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ABSTRACT 

Reyes, Ramses Romulus De, A Study on the Effects of Mutation on Populations Using Strategies 

While Playing Iterative Prisoner’s Dilemma. Master of Science (MS), May, 2017, 58 pp., 25 

tables, 14 figures, reference, 13 titles. 

This thesis examines the effects different types of mutation and mutation rates have on 

populations using strategies while playing the Iterative Prisoners Dilemma (IPD). The system 

used in order to conduct this study was used in Leas et al. (2016), which uses genetic algorithms 

as a means of studying memory and its impact on populations playing IPD. For this study, 

experiments are organized into three different environments: Control, Static and Dynamic. The 

Control Environment focuses on analyzing the system and forming initial results. The Static 

Environment focuses on studying the effects of different rates on populations using strategies 

while playing IPD, while the Dynamic Environment analyzes the effects of different mutations 

have on populations using strategies while playing IPD. 
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CHAPTER I 

 

 

INTRODUCTION AND BACKGROUND 

 

 

 Motivation 

 

An organism’s strategy is defined as “a behavioral phenotype, i.e. a specification of what 

an organism will do in any situation it finds itself in” [1]. As such, strategies tend to change over 

the course of time and circumstance.  Mutations on the strategies used within different types of 

behavior, such as hunting, displaying or breeding, can either be beneficial or detrimental over the 

course of an organism’s lifetime. These changes can affect future generations [2].  

Game theory holds potential insight to the subject of mutations dealing with strategies 

and the effect they have on a population of organisms. The subject of game theory, in tandem 

with virtual environments using evolutionary methods such as genetic algorithms, gives us the 

ability to study the subject of mutation and its effects on populations with the ability to 

implement strategies. 

Background on Evolution 

The Evolutionary Process and the Importance of Mutation 

 The process of evolution is composed of three fundamental components. The first is 

reproduction. In order for organisms to evolve, they must be able to create offspring which can 

inherit traits of the previous generation. Reproduction can be organized into two different 

categories, sexual and asexual. Sexual reproduction is a process which uses the genetic material 

of two different individuals (parents) in order to create offspring different from the previous 
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generation.  Asexual reproduction, alternatively, involves using the genetic material of only one 

individual.   

The second component of evolution is selection. In order for evolution to occur, a way of 

selecting the organisms within a generation (fitness function) and allowing these organisms to 

breed is needed. Examples of selection include mating rituals, such as contests of strength as 

seen in walruses and lions and the use of display as seen in peacocks.  

The third component of evolution is variation. Variation allows organisms to change 

through successive generations. Examples of variation can be seen in environments such as the 

Galapagos where birds evolved different species, each specializing in a different food source.  

Mutations are important as it allows for variation to occur, fueling the evolutionary process. As 

Darwin stated in his work, The Origin of Species, if it could be proven that complex organs in 

nature could be formed without “numerous, successive, slight modifications”, the theory of 

evolution would not exist  [3].  

Problems with Natural Evolution 

 Over the course of time, evolution has produced a number of complex structures. For 

example, eyes and ears are a result of the evolutionary process [3].Although information about 

the evolutionary process of different structures is important; gaining this sort of information is an 

arduous task. In order to understand details about the evolution of a structure, one must have 

either a record of the feature as  it goes through the evolution or the ability to observe the 

structure as it evolves to its current state. Perfect records of organisms are difficult to find and 

therefore observe. Many organisms also have lives long enough that observing a number of 

generations would take a significant amount of time. 
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  Although the evolution of physical features occurs over a long period of time, many of 

these changes could be observed through remnants and remains, unlike behavioral changes 

which are studied through the observation of live specimens. The challenge becomes more 

difficult when looking at the natural evolution of strategies. Strategies do not leave a tangible 

record to study. The artifacts we use to study biological evolution (fossil records, prints) are 

unsuitable for data analysis in reference to strategies. To address this challenge, researchers 

employ methods prominent in the field of Evolutionary Computation. 

Evolutionary Computation 

 The field of evolutionary computation is an important subfield under the umbrella of 

artificial intelligence and includes fields of research such as digital evolution and evolutionary 

methods such as genetic algorithms. The subject of evolutionary computation involves the use of 

algorithms with characteristics based on Darwinian evolution in order to solve complex 

problems. Evolutionary algorithms, in tandem with computer simulations, give rise to 

evolutionary computational systems that allow us to emulate and observe evolutionary processes 

in a measurable timescale. This is in contrast to the timescale for biological systems. 

  Evolutionary algorithms involve using a set of potential solutions to a specific problem. 

These solutions are put through an iterative process of evaluation and selection. Through each 

iteration of this process, mutations can occur. Over the course of successive generations, constant 

selection of the best evaluated individuals lead to potential solutions that are different than what 

was set originally. This process of constant selection of the best gives rise to a system that is 

flexible, adaptable, and robust [3]. 
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Virtualization/Simulation 

Though observing natural evolution has its problems, there is a potential solution to this 

issue which is through the use of virtual environments to simulate evolutionary phenomena. 

Through these virtual environments, we can make observations and glean insight into 

evolutionary processes. Using a simulated environment allows control over multiple 

attributes/factors dealing with the evolutionary process including population size, the 

environment, the individual genotype and phenotype, mutation rate, number of generations 

allowed, and amount of time involved over the course of the simulation. Virtual environments 

give us the ability to study evolution from many perspectives, giving us information that would 

be more difficult to observe in a living system. The ability to modify variables and attributes in 

an experiment allows for a deeper look into aspects of evolution. 

Changes in variables and attributes an experiment can generate large amounts of 

information [4]. The processing and analyzing of this large quantity of data is simplified given 

the speed a computer has and its ability to manipulate and record information. This makes data 

much more accessible in comparison to natural experiments, as calculations done by a computer 

can be order of magnitudes faster than calculations done physically.  

 Virtualization allows for a platform in order to study evolution. Evolution computation 

provides the algorithms used in order to study evolution. Together both virtualization and 

evolutionary computation provide a way to study evolution in time scales faster than those that 

can be observed in a natural environment.  
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Background on Game Theory 

Importance of Game Theory 

Game theory is the study of decision making between two or more organisms, is 

discussed in a number of fields including Economics [5], Psychology [6], Biology [7], and 

Computer Science [4]. Game theory is important because as it provides an explanation to the 

behavior of many organisms [2].  Research in the field of game theory potentially holds answers 

to questions in social, economic and scientific contexts as the study of behavior is an important 

part of these subjects. 

Strategies are often connected with games, as they affect the way players interact with a 

game. Strategies play a vital role in the field of game theory. Mutations within an individual’s 

strategy can change not just the outcome of present events, but also its overall fitness which, over 

a number of generations, can affect entire populations. 

Prisoner's Dilemma 

One of the most well-known games studied in the field of game theory is the Prisoner’s 

Dilemma(PD) formalized by Albert Tucker [8] . Since its creation, papers spanning various 

fields have been published such as the Rational Cooperation in Finitely Repeated Prisoner’s 

Dilemma by Andreoni and Miller [9], which focuses on the aspect of cooperation, and Effective 

Choice in the Prisoner’s Dilemma by Axelrod [10], which focus on the strategies used by 

individuals playing the game. An example of the payout matrix for PD is presented in figure 1. 

where rewards range from 0 to 5. 
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 The Prisoner's Dilemma is played as follows: 

● There are two players in this game. 

● Each player is given a choice to Cooperate or Defect. (Note: Each player’s choice 

remains private throughout the game) 

● The reward each player receives depends on the choice made by each player.  

o Mutual cooperation gives the best total reward (split equally to both players). 

o Mutual defection gives the worse total reward (split equally to both players). 

o If one player cooperates and the other player defects, 

▪ The player who cooperates gets the worse individual reward, while 

▪ The player who defects gets the best individual reward. 

