
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations - UTB/UTPA

7-2010

New Algorithms for Protein Structure Comparison and Protein New Algorithms for Protein Structure Comparison and Protein

Structure Prediction Structure Prediction

Zaixin Lu
University of Texas-Pan American

Follow this and additional works at: https://scholarworks.utrgv.edu/leg_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Lu, Zaixin, "New Algorithms for Protein Structure Comparison and Protein Structure Prediction" (2010).
Theses and Dissertations - UTB/UTPA. 559.
https://scholarworks.utrgv.edu/leg_etd/559

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations - UTB/UTPA by an authorized administrator of ScholarWorks @ UTRGV. For
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/leg_etd
https://scholarworks.utrgv.edu/leg_etd?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/leg_etd/559?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

NEW ALGORITHMS FOR PROTEIN STRUCTURE COMPARISON

AND PROTEIN STRUCTURE PREDICTION

A Thesis

by

ZAIXIN LU

Submitted to the Graduate School of the
University of Texas-Pan American

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

July 2010

Major Subject: Computer Science

NEW ALGORITHMS FOR PROTEIN STRUCTURE COMPARISON

AND PROTEIN STRUCTURE PREDICTION

A Thesis
by

ZAIXIN LU

COMMITTEE MEMBERS

Dr. Bin Fu
Chair of Committee

Dr. Zhixiang Chen
Committee Member

Dr. Robert Schweller
Committee Member

July 2010

Copyright 2010 Zaixin Lu

All Rights Reserved

iii

ABSTRACT

Lu, Zaixin, New Algorithms for Protein Structure Comparison and Protein Structure Prediction.

Master of Science (MS), July, 2010, 39 pp., 3 tables, 11 figures, 59 references.

Proteins show a great variety of 3D conformations, which can be used to infer their evolutionary

relationship and to classify them into more general groups; therefore algorithms of protein

structure alignment, protein similarity search and protein structure prediction are very helpful for

protein biologists. We developed new algorithms for the problems in this field. The algorithms

are tested with structures from the Protein Data Bank (PDB) and SCOP, a Structure

Classification of Protein Database. The experimental results show that our tools are more

efficient than some well known systems for finding similar protein structures and predicting

protein structures.

iv

TABLE OF CONTENTS

 Page

ABSTRACT…………………………………………..…...……………………………………..iii

TABLE OF CONTENTS……………………………………..…………………………………..iv

LIST OF TABLES……………………………………………….………………...……………..vi

LIST OF FIGURES…………………………………………………..…..……………………...vii

CHAPTER I. INTRODUCTION……………………………………………..…………………...1

Protein 3D Structure Comparison….…………………………….......................................2

Protein Similarity Search...………………………...…….……..3

Protein Structure Prediction...……………………………..4

CHAPTER II. A PROTEIN ALIGNMENT ALGORITHM………...….....…………………........6

 Description of Algorithm………………………………………..……………..……….…6

 Experimental Results………………...…...……………………………………...............11

CHAPTER III. A PROTEIN SEARCH ALGORITHM …….....……………………..................16

 Outline of Our Approach……………………...………...............……….........................17

 Experimental Results…………………………………………...19

CHAPTER IV. A PROTEIN PREDICTION ALGORITHM …………..……………..…………25

 Our Contribution…………………..…………………………............…..........................26

 Outline of Our Method for Linear Programming…….…...………..................................37

 Our Dynamic Programming Algorithm…………………...………..................................30

v

 Experimental Results……………………………...…………...…...................................31

REFERENCES……………………………………………………..35

BIOGRAPHICAL SKETCH…………………………………………………….........................39

vi

LIST OF TABLES

 Page

Table 1: Results of Multiple Alignment Methods……………...……………..…………….…...13

Table 2: Statistics on the Reliability of Our Query Engine...23

Table 3: Average Search Time of Multiple Program on 108 Queries.…………...……................24

vii

LIST OF FIGURES

Page

Figure 1: 20 Types of Amino Acids……..……………………………….……………………......1

Figure 2: Protein 3D Structure………….…………………………………..……………………..3

Figure 3: Flowchart of Our Alignment Algorithm ……………………….……..………...............7

Figure 4: Brief Description of Our Alignment Algorithm.………………………………….….....8

Figure 5: Q-score Difference Plot…………………………………………………......................15

Figure 6: System Flowchart….………………………………..18

Figure 7: Precision and Recall Curves.…………………………….………….............................21

Figure 8: Example of Our Filtering Method……...…………………………...............................29

Figure 9: Our Dynamic Programming Algorithm……………………………………………..…31

Figure 10: Structure Comparison Result for 2BHUA…………..……………………………..…33

Figure 11: Structure Comparison Result for 1M7XA……………..…………………………..…34

1

CHAPTER I

INTRODUCTION

Proteins are sequences of amino acids. As we know, there are total 20 types of amino acids,

and each of them has different physio-chemical properties. The length of proteins is usually

several hundred long. Therefore, proteins show a great variety of 3D conformations, which are

necessary to support their diverse functional roles.

