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ABSTRACT 

 

Torres, Jesus A., Subthreshold 3 Phase Mixer. Master of Science (MS), December, 2011, 57 pp., 

40 figures, 23 references.  

 This thesis will discuss subthreshold FET mixers with a focus on conversion loss 

derivations. To begin understanding the mixers, a look into the FET model is first taken in 

Chapter II. Then in Chapter III, a single FET device mixer is studied and its conversion loss is 

found from its small-signal model. The chapter will then include a two FET device mixer and a 

four device FET mixer. Finally a new type of mixer will be discussed in Chapter IV. 

 The new type of mixer is a 3 phase mixer with the phase angles being 0°, 120°, and 240°. 

The theoretical conversion loss is found by treating the FETs as simple switches and a square 

wave as the RF signal. The resulting conversion loss is shown to be better than the previous 

mixers mentioned. The thesis will conclude with a discussion of future areas of work for the 

mixer.  
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CHAPTER I 

 

 

INTRODUCTION 

 

 

1.1 Background of mixers 

 Many great advances in technology have emerged during the darkest hour of mankind, 

such as a war, and the mixer is one of those examples. Major Edwin Armstrong is given credit as 

creating the mixer and is the inventor of the super heterodyne receiver. The mixers of that time 

used vacuum tubes, instead of semiconductor devices, to convert a radio frequency (RF) into an 

intermediate frequency (IF) by the help of a local oscillator (LO). It was not until World War II 

that mixer design really took off. 

 This was due in part thanks to the Massachusetts Institute of Technology Radiation 

Laboratories (MIT Rad Lab) for their efforts in creating a radio system to pin point the location 

of specific targets at a distance. This was later named by the Navy as Radio Detection and 

Ranging (RADAR).  Where a RADAR is essentially a microwave transmitter and receiver that 

uses a mixer to either upconvert or downcovert a signal.  Major Edwin Armstrong’s use of 

vacuum tubes in mixers proved to work quite well, but RADAR systems needed to be more 

efficient. Throughout the next years diode fabrication improved which lead to higher mixer 

efficiency. Currently diode based mixers have reached research maturity, and semiconductor 

devices have expanded to the development of field-effect transistors (FETs). Currently active 

research in mixers has been to incorporate FETs into mixers. 
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1.2 Semiconductor devices for mixers 

 The transition into semiconductor devices is due in part because it has improved mixer 

conversion loss. Other benefits are that the frequency can be increased far into the gigahertz area 

and the mixer will also have low-noise, where both tend to coincide almost as a byproduct of 

each other. The semiconductor devices that have been used before are the point-contact diode 

and the Schottky diode. Both diodes are somewhat similar in some sense, because they involve a 

semiconductor piece with metal. The point-contact diode is exactly what the name implies; a 

conductive piece of metal with a sharp point makes contact with an n-type semiconductor. The 

Schottky diode has a bigger surface area which makes contact between the metal and the 

semiconductor. This makes a metal-semiconductor junction and forms a Schottky barrier. With 

better fabrication process this Schottky barrier could be achieved in metal-semiconductor FETs 

(MESFETs), which are fabricated from Gallium Arsenide (GaAs). The interest to use these types 

of FETs with mixers is that conversion gain can be achieved rather than loss due to a transistor’s 

transconductance.  

  Another key point is that a mixer composed of GaAs MESFETs can be implemented in 

monolithic microwave integrated circuits (MMICs). Diodes may also be fabricated into MMICs 

but they have to follow the same template as a transistor and this will cause problems in 

producing high quality diodes. Necessary balun circuits for diodes are also another problem 

when fabricating them for MMIC, which requires them to be built separately or in the majority 

of the cases an RF transformer is used. A FET mixer may use planar baluns that will be easier to 

implement in MMICs.  

 Another transistor that has also appeared is the high electron mobility transistor (HEMT) 

which is made from gallium nitride (GaN). These transistors work in higher frequencies and 
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handle more power than GaAs MESFETs, although several HEMT devices are also made from 

GaAs. Both GaAs MESFETs and GaN HEMTs can be incorporated into MMICs either as GaAs 

MMICs or GaN MMICs.  

 

1.3 Mixer Basics 

 An RF mixer can essentially be thought of as a multiplier where two signals will be 

multiplied. In this case the RF signal will be multiplied by the LO signal and one of the outputs 

is filtered out. The remaining output signal is called the IF signal as in Figure 1.3.1. Normally the 

LO signal is applied to the gate of a FET device and causes its transconductance or conductance 

to vary. Thus the LO signal is sometimes called the pump waveform. The output of Figure 1.3.1 

is an ideal case generally a non-linear device will exhibit LO harmonics.   

 

Figure 1.3.1: Ideal RF Mixer 

 

 The mixer can be designed as a single FET device shown in Figure 1.3.2, two devices 

called singly balanced shown in Figure 1.3.3, or four devices called doubly balanced shown in 

Figure 1.3.4. In some cases the FET device can have a dual gate, but in this thesis dual gate FETs 

will not be shown. Each mixer has its own advantages and will be discussed further. It is also 

important to note that no drain bias will be applied making these mixers resistive. 
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Figure 1.3.2: Single Device Resistive FET Mixer 

 

 

Figure 1.3.3: Singly Balanced Resistive FET Mixer 
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Figure 1.3.4: Doubly Balanced Resistive FET Mixer 

 

1.4 Thesis Proposal 

 The thesis deals with subthreshold type mixers where the main goal is to improve the 

conversion loss. A background in existing mixers will be shown to understand how a mixer 

operates and derivations for conversion loss will be studied. A 3 phase mixer will be introduced 

in the end as a new type of mixer.  