 

FIGURE 1. THE PAYOUT MATRIX FOR THE PRISONER’S DILEMMA 
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Iterative Prisoner's Dilemma 

 The Iterative Prisoner's Dilemma Model (IPD) is a concept in which two players play the 

Prisoner’s Dilemma (PD) more than once. This was introduced by Axelrod in the 1980s [10]. 

This study involved a tournament consisting of 14 different programs, which competed against 

each other through the PD. This competition was run in round robin order ensuring that each 

program would compete against all others. After each program finishes its round, the points of 

each of the programs are tallied and the game begins again. In this study, each program has a 

strategy it uses in order to deal with its opponents. Some of these programs used simple 

strategies like always defecting (Always Defect) in the presence of its opponent, while others do 

the opposite and always cooperate (always cooperate). Others were more complex and try to 

predict their opponent’s actions. 

 Multiple iterations add a layer of complexity not found in the original PD. Memory in 

the IPD is a big factor as it allows a player to remember its opponent’s actions. In addition, 

strategies require varying amounts of memory. For example, organisms using strategies that 

purely execute one action such as Always Cooperate or Always Defect do not require any 

amount of memory as no matter what its opponent does, its opponent’s actions will not affect the 

future decisions of these organisms. On the other hand individuals with strategies that base their 

decisions on their opponent's previous actions require memory. 

 The results in Axelrod’s experiment showed that most successful strategy was a simple 

strategy called Tit for Tat [10]. This strategy required only enough memory to remember its 

opponent’s previous action.  Tit for Tat starts cooperating with its opponent .After its initial 

cooperation it then bases its next action on the opponent’s previous action. If its opponent 

previously defected, Tit for Tat will defect, otherwise it cooperates.  With the results of this 



8 

 

experiment Axelrod concluded that in order for strategies to become successful in IPD, it must 

have four characteristics: nice, punishing, forgiving, and consistent. 

Axelrod [10] proposed that first, a strategy must be “nice”. A nice strategy does not 

defect before its opponent does. Most of the high scoring strategies in this Axelrod’s experiment 

were nice strategies.  The next characteristic is “punishing”. A successful strategy must be able 

to retaliate against defection. Strategies that are nice, but not punishing are taken advantage of by 

strategies that tend to defect. A good example of a strategy that is nice, but not punishing is the 

strategy Always Cooperate. This strategy never defects and therefore is susceptible to strategies 

like Always Defect, which never cooperates. The third characteristic is “forgiving”. A successful 

strategy must have the ability to forgive. Tit for Tat is a good example of a strategy that forgives. 

It punishes when its opponent defects, but cooperates again if the opponent cooperates. The 

aspect of forgiveness stops long runs of revenge and counter revenge, which can reduce points 

for both players. The final characteristic is “consistent”. Strategies must remain consistent 

because randomness in a strategy can trigger retaliatory behavior from other players.  

Methodology 

System Overview 

 The system I will be using for my experiments was created by Leas, Edolson, Annis and 

Nahum [4]. This system uses genetic algorithms in order analyze populations that use strategies 

as they play IPD. Each experiment in this thesis consists of a population of organisms using 

strategies as they compete against one another. 

 Each organism is composed of two components: the organism’s bits of memory, and its 

decision list. In this system, an organism’s genome is defined as a binary representation of the 

organism, specified by the memory and the decision list. In turn, an organism’s size is defined by 
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the length of its genome. The strategy an organism uses is defined by its genome, i.e., the 

decisions it makes based on its memory. Memory is used to record an opponent’s actions while 

the decision list is used to determine a course of action using data the organism has collected and 

stored in its memory.  

In this system, each organism plays Iterated Prisoner’s Dilemma (IPD) against its 

competitors in a predefined number of rounds. An organism’s payout (total reward) is calculated 

by the running total number of points it scores during each round. Each organism is then ranked 

based on its fitness as defined as the total number of points won during the competition. A select 

percentage of the fittest organisms are allowed to breed the next generation. Mutations can be 

applied to these organisms with a goal of increasing diversity of the next generation, allowing for 

evolution. 

Organism Structure 

An organism’s genome is composed of two different sections: memory and its decision 

list. Memory is used by the organism in order its opponents previous actions. The decision list is 

used by the organism to determine a course of action using the memory an organism has 

collected.  

 Memory in this system is binary, with True (Cooperation) as 1 and False (Defection) as 

0. Memory also dictates the size of an organism’s decision list. An organism’s decision list is 2m 

where m is the number of bits of memory an organism has.   

An organism makes decisions by calculating the binary representation of its memory and 

mapping that value to the decision list. It then saves new information by deleting its oldest 

memory bit and shifting all bits of memory to the left by one space, if it has more than one bit of 

memory, and then it registers its opponent’s action as the least significant bit of memory. In this 
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system, organism’s strategy is synonymous to its genome as it represents the actions an organism 

will take (decision list) given different circumstances (memory). 

 

 

 

FIGURE 2.A DESCRIPTION OF STRUCTURE OF AN ORGANISM UNDER THE SYSTEM USED BY LEAS. 

 

Purpose 

In this thesis, I explore the effects of different types of mutation and the effects of 

mutation rates on populations using strategies in virtual environments as presented by Leas [4]. 

Hypothesis 

Given the results specified in Axelrod’s Tournament [10], it appears that the Tit for Tat 

strategy would do well regardless of any changes in mutation rate associated with memory, 

especially if a population was seeded with Tit for Tat as its initial strategy. On the other hand, the 

possibility of other strategies exerting their dominance in the same population cannot be ignored. 

However, given the cost of memory has a potential relationship with the strategies an organism 

uses (Leas et al. 2016), if the cost per bit of memory is low, then organisms incline to evolve 

more complicated strategies, allowing for multiple bits of memory.  
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For populations under the influence of low mutation rates, it will be difficult it will be 

difficult to observe an emergence of new strategies as low mutation rates decrease rate of 

evolution within a population. Though there is a possibility of an emergence of various strategies 

within a population under low mutation rates. 

For populations under the influence high mutation rates a number of new strategies 

should emerge. The possibility exists that a population of organism under high mutation rates 

could contain a small amount of new strategies. 

To test this hypothesis, I defined a set of experiments and created three environments 

control, static, and dynamic.  

Control Environment Experiments 

The focus of the experiments in the control environment is to analyze the effects of zero 

mutation rates on populations using strategies while playing Iterative Prisoner’s Dilemma (IPD). 

This environment acts as a testing ground for the system and as a baseline for later experiments. 

There are five experiments run in the control environment. The first two experiments involve 

setting all mutations to the rate, zero. The first experiment is randomly seeded with strategies, 

while the second experiment is seeded with one strategy. The last three experiments involve 

testing populations where one of the mutations used by the system is set to the rate, zero, while 

the rest of the mutations are set the rate, .05. 
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Static Environment Experiments 

The focus of static environment experiments is to analyze the effects of different 

mutational thresholds on populations using strategies while playing IPD. Each experiment under 

this environment will test a specific rate of mutation. All mutation types under this environment 

will subject to the same rate that is constant throughout each experiment. The rates that are tested 

in this environment are .01, .025, .05, .75, and .1 . 

Dynamic Environment Experiments 

 The experiments in the dynamic environment are designed to analyze the effects of 

different types of mutation on populations using strategies while playing IPD. For each 

experiment in this environment only one type of mutation is changed while the rest stay at a 

constant rate.  There are six experiments under this environment; two for each type of mutation 

which are low (.01) and high (.1) mutation rates. 
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CHAPTER II 
 

 

METHODS 

 

 

System Design 

 

 This system is composed of different files which help in implementing various tests used 

to analyze memory under IPD. For this thesis, files that compose the system are located a Hyper 

Performance Compute Cluster (HPCC) user account located in Michigan State University 

Files used in this thesis include: 

 The  pd_config.init is the configuration file used to set up the experiments for this thesis. 

The file contains the variables needed to calibrate an experiment. This system uses the 

pd_config.init file as input for the pd_qsub_generator.py file which was used in order to run 

experiments. A sample pd_config.init file is included in figure 2. 