Figure 1 20 Types of Amino Acids

See Figure 1 for the 20 types of amino acids. It is widely believed that protein

2

sequences and structures have close relationship with their biological functions, while protein

structures reveal more evolutionary information than protein sequences do, since the structure of

a protein changes more slowly in the evolution than its sequence does. Also, researchers

frequently find that proteins with low sequential similarity are structurally homogenous.

Therefore it is particularly important to discover the structures of proteins.

In this thesis, we attempts to address some computational problems in the areas of protein

structure comparison and protein structure prediction from its sequence.

Protein 3D Structure Comparison

Protein structures can be determined via experimental techniques such as X-ray

crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, and even cryo-electron

microscopy. Due to these techniques, the number of proteins discovered by biologists has

increased dramatically over the last 30 years. The rapid growth of the PDB (see Figure 2a of [1]

for an illustration of the PDB growth rate from 1970's to the year 2005) necessitates the

development of efficient and accurate protein structure comparison and search algorithms and

automatic software tools.

 Proteins have three main substructures, α-helix, β-sheet and loop. Figure 2 is a protein 3D

structure. In order to compare the structural similarity between proteins, current protein structure

alignment algorithms (e.g. [2-19]) usually try to align the Cα atoms in protein backbones. An

alignment is characterized by (1) how many atoms are matched, (2) where their positions are,

and (3) how well they are matched. (1) and (2) are available once an alignment is determined.

For (3), a transformation based alignment algorithm usually calculates RMSD, namely, the root

mean square distance between aligned (and transformed) Cα atoms in the structures. Although it

has been studied for over 30 years, the protein structure alignment problem is far from being well

http://www.biomedcentral.com/1471-2105/11/S1/S34#B1�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B2�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B19�

3

resolved. New approaches and improvements to existing approaches are frequently proposed (see

[20-23] for some recent works). Moreover, many questions are still under active discussions.

Figure 2 Protein 3D Structure

 Protein structural similarity can be used to infer evolutionary relationship between proteins

and to classify protein structures into more general groups; therefore a good protein structure

alignment algorithm is very helpful for protein biologists. However, a good alignment algorithm

itself may be insufficient for effective discovering of structural relationships among tens of

thousands of proteins.

Protein Similarity Search

 Protein structure query (e.g. [10,12,13,24-36]) aims to find similar structures in a protein

dataset according to a given query structure. Due to the large size of protein data repositories like

the PDB, protein structure query requires a very fast structure alignment tool; however, the

http://www.biomedcentral.com/1471-2105/11/S1/S34#B20�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B23�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B10�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B13�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B24�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B36�

4

complexities of current alignment algorithms are usually too high to make a fully alignment-

based search practical. For some proteins, it may take hours to days for protein structure search

engines like CE [12] and DALI [37] to return a search result; a fast and accurate protein structure

query tool which enables real-time structure searching in a large dataset is still in need. To

improve the search speed, in recent years many methods have been designed to reduce the query

time. Baker and Dauter (2004) developed SSM [8] which uses Secondary Structure Match for the

pairwise structure comparison. In addition, various linear encoding methods have been applied to

protein search systems. For instance, 3D-BLAST [33] developed by Yang and Tung (2006), can

improve the comparison speed thousands of times as the speed of CE and DALI. Similar

methods include ProtDex2 [35], Sarst [31], and TopScan [36]. These methods improve the time

performance greatly. However, when being compared with pairwise alignment methods, they

have weakness in accuracy.

Protein Structure Prediction

 As mentioned before, protein structures can be determined via experimental techniques such

as X-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, and even cryo-

electron microscopy. However, these methods are relative expensive and time-consuming.

