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ABSTRACT 

Lu, Zaixin, New Algorithms for Protein Structure Comparison and Protein Structure Prediction. 

Master of Science (MS), July, 2010, 39 pp., 3 tables, 11 figures, 59 references. 

Proteins show a great variety of 3D conformations, which can be used to infer their evolutionary 

relationship and to classify them into more general groups; therefore algorithms of protein 

structure alignment, protein similarity search and protein structure prediction are very helpful for 

protein biologists. We developed new algorithms for the problems in this field. The algorithms 

are tested with structures from the Protein Data Bank (PDB) and SCOP, a Structure 

Classification of Protein Database. The experimental results show that our tools are more 

efficient than some well known systems for finding similar protein structures and predicting 

protein structures. 
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CHAPTER I 

INTRODUCTION 

Proteins are sequences of amino acids. As we know, there are total 20 types of amino acids, 

and each of them has different physio-chemical properties. The length of proteins is usually 

several hundred long. Therefore, proteins show a great variety of 3D conformations, which are 

necessary to support their diverse functional roles. 

 

Figure 1 20 Types of Amino Acids 

See Figure 1 for the 20 types of amino acids. It is widely believed that protein
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sequences and structures have close relationship with their biological functions, while protein 

structures reveal more evolutionary information than protein sequences do, since the structure of 

a protein changes more slowly in the evolution than its sequence does. Also, researchers 

frequently find that proteins with low sequential similarity are structurally homogenous. 

Therefore it is particularly important to discover the structures of proteins. 

In this thesis, we attempts to address some computational problems in the areas of protein 

structure comparison and protein structure prediction from its sequence. 

Protein 3D Structure Comparison 

Protein structures can be determined via experimental techniques such as X-ray 

crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, and even cryo-electron 

microscopy. Due to these techniques, the number of proteins discovered by biologists has 

increased dramatically over the last 30 years. The rapid growth of the PDB (see Figure 2a of [1] 

for an illustration of the PDB growth rate from 1970's to the year 2005) necessitates the 

development of efficient and accurate protein structure comparison and search algorithms and 

automatic software tools. 

 Proteins have three main substructures, α-helix, β-sheet and loop. Figure 2 is a protein 3D 

structure. In order to compare the structural similarity between proteins, current protein structure 

alignment algorithms (e.g. [2-19]) usually try to align the Cα atoms in protein backbones. An 

alignment is characterized by (1) how many atoms are matched, (2) where their positions are, 

and (3) how well they are matched. (1) and (2) are available once an alignment is determined. 

For (3), a transformation based alignment algorithm usually calculates RMSD, namely, the root 

mean square distance between aligned (and transformed) Cα atoms in the structures. Although it 

has been studied for over 30 years, the protein structure alignment problem is far from being well 

http://www.biomedcentral.com/1471-2105/11/S1/S34#B1�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B2�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B19�
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resolved. New approaches and improvements to existing approaches are frequently proposed (see 

[20-23] for some recent works). Moreover, many questions are still under active discussions. 

 

Figure 2 Protein 3D Structure 

 Protein structural similarity can be used to infer evolutionary relationship between proteins 

and to classify protein structures into more general groups; therefore a good protein structure 

alignment algorithm is very helpful for protein biologists. However, a good alignment algorithm 

itself may be insufficient for effective discovering of structural relationships among tens of 

thousands of proteins. 

Protein Similarity Search 

 Protein structure query (e.g. [10,12,13,24-36]) aims to find similar structures in a protein 

dataset according to a given query structure. Due to the large size of protein data repositories like 

the PDB, protein structure query requires a very fast structure alignment tool; however, the 

http://www.biomedcentral.com/1471-2105/11/S1/S34#B20�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B23�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B10�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B13�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B24�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B36�
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complexities of current alignment algorithms are usually too high to make a fully alignment-

based search practical. For some proteins, it may take hours to days for protein structure search 

engines like CE [12] and DALI [37] to return a search result; a fast and accurate protein structure 

query tool which enables real-time structure searching in a large dataset is still in need. To 

improve the search speed, in recent years many methods have been designed to reduce the query 

time. Baker and Dauter (2004) developed SSM [8] which uses Secondary Structure Match for the 

pairwise structure comparison. In addition, various linear encoding methods have been applied to 

protein search systems. For instance, 3D-BLAST [33] developed by Yang and Tung (2006), can 

improve the comparison speed thousands of times as the speed of CE and DALI. Similar 

methods include ProtDex2 [35], Sarst [31], and TopScan [36]. These methods improve the time 

performance greatly. However, when being compared with pairwise alignment methods, they 

have weakness in accuracy. 

Protein Structure Prediction 

 As mentioned before, protein structures can be determined via experimental techniques such 

as X-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, and even cryo-

electron microscopy. However, these methods are relative expensive and time-consuming. 

Therefore, the output of protein structures is lagging far behind that of protein sequences. So it is 

reasonable that to solve proteins structures using the above experimental techniques for a small 

number of all the proteins and to apply computational techniques to predict the structures for the 

rest of proteins. Based on our knowledge, there are two main factors to make the protein 

structure prediction difficult. First the number of possible protein structures is very large. Second 

the protein folding process has not been fully understood by the biologists. Therefore, the protein 

structure prediction problem is that given a protein sequence, to first search all the possible 

http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B37�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B8�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B33�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B35�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B31�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B36�
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structures for the sequence, and to find the most likely structure based on a scoring system. In the 

past, many methods about this problem [48-59] have been proposed, and most of them can be 

categorized into three types: Homology Modeling, Threading and Ab Initio Modeling. The 

Homology Modeling-based methods align the sequences of new proteins whose structures are 

unknown to the sequences of proteins with known structures. Therefore, the accurate of this kind 

of method depends on how similar protein sequences can be found in the database, PDB. It is 

widely believed that proteins will fold into similar structures if they have similar sequences. 