 

FIGURE 3: AN EXAMPLE OF THE PD.CONFIG.INIT FILE AND ITS CONFIGURATIONS 
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For the series of experiments in this documented in this thesis, the following settings were 

modified. 

 number_of_generations – sets the number of generations for each experimental run. 

 number_of_organisms – sets the number of organisms for each run 

 org_type – sets the type of organism for experiment. For these experiments, organisms 

are set to pd. 

 number_of_rounds – the number of rounds that each organism participates in 

 temptation – the amount of points gained by an organism when it defects and its 

opponent cooperates 

 reward – the amount of reward points by an organism when both it and its opponent 

mutually cooperate 

 punishment – the amount of points gained by an organism when both it and its opponent 

mutually defect 

 sucker – the amount of reward points by an organism when it cooperates and its opponent 

defects  

 proportion_cost_per_memory_bit – amount of cost per memory bit 

 max_bits_of_memory – the number of memory bits allowed for each organism 

 mutation_likelihood_of_bits_of_memory – sets the mutation rate for an organism’s 

amount of memory 

 mutation_likelihood_of_initial_memory_state – set the mutation rate for an organism’s 

memory 

 toggle_self_memory_on – toggles whether an organism can remember their own choices 
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 mutation_rate – sets the general mutation rate for the genetic algorithm.  This also affects 

decision list mutations. 

 selection_by_static_competitor – if set to True allows for organisms to compete with set 

strategies. 

 The pd_qsub_generator.py is the python script that allows the system to use the Hyper 

Performance Compute Cluster (HPCC) for calculations.. Execution of this file sends an instance 

of an experiment to the HPCC in order to execute. When the execution of an experiment is 

finished, data is sent back to the user in the form of a directory. 

The main.py file contains the critical functions needed in order to run the system, 

including the methods and specifications for the genetic algorithm. 

The pd_beaker_one_strategies_df.py is the first of many analysis files that are used to 

extract data from the raw information given by the system. Output data from the execution of 

this file is used as input for other pd_beaker files. 

The pd_beaker_two_strategies_df_r.r file is an “r” file that uses data from the previous 

pd_beaker files and with it, creates a graphical representation that users can utilize to better 

understand experimental data. The output of this file is a pdf file that shows a line graph 

containing the frequency of strategies over the course of generations. Using this file helps give 

insight into strategies, their rise and fall over time. 
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Focus 

The central purpose of these experiments is to gain insight into the behavior of strategies 

under various mutation thresholds and the effect that different mutational rates have on 

populations using strategies while playing IPD. 

Setup  

  

 

FIGURE 4.A FLOWCHART SHOWING THE PROCESS OF RUNNING EXPERIMENTS UNDER THE 

SYSTEM USED IN BY LEAS [4]. 

 

Note: Descriptions for each state of this flowchart is described in the appendix. 
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Experimental Design 

  The experiments for this thesis are organized into three different types called 

environments which are control, static, and dynamic. The control environment act as a testing 

ground for the system and as reference for measuring the effects of mutation rates have on 

populations using strategies under Static and Dynamic environments. The Static environment 

focuses on analyzing how different mutational thresholds affect populations using strategies 

while under the influence of IPD. The Dynamic environment, on the other hand, focuses on the 

different mutations themselves and the role they play in the experimental environment.  

For all environments, mutation rates ranging from low (.01) to high (.1) are tested. For 

each environment, the number of organisms and generations are set to 500. Nine variables 

(org_type, tournament_size, verbose, number_of_rounds, temptation, reward, punishment, 

sucker, and output frequency respectively) were kept standard in reference to the experiments 

done by Leas et al. (2016) [4]. The variable proportion_cost_per_memory_bit was kept at zero, 

allowing for the evolution of more complex strategies, and max_bits_of_memory was set to four, 

allowing for the evolution of strategies using up to four bits of memory. The variable 

toggle_self_memory_on was set to “False” for each experiment. This “False” setting did not 

allow an organism to remember its previous actions.  

All experiments in this thesis use the default settings specified by table 1, with the 

exception of the first control experiment started with a random initial population. Note that for 

all experiments in this thesis, each experiment consists of five runs, which are used for data 

analysis.  
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TABLE 1: DEFAULT SETTINGS FOR ENVIRONMENT EXPERIMENTS 

Environment Experiments Default Settings 

number_of generations 500 

number of organisms 500 

org_type pd 

tournament_size 8 

verbose True 

number_of_rounds 64 

temptation 5 

reward 3 

punishment 1 

sucker 0 

proportion_cost_per_memory_bit 0 

max_bits_of_memory 4 

toggle_self_memory_on False    

toggle_self_memory_on False    

selection_by_static_competitor False    

output_frequency 10 

Initial Population [False,True]~[True] 

 

Control Environment 

The focus of the Control experiments is to gain a better understanding of strategies under 

conditions where mutation is not allowed. For the first experiment, all three types of mutation are 

set to the rate zero, while the initial population is seeded with random strategies. This allows for 

better analysis in reference to strategies in a population considering the fact that the only changes 

occurring within this experiment involves the initial random seeding of strategies within the 

initial population of the experiment. This exclusion limits the number of strategies generated by 

the system simplifying experimental results. 
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For the second experiment, all three types of mutation are set to the rate zero, and the 

initial population is set to the Tit for Tat ([False,True]~[True]) strategy. For this experiment 

organisms compete with a set of preset competitors specified by Leas et al. (2016). This 

experiment was the simplest and most predictable of the control experiments. There was no 

mutation involved in any generation and with the initial population set as one strategy (Tit for 

Tat) allows for the growth of a populations using only one strategy throughout each generation.  

For each of the last three experiments, one of the three types of mutation is set to rate 

zero, while the other two are set to .05. Like the second experiment, the initial population is 

seeded with the Tit for Tat strategy. The purpose of these three experiments is to observe the 

effects on populations using strategies in an environment where one of three types of mutation 

(Bit, Memory, or General) is not applicable. The information gained from each of the Control 

Environment Experiments is used as reference for the Static and Dynamic Environments. 

 

TABLE 2. THE CONFIGURATION SETTINGS USED IN THE CONTROL ENVIRONMENT – 1ST AND 

2ND EXPERIMENTS 

Control Environment Experiments 

1st 

Experiment 2nd Experiment 

Initial Population Random [False,True]~[True] 

mutation_likelihood_of_bits_of_memory 0 0 

mutation_likelihood_of_initial_memory_state 0 0 

mutation_rate 0 0 

 

TABLE 3: THE CONFIGURATIONS SETTINGS USED FOR CONTROL ENVIRONMENT EXPERIMENTS 

FOR BIT, MEMORY AND GENERAL MUTATION RATES 

Control Enviroment Experiments Bit Memory General 

mutation_likelihood_of_bits_of_memory 0 0.05 0.05 

mutation_likelihood_of_initial_memory_state 0.05 0 0.05 

mutation_rate 0.05 0.05 0 
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Static Environment 

In the Static Environment Experiment, all mutation types are at the same value. The focus 

of this part of the environment is to test mutational thresholds and the effect they have on 

strategic population playing IPD. There are five experiments in this environment; one for each 

rate. The rates of mutation tested in this environment are low (.01, .025), medium (.05) and high 

(.075, .1) 

TABLE 4. THE CONFIGURATION SETTINGS USED IN THE STATIC ENVIRONMENT EXPERIMENTS 

.01 AND .1 

Static Environment (Low) 0.01 0.025 

mutation_likelihood_of_bits_of_memory 0.01 0.025 

mutation_likelihood_of_initial_memory_state 0.01 0.025 

mutation_rate 0.01 0.025 

 

TABLE 5. THE CONFIGURATION SETTINGS USED IN THE STATIC ENVIRONMENT EXPERIMENTS 

.025 AND .075 

Static Environment (High) 0.075 0.1 

mutation_likelihood_of_bits_of_memory 0.075 0.1 

mutation_likelihood_of_initial_memory_state 0.075 0.1 

mutation_rate 0.075 0.1 

 

TABLE 6. THE CONFIGURATION SETTINGS USED IN THE STATIC ENVIRONMENT EXPERIMENT 

.05 

Static Environment (Medium) 0.05 

mutation_likelihood_of_bits_of_memory 0.05 

mutation_likelihood_of_initial_memory_state 0.05 

mutation_rate 0.05 
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Dynamic Environment 

In the Dynamic Environment experiment, unlike the Static Environments which keep 

mutation rates constant with each other, variation is allowed within the range of the mutation 

rates. The focus for this environment is to study the how different mutations affect populations 

using strategies while playing the IPD. This environment analyzes the effects of the three 

mutation types used in this system: Bit, Memory and General. For all mutation types two 

experiments are run: low (.01) and high (.1). Configurations for each experiment are shown by 

the tables below. 