 

1.5 Thesis Outline  

 This thesis has been prepared as the following chapters. Chapter II discusses the 

MESFET transistors used by demonstrating the large signal and small signal models. The chapter 

will briefly discuss a de-embedding process that was taken to obtain some of its values. Chapter 

III deals with the mixers that were introduced at the beginning of this chapter. A conversion loss 

derivation of a single FET mixer will be discussed and show how to implement it with other 

types of mixers. Chapter IV will carry out the implementation of the mixers and its simulated 

results. Finally Chapter V will conclude the thesis and will mention steps for future work. 
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CHAPTER II  

 

 

FET DEVICES 

 

 

 As mentioned before, the device that was chosen for this thesis was a MESFET device. 

For subthreshold mixers, the device is biased at a voltage slightly below its threshold voltage and 

Vd is kept at 0 volts DC. This chapter will discuss the large-signal model, small-signal model and 

device measurements for modeling. Agilent ADS software was used to perform nonlinear 

simulations. 

 

2.1 Large-Signal Model 

 A large-signal model is needed for non-linear devices to characterize the internal 

elements as non-linear equations. These non-linear equations are then solved to produce an 

approximation of the device behavior. The large-signal model for a MESFET device is shown in 

Figure 2.1.1 where Vd is biased higher than zero volts. The elements Rds and Ci are used to model 

the effects of traps in the channel at bias voltage Vd. The capacitance Cds is a small capacitance 

and at Vd=0 it will be even smaller. Finally the resistance R i is a resistance created between the 

gate and the source that comes from the channel. 
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Figure 2.1.1: Large-Signal Model of MESFET - With Drain Bias 

 

 The main elements to take into consideration when converting to the resistive model are 

Ri, Ci, Rds, and Cds. All of these elements can be omitted because for resistive mixer there will be 

no drain bias and thus those elements will be negligible. The large-signal model is greatly 

reduced and is shown in Figure 2.1.2. 

 

Figure 2.1.2: Large-Signal Model of MESFET - No Drain Bias 

 

 For the resistive mixer the gate is kept near its threshold voltage and with no bias at the 

drain the IdVd models have to be adjusted to work for resistive FETs. The problem is that the 

existing FET IdVd models are for active devices as discussed in [1,4,6]. To model low drain 

voltages the drain current can be modeled as: 
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where u(Vg,Vd) is the normalized depletion width: 

                      .  

Vp is the pinchoff voltage, φ is the gate built-in potential, and I1 is a constant with dimensions of 

current. The channel conductance is found by differentiating (1) and leaving Vd=0: 

                       . 

The capacitance Cgd is an ideal Schottky-barrier capacitance and is shown as: 

               
  

 
     .  

 The MESFET transistor that was available to use in ADS is from NEC with model 

number NE71000. The IdVd curves were measured in ADS, simulation setup shown in Figure 

2.2.1, and are shown in Figure 2.2.2 and Figure 2.2.3.  

 

2.2 Small-Signal Model  

 With a small-signal model, the idea is to approximate the non-linear devices with linear 

equations. The small-signal model of a resistive mixer using a MESFET is much simpler as 

shown in Figure 2.2.4. The main thing to note is the channel conductance in that it is represented 

as two lumped capacitance, Cgs and Cgd. When Vds=0, Cgs≈Cgd and each is half the gate channel 

conductance. The current Id is replaced with g(Vg) and will be discussed in the next chapter in 

further detail.  



9 

 

 

Figure 2.2.1: ADS FET Curve Tracer Setup
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Figure 2.2.2: I-V Curves and Conductance at Vd = 0.1V 

 

 

Figure 2.2.3: I-V Curves and Conductance at Vd = 0.4V 

 

 

Figure 2.2.4: FET Small-Signal Model - No Drain Bias 
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2.3 Device Modeling and Parameter Extraction  

 The resistance and capacitances in the small-signal model can be found by doing a device 

measurement extraction. The device extraction follows the extraction methods of [17-22] where 

the extraction is found from using the Cold-FET techniques. The Cold-FET is basically having 

the device with no drain bias which is very similar to how the FET will be biased. The model for 

the FET after it has been packaged is shown in Figure 2.3.1 and is similar to Figure 2.2.4. The 

main concept is to provide a negative bias to pinch of the gate and drain., then measure the Y-

parameters from the device and find the package capacitors by using the imaginary portion of the 

Y-parameters. After finding these capacitances the next step is to bias the gate with a positive 

voltage and find the Z-parameters. From the Z-parameters the values of the capacitance are 

subtracted and the parasitic inductances can be found from the imaginary part. The real part of 

the Z-parameters is used to solve for the parasitic resistances Rg, Rs, and Rd. The device from 

ADS is a NE71000 MESFET and the setup for the extraction is shown in Figure 2.3.2.  