However if the sequence identity is less than 25%, the accurate of Homology Modeling-based 

methods is very low. Unlike Homology Modeling, the Threading-based methods align the query 

protein sequence to structures of solved proteins in the PDB; the structures in the PDB are also 

called templates. A scoring system is needed to identify good matched templates, and they may 

have low sequential similarity with the query protein. The Threading-based methods are more 

efficient than the Homology Modeling-based methods for finding good templates at fold level. 

Furthermore if no good template can be found in the PDB library for a given protein sequence, 

the Ab Initio Modeling is using to predict its structure. This kind of approach assumes that the 

native structure of a protein corresponds to its global minimum energy and they construct as 

many structures as possible, and to identify the minimum energy structure. This is the most 

difficult category of protein structure prediction and now can only predict small proteins usually 

with less than 100 amino acids. 

 

http://www.biomedcentral.com/1471-2105/11/S1/S34#B38�
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CHAPTER II 

A PROTEIN ALIGNMENT ALGORITHM 

 In [47], we have developed an efficient protein pairwise alignment algorithm. It can align 

hundreds of pairs of protein structures in one second. Our experimental results show that it is as 

good as some well known alignment algorithms, and its speed is much faster than that of others. 

The algorithm has been fully implemented and is accessible online at the address 

http://fpsa.cs.panam.edu/. 

Description of Algorithm 

 We give a brief description of our algorithms in this section. We have developed two protein 

alignment algorithms; both of them have three main stages. The first two stages are shared by 

them, but they have a different third stage. The third stage of the first alignment algorithm is 

based on DP (dynamic programming), and it preserves the order of Cα atoms in protein 

backbones. The second algorithm, whose third stage is based on MM (maximal matching), does 

not preserve the order, however it brings larger alignments than the first, while its speed is 

slightly slower. Our main technical contribution is a fast method used in stage two for finding a 

rigid body transformation to superimpose two protein structures. A process flow is shown in 

Figure 3.

http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34/figure/F3�
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Figure 3 Flowchart of Our Alignment Algorithm 

Brief-Algorithm 

 In the Figure 4, S1 and S2 are two 3D protein Cα backbone structures; L is a set of local 

alignments (a local alignment is a match of two substructures of consecutive Cα atoms from two 

backbones); δ is the maximum allowed distance between two matched Cα atoms; FG() is a 

function to calculate rigid body transformation; T () is a function to translate and rotate a 

structure; find local alignments (stage 1); 
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Figure 4 Brief Description of Our Alignment Algorithm  

First stage 

 In the first stage, our algorithm searches for a set of local alignments, each consisting of a 

series of consecutive Cα atom pairs in the backbones of two proteins P and Q, which are 

represented by their Cα atoms in backbones P = p1p2 … pn1 and Q = q1q2 … qn2. We use (i, j, l) 

to represent a local alignment, which indicates that a gapless segment pipi+1 … pi+l-1 of the first 

protein backbone P starting at Cα atom i matches a gapless segment qjqj+1 … qj+l-1 of second 

protein backbone Q starting at Cα atom j, and both segments have l atoms. We compute the 

distance matrices of the two backbones to match their local regions. If all the corresponding 
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distances in the two distance matrices have small difference, then a local alignment is found. Our 

algorithm to search all the local alignments runs in time O(d1m1m2), where d1 is a constant 

number, m1 is the number of Cα atoms in P and m2 is the number of Cα atoms in Q. 

Second Stage 

 In the second stage, each local alignment is used to find an initial rigid body transformation. 

There are many algorithms for finding a rigid body transformation to superimpose a set of pairs 

of 3D points [43]. In this paper a least square estimation method [44] is applied in our algorithm. 

Given a set H = {(a1, b1), (a2, b2),…,(am, bm)} of point pairs in the 3D Euclidean space, FG(H) is 

a rigid body transformation T derived by the method in [44] to minimize the RMSD. Let H0 be 

the set of all pairs (pi+k, qj+k) (k = 0, 1, ….., l - 1) in a local alignment (i, j, l). The rigid body 

transformation T0 = FG(H0) is derived. After obtaining T0, we use it to superimpose the two 

structures and collect all the pairs (pu, qv), where pu is from P and qvis from Q and the distance 

between pu and T(qv) is bounded by a threshold, and put them into H1. A new rigid body 

transformation T1, which is FG(H1), is derived based on the new set H1. By repetitively 

calculating a new transformation and adding new point pairs into H1, we can improve the 

transformation until no more pairs can be added. 

 A lot of matched pairs are used during the process of getting a transformation. It is necessary 

to mention that our algorithm selects all the matched pairs without considering conflicts, where 

two pairs share a same Cα atom. Obviously, this kind of conflicts is not disallowed in a global 

alignment. However, when calculating a transformation, there is no need to consider that, and 

sometimes it is hard to choose the best one among the conflicting pairs. Our method of searching 

a rigid body transformation with the presence of conflicting pairs not only makes the second 

http://www.biomedcentral.com/1471-2105/11/S1/S34#B43�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B44�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B44�
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stage simple and fast, but also improves its accuracy. 