Bit Mutation 

 

TABLE 7. THE CONFIGURATION SETTINGS USED IN THE DYNAMIC ENVIRONMENT FOCUSING ON 

THE VARIABLE MUTATION_LIKELIHOOD_OF_BITS_OF_MEMORY 

Dynamic Environment (Bit Mutation) Low(.01) High(.1) 

mutation_likelihood_of_bits_of_memory 0.01 0.1 

mutation_likelihood_of_initial_memory_state 0.05 0.05 

mutation_rate 0.05 0.05 

 

Memory Mutation 

TABLE 8. THE CONFIGURATION SETTINGS USED IN THE DYNAMIC ENVIRONMENT FOCUSING ON 

THE VARIABLE MUTATION_LIKELIHOOD_OF_INITIAL_MEMORY_STATE 

Dynamic Environment (Memory Mutation) Low(.01) High(.1) 

mutation_likelihood_of_bits_of_memory 0.05 0.05 

mutation_likelihood_of_initial_memory_state 0.01 0.1 

mutation_rate 0.05 0.05 
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General Mutational Rate  

TABLE 9. THE CONFIGURATION SETTINGS USED IN THE DYNAMIC ENVIRONMENT FOCUSING ON 

THE VARIABLE MUTATION_RATE 

Dynamic Environment (General Mutation) Low(.01) High(.1) 

mutation_likelihood_of_bits_of_memory 0.05 0.05 

mutation_likelihood_of_initial_memory_state 0.05 0.05 

mutation_rate 0.01 0.1 
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CHAPTER III 

 

 

RESULTS 

 

 

Control Experiments 

 

1st Control Experiment 

 Table 10 shows the results of most common strategies observed from five runs under 

conditions specified by the first control experiment. Under these conditions we observe that Tit 

for Tat ([False, True]~[True]) is the most common strategy as it is prominent in all five runs. The 

second most common strategy is also a version of Tit for Tat (False, True, False, 

True]~[False/True, True]) with the difference of an extra bit. The third was a strategy with four 

bits of memory, which was observed on one of the runs. In this experiment the random seeding 

of strategies in the initial population of the experiment adds the only instance of diversity within 

a population in an experiment with no mutation. 

TABLE 10.  THE MOST COMMON STRATEGIES OBSERVED UNDER THE 1ST EXPERIMENT. USING 

UNFIXED COMPETITION SELECTION AND RANDOM POPULATION 

Control - 1st Experiment:  Unfixed Selection/Random Population 
# of 
Runs 

[False, True]~[True] 5 

[False, True, False, True]~[ True, True] 2 

[False, True, True, False, False, False, True, False, True, True, True, True, False, True, 
False, True]~[True, True, True, True] 

1 

 

Figure 6 shows the results of the 1st experiment’s 4th run. In this run, Tit for Tat (one bit) 

was the most prominent strategy in the first few generations of each run. As time passes the 
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number of organisms adopting the Tit for Tat (one bit) strategy dwindled, while organisms 

adopting the Tit for Tat (two bit) and the four-bit strategy increased in number. After 500 

generations, the most prominent strategy in the population was a four-bit strategy followed by 

Tit for Tat (two bit), while Tit for Tat (one bit) was close to extinction. Through these 

observations, I can infer as strategies increase in complexity, the chance of gaining advantages 

over other strategies increases. 

 Given that mutation is zero under this experiment, the number of strategies created 

during the initial generation sets the diversity of strategies within a population. Strategies that 

reach extinction have no chance of appearing in future generations because of the lack of 

mutation. Strategies that survive the initial few generations have less competition. As time goes 

on the amount of strategies available decrease until the population stabilizes, leaving organisms 

to adopt strategies that do not conflict with one another. 

 

FIGURE 5.  A GRAPH OF THE MOST COMMON STRATEGIES OBSERVED UNDER THE 1ST 

EXPERIMENT’S 4TH RUN 
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2nd Control Experiment 

 In the 2nd control experiment, table 11 shows the results of most common strategies 

observed from five runs under conditions specified by the first control experiment. As shown in 

Figure 7, the only existing strategy observed under these conditions is the initial seeded strategy 

of Tit for Tat. Results in this experiment were predictable as there was no mutation and only one 

strategy was seeded in the initial population. Therefore, there is no competition between any 

organisms because they all used the same strategy throughout each generation. 

TABLE 11. THE MOST COMMON STRATEGIES OBSERVED UNDER THE 2ND EXPERIMENT. USING 

STATIC COMPETITION SELECTION AND RANDOM POPULATION 

Control – 2nd Experiment: Static Selection/Static Population # of Runs 

[False, True]~[True] 5 
 

3rd Control Experiment – 0 Bit Mutation 

 In the 3rd control experiment, as shown in table 12, the lack of Bit Mutation caused the 

organisms on this experiment to keep the same number of bits throughout each generation. The 

only changes that occurred throughout this experiment were differences in the decision list. From 

the most common strategies observed under this experiment, Tit for Tat ([False, True]~[True]), 

Always Cooperate ([True, True]~[True]),  Always Defect ([False, False]~[True]), and ([True, 

False]~[True]), the first three strategies were observed in all five runs while the fourth was only 

observed in two runs.  

TABLE 12. THE MOST COMMON STRATEGIES OBSERVED UNDER THE CONTROL EXPERIMENT 

TESTING BIT MUTATION 

Control – Bit Mutation Rate: 0 - Unfixed Selection/ Static Population # of Runs 

[False, True]~[True] 5 

[True, True]~[True] 5 

[False, False]~[True] 5 

[True, False`]~[True] 2 
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 In the 3rd control experiment as shown figure 8, Tit for Tat tends to be the dominant 

strategy throughout each run, which is followed by Always Cooperate and Always Defect. In 

IPD a relationship exists between these three strategies [11]. Tit for Tat is resistant to invasion 

against Always Defect, but neutral to Always Cooperate. Always Cooperate is neutral against Tit 

for Tat, but through genetic drift, Always Cooperate can invade a population of organisms using 

Tit for Tat. On the other hand, Always Cooperate is susceptible to invasion by organisms using 

Always Defect. In this experiment, Tit for Tat was the most prominent strategy overall and 

Always Cooperate was the second most prominent. A sudden drop in organisms using Tit for Tat 

is followed by a spike in organisms using Always Defect. This growing population of organisms 

using Always Defect is attacked by users of Tit for Tat. The population stabilizes as Tit for Tat 

takes dominance again and is followed by a smaller population of Always Cooperate. Always 

Defect present within a few organisms in the population. 

 

FIGURE 6: A GRAPH OF THE MOST COMMON STRATEGIES OBSERVED IN THE CONTROL 

EXPERIMENT TESTING BIT MUTATION USING THE 4TH RUN 
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4th Control Experiment – 0 Memory Mutation . 

In the 4th control experiment, as shown in table 13, one bit strategies are the most 

common types of strategies observed, followed by the two and three bit strategies respectively. 

