equation of system (70) yields

η = Axu
2 − 1

3D
A2u3 − 1

D
ABu2 + Eu+ F, (72)

where A, B, E, and F are functions of x and t to be determined.

Subcase 1: if a 6= 1
2
, substituting (71) and (72) into the third equation of system (70),after equating

the coefficients of the powers of u, we obtain :
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[u]0 : −Bt − 2DEx +DBxx + 2AF − 2BBx = 0,

[u]1 : −At − 4D(Axx −
1

D
AxB −

1

D
ABx) +DAxx + 2AE − 2BAx − 2ABx = 0,

[u]2 : 4AAx − 2
1

D
A2B − 3AP = 0,

[u]3 : − 2

3D
A3 = 0,

[u]2a+2 : 3AP = 0.

Solving this system, we get:A = 0,so:

ξ = B(x, t), η = Eu+ F.

Substituting ξ and η into the fourth equation of system (70),we obtain :

Et −DExx + 2EBx = 2PF,

Ft −DFxx + 2FBx = 0,

−2BxP = PE,

−(E − 2Bx)P = −2PE(a+ 1),

−2PF (a+ 1) = 0,

−Bt − 2DEx +DBxx − 2BBx = 0.

Solving this system, we get,

E = 0; F = 0; Bx = 0; Bt = 0.
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so

ξ = Const, η = 0.

So we have:

ut = −cux.

Substituting into the equation, we get:

−c∂u
∂x
−D∂

2u

∂x2
= Pu(1− ua)(ua + 1),

So it turns to search for the traveling wave solution.

Subcase 2: if a = 1
2
, substituting (71) and (72) into the third equation of system (70),after equating

the coefficients of the powers of u, we obtain :

[u]0 : −Bt +DBxx − 2DEx + 2AF − 2BBx = 0,

[u]1 : −At + 2BAx − 3DAxx + 2ABx + 2AE = 0,

[u]2 : 4AAx −
2A

D
AB − 3AP = 0, (73)

[u]3 : −2
A3

3D
+ 3AP = 0.

Solving this system:

If A = 0,substituting ξ and η into the fourth equation of system (70),we obtain :
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Et −DExx + 2EBx = 2PF,

−Bt +DBxx − 2DEx − 2BBx = 0,

Ft −DFxx + 2FBx = 0,

−2BxP = PE − 3PF,

−(E − 2Bx)P = −3PE.

we get that: E = 0, F = 0, Bx = 0, Bt = 0

So :

ξ = Const, η = 0.

It turns to search for the traveling wave solution.

If A 6= 0,solving the system(73), we get that:

E = 0, A = ±3
√

DP
2
, B = ∓

√
DP
2

substituting the fourth equation of system (70),we obtain :

Ft −DFxx = −3PFu2 + 2PFu.

So F = 0.

We have:

ξ = ±(3

√
DP

2
u−

√
DP

2
), η =

3

2
Pu2(1− u).

It gives the nonclassical symmetry generators

X = ξ∂x + τ∂t + η∂u = ±(3

√
DP

2
u−

√
DP

2
)∂x + ∂t +

3

2
Pu2(1− u)∂u
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The invariant surface condition for the nonclassical symmetries is

ut ± (3

√
DP

2
u−

√
DP

2
)ux =

3

2
Pu2(1− u)

Solving it by the method of characteristics. The characteristic equation is:

dx

±
√

DP
2

(3u− 1)
=
dt

1
=

du
3
2
Pu2(1− u)

.

The two functionally independent invariants are:

r = (
1

u
− 1)e

P
2
t±
√

P
2D
x, v =

1

u
+ Pt∓

√
P

2D
x

Now we substitute v = F (r) into the equation (61), which reduces to

F ′′ = 0

Therefore F (r) = c1r + c2; writing this in terms of the original variables, we obtain

u =
1− c1e

P
2
t±
√

P
2D
x

−Pt±
√

P
2D
x− c1e

P
2
t±
√

P
2D
x + c2

The solution with c1 6= 0 are not obtainable by any classical reduction. If c1 = 0, the solution
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v = c2 is a traveling wave.That is:

u =
1

−Pt±
√

P
2D
x+ c2

There is also a traveling wave solution is when r = c3, that is:

u =
1

1 + c3e
−P

2
t∓
√

P
2D
x

In fact, we have already obtained these two traveling wave solution in the case τ ≡ 0, ξ ≡ 1.