 The package capacitors are then found as such:  

Vd = 0 V, Vs = 0 V, Vg = -1.8V, 

Cpgd=Im(-Y12)/ω  

Cpgs=Im(Y11)/ω + Im(Y12)/ω 

Cpds=IM(Y22)/ω + Im(Y12)/ω 

where the values are of the capacitances are found from the simulation, shown in Figure 2.3.3: 

Cpgd =152.5 fF 

Cpgs = 122 fF 

Cpds = 225.8 fF 
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Figure 2.3.1: FET Packaged Model 

 

 

Figure 2.3.2: De-Embed Setup 
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Figure 2.3.3: Package Capacitances 
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Figure 2.3.4: Extrinsic Resistances 
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 The extrinsic resistances Rd,Rg, and Rs are shown in Figure 2.3.4, where they are found 

as:  

 

Vg = 0.5V Frequency: 10 GHz to 90 GHz 

Rs = 2.4 ohms 

Rg = 2.5 ohms 

where Rd appears to be in parallel with a capacitor. MATLAB is used to curve fit and is solved 

as: 

 

Figure 2.3.5: Rd parallel with a Capacitance 

 

Eqn Rg = real(Z(1,1)-Z(1,2))

Eqn Rd = real(Z(2,2)-Z(1,2))

Eqn Rs = real(Z(1,2))
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Rd = 2.02 

Cap_Rd = 4.55 pF 

 The parameter extraction for the package capacitances and extrinsic resistances were in 

good accordance with the references. The remainder of the parameters could be found by 

continuing on the extraction methods. It is important to note that for the device extraction it 

would be best to run the extraction in a lab with the actual device at hand. The reason being that 

in ADS the FET NE71000 uses a different transistor model than the models previously 

discussed. The ADS model for the FET is called EEFET3, shown in Figure 2.3.6. This model is 

more accurate than the previous model discussed and also would not allow for further parameter 

extraction since both models are not compatible. In the following chapter the differences 

between models will be more noticeable from conversion gain simulations.  

 

Figure 2.3.6: EEFET3 Model 
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CHAPTER III  

 

 

RESISTIVE MIXERS 

 

 

 The purpose of this chapter is to get familiarize with the mixers that are briefly shown in 

Chapter 1. The conversion gain is solved for a mixer with a single device and then demonstrates 

how that can be applied to the other types of mixers. The derivations of the single device FET 

mixer are simulated using MATLAB and compared  to ADS Agilent simulations. 

 

3.1 Single Device FET Mixer 

 The single resistive FET mixer was briefly introduced in chapter 1 and this section will 

continue with some of its analysis. For a single MESFET mixer, as shown in Figure 3.1.1, the 

LO is applied to the gate along with a negative dc bias, the RF is applied to the drain, and the IF 

is filtered from the drain. The RF will use a filter to short-circuit the drain at LO frequency and 

the LO will also use a filter to short-circuit the RF at the gate. Once again, there must be no DC 

bias in the drain and the gate bias will be biased at its subthreshold. 
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Figure 3.1.1: Resistive FET Mixer Common Source Configuration 

 

  If the mixer has taken the appropriate short-circuit design rules mentioned for the RF and 

LO then some approximations can be taken. The two approximations can be seen in Figure 3.1.2 

with part a showing the LO equivalent circuit looking through the gate and the RF equivalent 

circuit looking through the drain. The conversion gain is then found as follows.

 

Figure 3.1.2: (a) LO Equivalent Circuit (b) RF Equivalent Circuit 

 

 The impedance at the gate is found from Figure 3.1.2 (a) as: 

       
 

              
 

    

     
. 

The impedance in the input should be properly matched by the complex conjugate of the input 

impedance as: 
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. 

In time domain                  and thus in phasor         , this will be the input signal 

into the gate. The voltage Vg across the capacitors Cgs and Cgd is found from Figure 3.1.3 as: 
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Figure 3.1.3: Finding Vg 

 

This equation is good because it is easier to use in MATLAB were Zs = 50 ohms would be for 

unmatched. If Zs is used to matched then: 

   
   

                  
    
     

 
. 

The small signal current is found from Figure 3.1.4 where the capacitor is taken out and VRF is 

left in phasor. Thus Vd is found as:  
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Figure 3.1.4: Simplifying Small-Signal Circuit Looking Through Drain 

 

   
  

      
 
 
   

   

            

 
 
   

      
 
 
   

   
  

      
 
 
   

   

   

 
 

      
 
 
   

   

   

 
 

      
 
 
   

              

    

 
 

      
 
 
   

             
            

      
 
 
   

 

   
             

             
 

Using the conductance and procedure from the paper “A Simplified Method to Predict The 

Conversion loss of FET Resistive Mixers [5],” 
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Where K is found from the slope of the channel conductance in the on-state, Vg is the internal 

gate-source voltage, and Vp is the pinch off voltage. Since the device is biased near pinch off the 

equation is rewritten as: 

           
                                   

 

 
        

 

 

                                                                 
 

 
        

  

 

   

The equation has            , which means that there is a phase shift of  . This comes from 

the first equation from the phase shift created by the imaginary j on the denominator.  

Using Equation 4 and 6: 

   
                              

                             
 

                          

     
             

                        
 

Taking the Fourier transform of Equation 8 to find the fundamental LO frequency component: 

   
 

 
 

             

                        
       

 
 

 
 
 

   

Equation 7 can now be solved numerically.  