Because the rates for the Bit Mutation and General Mutation are not low, more complex 

strategies have a greater chance of evolving. The lack of Memory Mutation allows for a 

population that remembers past events with 100 percent accuracy. Small changes in memory can 

potentially affect the outcome of a strategy, and under these experimental conditions, that 

variable is removed.  

The seeding of Tit for Tat within each initial population of sets the memory for the entire 

experiment because this strategy always starts by cooperating. Strategies that defect can still 

evolve through decision list mutations, but because the population contains Tit for Tat, these 

strategies have difficulty lasting a few generations after evolving. Organisms adapting strongly 

defecting strategies tend to go extinct under this circumstance. Organisms that mostly defect in 

their decision list can exist if they cooperate initially. Initial cooperation discourages defection in 

an environment, where defectors are punished. Strategies that defect initially do not last long as 

the first defection can cause retaliation, which slows down the growth of organisms adopting this 

type of strategy. Overall this leads to an environment of cooperators, which helps explain success 

of this experiment. 
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TABLE 13.  THE MOST COMMON STRATEGIES OBSERVED UNDER THE CONTROL EXPERIMENT 

TESTING MEMORY MUTATION 

Control – Memory Mutation Rate: 0 - Unfixed Selection/ Static Population # of Runs 

[False, True]~[True] 3 

[True, True]~[True] 3 

[False, False]~[True] 2 

[True, False`]~[True] 1 

[False, True, True, True]~[True, True] 1 

[False, True, False, True]~[True, True] 3 

[False, False, True, True]~[True, True] 1 

[False, False, False, True]~[True, True] 1 

[False, False, True, True, True, True, False, True]~[True, True, True] 1 

[False, False, False, True, True, True, False, True]~[True, True, True] 1 

[False, False, True, True, False, False, False, True]~[True, True, True] 1 

 

5th Control Experiment – 0 General Mutation 

In the 5th control experiment as shown in table14, the results of this experiment were the 

same as the results specified by the 2ndcontrol experiment. In the system, general mutation acts 

as the primary mutation check that specifies if an component of the organism can mutate. 

General Mutation also dictates when decision list mutations can occur. Bit Mutation and memory 

mutation are only allowed to occur after general mutation and cannot happen otherwise. This 

explains why this experiment only has one strategy.  

TABLE 14. THE MOST COMMON STRATEGIES OBSERVED UNDER THE CONTROL EXPERIMENT 

TESTING GENERAL MUTATION 

Control – General Mutation 0 - Unfixed Selection/ Static Population # of Runs 

[False, True]~[True] 5 
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Static Environment Experiments 

Low Mutation Rate - .01 

In the .01 static environment experiment as shown in table 15, the most common 

strategies observed are one bit strategies which are Tit for Tat and Always Cooperate, with 

Reverse Tit for Tat and two bit Tit for Tat occurring in one of the runs. Although Always Defect 

did evolve in some of the runs, data showed that the number of organisms that adopted this 

strategy were few. Contrary to results in the previous Control Experiments, Reverse Tit for Tat 

([True, False]~[True]) did well in one of the runs. As observed in the prior results, this strategy 

occurred in less runs than Always Defect. It was also surprising that Tit for Tat (two bit) was 

able to evolve as this experiment had the lowest set of mutational rates outside of the Control 

experiments.  

TABLE 15. THE MOST COMMON STRATEGIES OBSERVED UNDER THE STATIC EXPERIMENT 

USING .01 MUTATIONAL RATES 

Static Environment (Low) - .01 Mutational Rate # of Runs 

[False, True]~[True] 5 

[True, True]~[True] 5 

[True, False]~[True] 1 

[False, True, False, True]~[True, True] 1 

 

Low Mutation Rate - .025 

In the .025 static environment experiment as shown in Table 16, the most common 

strategies observed where similar to the previous experiment, i.e. Static Environment using Low 

Mutational Rate (.01). In this experiment, Tit for Tat, Always Cooperate, and Always Defect 

were the most prominent strategies occurring in all runs, while Reverse Tit for Tat occurred in 

three runs. Unlike the prior Static Environment experiment with lower mutation rates, two bit 

strategies did not evolve under current experimental conditions, though with higher mutation 

rates more complex strategies are more likely to evolve. 
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TABLE 16.  THE MOST COMMON STRATEGIES OBSERVED UNDER THE STATIC EXPERIMENT 

USING .025 MUTATIONAL RATES 

Static Environment (Low) - .025 Mutational Rate # of Runs 

[False, True]~[True] 5 

[True, True]~[True] 5 

[True, False]~[True] 3 

[False, False]~[True] 5 

 

 In Figure 9, as observed in the previous Control experiments, we see the relationship 

between the three common strategies, Tit for Tat, Always Cooperate and Always Defect. 

According to these results, over a span of generations the less common strategy [True, 

False]~[True] tends to occur with a similar frequency to Always Defect. This could be explained 

by its nature, unlike Tit for Tat, [True, False]~[True] initially defects and takes advantage of 

cooperators, similar to Always Defect.[True, False]~[True] also cooperates on remembrance of 

defection, which entices forgiveness in organisms using strategies similar to Tit for Tat. This 

strategy invites retaliation from organisms using strategies similar to Always Defect. Its smaller 

number of occurrences can be related to its relationship with Always Defect, while its score can 

be linked to its similarity to Always Defect. 
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FIGURE 7. A GRAPH OF THE MOST COMMON STRATEGIES OBSERVED IN THE UNDER THE STATIC 

ENVIRONMENT EXPERIMENT USING .025 MUTATIONAL RATES USING DATA FROM THE 1ST RUN 

Medium Mutation Rate - .05 

In the .05 static  environment experiment as shown in Table 17, as with previous 

mutation rates, one bit strategies are the most prominent strategies because they are easy to 

evolve in comparison to other more complex strategies.  

TABLE 17. THE MOST COMMON STRATEGIES OBSERVED UNDER THE STATIC EXPERIMENT 

USING .05 MUTATIONAL RATES 

Static Environment (Medium) - .05 Mutational Rate # of Runs 

[False, True]~[True] 4 

[True, True]~[True] 4 

[False, False]~[True] 4 

[False, True, True, True]~[True, True] 1 

False, False, True, True]~[True, True] 1 

[True, False, False, True]~[True, True] 1 

[True, True, False, True]~[True, True] 1 

[False, True, False, True]~[True, True] 1 

[False, False, False, True]~[True, True] 1 
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There is an increase in the variety of strategies under this experiment, especially with 

reference to two bit strategies. Six notable two bit strategies were adapted by the majority of the 

population during the first run as shown in figure 10. Three bit strategies and one bit strategies 

evolved with minimal frequency across the population. With the exception of the first run, all 

other runs had similar results; Tit for Tat, Always Cooperate and Always Defect where the most 

common strategies in these runs as shown in figure 11. 

 

FIGURE 8. A GRAPH OF THE MOST COMMON STRATEGIES OBSERVED IN THE UNDER THE STATIC 

ENVIRONMENT EXPERIMENT USING .05 MUTATIONAL RATES USING DATA FROM THE 1ST RUN 
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FIGURE 9. A GRAPH OF THE MOST COMMON STRATEGIES OBSERVED IN THE UNDER THE STATIC 

ENVIRONMENT EXPERIMENT USING .05 MUTATIONAL RATES USING DATA FROM THE 3RD RUN 

High Mutation Rate - .075 

As show in Table 18, Tit for Tat (one bit,[False, True]) is the most common strategy as it 

was frequent in four of the five experimental runs. The most common two bit strategies were Tit 

for Tat (two bit, [False, True, False, True]), Two Tits for Tat ([False, False, False, True]) and 

[True, True, False, True]. A Tit for Two Tats is a strategy that punishes defection by defecting 

twice in a row. The strategy [True, True, False, True], only defects if the oldest memory it 

remembers is defection and the opponents previous move is cooperation. In this environment, we 

see successful evolution of zero bit strategies in the 2nd (Always Defect-[False]) and 5th 