Therefore, the output of protein structures is lagging far behind that of protein sequences. So it is

reasonable that to solve proteins structures using the above experimental techniques for a small

number of all the proteins and to apply computational techniques to predict the structures for the

rest of proteins. Based on our knowledge, there are two main factors to make the protein

structure prediction difficult. First the number of possible protein structures is very large. Second

the protein folding process has not been fully understood by the biologists. Therefore, the protein

structure prediction problem is that given a protein sequence, to first search all the possible

http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B37�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B8�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B33�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B35�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B31�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B36�

5

structures for the sequence, and to find the most likely structure based on a scoring system. In the

past, many methods about this problem [48-59] have been proposed, and most of them can be

categorized into three types: Homology Modeling, Threading and Ab Initio Modeling. The

Homology Modeling-based methods align the sequences of new proteins whose structures are

unknown to the sequences of proteins with known structures. Therefore, the accurate of this kind

of method depends on how similar protein sequences can be found in the database, PDB. It is

widely believed that proteins will fold into similar structures if they have similar sequences.

However if the sequence identity is less than 25%, the accurate of Homology Modeling-based

methods is very low. Unlike Homology Modeling, the Threading-based methods align the query

protein sequence to structures of solved proteins in the PDB; the structures in the PDB are also

called templates. A scoring system is needed to identify good matched templates, and they may

have low sequential similarity with the query protein. The Threading-based methods are more

efficient than the Homology Modeling-based methods for finding good templates at fold level.

Furthermore if no good template can be found in the PDB library for a given protein sequence,

the Ab Initio Modeling is using to predict its structure. This kind of approach assumes that the

native structure of a protein corresponds to its global minimum energy and they construct as

many structures as possible, and to identify the minimum energy structure. This is the most

difficult category of protein structure prediction and now can only predict small proteins usually

with less than 100 amino acids.

http://www.biomedcentral.com/1471-2105/11/S1/S34#B38�

6

CHAPTER II

A PROTEIN ALIGNMENT ALGORITHM

 In [47], we have developed an efficient protein pairwise alignment algorithm. It can align

hundreds of pairs of protein structures in one second. Our experimental results show that it is as

good as some well known alignment algorithms, and its speed is much faster than that of others.

The algorithm has been fully implemented and is accessible online at the address

http://fpsa.cs.panam.edu/.

Description of Algorithm

 We give a brief description of our algorithms in this section. We have developed two protein

alignment algorithms; both of them have three main stages. The first two stages are shared by

them, but they have a different third stage. The third stage of the first alignment algorithm is

based on DP (dynamic programming), and it preserves the order of Cα atoms in protein

backbones. The second algorithm, whose third stage is based on MM (maximal matching), does

not preserve the order, however it brings larger alignments than the first, while its speed is

slightly slower. Our main technical contribution is a fast method used in stage two for finding a

rigid body transformation to superimpose two protein structures. A process flow is shown in

Figure 3.

http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34/figure/F3�

7

Figure 3 Flowchart of Our Alignment Algorithm

Brief-Algorithm

 In the Figure 4, S1 and S2 are two 3D protein Cα backbone structures; L is a set of local

alignments (a local alignment is a match of two substructures of consecutive Cα atoms from two

backbones); δ is the maximum allowed distance between two matched Cα atoms; FG() is a

function to calculate rigid body transformation; T () is a function to translate and rotate a

structure; find local alignments (stage 1);

8

Figure 4 Brief Description of Our Alignment Algorithm

First stage

 In the first stage, our algorithm searches for a set of local alignments, each consisting of a

series of consecutive Cα atom pairs in the backbones of two proteins P and Q, which are

represented by their Cα atoms in backbones P = p1p2 … pn1 and Q = q1q2 … qn2. We use (i, j, l)

to represent a local alignment, which indicates that a gapless segment pipi+1 … pi+l-1 of the first

protein backbone P starting at Cα atom i matches a gapless segment qjqj+1 … qj+l-1 of second

protein backbone Q starting at Cα atom j, and both segments have l atoms. We compute the

distance matrices of the two backbones to match their local regions. If all the corresponding

9

distances in the two distance matrices have small difference, then a local alignment is found. Our

algorithm to search all the local alignments runs in time O(d1m1m2), where d1 is a constant

number, m1 is the number of Cα atoms in P and m2 is the number of Cα atoms in Q.

Second Stage

 In the second stage, each local alignment is used to find an initial rigid body transformation.

There are many algorithms for finding a rigid body transformation to superimpose a set of pairs

of 3D points [43]. In this paper a least square estimation method [44] is applied in our algorithm.