Similarily,when a = −1
2
,following the same procedure, we get the travling wave solution for

the Fisher’s equation. The result matches with the result that has been derived in the literature.

Ablowitz and Zeppetella.

Also, for the general case

ut = uxx + f(u),

using the Lie symmetry method, we can obtain the generators and exact solutions for different f(u).

f(u) ξ τ η

−u3 3
√
2u
2

1 −3
2
u3

−u3 − u 3
√
2u
2

1 −3
2
(u3 + u)

−u3 − bu2 3
√
2u
2

+
√
2b
2

1 −3
2
(u3 + bu2)

−u3 + 2u2 − 2u 3
√
2u
2
−
√

2 1 −3
2
(u3 − 2u2 + 2u)
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f(u) u(x, t)

−u3
√
2(2x+k1)

x2+k1x+6t+k2

−u3 − u k2 sin(
√

2x
2

)

k1 exp(
3t
2
)+k2 cos(

√
2x
2

)

−u3 − bu2 − bk1 exp[
1
2
(
√
2bx+b2t)]+

√
2k2

k1 exp[
1
2
(
√
2bx+b2t)]+k2(x−

√
2bt)

−u3 + 2u2 − 2u
k2[cos(

√
2x
2
−t)+sin(

√
2x
2
−t)]

k1 exp(
√
2x
2

+2t)+k2 cos(
√
2x
2
−t)
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CHAPTER VI

ADOMIAN DECOMPOSITION METHOD FOR GENERALISED HUXLEY EQUATION

In this chapter, we will use the adomian decomposition method to get the approximate solutions

for the generalised Huxley equation.

6.1 Introduction of the Adomian decomposition method

We begin with the equation

Lu+R(u) +N(u) = g(t), (74)

where L is the operator of the highest-ordered derivatives of t and R is the remainder of the linear

operator. The nonlinear term is represented by N(u).

Thus we get

Lu = g(t)−R(u)−N(u). (75)

The inverse,

L−1 =

∫ t

0

(.)dt, (76)

operating with the operator L−1 on both sides of Eq. (74) we have
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u = f0 + L−1(g(t)−R(u)−N(u)), (77)

where f0 is the solution of homogeneous equation

Lu = 0

The Adomian decomposition method assume that the unknown function u(x, t) can be expressed

by an infinite series of the form

u(x, t) =
∞∑
n=0

un(x, t) (78)

and the nonlinear operator N(u) can be decomposed by an infinite series of polynomials given by

N(u) =
∞∑
n=0

An, (79)

where un(x, t) will be determined recurrently, andAn are the so-called polynomianls of u0, u1, ..., un

defined by

An =
1

n!

dn

dλ

[
F

(
∞∑
n=0

λiui

)]
λ=0

, n = 0, 1, 2, ... (80)

The solution of the nonlinear PDEs in the form (74) with the initial u(x, 0) = f(x) can be deter-

mined by the series (78) with the iterative
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u0(x, t) = f(x);

un+1(x, t) = −L−1(−R(un)− An), n ≥ 0,

In this method, the definition of the L operator avoids difficult integrations involving Green’s func-

tions. The use of a finite approximation in series form for the excitation term, and calculation only

to necessary accuracy simplifies integrations still further.

6.2 Adomian decomposition method for generalised Huxley equation

Applying the inverse operator L−1 on both sides of Eq. (58) and using the initial condition we

find

u(x, t) = f(x)− L−1(−Duxx − Pu2(1− u2a)) (81)

Substituting (78) and (79) into the functional eqation (nov 8) gives

∞∑
n=0

un(x, t) = f(x)− L−1
(
−D(

∑
un)xx + P

∞∑
n=0

An

)
(82)

Identifying the zeros component u0(x, t) by f(x), the remaining components n ≥ 1 can be deter-

mined by using the recurrence relation
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u0(x, t) = f(x);

un+1(x, t) = −L−1 (−D(un)xx + PAn) , n ≥ 0,

where An are Adomian polynomials that represent the nonlinear term(u2(1− u2a)) and given by

A0 = u20 − u2a+2
0 ,

A1 = 2u1u0 − (2a+ 2)u1u
2a+1
0 ,

A2 = 2u2u0 + u1
2 − (2a+ 2)u2u

2a+1
0 − 1

2
(2a+ 2)(2a+ 1)u1

2u0
2a.