(Always Cooperate-[True]) runs. In the fifth run we see a population that mostly adapted four bit 

strategies. 
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TABLE 18. THE MOST COMMON STRATEGIES OBSERVED UNDER THE STATIC EXPERIMENT 

USING .075 MUTATIONAL RATES 

Static Environment (High) - .075 Mutational Rate 
# of 
Runs 

[True]~[] 1 

[False]~[] 1 

[False, True]~[True] 4 

[True, True]~[True] 2 

[True, False]~[True] 2 

[False, False]~[True] 1 

[False, True, True, True]~[True, True] 1 

[False, False, True, True]~[True, True] 1 

[False, False, False, True]~[True, True] 2 

[True, False, True, True]~[True, True] 1 

[False, True, False, True]~[True, True] 2 

[True, True, False, True]~[True, True] 2 

[True, True, True, True]~[True, True] 1 

[True, False, False, True]~[True, True] 1 

[False, False, False, True, False, True, True, True, False, False, False, False, False, 
False, True, True]~[False, True, True, True] 

1 

[False, False, False, True, False, True, True, True, False, False, False, False, True, 
False, True, True]~[False, True, True, True] 

1 

 

Although there were a great number of different four bit strategies in this run, as shown 

in  Figure 12 the most used strategy ([False, False, False, True, False, True, True, True, False, 

False, False, False, False, False, True, True]) has a population frequency slightly better than the 

second most common ([False, False, False, True, False, True, True, True, False, False, False, 

False, True, False, True, True]). Both strategies were slightly more successful in contrast to other 

strategies used in the same population. Competition in this run was substantial as there were a 

variety of strategies in this run each adapted in small amounts by the population. 
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FIGURE 10. THE MOST COMMON STRATEGIES OBSERVED IN THE UNDER THE STATIC 

ENVIRONMENT EXPERIMENT USING .075 MUTATIONAL RATES USING DATA FROM THE 4TH RUN 

High Mutation Rate - .1 

As shown in table 19, results in this experiment are similar to the previous experiment. 

Although one bit strategies evolved in this experiment, they only did so in two of the runs. Each 

of these runs were mostly populated by one to two bit strategies, the most successful being Tit 

for Tat, Always Cooperate and Always Defect. The rest of the runs had populations using four 

bit strategies, which made for a highly competitive environment. Results in this experiment had 

the highest number of runs populated by the most complex strategies (4 bit strategies). 
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TABLE 19: THE MOST COMMON STRATEGIES OBSERVED IN THE STATIC ENVIRONMENT 

EXPERIMENT TESTING .1 MUTATIONAL RATES 

Static Environment (High) - .1 Mutational Rate 
# of 
Runs 

[False, True]~[True] 2 

[True, True]~[True] 2 

[True, False]~[True] 1 

[False, False]~[True] 2 

[False, True, False, True]~[True] 1 

[False, False, False, False, True, False, False, False, False, False, False, False, False, 
True, False, True]~[True, True, True, True] 

1 

[True, True, False, True, False, False, False, False, False, False, False, True, False, True, 
False, True]~[True, True, True, True] 

1 

[False, False, True, True, False, True, True, False, True, True, False, True, False, False, 
True, True]~[True, True, True, True] 

1 

[False, False, False, False, False, True, True, True, False, False, False, False, False, 
False, False, True]~[True, True, True, True] 

1 

 

Dynamic Environment Experiments 

Low Bit Mutation Rate - .01 

As shown in table 20, in this experiment, one bit strategies were the most common. 

Although there were a number of two bit strategies that did evolve, each of these strategies 

evolved all in the same run (4th run shown in figure 13). Low bit mutation rates decrease the 

chance of changes dealing with increasing or decreasing bits of memory. If an organism evolves 

with a high number of memory bits and successfully creates offspring, competition in the 

population increases due to the potential amount of different strategies generated by increasing 

or decreasing amounts of memory. 
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TABLE 20. THE MOST COMMON STRATEGIES OBSERVED UNDER THE DYNAMIC EXPERIMENT 

TESTING .01 BIT MUTATIONAL RATE 

Dynamic – Bit Mutation Rate .01 # of Runs 

False, True]~[True] 4 

[True, True]~[True] 4 

[False, False]~[True] 3 

[True, True, True, True]~[True, True] 1 

[False, True, True, True]~[True, True] 1 

[True, True, False, True]~[True, True] 1 

[False, True, False, True]~[True, True] 1 

[False, False, False, True]~[True, True] 1 

 

 

FIGURE 11. A GRAPH OF THE MOST COMMON STRATEGIES OBSERVED IN THE UNDER THE 

DYNAMIC ENVIRONMENT EXPERIMENT TESTING BIT MUTATION WITH .01 MUTATIONAL RATES 

USING DATA FROM THE 4TH RUN 
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High Bit Mutation Rate - .1 

As shown in Table 21, organisms can still adapt to strategies that use low amounts of 

memory in an environment with high bit mutation rates. Although fewer strategies appear 

compared to runs in the prior bit mutation experiment, there is an increasing number of 

organisms in the experiment adapting more complex strategies such as Tit for Tat (two bit).High 

bit mutation rates allow for more complex strategies to evolve, thereby increasing competition. 

In order to survive, organisms adapt that can compete against a myriad of opponents, which 

could explain a decrease number of common strategies as the most adaptable strategies survive. 

TABLE 21. THE MOST COMMON STRATEGIES OBSERVED UNDER THE DYNAMIC EXPERIMENT 

TESTING .1 BIT MUTATION RATE 

Dynamic – Bit Mutation Rate .1 # of Runs 

[False, True]~[True] 4 

[True, True]~[True] 4 

[True, False]~[True] 1 

[False, False]~[True] 2 

[False, True, False, True]~[True, True] 3 

[False, False, False, True]~[True, True] 1 

[False, False, True, True]~[True, True] 1 

 

As show in Figure 14, under high bit mutation rates, a multitude of strategies can evolve. 

The amount of competition caused by high mutation rates causes a population to adopt a number 

of strategies. Organisms adapting new strategies have a chance to become extinct. There are 

times that new strategies are relevant enough to affect a population. This is presented by the 
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various spikes in the figure 14 as the population over time.

  

FIGURE 12. A GRAPH OF THE MOST COMMON STRATEGIES OBSERVED IN THE UNDER THE 

DYNAMIC ENVIRONMENT EXPERIMENT TESTING BIT MUTATION WITH .1 MUTATIONAL RATES 

USING DATA FROM THE 5TH RUN 

Low (.01) and High (.1) Memory Mutation Rate 

The results in both experiments shown in tables 22 and 23 , low (.01) memory mutation 

rates have a greater number of common strategies than high (.1) mutation rates. As these results, 

did not correlate with information gathered from previous experiments, both experiment were 

run a second time. Running both experiments again led to results similar to previous 

experiments, which contradicted initial results gathered from both experiments. 

 

 



40 

 

Changes in memories can greatly affect the score of individual organisms within a 

population.  The opposite is also true as memory can differ from each individual. The memory an 

organism has changes with each encounter it has with another organism. As organism’s makes 

its decision by mapping its memory to an appropriate decision in its decision list, the possibility 

exists that the memories an organism has may not affect its decisions. For example, an organism 

that adapts a strategy like Always Cooperate will cooperate regardless of its memories. Results 

in these two experiments suggest although changes in memory can affect the outcome of 

decisions made by organisms, the influence it has on the success of a strategy over time is 

potentially overshadowed by other factors (Bit mutation, General mutation). 