Given a set H = {(a1, b1), (a2, b2),…,(am, bm)} of point pairs in the 3D Euclidean space, FG(H) is

a rigid body transformation T derived by the method in [44] to minimize the RMSD. Let H0 be

the set of all pairs (pi+k, qj+k) (k = 0, 1, ….., l - 1) in a local alignment (i, j, l). The rigid body

transformation T0 = FG(H0) is derived. After obtaining T0, we use it to superimpose the two

structures and collect all the pairs (pu, qv), where pu is from P and qvis from Q and the distance

between pu and T(qv) is bounded by a threshold, and put them into H1. A new rigid body

transformation T1, which is FG(H1), is derived based on the new set H1. By repetitively

calculating a new transformation and adding new point pairs into H1, we can improve the

transformation until no more pairs can be added.

 A lot of matched pairs are used during the process of getting a transformation. It is necessary

to mention that our algorithm selects all the matched pairs without considering conflicts, where

two pairs share a same Cα atom. Obviously, this kind of conflicts is not disallowed in a global

alignment. However, when calculating a transformation, there is no need to consider that, and

sometimes it is hard to choose the best one among the conflicting pairs. Our method of searching

a rigid body transformation with the presence of conflicting pairs not only makes the second

http://www.biomedcentral.com/1471-2105/11/S1/S34#B43�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B44�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B44�

10

stage simple and fast, but also improves its accuracy.

Third Stage

 In the third stage, we output an alignment that is a set of aligned pairs, where each Cα is

allowed to appear in at most one pair. Two different methods, dynamic programming and

maximal matching, are applied to bring the sequential alignment and non-sequential alignment,

respectively.

 The dynamic programming method can find an optimal solution by following the order of

two backbone sequences. And the minimal length of a local alignment is set to 4. The maximal

matching method returns a non-sequential alignment. Before applying the classical maximal

matching algorithm to a graph of local alignments, we first delete edges in the graph so that each

edge in the bipartite graph corresponds to a local alignment of length at least 4. The minimal

length is used to exclude some isolated pairs, which are not biologically meaningful.

 As we know, most existing protein alignment algorithms repeat finding the aligned regions

between two backbones and recalculate the rigid body transformation when looking for a

maximal alignment. Our algorithm does not involve the Cα atoms alignment when determining

the rigid body transformation. This is why our alignment algorithm is remarkably faster than

other algorithms. It can work out hundreds of pairs of protein alignments in one second.

Therefore, it is very suitable for protein search. The sequential and non-sequential methods show

an interesting tradeoff between speed and the number of aligned pairs.

Methods of speeding up the alignment and search

 In order to speed up the computation of our basic algorithm, we propose some strategies that

improve the time performance.

 Finding a good rigid body transformation between two protein structures is often time

11

consuming. This is why most alignment algorithms are relatively slow. In order to develop an

efficient protein alignment algorithm for protein search, we reduce computational time for

finding the rigid body transformation while maintaining sufficient alignment quality.

 First of all, the size of local alignments directly determines the time performance. A large

number of local alignments will result in slow global alignments. Before finding the local

alignments, we first filter out the entire short α helices which have length less than 8, because

this kind of local structures are very common in proteins and may prevent the program from

finding significant local alignments. Moreover, the length of a local alignment should be

reasonably large to make sense, so we only consider local alignments with length greater than a

threshold. In our experiments these two filters excluded about 85% unnecessary ones from all the

possible local alignments.

 Furthermore, each local alignment is used to calculate an initial rigid body transformation.

However, it is possible that the final global alignments derived from different local alignments

are the same or highly similar. Obviously, reducing these redundant local alignments can

improve the time performance greatly. For each local alignment, we first apply every previously

obtained rigid body transformation to it and calculate a corresponding RMSD value. A small

RMSD by some transformation means that a final global alignment based on the current local

alignment will be similar to that based on an old local, therefore the current one can be skipped.

This technique efficiently reduces the unnecessary calculation of transformations. Supported by

these effective filters, our alignment algorithm compares hundreds of pairs of proteins in one

second, remarkably faster than other well known alignment algorithms.

Experimental Results

In this section, we show the experimental results for an implementation of our algorithm and

12

its comparisons with other well known similar systems which are accessible online. The quality

evaluation of protein alignment algorithm is based on its alignment length and RMSD value. The

quality evaluation of protein search tool is according to its precision, recall, and query speed.

Evaluation of the alignment results

There is no general standard for analyzing and comparing the results of different alignment

algorithms, because each method uses different alignment measures. Besides the two basic

measures: alignment length and RMSD value, some methods also calculate a native score for

their alignment results. For instances, CE and Dali use different kinds of Z-scores as their native

score, SSM has the Q-score which considers both alignment length and RMSD value when

measuring the alignment results. Subbiah proposed a geometric match measure, SASk , in [38].