Other polynomials can be generated in a similar way. The first few components of un(x, t)

follows immediately upon setting

u0(x, t) = f(x),

u1(x, t) = −L−1 (−D(u0)xx + PA0) ,

u2(x, t) = −L−1 (−D(u1)xx + PA1) .

u3(x, t) = −L−1 (−D(u2)xx + PA2) .

So:
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uApproximation(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t).

Consider two cases:

Case (i) u0(x, t) = f(x) = 1√
P
2D
x
.

Then

u1(x, t) =

∫ t

0

(
D(u0)xx − Pu02 + Pu0

2a+2
)
dt.

Substituting u0, we obtain:

u1(x, t) = 2Dt[
2D

P

√
P

2D
x−3 − x−2 + (

2D

P
)ax−2−2a].

Following the fomulas:

u2(x, t) =

∫ t

0

(
D(u1)xx − 2Pu1u0 + P (2a+ 2)u1u0

2a+1
)
dt.

Substituting u0 and u1, we obtain:

u2(x, t) = t2D2[
24D

P

√
P

2D
x−5 − 10x−4 + 4

√
P

2D
x−3

+(6a+ 10)(a+ 1)(
2D

P
)ax−2a−4 − 4(a+ 2)

√
P

2D
(
2D

P
)ax−2a−3

+4(
2D

P
)2a
√

P

2D
(a+ 1)x−3−4a]

82



Similarly,

u3(x, t) =

∫ t

0

(
D(u2)xx − 2Pu2u0 − Pu12 + P (2a+ 2)u2u0

2a+1 + P (a+ 1)(2a+ 1)u1
2u0

2a
)
dt.

Substituting u0 , u1 and u2, we obtain:

u3(x, t) =
t3

3
D2[720

D2

P

√
P

2D
x−7 − 256Dx−6 + 104D

√
P

2D
x−5 − 12Px−4

+D(a+ 1)(
2D

P
)a[(6a+ 10)(2a+ 4)(2a+ 5) + 16a+ 56]x−2a−6

+[(−16a3 − 112a2 − 264a− 192)D

√
P

2D
+ 4P (a+ 1)(2a+ 1)(

2D

P
)2a]x−2a−5

+8D(11a2 + 26a+ 13)(a+ 1)(
2D

P
)2a
√

P

2D
x−5−4a

+4P (
2D

P
)a(4Pa+ 8P + 2a2 + 3a+ 1)x−2a−4 − 4P (6a2 + 14a+ 9)(

2D

P
)2ax−4−4a

+4P (a+ 1)(4a+ 3)(
2D

P
)3ax−6a−4]

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t).

Case (ii) u0(x, t) = f(x) = 1

1+e

√
P
2D

x
.

Then

u1(x, t) =

∫ t

0

(
D(u0)xx − Pu02 + Pu0

2a+2
)
dt.
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Substituting u0, we obtain:

u1(x, t) = Pt

[
e2
√

P
2D
x − e

√
P
2D
x

2(1 + e
√

P
2D
x)3

− 1

(1 + e
√

P
2D
x)2

+
1

(1 + e
√

P
2D
x)2a+2

]
.

Following the fomulas:

u2(x, t) =

∫ t

0

(
D(u1)xx − 2Pu1u0 + P (2a+ 2)u1u0

2a+1
)
dt.

Substituting u0 and u1, we obtain:

u2(x, t) =
t2

2
P 2[(−4e3

√
P
2D
x + e2

√
P
2D
x + e4

√
P
2D
x)(1 + e

√
P
2D
x)−5

+(−2e2
√

P
2D
x − 3

4
e3
√

P
2D
x +

3

4
e
√

P
2D
x)(1 + e

√
P
2D
x)−4 + (2 + e

√
P
2D
x)(1 + e

√
P
2D
x)−3

−
(

(a+ 1)e
√

P
2D
x + 2a+ 4

)
(1 + e

√
P
2D
x)−2a−3

+(a+ 1)
(

(2a+ 4)e2
√

P
2D
x − e

√
P
2D
x
)

(1 + e
√

P
2D
x)−2a−4 + 2(a+ 1)(1 + e

√
P
2D
x)−4a−3]

Similarly,

u3(x, t) =

∫ t

0

(
D(u2)xx − 2Pu2u0 − Pu12 + P (2a+ 2)u2u0

2a+1 + P (a+ 1)(2a+ 1)u1
2u0

2a
)
dt.