Then the current for IF is: 

      
     

 
                 

The IF power is then: 
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The available power is: 

   
     

 

       
 

The conversion gain will be: 

   
  

  
 

       
 

 
         

     
 

       

 

     
                . 

 The derived conversion gain is then compared to the conversion gain from ADS Agilent. 

The difference in ADS Agilent is that the simulation tool used is called Harmonic Balance. The 

harmonic balance tool is more accurate in solving nonlinear circuits compared to transient 

analysis. The circuit setup is shown in Figure 3.1.5 and the mixer is in Figure 3.1.6. 

 

Figure 3.1.5: ADS Agilent Mixer Setup 
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Figure 3.1.6: ADS Agilent Single Device Mixer 

 

 Results were obtained from the ADS simulation and compared to the derivations shown 

throughout Chapter III.1. It should be noted that the simulations are first done with the mixer 

being unmatched. The reason for this is because from simulations, the impedance looking into 

the LO and RF gates was roughly about 50-70 ohms with an imaginary component. The mixer 

was also tested at different frequencies to determine which frequency would give a better 

conversion loss and it would be tedious to form a matching circuit for each simulation test that 

was run for each of the frequencies. 

 The input LO and RF waveforms from ADS are shown in Figure 3.1.7and Figure 3.1.8. 

Note that the RF waveform is not exactly a sinusoidal waveform and the reason is because of the 

Harmonic Balance simulation. The waveforms are solved so that they are consistent with the 

non-linear device. In MATLAB the waveforms are both left as sinusoidal and are shown in 

Figure 3.1.9 and Figure 3.1.10. The conversion loss is then found from the derivations and ADS, 
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shown in Figure 3.1.11. The difference in the waveforms could be attributed in that the 

derivations use a simplified linear model where as in ADS the FET is simulated as non-linear. 

 The mixer is then changed so that the output IF is extracted through the source as shown 

in Figure 1.3.2 from Chapter I. The derivation for the conversion loss for this mixer is very 

similar as before but now there is an impedance connected to the source. The results are showed 

in Figure 3.1.12 and the ADS waveform appears to have a slight improvement on the conversion 

loss. The reason of how the waveforms differ this time is due to the source output and the FET is 

a three terminal device. If the body is tied to the source then the device will tend to be more non-

linear. This is commonly done if they do not have a four terminal device because the idea is that 

the source should be grounded,. The body of the MESFET won’t be grounded in this case and 

will be affected. This effect will also be seen in a singly and doubly balanced mixer if the IF is 

taken from the source.  

 

 

Figure 3.1.7: ADS Agilent LO waveforms 
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Figure 3.1.8: ADS Agilent RF Waveforms 

 

 

Figure 3.1.9: MATLAB LO Waveforms 
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Figure 3.1.10: MATLAB RF Waveforms 

 

 

Figure 3.1.11: Conversion Loss of Derivation vs. ADS Single Device using 2 pins 
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Figure 3.1.12: Conversion Loss of Derivation vs. ADS Single Device using 3 pins 

 

3.2 Singly Balanced 

For the singly balanced, shown in Figure 3.2.1, the LO is applied to two different MESFETs 

in a balun with 180 degree phase shift. In any given time one of the FETs will be an open 

switched while the other will be closed, thus a similar approach can be taken as before. 

 

Figure 3.2.1: Singly Balanced 



29 

 

3.3 Doubly Balanced 

The Doubly Balanced Mixer, shown in Figure 3.3.1, is very similar to the other two. At one 

cycle two transistors will be open which is demonstrated in Figure 3.3.2. 

 

Figure 3.3.1: Doubly Balanced 

 

 

Figure 3.3.2: One Cycle of Doubly Balanced 

 

 A different case for a singly balanced mixer is shown in Figure 3.3.3. The low pass filters 

in the source are there to ground the FET’s sources at the LO Frequency. Thus Figure 3.3.4 is 

shown as a simplified balanced mixer for one cycle.  
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Figure 3.3.3: Alternate Singly Balanced 
 

 

 

Figure 3.3.4: One Cycle Doubly Balanced Simplified Circuit 

 

 Simulation results for a ring mixer are then compared to a single FET device and the 

derivations that were done before, shown in Figure 3.3.5. The ring mixer takes more LO power 

than the single FET mixer and the conversion loss is not improved by a big factor.  
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Figure 3.3.5: Conversion Loss of Single Device (3 pins) vs. Ring Mixer
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CHAPTER IV 

 

 

3 PHASE MIXER 

 

 

4.1 Theory of 3 Phase Mixer 

 The 3 phase FET mixer was created to improve the conversion loss and it is shown in 

theory that it has a better conversion loss than the previous mixers. If the FETs are treated as 

ideal switches and the RF signal is split into three signals such as: 
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 . 

Then the Fourier transform coefficient is found as: 

   
 

 
            

 
  

 

           
 

  
  

 

   
 

   
  

    

   
     

  . 