Third Stage 

 In the third stage, we output an alignment that is a set of aligned pairs, where each Cα is 

allowed to appear in at most one pair. Two different methods, dynamic programming and 

maximal matching, are applied to bring the sequential alignment and non-sequential alignment, 

respectively. 

 The dynamic programming method can find an optimal solution by following the order of 

two backbone sequences. And the minimal length of a local alignment is set to 4. The maximal 

matching method returns a non-sequential alignment. Before applying the classical maximal 

matching algorithm to a graph of local alignments, we first delete edges in the graph so that each 

edge in the bipartite graph corresponds to a local alignment of length at least 4. The minimal 

length is used to exclude some isolated pairs, which are not biologically meaningful. 

 As we know, most existing protein alignment algorithms repeat finding the aligned regions 

between two backbones and recalculate the rigid body transformation when looking for a 

maximal alignment. Our algorithm does not involve the Cα atoms alignment when determining 

the rigid body transformation. This is why our alignment algorithm is remarkably faster than 

other algorithms. It can work out hundreds of pairs of protein alignments in one second. 

Therefore, it is very suitable for protein search. The sequential and non-sequential methods show 

an interesting tradeoff between speed and the number of aligned pairs. 

Methods of speeding up the alignment and search 

 In order to speed up the computation of our basic algorithm, we propose some strategies that 

improve the time performance. 

 Finding a good rigid body transformation between two protein structures is often time 
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consuming. This is why most alignment algorithms are relatively slow. In order to develop an 

efficient protein alignment algorithm for protein search, we reduce computational time for 

finding the rigid body transformation while maintaining sufficient alignment quality. 

 First of all, the size of local alignments directly determines the time performance. A large 

number of local alignments will result in slow global alignments. Before finding the local 

alignments, we first filter out the entire short α helices which have length less than 8, because 

this kind of local structures are very common in proteins and may prevent the program from 

finding significant local alignments. Moreover, the length of a local alignment should be 

reasonably large to make sense, so we only consider local alignments with length greater than a 

threshold. In our experiments these two filters excluded about 85% unnecessary ones from all the 

possible local alignments. 

 Furthermore, each local alignment is used to calculate an initial rigid body transformation. 

However, it is possible that the final global alignments derived from different local alignments 

are the same or highly similar. Obviously, reducing these redundant local alignments can 

improve the time performance greatly. For each local alignment, we first apply every previously 

obtained rigid body transformation to it and calculate a corresponding RMSD value. A small 

RMSD by some transformation means that a final global alignment based on the current local 

alignment will be similar to that based on an old local, therefore the current one can be skipped. 

This technique efficiently reduces the unnecessary calculation of transformations. Supported by 

these effective filters, our alignment algorithm compares hundreds of pairs of proteins in one 

second, remarkably faster than other well known alignment algorithms. 

Experimental Results 

In this section, we show the experimental results for an implementation of our algorithm and 
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its comparisons with other well known similar systems which are accessible online. The quality 

evaluation of protein alignment algorithm is based on its alignment length and RMSD value. The 

quality evaluation of protein search tool is according to its precision, recall, and query speed. 

Evaluation of the alignment results 

There is no general standard for analyzing and comparing the results of different alignment 

algorithms, because each method uses different alignment measures. Besides the two basic 

measures: alignment length and RMSD value, some methods also calculate a native score for 

their alignment results. For instances, CE and Dali use different kinds of Z-scores as their native 

score, SSM has the Q-score which considers both alignment length and RMSD value when 

measuring the alignment results. Subbiah proposed a geometric match measure, SASk , in [38]. 

The SASk also considers both alignment length and RMSD value. Lower SASk means better 

alignment result and k is the degree to which the score favors. A smaller k can be used when 

longer alignment length is preferred and a bigger k is for smaller RMSD value. Here we have 

collected 224 alignment cases and used Q-score and SASk to test the performance of our 

algorithm. 

The test cases were originally proposed by various papers for various testing purposes. A list 

file available on our website shows all the 224 cases. They include No. 1 - No. 20 (see Table III 

in [12]), No. 21 - No. 88 (see Table I in [24]), No. 89 (see Tables I and II in [12]), No. 90 - No. 

92 (supplement to Table III in [12]), No. 93 (see Figure 5 in [12]), No. 94 - No. 101 (see Table 

IV in [12]), No. 102 - No. 111 (see Table V in [12]), No. 112 - No. 120 (supplement to Table V in 

[12]), No. 121 - No. 124 (see Table VII in [12]), No. 125 - No. 143 (see Table 1 in [11]), No. 144 

- No. 183 (see Table 1 in [17]) and No. 184 - No. 224 (see Table 2 in [17]). We compare our 

alignment results with Dali, CE and SSM. In each test case, different alignment algorithms have 

http://www.biomedcentral.com/1471-2105/11/S1/S34#B38�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B24�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B11�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B17�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B17�
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different results. CE and Dali always get more aligned pairs than those of our algorithm and 

SSM, but their accuracy is relatively lower (having larger RMSD value). So using merely 

aligned pairs or RMSD value as the criterion to measure the performance of alignment algorithm 

makes no sense. Therefore, we calculate Q-score and SASk for the alignment results of all the 

methods and compare the alignment results in terms of Q-score Difference and Average SASk. 