The SASk also considers both alignment length and RMSD value. Lower SASk means better

alignment result and k is the degree to which the score favors. A smaller k can be used when

longer alignment length is preferred and a bigger k is for smaller RMSD value. Here we have

collected 224 alignment cases and used Q-score and SASk to test the performance of our

algorithm.

The test cases were originally proposed by various papers for various testing purposes. A list

file available on our website shows all the 224 cases. They include No. 1 - No. 20 (see Table III

in [12]), No. 21 - No. 88 (see Table I in [24]), No. 89 (see Tables I and II in [12]), No. 90 - No.

92 (supplement to Table III in [12]), No. 93 (see Figure 5 in [12]), No. 94 - No. 101 (see Table

IV in [12]), No. 102 - No. 111 (see Table V in [12]), No. 112 - No. 120 (supplement to Table V in

[12]), No. 121 - No. 124 (see Table VII in [12]), No. 125 - No. 143 (see Table 1 in [11]), No. 144

- No. 183 (see Table 1 in [17]) and No. 184 - No. 224 (see Table 2 in [17]). We compare our

alignment results with Dali, CE and SSM. In each test case, different alignment algorithms have

http://www.biomedcentral.com/1471-2105/11/S1/S34#B38�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B24�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B11�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B17�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B17�

13

different results. CE and Dali always get more aligned pairs than those of our algorithm and

SSM, but their accuracy is relatively lower (having larger RMSD value). So using merely

aligned pairs or RMSD value as the criterion to measure the performance of alignment algorithm

makes no sense. Therefore, we calculate Q-score and SASk for the alignment results of all the

methods and compare the alignment results in terms of Q-score Difference and Average SASk.

The Q-score Difference is calculated by (Qscore_Ours - Qscore_X) where X is Dali, CE or SSM. And

we use k = 1, 2 and 3 for the Average SASk to analyze the quality of all the four methods. It

should be mentioned that our method can output sequential alignments and non-sequential

alignments, thus we compare both of them with other methods. We call the sequential method

SPSA and the non-sequential method NPSA for short.

Table 1 Results of Multiple Alignment Methods

 Dali CE SSM SPSA NPSA

Average alignment length 130.43 132.82 117.78 119.20 122.65

Average RMSD 2.78 2.83 2.37 2.23 2.30

Average SAS1 2.96 3.08 2.76 2.62 2.48

Average SAS2 3.89 3.60 3.92 3.43 3.25

Average SAS3 6.67 5.69 6.84 5.60 5.19

14

Discussion on the alignment results

Table 1 show some statistical data based on the experimental results. Compared with Dali,

CE and SSM, our algorithm has smaller average RMSD, and its average alignment length is

longer than that of SSM, but shorter than that of CE and Dali. Its average SASk is always smaller

than other three algorithms, no matter k = 1, 2 or 3. A lower SASk score indicates a better

alignment. To further test our algorithm, we compare it with others by Q-score. Figure 5 reflects

the Q-score Difference between our algorithm and others respectively. A black area below X-axis

indicates that the Q-score of our algorithm is lower than that of the compared method. Since in

each graph the upper part of the whole black area is always larger than or equal to the lower part,

it is clear that our alignment algorithm is comparable to other well known algorithms. It is worth

mentioning that in most test cases, SSM and our method always give alignment results with

small RMSD value and shorter alignment length, while CE and Dali always find more matched

pairs but with larger RMSD value. So if more matched pairs are desirable, Dali and CE are good

alignment tools; on the other hand, if shorter but more accurate alignments are preferred, SSM

and our method are better.

http://www.biomedcentral.com/1471-2105/11/S1/S34/figure/F1�

15

Figure 5 Q-score Difference Plot

16

CHAPTER III

A PROTEIN SEARCH ALGORITHM

In [34] we have developed a protein structure query algorithm and tool to find similar

protein structures in the PDB for any given structure. With a combination of geometric filter and

3D structure alignment, given a query protein, the algorithm can find proteins whose structures

are overall similar with the query structure in the PDB in a few minutes. The geometric filter can

exclude dissimilar proteins efficiently, and reduce a lot the number of times of pairwise

alignments. On the negative side, it misses some significant proteins whose structures are

partially similar with the given protein. In [46], to further improve the accuracy and efficiency

our protein search algorithm, we developed new algorithm and web tool to search similar protein

structures in the PDB (Protein Data Bank). The algorithm is a combination of a series of methods

including protein classification, geometric feature extraction, sequence alignment, and 3D

structure alignment. Given a protein structure, the tool can efficiently discover similar structures

from hundreds of thousands of structures stored in the PDB. Our experimental results show that

it is more accurate than other well-known protein search systems in finding proteins that are

structurally similar to the query protein, and its speed is also competitive with those systems. The

algorithm has been fully implemented and is accessible online at the address

http://fpsa.cs.panam.edu/, which is supported by a cluster of computers.