Thus the Fourier series of the first voltage signal V1 is shown as: 

       
 

   
  

    

   
     

         
    . 
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The same procedure is taken for the other voltage signals and their Fourier series are found as:  

       
 

   
        

    
         

 

    

 

       
 

   
  

     
               

 

    

 

Finally the output voltage will be found as: 

                   

and to get       m=1: 

     
   

  
    

  
    

   
               

  
   

   
              

     
   

  
         

  
             

   
        

  
              

    
  

     
   

  
    

   
                  

    
    

    
                  

   
  

where the final solution is: 

    
   

  
              

The conversion loss is then found as: 

    
  

   
         

 Note that the FETs were treated as ideal switches and the input voltage was a square 

wave signal, the conversion loss for a ring mixer is found the same way and had a conversion 

loss of -3.922dB. In real world applications where state of the art mixers are fabricated, the 

conversion loss is about 3 to 4 dB lower than the ideal case.  
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4.2 Mixer Setup  

 To produce the mixer, 9 FET devices were used to have a 3 phase input for VLO, VRF, and 

then combine the outputs. The VLO and VRF splitters are shown in Figure 4.2.1 and Figure 

4.2.2. The combiner is essential the same as the VRF splitter and is shown in Figure 4.2.3. The 

FETs are then shown in Figure 4.2.4 with the mixer simulation setup in Figure 4.2.5. 

 

Figure 4.2.1: VLO Splitter and Voltage Bias 
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Figure 4.2.2: VRF Splitter and Transmission Line Phase Shift 

 

 



36 

 

 
Figure 4.2.3: Output Combiner 
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Figure 4.2.4: FET Setup for 3 Phase Mixer 
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Figure 4.2.5: Mixer Setup 

 

 

 

4.3 Impedance Matching 

  The impedance and the voltage standing wave ratio, VSWR, for the RF and LO ports can 

be seen in Table 4.3.1 and Table 4.3.2. A VSWR value of 1 would indicate a perfect match; and 

as seen in the tables, the impedance of the ports are very close to it. By improving the impedance 

in the IF port the conversion loss is -10.42 dB. 

 

Figure 4.3.1: Conversion Loss 
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Table 4.3.1: Impedance and VSWR Table Looking into the RF ports 

 

-10.00
-9.00
-8.00
-7.00
-6.00
-5.00
-4.00
-3.00
-2.00
-1.00
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
28.00
29.00
30.00

55.03 + j6.49 
56.60 + j6.53 
58.40 + j6.50 
60.45 + j6.36 
62.75 + j6.07 
65.31 + j5.58 
68.10 + j4.82 
71.10 + j3.74 
74.27 + j2.28 
77.56 + j0.41 
80.87 - j1.90 
84.09 - j4.62 
87.09 - j7.68 

89.72 - j10.97 
91.85 - j14.35 
93.44 - j17.70 
94.35 - j20.81 
91.91 - j21.22 
88.20 - j20.08 
85.71 - j19.45 
83.49 - j18.87 
81.05 - j18.13 
78.28 - j17.10 
75.17 - j15.78 
71.79 - j14.17 
67.87 - j11.39 
64.52 - j9.60 
61.01 - j8.50 
57.06 - j7.60 
48.07 - j5.19 
32.71 - j2.20 
26.92 - j1.64 
22.92 - j1.39 
20.49 - j1.25 
19.28 - j1.14 
18.76 - j1.02 
18.67 - j0.88 
18.87 - j0.74 
19.15 - j0.60 
19.38 - j0.46 
19.54 - j0.33 

0.08 / 48.67 
0.09 / 41.19 
0.10 / 34.30 
0.11 / 28.04 
0.13 / 22.38 
0.14 / 17.25 
0.16 / 12.57 
0.18 / 8.28 
0.20 / 4.32 
0.22 / 0.66 
0.24 / -2.69 
0.26 / -5.74 
0.28 / -8.49 

0.29 / -10.95 
0.31 / -13.15 
0.32 / -15.14 
0.34 / -16.93 
0.33 / -18.35 
0.31 / -19.46 
0.30 / -20.42 
0.29 / -21.36 
0.27 / -22.40 
0.26 / -23.57 
0.24 / -24.90 
0.21 / -26.41 
0.18 / -27.00 
0.15 / -28.68 
0.12 / -33.28 
0.10 / -43.03 

0.06 / -107.33 
0.21 / -171.22 
0.30 / -174.72 
0.37 / -175.98 
0.42 / -176.56 
0.44 / -176.94 
0.45 / -177.29 
0.46 / -177.65 
0.45 / -178.02 
0.45 / -178.40 
0.44 / -178.77 
0.44 / -179.12 

1.17
1.19
1.22
1.25
1.29
1.33
1.38
1.43
1.49
1.55
1.62
1.69
1.76
1.83
1.90
1.96
2.01
1.97
1.89
1.84
1.80
1.75
1.69
1.62
1.54
1.44
1.36
1.29
1.21
1.12
1.53
1.86
2.18
2.44
2.60
2.67
2.68
2.65
2.61
2.58
2.56

LO Power Impedance
Reflection 
Coefficient VSWR

Looking into the RF (Input) Port:
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Table 4.3.2: Impedance and VSWR Looking into the LO Port 

 

LO Power Impedance
Reflection 
Coefficient VSWR

-10.00
-9.00
-8.00
-7.00
-6.00
-5.00
-4.00
-3.00
-2.00
-1.00
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
28.00
29.00
30.00

6.13 - j71.89 
6.11 - j72.09 
6.08 - j72.32 
6.05 - j72.60 
6.01 - j72.92 
5.97 - j73.30 
5.93 - j73.74 
5.88 - j74.26 
5.82 - j74.84 
5.77 - j75.51 
5.71 - j76.26 
5.65 - j77.09 
5.58 - j77.98 
5.52 - j78.94 
5.46 - j79.94 
5.40 - j80.98 
5.54 - j82.02 