The Q-score Difference is calculated by (Qscore_Ours - Qscore_X) where X is Dali, CE or SSM. And 

we use k = 1, 2 and 3 for the Average SASk to analyze the quality of all the four methods. It 

should be mentioned that our method can output sequential alignments and non-sequential 

alignments, thus we compare both of them with other methods. We call the sequential method 

SPSA and the non-sequential method NPSA for short. 

 

 

 

 

Table 1 Results of Multiple Alignment Methods 

 Dali CE SSM SPSA NPSA 

Average alignment length 130.43 132.82 117.78 119.20 122.65 

Average RMSD 2.78 2.83 2.37 2.23 2.30 

Average SAS1 2.96 3.08 2.76 2.62 2.48 

Average SAS2 3.89 3.60 3.92 3.43 3.25 

Average SAS3 6.67 5.69 6.84 5.60 5.19 
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Discussion on the alignment results 

Table 1 show some statistical data based on the experimental results. Compared with Dali, 

CE and SSM, our algorithm has smaller average RMSD, and its average alignment length is 

longer than that of SSM, but shorter than that of CE and Dali. Its average SASk is always smaller 

than other three algorithms, no matter k = 1, 2 or 3. A lower SASk score indicates a better 

alignment. To further test our algorithm, we compare it with others by Q-score. Figure 5 reflects 

the Q-score Difference between our algorithm and others respectively. A black area below X-axis 

indicates that the Q-score of our algorithm is lower than that of the compared method. Since in 

each graph the upper part of the whole black area is always larger than or equal to the lower part, 

it is clear that our alignment algorithm is comparable to other well known algorithms. It is worth 

mentioning that in most test cases, SSM and our method always give alignment results with 

small RMSD value and shorter alignment length, while CE and Dali always find more matched 

pairs but with larger RMSD value. So if more matched pairs are desirable, Dali and CE are good 

alignment tools; on the other hand, if shorter but more accurate alignments are preferred, SSM 

and our method are better. 

http://www.biomedcentral.com/1471-2105/11/S1/S34/figure/F1�
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Figure 5 Q-score Difference Plot 
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CHAPTER III 

A PROTEIN SEARCH ALGORITHM 

In [34] we have developed a protein structure query algorithm and tool to find similar 

protein structures in the PDB for any given structure. With a combination of geometric filter and 

3D structure alignment, given a query protein, the algorithm can find proteins whose structures 

are overall similar with the query structure in the PDB in a few minutes. The geometric filter can 

exclude dissimilar proteins efficiently, and reduce a lot the number of times of pairwise 

alignments. On the negative side, it misses some significant proteins whose structures are 

partially similar with the given protein. In [46], to further improve the accuracy and efficiency 

our protein search algorithm, we developed new algorithm and web tool to search similar protein 

structures in the PDB (Protein Data Bank). The algorithm is a combination of a series of methods 

including protein classification, geometric feature extraction, sequence alignment, and 3D 

structure alignment. Given a protein structure, the tool can efficiently discover similar structures 

from hundreds of thousands of structures stored in the PDB. Our experimental results show that 

it is more accurate than other well-known protein search systems in finding proteins that are 

structurally similar to the query protein, and its speed is also competitive with those systems. The 

algorithm has been fully implemented and is accessible online at the address 

http://fpsa.cs.panam.edu/, which is supported by a cluster of computers.

http://www.biomedcentral.com/1471-2105/11/S1/S34#B34�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B34�
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Outline of Our Approach  

 Our method is a combination of sequence alignment and geometric alignment. Its speed is 

improved by grouping proteins with similar structures and using one representative structure for 

each group. A brief overview about our method is as follows:  

(1) An offline phase partitions the protein 3D structures in the database into groups so that 

each group contains those proteins with similar structures. One representative structure is 

selected from each group.  

(2) When an input protein is given, use the BLAST algorithm to search proteins with similar 

amino acid sequences and put them into list L1.  

(3) Use several layers of geometric filters to check all the representative proteins among the 

classified protein database and exclude dissimilar proteins. Put all those similar representative 

proteins into list L2.  

(4) Put all the representative proteins whose groups are related to proteins in L1 into L3, and 

let list L4 = L3 − L2 (which are the proteins in L3, but not in L2).  

(5) Use a simplified version of our pair-wise 3D structure alignment algorithm to check 

structural similarities between the input protein 3D structure and each structure in L2 and L4. 

Output those groups whose representatives are structurally similar to the input protein. This is 

the most time-consuming part; therefore, it is implemented in a cluster of computers.  

 The first filter, called “sequence filter”, is based on the sequence alignment of BLAST, and 

the second filter, called “geometric filter”, is based on some simple geometric comparisons. A 

system process flow is shown in Figure 6. 
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Figure 6 System Flowchart 

An Offline classification 

 Our search system has an offline classification for all the protein structures in the PDB. The 

purpose of this classification is to improve the speed of protein structure query. It has the 

following steps: 

 1. Partition the PDB into groups. Use our pairwise alignment algorithm to check the 

structural similarity among the protein chains in the PDB. The Q-score, proposed in [8] is a non-

linear score for measuring such similarity. It has been found that different protein structure query 

servers agree reasonably well on this score. Here we support that two proteins with alignment Q-

score higher than 0.5 are similar. Therefore, after the partition every two proteins in the same 

group have a pairwise alignment Q-score of at least 0.5. 

http://www.biomedcentral.com/1471-2105/11/S1/S34#B8�
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 2. Select representatives. For each group, one protein chain is selected as a representative. In 

order to get it, we align each protein with all others in the same group and calculate the sum of 

Q-scores. A protein chain with the highest sum of Q-scores is selected as the representative. The 

classification is based on all-against-all pairwise alignment. It synchronizes itself with the PDB 

and all the protein chains in the PDB are partitioned into about 14,000 groups. Searching the 

entire PDB with 130,000 protein chains is reduced to doing so in our classified database with 

about 14,000 representatives. Thus, it improves the speed to a great extent. 