TABLE 22. THE MOST COMMON STRATEGIES OBSERVED UNDER THE DYNAMIC EXPERIMENT 

TESTING .01 MEMORY MUTATION RATE 

Dynamic – Memory Mutation Rate .01 # of Runs 

[False, True]~[True] 3 

True, True]~[True] 3 

[False, False]~[True] 3 

[False, False, True, True]~[True, True] 1 

[False, True, False, True]~[True, True] 1 

False, False, False, True]~[True, True] 1 

[False, True, False, False, True, True, True, True]~[True, True, True] 1 

[False, True, False, False, True, True, False, True]~[True, True, True] 1 

[False, True, False, True, True, True, False, True]~[True, True, True] 1 

 

TABLE 23. THE MOST COMMON STRATEGIES OBSERVED UNDER THE DYNAMIC EXPERIMENT 

TESTING .1 MEMORY MUTATION RATE 

Dynamic - Memory Mutation Rate .1 # of Runs 

[False, True]~[True] 5 

[True, True]~[True] 5 

[False, True, True, True]~[True, True] 1 

[False, False, True, True]~[True, True] 1 
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Low General Mutation Rate - .01 

 As shown in Table 24, this experiment contained the smallest number of common 

strategies adapted throughout each population under Dynamic Environment. This experiment 

also evolved the least complex set of strategies for experiments outside of the control 

environment. Most of the common strategies that evolved were one bit strategies, with the 

exception of one run. This run evolved the zero-bit strategy, Always Defect. Tit for Tat and 

Always Cooperate were the most common strategies adapted in populations living in this 

environment and as a result, populations this experiment were stable. 

TABLE 24. THE MOST COMMON STRATEGIES OBSERVED UNDER THE DYNAMIC EXPERIMENT 

TESTING .01 GENERAL MUTATION RATE 

Dynamic - General Mutation Rate .01 # of Runs 

[False]~[] 1 

[False, True]~[True] 4 

[True, True]~[True] 4 

 

 

FIGURE 13. A GRAPH THAT SHOWS THE MOST COMMON STRATEGIES OBSERVED IN THE UNDER 

THE DYNAMIC ENVIRONMENT EXPERIMENT TESTING GENERAL MUTATION WITH .01 

MUTATIONAL RATES USING DATA FROM THE 2ND RUN 
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High General Mutation Rate - .1 

As shown in Table 25, this experiment contained the largest bit variation in common 

strategies adapted throughout population under Dynamic Environment. As shown in Figure 16, 

runs under this experiment were highly competitive as strategies used by each population were 

constantly changing per generation. With the exception of two bit strategies, each strategy, at 

most, only appeared only once over the course of the experiment. 

 Results from general mutation rate experiments .01 and .1 suggests that this mutation is 

the most impactful mutation out of all three types of mutation as the data in these experiments 

correlate similarly to both low and high Static Environment experiments which had the lowest 

and highest rates per mutation type.  

TABLE 25. THE MOST COMMON STRATEGIES OBSERVED UNDER THE DYNAMIC EXPERIMENT 

TESTING .1 GENERAL MUTATION RATE 

Dynamic - General Mutation Rate .1 
# of 

Runs 

[False]~[] 1 

[False, True]~[True] 2 

[True, True]~[True] 2 

True, False]~[True] 2 

[False, False]~[True] 2 

[False, False, True, True, True, True, False, True]~[True, True, True] 1 

[False, False, True, True, True, False, False, True]~[True, True, True] 1 

[True, True, False, False, True, False, False, True]~[True, True, True] 1 

False, False, False, False, False, False, False, True]~[True, True, True] 1 

[False, False, True, True, True, True, False, True]~[True, True, True]  1 

[False, True, False, True, False, False, False, False, False, False, True, False, False, 

False, False, True]~[True, True, True, True] 
1 
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FIGURE 14. THE MOST COMMON STRATEGIES OBSERVED IN THE UNDER THE DYNAMIC 

ENVIRONMENT EXPERIMENT TESTING GENERAL MUTATION WITH .1 MUTATIONAL RATES 

USING DATA FROM THE 3RD RUN 
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CHAPTER IV 

 

 

CONCLUSION AND FUTURE WORK 

 

 

Discussion 

 

 This thesis focuses on investigating the effects different mutations and mutation 

rates have on populations using strategies while playing Iterative Prisoners Dilemma (IPD). The 

software for this study was the system used genetic algorithms in order to observe the effects of 

memory on populations using strategies while playing IPD [4].  Experiments in this study were 

sectioned into three different categories: Control, Static, and Dynamic Environments. The first 

set of experiments, the Control Environment Experiments, were used as benchmark for the 

system and as a baseline and reference for Static and Dynamic Environment Experiments. The 

second set of experiments, the Static Environment Experiments presented data regarding 

populations using strategies while affected by different levels of mutational rates. The purpose of 

this set of experiments is analyze the effects mutation rates ranging from low to high, as stated in 

the hypothesis. All three types of mutation under this environment were kept at the same rate. 

Different rates were tested in each experiment which had two categories low (.01, .025) and high 

(.075, .1) with .05 being the median rate. The third set of experiments, the Dynamic Environment 

Experiments presented data on populations affected by three different types of mutation, Bit, 

Memory and General. The purpose of this set of experiments analyze the effects of different 

types of mutation on populations using strategies while playing Iterative Prisoner’s Dilemma. 

Two experiments (low: .01, high: .1) were run for each of the three mutational rates. Of each 
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experiment, only one of the three types of mutation were changed, the rest were kept in the 

median rate (.05). As with the previous environment, all experimental populations were seeded 

with Tit for Tat as its initial strategy. 

Control Environment 

 Results for the first two control experiments show that the initial strategies within a 

population greatly impact future generations under an environment where no mutation is present. 

The next three experiments presented the data on environments lacking one of the three 

mutational rates: Bit, Memory and General. Out of these three types of mutation, general 

mutation was the most influential as it acts both as the primary rate which the system checks as a 

when making changes within organisms in a population. This mutation also decides when 

decision list mutations can occur within organisms in a population.  

Static Environment 

Results show that as mutation rate increases, the possibility of more complex strategies 

evolving also rises.  Populations with low mutation rates have difficulty mutating strategies with 

high amounts of memory given that low mutation rates slow down the process of mutation 

within a population. Populations under these conditions tend to adopt strategies that interact with 

Tit for Tat [Always Cooperate, Always Defect], because this strategy serves as the initial 

strategy for the population. This leads to stable populations where organisms adopt certain 

strategies. On the other hand, populations under high mutation rates tend to exhibit a broader 

range of strategies and strategies that require high amounts of memory. This leads to highly 

competitive environments filled with a variety of strategies. Results in this environment support 

with the hypothesis of this thesis.  
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Dynamic Environment 

 In the dynamic environment, the experiments show that each of the three different types 

of mutation have an effect on population's use of strategies while playing the Iterative Prisoner’s 

Dilemma (IPD). Results show that Bit mutation rates limit the complexity of strategies that 

evolve within a population. Populations under low Bit mutation rates have strategies with a 

similar number of memory bits. High Bit mutation rates tend to increase the diversity of 

strategies within a population. Populations under high Bit mutation rates adapt strategies with 

high greater of memory in comparison to the initial strategy of a population. Low bit mutation 

keeps stability, and high Bit Mutation allows for increased variability in reference to the 

strategies within a population.  

Memory mutation was the least impactful type of mutation as runs in both low and high 

rates fluctuate between stable and competitive populations. The results in the memory mutation 

experiments contradicted previous experiments that showed populations with organisms adapting 

strategies using low amounts of memory in populations under low mutational rates, and 

organisms adapting strategies with high amounts of memory in populations under high 

mutational rates. Another experiment was run with same conditions as the previous experiment. 

This experiment contradicted these results. The results from both experiments suggest that the 

effects of memory mutation are overshadowed by other mutation types.  

General Mutation had the most impact with respect to change in organisms in a 

population. As dictated by the system, the general mutation rate acts as the primary mutation rate 

used by the system. It governs the rate of all mutations in organisms within the population. 

Results in populations with low general mutation rates act similar to low mutational experiments 
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in the Static Environment while high general mutation rates act similarly to high mutational 

experiments in the Static Environment.  