http://www.biomedcentral.com/1471-2105/11/S1/S34#B34�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B34�

17

Outline of Our Approach

 Our method is a combination of sequence alignment and geometric alignment. Its speed is

improved by grouping proteins with similar structures and using one representative structure for

each group. A brief overview about our method is as follows:

(1) An offline phase partitions the protein 3D structures in the database into groups so that

each group contains those proteins with similar structures. One representative structure is

selected from each group.

(2) When an input protein is given, use the BLAST algorithm to search proteins with similar

amino acid sequences and put them into list L1.

(3) Use several layers of geometric filters to check all the representative proteins among the

classified protein database and exclude dissimilar proteins. Put all those similar representative

proteins into list L2.

(4) Put all the representative proteins whose groups are related to proteins in L1 into L3, and

let list L4 = L3 − L2 (which are the proteins in L3, but not in L2).

(5) Use a simplified version of our pair-wise 3D structure alignment algorithm to check

structural similarities between the input protein 3D structure and each structure in L2 and L4.

Output those groups whose representatives are structurally similar to the input protein. This is

the most time-consuming part; therefore, it is implemented in a cluster of computers.

 The first filter, called “sequence filter”, is based on the sequence alignment of BLAST, and

the second filter, called “geometric filter”, is based on some simple geometric comparisons. A

system process flow is shown in Figure 6.

18

Figure 6 System Flowchart

An Offline classification

 Our search system has an offline classification for all the protein structures in the PDB. The

purpose of this classification is to improve the speed of protein structure query. It has the

following steps:

 1. Partition the PDB into groups. Use our pairwise alignment algorithm to check the

structural similarity among the protein chains in the PDB. The Q-score, proposed in [8] is a non-

linear score for measuring such similarity. It has been found that different protein structure query

servers agree reasonably well on this score. Here we support that two proteins with alignment Q-

score higher than 0.5 are similar. Therefore, after the partition every two proteins in the same

group have a pairwise alignment Q-score of at least 0.5.

http://www.biomedcentral.com/1471-2105/11/S1/S34#B8�

19

 2. Select representatives. For each group, one protein chain is selected as a representative. In

order to get it, we align each protein with all others in the same group and calculate the sum of

Q-scores. A protein chain with the highest sum of Q-scores is selected as the representative. The

classification is based on all-against-all pairwise alignment. It synchronizes itself with the PDB

and all the protein chains in the PDB are partitioned into about 14,000 groups. Searching the

entire PDB with 130,000 protein chains is reduced to doing so in our classified database with

about 14,000 representatives. Thus, it improves the speed to a great extent.

Distributed Computing

In the last step of implementation we assign the surviving proteins to multiple computers to

perform the pair-wise structure alignments simultaneously. However, if not scheduled properly, a

distributed system can decrease the overall reliability of computations because the unavailability

of a node can result in disruption of other nodes. Instead of just evenly assigning proteins to the

nodes of our cluster, at the beginning, the front node assigns a small number of proteins to each

available machine of the cluster, then whenever a machine is free (i.e. it has completed its task),

the front node will calculate the speed of that machine and send a certain number of proteins to

it. This procedure is repeated until all the computation tasks have been completed.

Experiment Results

In this section, we show the experimental results for an implementation of our algorithm and

its comparisons with other well known similar systems which are accessible online. The quality

evaluation of protein alignment algorithm is based on its alignment length and RMSD value. The

quality evaluation of protein search tool is according to its precision, recall, and query speed.

Evaluation of the query accuracy

 When applying alignment algorithms into protein search systems, the algorithms which can

20

output best alignment results might not have the best performance of search accuracy.

 The Structural Classification of Protein database (SCOP [39-42]), manually constructed by

human experts, is believed to contain accurate structural classifications. The SCOP hierarchy has

the following levels: domain, family, superfamily, fold, and class.

 For a database search tool, the recall rate and precision are two commonly used parameters

for assessing its query quality. Precision is defined as n/N and recall rate is n/T, where n is the

number of true proteins (from the same family of the query protein) in the result list, N is the

total number of proteins in the result list, and T is the total number of proteins in the same family

of the query protein in the database. Therefore, the precision is between 0 and 1, and the quality

of a ranked output list is directly based on it. The recall rate is also between 0 and 1, and the

missing problem of a search engine is in relation to it. In 2004, Aung and Tan [35] collected

34,055 proteins form the ASTRAL SCOP 1.59 to form a large target database, from which 108

proteins were selected as the query proteins. These query proteins are from four main classes

(All-α, All-β, α/β and α + β) of ASTRAL SCOP 1.59 and their average family size is around 80.