Distributed Computing  

In the last step of implementation we assign the surviving proteins to multiple computers to 

perform the pair-wise structure alignments simultaneously. However, if not scheduled properly, a 

distributed system can decrease the overall reliability of computations because the unavailability 

of a node can result in disruption of other nodes. Instead of just evenly assigning proteins to the 

nodes of our cluster, at the beginning, the front node assigns a small number of proteins to each 

available machine of the cluster, then whenever a machine is free (i.e. it has completed its task), 

the front node will calculate the speed of that machine and send a certain number of proteins to 

it. This procedure is repeated until all the computation tasks have been completed.  

Experiment Results 

In this section, we show the experimental results for an implementation of our algorithm and 

its comparisons with other well known similar systems which are accessible online. The quality 

evaluation of protein alignment algorithm is based on its alignment length and RMSD value. The 

quality evaluation of protein search tool is according to its precision, recall, and query speed. 

Evaluation of the query accuracy 

 When applying alignment algorithms into protein search systems, the algorithms which can 
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output best alignment results might not have the best performance of search accuracy. 

 The Structural Classification of Protein database (SCOP [39-42]), manually constructed by 

human experts, is believed to contain accurate structural classifications. The SCOP hierarchy has 

the following levels: domain, family, superfamily, fold, and class. 

 For a database search tool, the recall rate and precision are two commonly used parameters 

for assessing its query quality. Precision is defined as n/N and recall rate is n/T, where n is the 

number of true proteins (from the same family of the query protein) in the result list, N is the 

total number of proteins in the result list, and T is the total number of proteins in the same family 

of the query protein in the database. Therefore, the precision is between 0 and 1, and the quality 

of a ranked output list is directly based on it. The recall rate is also between 0 and 1, and the 

missing problem of a search engine is in relation to it. In 2004, Aung and Tan [35] collected 

34,055 proteins form the ASTRAL SCOP 1.59 to form a large target database, from which 108 

proteins were selected as the query proteins. These query proteins are from four main classes 

(All-α, All-β, α/β and α + β) of ASTRAL SCOP 1.59 and their average family size is around 80. 

We use these different categories of proteins to do the queries on our search engine, use Q-score 

as the criterion to rank the output proteins, and compare the result with that of CE [12], 

MAMMOTH [11], 3D-BLAST [33], PSI-BLAST [29], ProtDex2 [35], and TopScan [36]. 

Results for all the methods except ours are taken from [33]. Since our sequential method is much 

faster than its non-sequential counterpart, we just use the sequential method in our experiments. 

In our search system we do support both sequential and non-sequential methods. 

http://www.biomedcentral.com/1471-2105/11/S1/S34#B39�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B42�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B35�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B11�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B33�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B29�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B35�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B36�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B33�
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Figure 7 Precision and Recall Curves 

 According to the 108 query results, our method based on pairwise alignment algorithm 

shows better performance than others. CE and MAMMOTH are the second and third accurate 

methods. 3D-Blast, which is based on a linear encoding method, ranks fourth and its precision is 

about 5% lower than ours on average. PSI-BLAST is a classical sequence search algorithm, and 

its precision outperforms both TopScan and ProtDex2. However, when being compared with 

alignment algorithms such as CE, MAMMOTH and ours, its precision is much lower. Figure 7 

(left) shows the Receiver Operating Characteristic (ROC) curves for all the methods. When the 

recall rate is 100%, the average precision of our method is 63%, which is the highest. In addition, 

all the pairwise alignment methods including CE, MAMMOTH and ours have higher precision 

than that of other methods, and with the increasing of recall, this trend becomes more obvious. 

Performance for searching weak similarities 

 In the SCOP database, proteins in a same species or domain are the most similar proteins, 

and then are the proteins belonging to a same family. Experts also classify weakly similar 

proteins into a same superfamily. Therefore, to precisely assess the efficiency of searching 

methods challenged by searching weakly similar proteins, we use the entire ASTRAL SCOP 1.73 

http://www.biomedcentral.com/1471-2105/11/S1/S34/figure/F2�
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as the target database, and select 129 query proteins belonging to four major classes. The average 

superfamily size of these 129 query proteins is around 300. We use these proteins to do queries 

on our search engine and also on 3D-BLAST [33], PSI-BLAST [29], and SSM [8]. We are aware 

that ProtDex2 [35], Sarst [31], and TopScan [36] are also famous protein search systems, 

however they have not updated their database for a long time. Figure 7 (right) shows the 

experimental results of the four methods for searching similar proteins at superfamily level, 

according to which our method is the most accurate one. 3D-BLAST, the second most accurate 

method in this experiment, has its precisions about 8.1% lower than ours on average. We claim 

that pairwise alignment algorithms have more advantages in finding remote homologous proteins 

than linear encoding method or sequential search method does. Nevertheless, according to the 

experimental result, our method occasionally has problem detecting related proteins in the same 

superfamily. About 17% query results of our search engine have serious missing problems 

(precision lower than 50% when recall rate is 100%), while 3D-BLAST is 35% and other 

methods have more serious missing problems than 3D-BLAST. 