12.07 - j82.25 
27.99 - j79.17 
45.89 - j71.53 
62.57 - j59.19 
75.95 - j43.01 
84.83 - j24.60 
88.98 - j5.82 

88.86 + j11.63 
80.56 + j19.24 
71.36 + j16.93 
67.41 + j14.02 
66.87 + j11.40 
67.78 + j9.08 
64.12 + j6.77 
58.07 + j4.78 
52.01 + j3.22 
46.45 + j2.06 
41.65 + j1.22 
37.67 + j0.64 
34.41 + j0.23 
31.78 - j0.03 
29.69 - j0.19 
28.03 - j0.26 
26.69 - j0.27 

0.92 / -69.37 
0.92 / -69.23 
0.92 / -69.06 
0.93 / -68.86 
0.93 / -68.63 
0.93 / -68.36 
0.93 / -68.04 
0.93 / -67.68 
0.93 / -67.27 
0.93 / -66.81 
0.93 / -66.29 
0.94 / -65.74 
0.94 / -65.14 
0.94 / -64.52 
0.94 / -63.88 
0.94 / -63.22 
0.94 / -62.56 
0.88 / -61.80 
0.74 / -60.11 
0.60 / -56.57 
0.48 / -50.28 
0.38 / -40.04 
0.31 / -24.89 
0.28 / -6.10 
0.29 / 11.87 
0.27 / 23.81 
0.22 / 30.45 
0.19 / 32.04 
0.17 / 28.46 
0.17 / 22.65 
0.14 / 22.24 
0.09 / 28.11 
0.04 / 56.21 

0.04 / 148.72 
0.09 / 170.91 
0.14 / 176.64 
0.18 / 178.98 
0.22 / -179.89 
0.25 / -179.34 
0.28 / -179.12 
0.30 / -179.13 

25.09
25.28
25.51
25.78
26.09
26.45
26.87
27.36
27.91
28.53
29.22
29.98
30.81
31.70
32.63
33.60
33.40
15.53
6.68
3.99
2.82
2.21
1.90
1.79
1.82
1.75
1.57
1.47
1.42
1.41
1.32
1.19
1.08
1.09
1.20
1.33
1.45
1.57
1.68
1.78
1.87
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Table 4.3.3: Impedance and VSWR Looking into the IF Port 

 

 

-10.00
-9.00
-8.00
-7.00
-6.00
-5.00
-4.00
-3.00
-2.00
-1.00
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
28.00
29.00
30.00

50.42 + j0.21 
50.48 + j0.26 
50.53 + j0.31 
50.56 + j0.37 
50.57 + j0.42 
50.53 + j0.47 
50.43 + j0.50 
50.24 + j0.52 
49.91 + j0.50 
49.44 + j0.44 
48.78 + j0.37 
47.92 + j0.28 
46.82 + j0.19 
45.51 + j0.10 
43.98 + j0.04 
42.29 - j0.02 
40.48 - j0.04 
38.72 - j0.02 
37.46 - j0.04 
36.35 - j0.04 
35.06 - j0.02 
33.43 - j0.01 
31.48 - j0.03 
29.25 - j0.05 
26.87 - j0.06 
23.76 - j0.03 
20.57 - j0.03 
17.83 - j0.07 
15.53 - j0.11 
13.27 - j0.13 
11.15 - j0.10 
10.04 - j0.10 
9.22 - j0.13 
8.64 - j0.16 
8.25 - j0.17 
7.97 - j0.18 
7.77 - j0.18 
7.62 - j0.18 
7.52 - j0.19 
7.46 - j0.19 
7.45 - j0.19 

0.00 / 25.66 
0.01 / 28.14 
0.01 / 30.51 
0.01 / 33.07 
0.01 / 36.30 
0.01 / 41.15 
0.01 / 49.16 
0.01 / 65.18 

0.01 / 100.19 
0.01 / 141.39 
0.01 / 162.82 
0.02 / 172.08 
0.03 / 176.52 
0.05 / 178.62 
0.06 / 179.63 

0.08 / -179.85 
0.11 / -179.75 
0.13 / -179.90 
0.14 / -179.81 
0.16 / -179.82 
0.18 / -179.91 
0.20 / -179.95 
0.23 / -179.90 
0.26 / -179.84 
0.30 / -179.81 
0.36 / -179.91 
0.42 / -179.90 
0.47 / -179.82 
0.53 / -179.71 
0.58 / -179.67 
0.64 / -179.76 
0.67 / -179.76 
0.69 / -179.69 
0.71 / -179.63 
0.72 / -179.59 
0.72 / -179.57 
0.73 / -179.57 
0.74 / -179.57 
0.74 / -179.56 
0.74 / -179.56 
0.74 / -179.55 

1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.03
1.04
1.07
1.10
1.14
1.18
1.24
1.29
1.33
1.38
1.43
1.50
1.59
1.71
1.86
2.10
2.43
2.80
3.22
3.77
4.48
4.98
5.42
5.79
6.06
6.27
6.44
6.56
6.65
6.70
6.71

LO Power Impedance
Reflection 
Coefficient

VSWR
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CHAPTER V 

 

 

CONCLUSION 

 

 

  The thesis has shown good understanding of the mixers discussed in Chapter III along 

with a development of a new idea shown in Chapter IV. The simulations in Chapter III for the 

derivations versus ADS harmonic balance were in fairly reasonable agreement with each other. 