We use these different categories of proteins to do the queries on our search engine, use Q-score

as the criterion to rank the output proteins, and compare the result with that of CE [12],

MAMMOTH [11], 3D-BLAST [33], PSI-BLAST [29], ProtDex2 [35], and TopScan [36].

Results for all the methods except ours are taken from [33]. Since our sequential method is much

faster than its non-sequential counterpart, we just use the sequential method in our experiments.

In our search system we do support both sequential and non-sequential methods.

http://www.biomedcentral.com/1471-2105/11/S1/S34#B39�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B42�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B35�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B11�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B33�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B29�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B35�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B36�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B33�

21

Figure 7 Precision and Recall Curves

 According to the 108 query results, our method based on pairwise alignment algorithm

shows better performance than others. CE and MAMMOTH are the second and third accurate

methods. 3D-Blast, which is based on a linear encoding method, ranks fourth and its precision is

about 5% lower than ours on average. PSI-BLAST is a classical sequence search algorithm, and

its precision outperforms both TopScan and ProtDex2. However, when being compared with

alignment algorithms such as CE, MAMMOTH and ours, its precision is much lower. Figure 7

(left) shows the Receiver Operating Characteristic (ROC) curves for all the methods. When the

recall rate is 100%, the average precision of our method is 63%, which is the highest. In addition,

all the pairwise alignment methods including CE, MAMMOTH and ours have higher precision

than that of other methods, and with the increasing of recall, this trend becomes more obvious.

Performance for searching weak similarities

 In the SCOP database, proteins in a same species or domain are the most similar proteins,

and then are the proteins belonging to a same family. Experts also classify weakly similar

proteins into a same superfamily. Therefore, to precisely assess the efficiency of searching

methods challenged by searching weakly similar proteins, we use the entire ASTRAL SCOP 1.73

http://www.biomedcentral.com/1471-2105/11/S1/S34/figure/F2�

22

as the target database, and select 129 query proteins belonging to four major classes. The average

superfamily size of these 129 query proteins is around 300. We use these proteins to do queries

on our search engine and also on 3D-BLAST [33], PSI-BLAST [29], and SSM [8]. We are aware

that ProtDex2 [35], Sarst [31], and TopScan [36] are also famous protein search systems,

however they have not updated their database for a long time. Figure 7 (right) shows the

experimental results of the four methods for searching similar proteins at superfamily level,

according to which our method is the most accurate one. 3D-BLAST, the second most accurate

method in this experiment, has its precisions about 8.1% lower than ours on average. We claim

that pairwise alignment algorithms have more advantages in finding remote homologous proteins

than linear encoding method or sequential search method does. Nevertheless, according to the

experimental result, our method occasionally has problem detecting related proteins in the same

superfamily. About 17% query results of our search engine have serious missing problems

(precision lower than 50% when recall rate is 100%), while 3D-BLAST is 35% and other

methods have more serious missing problems than 3D-BLAST.

Evaluation of reliability

 Our search engine provides an alignment length and an RMSD value for every retrieved

structure. In order to assess the reliability of our search engine, we calculate the Q-score value of

each structure by its alignment length and RMSD value; and gather statistics on precision and

recall rate for various Q-score values at both superfamily and family levels. According to the

data in Table 2, when Q-score is higher than 0.4, the average precisions are over 90% for both

levels. The recall rates are 62.05% for family level and 45.22% for superfamily level. Precision

is defined as n/N and recall rate is defined as n/T, where n is the number of true proteins of Q-

scores higher than the limit value in the result list. A true protein means it is from the same

http://www.biomedcentral.com/1471-2105/11/S1/S34#B33�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B29�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B8�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B35�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B31�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B36�
http://www.biomedcentral.com/1471-2105/11/S1/S34/figure/F2�
http://www.biomedcentral.com/1471-2105/11/S1/S34/table/T2�

23

family or superfamily of the query protein. N is the total number of retrieved proteins whose Q-

scores are higher than the corresponding value, and T is the total number of proteins in the

family or superfamily of the input protein.

Table 2 Statistics on the Reliability of Our Query Engine.