Evaluation of reliability 

 Our search engine provides an alignment length and an RMSD value for every retrieved 

structure. In order to assess the reliability of our search engine, we calculate the Q-score value of 

each structure by its alignment length and RMSD value; and gather statistics on precision and 

recall rate for various Q-score values at both superfamily and family levels. According to the 

data in Table 2, when Q-score is higher than 0.4, the average precisions are over 90% for both 

levels. The recall rates are 62.05% for family level and 45.22% for superfamily level. Precision 

is defined as n/N and recall rate is defined as n/T, where n is the number of true proteins of Q-

scores higher than the limit value in the result list. A true protein means it is from the same 

http://www.biomedcentral.com/1471-2105/11/S1/S34#B33�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B29�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B8�
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family or superfamily of the query protein. N is the total number of retrieved proteins whose Q-

scores are higher than the corresponding value, and T is the total number of proteins in the 

family or superfamily of the input protein. 

Table 2 Statistics on the Reliability of Our Query Engine. 

Q-Score 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 

avg.recall(%) 

family 
14.65 20.20 28.14 39.28 48.99 62.05 75.84 84.31 

avg.precision(%)

family 
99.35 98.56 97.42 97.16 94.83 91.57 87.43 70.85 

avg.recall(%) 

superfamily 
9.22 12.89 18.96 27.53 34.87 45.22 56.59 68.43 

avg.precision(%)

superfamily 
99.39 99.15 99.01 98.89 98.74 97.58 96.60 87.39 

 

Evaluation of query speed 

Results for all the methods except ours are taken from [33]. Their experiments were 

performed on a computer with an Intel Pentium 2.8 GHz processor and 1,024 megabytes of 

RAM memory. Ours were done on a computer with Intel Pentium 2.66 GHz processor and 1,024 

megabytes of RAM memory. As shown in Table 3, on average, our method requires about 112.20 

seconds searching the database for each query protein in a single machine. Although it is much 

slower than 3D-BLAST and PSI-BLAST, when being compared with pairwise alignment 

algorithms CE, and MAMMOTH, ours has great advantage in the time performance. In addition, 

http://www.biomedcentral.com/1471-2105/11/S1/S34/table/T3�
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we have used our web server and the web servers of 3D-BLAST, PSI-BLAST and SSM to do the 

129 queries in the entire PDB database. The PSI-BLAST, SSM, and 3D-BLAST servers have 

average query time of 16, 27, and 44 seconds respectively. Benefit from the distributed 

computing system and the offline classification, our web tool can scan the entire PDB database 

in 17 seconds on average, which is shorter than those of 3D-BLAST and SSM. Moreover, our 

results contain an alignment length and an RMSD value for every output protein. Although PSI-

BLAST and 3D-BLAST do not have these data, they are the most important measures for 

comparing protein structural similarities. The 3D-BLAST server is the slowest one with an 

average query time of 44 seconds. In our knowledge, other search engines such as CE [12] and 

Dali [37] which are based on one-against-all pairwise alignment algorithms need hours to days to 

complete the queries. 

Table 3 Average Search Time of Multiple Program on 108 Queries 

Software Total search time (s) Average search time per query (s) 

Our method 12,117 112.20 

3D-Blast 34.35 0.318 

PSI-BLAST 18.31 0.170 

CE 13.5 days 3 hours 

MAMMOTH 131,855 1220.88 

 

http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
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CHAPTER IV 

A PROTEIN PREDICTION ALGORITHM 

It is often said that if a sequence has high percentage identity to a sequence of known 

structures, it is possible to build a reasonable structure by Homology-based Modeling, but at 

lower than 30% identity, Threading-based Modeling is better than Homology Modeling to 

predict a structure. The main idea of Threading-based Modeling is a one dimensional to three 

dimensional alignment. The query protein sequence is one dimensional and the template in the 

database is three dimensional. In the past many approach has been proposed for the protein 

threading problem. The problem can be formulated to an integer programming problem and it 

was converted to a linear programming problem by Xu and Li in 2003 [48]. 

Linear programming (LP) is a mathematical method to achieve the best outcome in a given 

optimizing problem for some list of requirements represented as linear equality and linear 

inequality constraints. The protein threading problem can be converted to a LP problem by a 

constraint system and a score system. The constraint system is to ensure that two or more 

elements in the query sequence cannot share a same position in the template. In addition, the 

alignment is sequential, which means that the matching preserves the order of both the sequence 

of query protein and the atoms in template. The score system includes many different score 

functions. When a element of the query sequence aligns to a position in the template, it obtains a 

score according to the score functions.

http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://en.wikipedia.org/wiki/Linear_equality�
http://en.wikipedia.org/wiki/Linear_inequality�
http://en.wikipedia.org/wiki/Linear_inequality�
http://en.wikipedia.org/wiki/Constraint_(mathematics)�
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 The linear programming is a technique for the optimization of the sum of scores, subject to 

linear equality and linear inequality constraints in the constraint system. 