Final Thoughts 

General mutation, through system design, had the most impact of any mutation type in 

the system. Bit mutation and memory mutation are only allowed to occur in an organism that can 

undergo general mutation. General mutation also governs decision list mutations, which can 

affect strategies in a population over time. With the ability to change decisions over time, general 

mutation has the greatest impact in comparison to other mutations because the number of 

strategies that can be created through slight permutations in an organism’s decision list is larger 

than the amount of strategies generated by other mutations types.  

Bit mutation was the second most impactful mutation. Bit mutation rates have great 

impact on the complexity of strategies evolved organisms within a population. The higher bit 

mutation rates are, the higher the chance that organisms will evolve strategies that use high 

amounts of memory. As organisms within a population adapt strategies that use high amounts of 

memory, competition within the population increases. As specified by the system, the size of an 

organism’s decision list is 2m were m is the amount of memory bits an organism has. As memory 

increases the amount of decisions an organism can make also increases. Although new strategies 

can be generated solely through increasing the memory of an organism, mutations in an 

organism’s decision list can have a greater impact on the amount of strategies within a 

population. Therefore bit mutation rates can have a great impact on the amount of strategies 

adapted by a population especially if general mutation rates are high. 
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 Out of all three types of mutation within the system, the  memory mutation was the least 

impactful mutation. The contents of an organism’s memory change rapidly through mutation and 

an organism’s encounters and  the amount of influence this has is  significantly less than the 

amount of influence other mutations have  on a population as  m strategies created by changes in 

memory cannot compete with 2m strategies created by mutation s in an organism’s decision list. 

 Although memory mutation can affect the speed in which mutations in contents of 

memory occur, these changes can happen independently of this mutation. As an organism 

encounters other individuals within a population, the decision of each individual can potentially 

change the memories recorded within an organism’s memory bits. Changing Memory mutation 

rates is potentially synonymous to affecting the ability of an organism to remember a sequence 

of events correctly (forgetfulness or remembering wrongly). 

 As specified by the system, an organism makes a decision by turning its memory bits 

into a value, and mapping that value to its appropriate decision in its decision list. These changes 

can have great or minimal impact on an organism’s decision. Certain strategies are independent 

of memory. For example and organism that uses the strategy Always Defect, will defect 

regardless of the values in its memory bits. Strategies that depend on memory values are greatly 

influenced by these changes. Tit for Tat, a strategy that cooperates initially then mimics its 

opponent’s previous actions needs one bit of memory. Mutations or changes in this memory bit 

can greatly influence the decision of an organism using this strategy. The fact that strategies may 

or may not be influenced by the contents of an organism’s memory and that changes in the 

contents of these memory bits can happen independently of Memory mutation rates help explain 

the results found in the Dynamic Environment experiment testing Memory Mutation rates. 
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In reference to Axelrod’s Tournament [10], the most successful strategies, i.e., the most 

used strategies in each population had aspects of the four characteristics specified by Axelrod.  

Many of the most common strategies in each experiment adapted strategies that were 

nice; strategies that cooperated first. An example of this is show in figure 10. The most popular 

strategy, A Tit for Two Tats ([False, False, False, True]~[True, True]) cooperates initially as bits 

of memory remembered by this organism maps towards cooperation. 

Most organisms developed punishing strategies. An example of this is shown in table 25, 

as most of the strategies in this table have defection implemented in its decision list. 

With the aspect of forgiving an example of this is shown in table 24, as most of the 

strategies in this table have cooperation implemented in its decision list. Most strategies in this 

table have ability to punish, but with the inclusion of cooperation in the decision list of these 

strategies, organisms adapting these strategies have the ability to forgive others. 

The last aspect consistency is specified by the system. The size of an organism’s decision 

list is 2m   were m is the amount of memory bits an organism has. An organism makes a decision 

by turning its memory into a value and mapping it to a specific decision in its decision list. This 

mapping allows for consistency as each permutation in the values of memory within an 

organism’s memory bits map to a unique value in an organism’s decision list. 

Conclusion 

The focus of the experiments in this thesis is to study the effects of mutation on 

populations using strategies while playing Iterative Prisoner’s Dilemma (IPD). I observed how 

both different types of mutation and mutation rates can have various effects when dealing with 

strategies while playing IPD, as well as how Axelrod’s tournament [10] and the characteristics 

he defined, correlate to the success of organism’s using strategies while playing IPD.  
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Of the three types of mutation I studied under the system used by Leas [4], general 

mutation was the most impactful, followed by bit and memory mutations. On the topic of 

mutation rates, results suggest that as mutation rates increase, the competition between 

organisms within a population using strategies while playing IPD increases. A main cause of this 

increase in competition is the amount of strategies generated by mutations in the strategies of 

organisms. As mutation rates increase, the amount of different strategies within a population 

increases as well.  

In reference of Axelrod tournament [10], many of common strategies organisms adapted 

in each experiment contained the four characteristics that were specified in Axelrod’s results. As 

shown in the results in this thesis, these four characteristics hold great importance when 

considering successful strategies in the game IPD.  

The results in this thesis can have great applications in fields of social sciences, politics 

and economics as studying behavior in this context can help explain many situations in real life.  

Future Work 

A Study on the Initial Population of Organisms Playing the IPD. 

As observed in the Control Environment experimental results, initial strategies within a 

population has potential impact in the evolution of strategies in populations playing the IPD. 

Future work in this subject includes, studying the effects of different initial strategies in both 

Static and Dynamic Environments. 
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System Expansion 

 This system holds great potential in studying aspects of game theory through the use of 

evolutionary computational algorithms such as genetic algorithms. An expansion of this system 

would allowfor the study of game theory in greater detail and fields of research that are known to 

have used evolutionary algorithms could potentially benefit from this as well. 
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APPENDIX 

Functions 

pd_qsub_generator.py 

 Convert_config_file_name_to_job_string() – this function takes a file name and output 

directory base. Edits done to this file affect file input pathing. The directory of the files 

needed for the experiment must be specified in this file for a job to be executed by the 

HPCC. 

 create_config_files() -this function creates and names output data files(config files) 

created by the system after a successful job is finished by the HPCC. Edits done to this 

file will affect output file names created by the system. 

Main File 

 create_initial_population () – this sets the initial population of organisms in an 

experiment. By default, population generation is random. For the experiments in this 

thesis the population was set to begin with Tit for Tat as used by Leas. 

  



56 

 

The Process of Running Experiments using the System (figure 4) 

Configure Experimental Settings – This stage involves editing the variables in the 

configuration file (optional: main file- create_initial_population()). 

Set file names – This stageinvolvesediting the pd_qsub_generator.py file specifying file 

paths and input/output file names. 

Execution – This stageinvolvesrunning the pd_qsub_generator.py with the specified 

configfile(pd_config.init) as input. Execution of this file sends a job request to the HPCC( High 

Performance Compute Cluster). Jobs on average take from 10 – 30+ mins and varies on the 

number jobs sent, and the availability of nodes in the HPCC. Output file directories are generated 

after execution is finished, which is used for the Data Calculation step. 

Data Calculation – This stageinvolvesexecuting the pd_beaker_one.py using output file 

directories generated by the Execution step as input. The output of this file is used as input for 

pd_beaker_two_strategies_df_r.r . 

 Data Generation – This stageinvolvesrunning the pd_beaker_two_strategies_df_r.r on 

the file out of pd_beaker_one.py. This file generates a graphic representation of the data 

presented by the previous pd_beaker. 
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Definitions 

Genetic Drift – the change of gene frequency within a population due to the random 

nature of reproduction. 

Examples: 

o The last regular crocodile dies, creating a population of albino crocodiles. 

o A certain type of plant produces red and blue flowers.  A volcano explodes and 

destroys most of the red flowers. Since blue is now the dominant trait, the plant 

has a great chance of producing blue flowers and over time only produces blue 

flowers. 

o A certain type of plant produces red and blue flowers.  A landslide occurs and 

destroys most of the blue flowers leaving mostly red flowers. Over time through a 

span of generations red flowering plants started to dwindle. Now thisplantmostly 

produces blue flowers. 
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