Substituting u0 , u1 and u2, we obtain:
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u3(x, t) =
t3

6
P 3[(20e2

√
P
2D
x +

37

2
e4
√

P
2D
x − 9

2
e3
√

P
2D
x − 7

2
e
√

P
2D
x)(1 + e

√
P
2D
x)−5

+(−60e5
√

P
2D
x + 15e4

√
P
2D
x + 15e6

√
P
2D
x)(1 + e

√
P
2D
x)−7

+(
175

2
e4
√

P
2D
x − 11e3

√
P
2D
x − 15e5

√
P
2D
x − 5

2
e2
√

P
2D
x)(1 + e

√
P
2D
x)−6

+(−27

8
e3
√

P
2D
x − 17

2
e2
√

P
2D
x − 23e

√
P
2D
x − 6)(1 + e

√
P
2D
x)−4

+
1

2
e
√

P
2D
x(1 + e

√
P
2D
x)−3 + (−a

2
e
√

P
2D
x − 1

2
e
√

P
2D
x)(1 + e

√
P
2D
x)−2a−3

+((7a2 +
39

2
a+

25

2
)e2
√

P
2D
x + (2a2 +

21

2
a+

19

2
)e
√

P
2D
x

+4a2 + 14a+ 18)(1 + e
√

P
2D
x)−2a−4

+(−(a+ 1)(12a2 + 47a+
95

2
)e3
√

P
2D
x − (4a3 + 27a2 + 51a+ 33)e2

√
P
2D
x

+(4a2 +
19

2
a+

15

2
)e
√

P
2D
x)(1 + e

√
P
2D
x)−2a−5

+((a+ 1)((a+ 2)(2a+ 5)(2a+ 4) + a+
5

2
)e4
√

P
2D
x − (a+ 1)(2a2 + 7a+ 1)e3

√
P
2D
x

+(a+ 1)(a+
5

2
)e2
√

P
2D
x)(1 + e

√
P
2D
x)−2a−6

+((a+ 1)(20a2 + 44a+ 22)e2
√

P
2D
x − 6(a+ 1)2e

√
P
2D
x)(1 + e

√
P
2D
x)−4a−5

+(−(a+ 1)(6a+ 5)e
√

P
2D
x − 12a2 − 28a− 18)(1 + e

√
P
2D
x)−4a−4

2(a+ 1)(4a+ 3)(1 + e
√

P
2D
x)−6a−4]

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t).
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CONCLUSION

In this work, we presented the theory of the Lie symmetry method, then apply it to the study of

the generalized Burgers-Huxley equation. Through analyzing the linearized symmetry condition

and the associated determining system, we find two nontrivial infinitesimal generators, and obtain

exact solutions by solving the reduced differential equation under certain parametric conditions.

An approximate solution of the generalized Burgers-Huxley equation was described by means of

the Adomian decomposition method.

86



REFERENCES

[1] Ablowitz M.J. and Segur H. (1981) Solitons and the Inverse Scattering Transform. Philadel-
phia: SIAM.

[2] Aronson D.G. and Weinberger H.F. (1975) Nonlinear diffusion in population genetics, com-
bustion, and nerve pulse propagation. Partial Differential Equations and Related Topics, vol.
446. Beilin: Springer, pp. 5–49.

[3] Beltrami, E.J. (1997) Mathematics for Dynamic Modeling, Second Edition. New York: Aca-
demic Press.

[4] Bluman, G.W. and Kumei, S. (1989) Symmetries and Differential Equations. New York:
Springer-Verlag.

[5] Britton, N.F. (1986) Reaction-Diffusion Equations and Their Applications to Biology. New
York: Academic Press.

[6] Burgers, J.M. (1939) Mathematical examples illustrating relations occurring in the theory of
turbulent fluid motion. Trans. R. Neth. Acad. Sci. 17, 1–53.

[7] Burgers, J.M. (1948) A mathematical model illustrating the theory of turbulence. Adv. Appl.
Mech. 1, 171–199.