Our Contribution 

 The Protein threading is one of the most challenging problems in the field of computational 

biology today. It has a large number of literatures available now; in the previous works the 

problem always has the following definition: The protein model is a linear sequence of 

secondary structure segments, called conserved cores. Core segments have fixed length and they 

are connected by loop regions. When doing the sequence-structure alignment, the score system 

considers the element in the core segments and the loop regions are only considered for gap 

penalty. In addition there are two main types of threading models: 

1. The score functions do not include the pairwise interaction score. This kind of threading 

problems can be solved simply by applying a dynamic programming algorithm.  

2. The score functions include the pairwise interaction score. This kind of problems is NP 

hard when variable gaps are allowed into the alignment in the loop regions (Lathrop, 

1994). 

 Therefore, any method must require an exponential time to find an optimal solution when 

using the second model, and doing exhaustive search is impractical for large proteins. 

  Xu and Li converted the threading problem to a linear programming problem in 2003, and 

they show that it has good accurate performance comparing with other famous protein structure 

prediction servers. As we investigated, when applying the linear programming to a protein 

threading problem, it may has numerous variables in the constraints that make the computation 

very slow. In order to further improve the efficiency and accuracy of the linear programming 

algorithm, we proposed a heuristic algorithm to reduce variables unnecessary in the linear 

http://en.wikipedia.org/wiki/Optimization_(mathematics)�
http://en.wikipedia.org/wiki/Linear_equality�
http://en.wikipedia.org/wiki/Linear_inequality�
http://en.wikipedia.org/wiki/Constraint_(mathematics)�
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constraints. 

 Our approach first checks all the possible alignments for each core, and selects the alignment 

pairs which have good solvent, profile, and secondary structure match. After that, we just select 

one alignment as a center each time, and filter out all the alignments uncooperative. An 

alignment is uncooperative if it has large gap with the center. Then we do linear programming to 

find a optimal solution with the rest alignments. This method reduces the number of variables 

greatly, and improves the time performance. In addition, our experimental results show that, 

comparing with the original method, it always finds the same optimal solutions. 

 We also developed a dynamic programming method for the protein threading problem. It can 

find an optimal solution by following the order of both the query protein sequence and the atoms 

in a template if variable length gaps are allowed in the loops and pairwise interactions are 

considered only for the elements between neighboring cores. 

Outline of Our Method for Linear Programming 

Score functions 

 There are total four kinds of score functions and a gap penalty function used in this paper: 

Stotal = WmSm + WssSss + WsoSso + WpSp + WgSg 

 The first term in the equation is a sequence profile matching score. The profile of the query 

sequence is obtained by using the classical sequence search program PSI-BLAST to search 

against the non redundant database NR. Given a query protein of length n, it is a [n, 20] matrix 

includes the frequency P(i,k), which is the probability of the kth amino acid at the ith position of 

the query protein. If the ith position of query sequence is aligned to the jth position of a template, 

their sequence profiles matching score is ∑ P(i,k)M(j,k), where k = 1...20, and M is PAM250 

matrix. 
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 The second term is to compare the different between the predicted secondary structure of a 

query sequence and real secondary structure of a template. We use PSI-PRED to predict the 

secondary structure for the query protein and use DSSP to obtain that of the template. 

 The third term is similar with the second one. It calculates the solvent accessibility match 

between a query protein and a template. The solvent accessibility for the query is predicted by 

the program SABLE and the real solvent accessibility of the template is obtained by DSSP. 

 The fourth term is a pairwise interaction score. The score is follows Xu and Li [48], and it is 

to compute the potential between two amino acids, which has short distance. 

 The last term in the equation is the gap penalty, and it includes a gap open penalty and a gap 

extension penalty. 

Improve the time performance 

 The variables and constraints of linear programming used in this paper follow Xu and Li 

[48]. There are two types of variables. Let xi,l denotes a Boolean variable and xi,l = 1 if the ith 

core of the template is aligned to lth position of the query sequence, otherwise it is 0. The other 

kind of Boolean variable yi,l,j,k.  yi,l,j,k = 1 if both xi,j = 1 and xj,k = 1, otherwise it is 0. It is 

obvious that the variable yi,l,j,k is for the pairwise interaction score and the xi,l is for other single 

scores. 

In this paper, our work focuses on reducing the number of variables in the linear 

programming, while avoid missing good templates for the query protein. Given a query protein 

sequence, we first find all the valid query sequence positions that each core of the template could 

align to, and select the core C that has the minimum number of possible positions.  The valid 

positions for each core are selected according to their solvent, profile, and secondary structure 

matching scores. Let P denotes the set of all the positions for core c. we align core C to each 
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position in P, and consider this alignment as a center to filter out all the positions for other cores 

uncooperative. A position is uncooperative if its gap with the center is larger than the maximum 

gap defined by us. We do linear programming with the rest of valid positions each time and 

select the final alignment which has the best score. This method reduces the number of variables 

a lot, and improves the time performance greatly. 

 

Figure 8 Example of Our Filtering Method 

Figure 8 shows an example of our filtering process. At the beginning, all the lines are the 

possible alignment positions for the two cores. As well as we align the ith core to some position, 

in this example it is the red position, all the dashed lines from the jth core can be ignored, 

because they have big gap with the center. In addition all the dashed lines from the ith core can 

be deleted, because the ith core is aligned to the read position fixedly. 