During the course of the thesis research no papers about a subthreshold 3 phase mixers were 

discovered. There is an active mixer with RF signals at 0°, 45°, and 90° shown in [23] however 

this thesis topic did not go into the discussion of active type mixers or harmonic rejection.  

 Future work of the 3 phase mixer could involve proper impedance matching done at each 

port. The results were fairly reasonable since there should be some loss due to impedance 

mismatch. Another thing is that none of the mixers can achieve the ideal theoretical conversion 

loss because the FETs were treated as simple switches so there should also be a +/- 3dB loss to 

account for. 
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APPENDIX A 

 

 

 

MAIN MATLAB CODE 

 

 
clear;clc;close all; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Author: Jesus Angel Torres 
% Description: This is the main code to compute the conversion loss of the 
% FET Mixers for a single device. The code can be modified to a mixer of 
% common source configuration or for 3 pin configuration by adding an 
% impedance to the source. 
% Last Modified: Friday November 11, 2011 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% Parameters from NE71000 MESFET %%%%%%%%%%%%%%%%%%%%%% 
K=0.102;  % Slope of the channel conductance in the on-state 

  
Rg = 2.5; %de-embed 
Rs = 2.4; %de-embed 
Rd = 0.2; %de-embed 

  
Cgs = 0.145e-12; %from paper 
Cgd = 0.106e-12; % from paper 

  

 
%%%%%%%%%%%%%%%%%%% Mixer Impedance %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ZG = 50;          % External Gate Impedance (50 ohms unmatched) 
ZD = 50;          % External Drain Impedance (50 ohms unmatched) 
ZS = 50;          % External Source Impedance (50 ohms unmatched) 
RL = 50;          % Load Resistance 
%%%%%%%%%%%%%%%%%%%%%%% Frequencies used are: %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Lo_f = 1.7*10^9;   % LO frequency 
Rf_f = 2*10^9;     % RF frequency 
wLO = Lo_f * 2*pi; % LO frequency in radians 
wRF = Rf_f*2*pi;   % RF frequency in radians 
%%%%%%%%%%%%%%%%%%%%%%%% The voltages are: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
n = 1024;                   % Sampling 
t = linspace(0,1/Rf_f,n);   % time 
% VLO amplitudes for waveforms 
Vlo = [2.6 2.516 2.438 2.365 2.296 2.231 2.168 2.107 2.045 1.978 1.897... 
    1.757 1.569 1.398 1.246 1.111 0.990 0.882 0.787 0.701 0.625 0.557... 
    0.496 0.442 0.394 0.351 0.313 0.279 0.249 0.222 0.198 0.176 0.157... 
    0.140 0.125 0.111 0.099 0.088 0.079 0.070 0.062 0.056 0.050 0.044...
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    0.039 0.035 0.031 0.028 0.025 0.022 0.020 0.018 0.016 0.014 0.012... 
    0.011 0.010 0.009 0.008 0.007 0.006 0.00557 0.00496 0.00442 0.00394... 
    0.00351 0.00313 0.00279 0.00249 0.00222 0.00198]; 

  
% VRF amplitudes for waveforms 
Vrf = [0.079 0.077 0.075 0.073 0.071 0.069 0.067 0.066 0.064 0.062 0.060... 
    0.056 0.051 0.046 0.041 0.037 0.034 0.030 0.027 0.024 0.022 0.020... 
    0.018 0.016 0.014 0.013 0.011 0.010 0.009 0.008 0.007 0.00669... 
    0.00603 0.00544 0.00492 0.00445 0.00404 0.00367 0.00334 0.00305... 
    0.00279 0.00256 0.00236 0.00218 0.00202 0.00187 0.00175 0.00164... 
    0.00154 0.00146 0.00138 0.00131 0.00126 0.00120 0.00116 0.00112... 
    0.00108 0.00105 0.00102 0.00100 0.00098 0.00096 0.00094 0.00093... 
    0.00091 0.00090 0.00089 0.00088 0.000875 0.000868 0.000862]; 

  
%% Generating waveforms 
% waveforms for Vlo and Vrf 
[V_lo,V_rf,V_losin] = V_lo_rf_waves2(Vlo,Vrf,wLO,wRF,t);  

  
[VGS] = creates_VGS(V_lo,wLO,Cgs,Cgd,Rs,Rd,Rg,ZS); % Creates internal Vgs 
plots_results(t,V_lo,V_rf,VGS); %plots figures 

  
%% Finding conductance 
[g1] = num_g1(Vlo,wLO,Cgs,Cgd,Rd,Rs,Rg,K,ZS); 
%% Solve for gain 

  
Gc = g1.^2 * real(ZD)*real(ZS); 
Gc = abs(Gc); 
Gc = mag2db(Gc); 
Gc = fliplr(Gc); 