[8] Deng, X.J. (2008) Travelling wave solutions for the generalized Burgers-Huxley equation.
Appl. Math. Comput. 204, 733–737.

[9] Estevez, P.G. and Gordoa, P.R. (1990) Painlevé analysis of the generalized Burgers-Huxley
equation. J. Phys. A: Math. Gen. 23, 4831–4837.

[10] Feng, Z. (2002) The first-integral method to the Burgers-KdV equation. J. Phys. A: Math.
Gen. 35, 343–350.

[11] Hashim, I., Noorani, M.S.M. and Said Al-Hadidi, M.R. (2006) Solving the generalized
Burgers-Huxley equation using the Adomian decomposition method. Math. Comput. Mod-
elling. 43, 1404–1411.

[12] Hodgkin, A. and Huxley, A. (1952) A quantitative description of membrane current and its
application to conduction and excitation in nerve. J. Physiol. 117, 500–544.

87



[13] Hydon, P.E. (2000) Symmetry Methods for Differential Equations. New York: Cambridge
University Press.

[14] Ibragimov, N.H. (1994) CRC handbook of Lie Group Analysis of Differential Equations (Sym-
metries, Exact Solutions, and Conservation Law), vol. 1. Boca Raton: CRC press.

[15] Murray J.D. (2004) Mathematical Biology. New York: Springer-Verlag.

[16] Olver, P.J. (1993) Applications of Lie Groups to Differential Equations. New York: Springer
Verlag.

[17] Satsuma, J. (1987) Topics in Soliton Theory and Exactly Solvable Nonlinear Equations (M.
Ablowitz, B. Fuchssteiner, M. Kruskal, ed.). Singapore: World Scientific.

[18] Takeuchi, Y., Iwasa, Y. and Sato, K. (2010) Mathematics for Life Science and Medicine (Bi-
ological and Medical Physics, Biomedical Engineering). Berlin: Springer.

[19] Volpert, A.I., Volpert, V.A. and Volpert, V.A. (1994) Traveling Wave Solutions of Parabolic
Systems (Translations of Mathematical Monographs), vol. 140. Providence: Amer. Math. Soc.

[20] Wang, X.Y., Zhu, Z.S. and Lu, Y.K. (1990) Solitary wave solutions of the generalized Burger-
Huxley equation. J. Phys. A: Math. Gen. 23, 271–274.

[21] P.E. Hydon, “Symmetry Methods for Differential Equations", Cambridge University Press,
New York, 2000.

[22] P.J. Olver, “Applications of Lie Groups to Differential Equations", Springer Verlag, New
York, 1993.

[23] Matthew P. Coleman, An introduction to partial differential equations with MATLAB , Boca
Raton, Fla. : CRC Press, 2005.

[24] M. Senthil Velan and M. Lakshmanan, Lie symmetries and infinite-dimensional Lie algebras
of certain nonlinear dissipative systems. J. Phys. A (Math. Gen.) 28 (1995), 1929–1942.

[25] X Y Wang and Z S Zhu and Y K Lu,Solitary wave solutions of the generalised Burgers-
Huxley equation. J. Phys. A (Math. Gen.) 23 (1990),

[26] I.Hashim, M.S.M. Noorani and B.Batiha, A note on the Adomian decomposition method for
the generalized Huxley equation

[27] Hassan N.A. Ismail, Kamal Raslan and Aziza A. Abd Rabboh, Adomian decomposition
method for Burger’s-Huxley and Burger’s-Fisher equations

88



BIOGRAPHICAL SKETCH

Jing Tian, the daughter of Tongbin Tian and Xiaomei Liu, was born in China in 1989. She

received her bachelor degree in Mathematics from China University of Mining and Technology,

Xuzhou, Jiangsu, China in June of 2010. In August of 2010, she joined the Mathematical Master’s

Program at the University of Texas-Pan American, Edinburg, Texas. Her main research interests

were in Differential Equations and Dynamic Systems. Her permanent mailing address is: No16.

Dangxiao Rd, Shishou city, Hu Bei province, P.R.China, 434400.

89


	Qualitative Analysis of The Burgers-Huxley Equation
	Recommended Citation

	tmp.1681836376.pdf.s5Zt3