Suppose the two cores has pairwise interaction, and the number of all the possible query 

sequence position for the ith core is m, the number of that for the jth core is n. Thus the number 

of the x type variables of the ith core and jth core are m and n respectively. The number of the y 
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type variables for these two cores is O(mn). Therefore, our method not only reduces the x type 

variables, but also reduces y type variables significantly. 

Our Dynamic Programming Algorithm 

 As we know if the scoring system does not include the pairwise interaction score, the 

threading problem can be solved by a simple dynamic programming algorithm. However if 

pairwise interaction is considered, dynamic programming cannot be applied to optimize the 

score. In this paper, we developed a dynamic programming method for finding the optimal 

solution subject to (1) variable length gaps are allowed in the loops and (2) pairwise interactions 

are considered only for the elements between neighboring cores. Figure 9 briefly describes our 

algorithm. 

The number of possible query sequence position for each core is less than the length of the 

sequence. Therefore, the complexity of our dynamic programming is O(n2m), where n is the 

length of query sequence and m is the number of cores in the template. 
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Figure 9 Our Dynamic Programming Algorithm 

Experimental Result 

 In this section, we show the experimental results for an implementation of our algorithm and 

some examples of its prediction result. 

 The algorithm is implemented with C program, and worked on a personal machine with an 

Intel Pentium 1.66 GHz processor and 2,048 megabytes of RAM memory. We test the time 

performance of our method by using sequences from the CASP9 (Critical Assessment of 

Techniques for Protein Structure Prediction) competition as targets. In the CASP9 set, we have 

91 target sequences, 74 from them have length between 100 than 500. For each of those targets, a 

suitable template, which has 15%-25% sequence similarity is identified by using PSI-BLAST to 

 

The Input is a template Ta and a query sequence S. The output is the 
optimum matching score for Ta and S. 

Let M denotes the score matrix and n denotes the number of the 
cores in Ta. Fs() is the function to calculate the profile, secondary 
structure and solvent scores and Fp() is to compute the pairwise 
score. 

1. For i = 1 to n 
2.  Let m denotes the number of valid query sequence position 
for ith core, m' denotes the number of that for (i-1)th core, and D[i] 
denotes the corresponding query sequence position set;   

3.  For j = 1 to m 
4.   If i is 0 
5.    M[i][j] = Fs(Ta[i],S[D[i][j]]); 
6.   Else 

7.    M[i][j] = Max(Fs(Ta[i],S[D[i][j]])+M[i-
1][k]+Fp(S[D[i][j]],S[D[i-1][k]])), where k = 1, 2, ..., m'; 
8. Output Max(M[n][l]), where l is from 1 until u, where u is the 
number of positions last core could align to; 
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search against the PDB. We do the target-template alignments for the entire 74 pairs by the 

original linear programming algorithm and our new algorithm. The two methods share the same 

constraint system and score system. Their average running time is 14.4 seconds and 155.8 

seconds respectively, our new algorithm is about 12 times faster than the original one. Most of 

the pairs have the same alignment results and optimal scores for the two methods expect one 

pair, the target T0526 and template 1JOVA. The optimal score obtained by the original method 

for this pair is 6286.47 and the optimal score by our algorithm for it is 6116.67. The slight 

difference is for the reason that a gap in the alignment of the original method is larger than the 

maximum gap allowed in our new algorithm. 

 We also use our dynamic programming method to do the alignment for the above test pairs. 

The average running time is 2.9, which is much faster than that of the approaches based on linear 

programming. However when using the same score system to verify its alignment result, the 

scores obtained by the alignments of our dynamic programming method are lower than that of 

our linear programming for most of the test cases. It is reasonable since our dynamic 

programming method is for templates that only have pairwise interactions between neighboring 

cores, or the pairwise interactions are only considered for the elements between neighboring 

cores. 

 We test the accuracy of our protein structure prediction algorithm by sequences from newly 

discovered proteins in the SCOP1.7.5. Since our algorithm is relatively fast, we construct a large 

non-redundant templates database which contains about 13000 proteins from SCOP1.7.3. Given 

a target sequence with length n, our algorithm only considers the templates whose lengths are 

between 2n and n/.2. We present an example of the prediction result by our algorithm. 

 In the experiment, we use the target sequence of a protein whose PDB code is 2F15A, it has 
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89 residues and is classified into All-β class in the SCOP1.75. Its most suitable template founded 

by our linear programming algorithm and dynamic programming algorithm in the template 

database has PDB code 2BHUA and 1M7XA respectively. To investigate how structurally 

similar they are with the target protein, we use our protein structure comparison tool to compare 

their structures.  The target protein and the template protein 2BHUA have 69 matched pairs and 

the RMSD value is only 1.8, which means they are structurally similar. Figure 10 shows the 

comparison details. 

 

Figure 10 Structure Comparison Result for 2BHUA 

 Figure 11 shows the structure comparison details for the target protein and the template 

1M7XA, which is the best template according to the result of our dynamic programming 

algorithm. They have 76 matched pairs and the RMSD value is 2.4. It is obvious that the two 

structures in the figure are very similar. The dynamic programming algorithm also has good 

performance in our experiment. 
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Figure 11 Structure Comparison Result for 1M7XA 

Our protein threading algorithm is fast and accurate. This makes it very suitable for large 

scale computing. In the future we want to improve the score system of the threading approaches 

and apply it to predict the folds of SCOP for newly discovered proteins. 
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