  
% Conversion loss values from ADS Agilent 
Gc_ads = [-95.145,-94.148,-93.15,-92.152,-91.154,-90.155,-89.156... 
    ,-88.156,-87.157,-86.157,-85.157,-84.157,-83.157,-82.156,-81.156... 
    ,-80.155,-79.154,-78.152,-77.15,-76.147,-75.143,-74.138,-73.131... 
    ,-72.122,-71.109,-70.091,-69.065,-68.028,-66.974,-65.896,-64.781... 
    ,-63.613,-62.369,-61.019,-59.531,-57.869,-56.009,-53.942,-51.682... 
    ,-49.258,-46.711,-44.083,-41.416,-38.747,-36.107,-33.530,-31.046... 
    ,-28.686,-26.479,-24.450,-22.622,-21.008,-19.611,-18.424,-17.415... 
    ,-16.555,-15.819,-15.186,-14.639,-14.165,-13.755,-13.460,-13.338... 
    ,-13.262,-13.201,-13.148,-13.100,-13.055,-13.012,-12.972,-12.934]; 

  
% depending on how many points were choosen  
n = length(Gc_ads); 
Plo_ads = linspace(-50,20,n); %dbm 

  
figure 
plot(Plo_ads,Gc_ads,'-+',Plo_ads,Gc,'-d') 
legend('ads','cal',0) 
xlabel('Plo(dBm)') 
ylabel('Gc(dB)') 
title('Conversion loss')        
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APPENDIX B 

 

 

VLO AND VRF CODE 

 
function [V_lo,V_rf,V_losin] = V_lo_rf_waves2(Vlo,Vrf,wlo,wrf,t) 
% Author: Jesus Angel Torres 
% Last modified: November 11, 2011 
% This function will define the VLO and VRF waveforms 

  
[r,c]=size(Vlo);     % getting size of Vlo 
xy = length(t);      % length of time 

  
V_lo=zeros(c,r);     % allocating memory 
V_rf=zeros(c,r);     % allocating memory 
V_losin=zeros(c,r);  % allocating memory 

  
for xx=1:c     
    for xy2=1:xy 
        V_lo(xx,xy2) = Vlo(xx)*cos(wlo*t(xy2));    % creates Vlo waveform 
        V_rf(xx,xy2) = Vrf(xx)*-sin(wrf*t(xy2));   % creates Vrf waveform 
        V_losin(xx,xy2) = Vlo(xx)*sin(wlo*t(xy2)); %creates Vlo+90 waveform 
    end 
end 
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APPENDIX C 

 

 

INTERNAL VGS CODE 

 
function [VGS] = creates_VGS(V_lo,wlo,Cgs,Cgd,Rs,Rd,Rg,Zs) 
% Author: Jesus Angel Torres 
% Description: creates VGS VGS uses V_losin since from derivation the 
% imaginary component will give it a shift. Change between unmachted and 
% matched as required. 

  
% VGS = V_losin / (2*wlo*(Cgs + Cgd)*(Rd + Rs*Rd/(Rs+Rd))); %when matched 
VGS = V_lo / (1i*wlo*(Cgs+Cgd)*(Zs+Rg+Rs*(Rd+50)/(Rs+(Rd+50)))+1);  
%unmatched 
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APPENDIX D 

 

 

 

CODE FOR FIGURES 

 

 
function plots_results(t,V_lo,V_rf,VGS) 
% Author: Jesus Angel Torres 
% Last Modified: November 11, 2011 
% Description: This function simply plots the data 

  
%% plots Vlo and Vrf 
figure 
plot(t,V_lo) 
xlabel('time') 
ylabel('voltage') 
title('LO voltage') 
grid on 

  
figure 
plot(t,V_rf) 
xlabel('time') 
ylabel('voltage') 
title('RF voltage') 
grid on 

  
%% Plots Vgs 
figure 
plot(t,VGS) 
title('Internal gate-source voltage') 
xlabel('time') 
ylabel('VGS') 
grid on 
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APPENDIX E 

 

 

 

CODE FOR NUMERICAL CALCULATION OF CONDUCTANCE 

 

 
function [g1] = num_g1(Vlo,wLO,Cgs,Cgd,Rd,Rs,Rg,K,Zd) 
% Author: Jesus Angel Torres 
% Last Modified: November 11, 2011 
% Description: This function will solve for the conductance using numerical 
% methods. 
n = 1024; %number of steps 

  
x = linspace(-pi/2,pi/2,n); 
m = length(Vlo); 
for x2=1:m     
    for y=1:n 
 Vg_lo(x2,y)=Vlo(x2).*cos(x(y))/(1i*wLO*(Cgs+Cgd)*(Zd+Rg+Rs*Rd/(Rs+Rd))+1); 
    end 
end        
g = K*Vg_lo; 
for r_v1 = 1:m 
    for x_x=1:n 
        denum(r_v1,x_x) = (g(r_v1,x_x)*(Rs+Rd)+1); 
            f_wlo(r_v1,x_x) = g(r_v1,x_x)./(g(r_v1,x_x)*(Rs+Rd+Zd)+1); 
    end 
end   

  
for x2=1:m     
    for y=1:n 
        f_wlo2(x2,y) = f_wlo(x2,y)*cos(x(y)); 
    end 
end 

  
figure 
plot(x,f_wlo2) 
title('fwlo') 

  
[r,c]=size(Vlo); 
for n2 = 1:c 
g1(n2) = 1/pi*trapz(x,f_wlo2(n2,:)); 
end 
g1 = abs(g1); 
figure 
g22= fliplr(g1); 
plot(g22) 
title('conductance') 
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