Q-Score 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

avg.recall(%)

family
14.65 20.20 28.14 39.28 48.99 62.05 75.84 84.31

avg.precision(%)

family
99.35 98.56 97.42 97.16 94.83 91.57 87.43 70.85

avg.recall(%)

superfamily
9.22 12.89 18.96 27.53 34.87 45.22 56.59 68.43

avg.precision(%)

superfamily
99.39 99.15 99.01 98.89 98.74 97.58 96.60 87.39

Evaluation of query speed

Results for all the methods except ours are taken from [33]. Their experiments were

performed on a computer with an Intel Pentium 2.8 GHz processor and 1,024 megabytes of

RAM memory. Ours were done on a computer with Intel Pentium 2.66 GHz processor and 1,024

megabytes of RAM memory. As shown in Table 3, on average, our method requires about 112.20

seconds searching the database for each query protein in a single machine. Although it is much

slower than 3D-BLAST and PSI-BLAST, when being compared with pairwise alignment

algorithms CE, and MAMMOTH, ours has great advantage in the time performance. In addition,

http://www.biomedcentral.com/1471-2105/11/S1/S34/table/T3�

24

we have used our web server and the web servers of 3D-BLAST, PSI-BLAST and SSM to do the

129 queries in the entire PDB database. The PSI-BLAST, SSM, and 3D-BLAST servers have

average query time of 16, 27, and 44 seconds respectively. Benefit from the distributed

computing system and the offline classification, our web tool can scan the entire PDB database

in 17 seconds on average, which is shorter than those of 3D-BLAST and SSM. Moreover, our

results contain an alignment length and an RMSD value for every output protein. Although PSI-

BLAST and 3D-BLAST do not have these data, they are the most important measures for

comparing protein structural similarities. The 3D-BLAST server is the slowest one with an

average query time of 44 seconds. In our knowledge, other search engines such as CE [12] and

Dali [37] which are based on one-against-all pairwise alignment algorithms need hours to days to

complete the queries.

Table 3 Average Search Time of Multiple Program on 108 Queries

Software Total search time (s) Average search time per query (s)

Our method 12,117 112.20

3D-Blast 34.35 0.318

PSI-BLAST 18.31 0.170

CE 13.5 days 3 hours

MAMMOTH 131,855 1220.88

http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://www.biomedcentral.com/1471-2105/11/S1/S34#B37�

25

CHAPTER IV

A PROTEIN PREDICTION ALGORITHM

It is often said that if a sequence has high percentage identity to a sequence of known

structures, it is possible to build a reasonable structure by Homology-based Modeling, but at

lower than 30% identity, Threading-based Modeling is better than Homology Modeling to

predict a structure. The main idea of Threading-based Modeling is a one dimensional to three

dimensional alignment. The query protein sequence is one dimensional and the template in the

database is three dimensional. In the past many approach has been proposed for the protein

threading problem. The problem can be formulated to an integer programming problem and it

was converted to a linear programming problem by Xu and Li in 2003 [48].

Linear programming (LP) is a mathematical method to achieve the best outcome in a given

optimizing problem for some list of requirements represented as linear equality and linear

inequality constraints. The protein threading problem can be converted to a LP problem by a

constraint system and a score system. The constraint system is to ensure that two or more

elements in the query sequence cannot share a same position in the template. In addition, the

alignment is sequential, which means that the matching preserves the order of both the sequence

of query protein and the atoms in template. The score system includes many different score

functions. When a element of the query sequence aligns to a position in the template, it obtains a

score according to the score functions.

http://www.biomedcentral.com/1471-2105/11/S1/S34#B12�
http://en.wikipedia.org/wiki/Linear_equality�
http://en.wikipedia.org/wiki/Linear_inequality�
http://en.wikipedia.org/wiki/Linear_inequality�
http://en.wikipedia.org/wiki/Constraint_(mathematics)�

26

 The linear programming is a technique for the optimization of the sum of scores, subject to

linear equality and linear inequality constraints in the constraint system.

Our Contribution

 The Protein threading is one of the most challenging problems in the field of computational

biology today. It has a large number of literatures available now; in the previous works the

problem always has the following definition: The protein model is a linear sequence of

secondary structure segments, called conserved cores. Core segments have fixed length and they

are connected by loop regions. When doing the sequence-structure alignment, the score system

considers the element in the core segments and the loop regions are only considered for gap

penalty. In addition there are two main types of threading models:

1. The score functions do not include the pairwise interaction score. This kind of threading

problems can be solved simply by applying a dynamic programming algorithm.

2. The score functions include the pairwise interaction score. This kind of problems is NP

hard when variable gaps are allowed into the alignment in the loop regions (Lathrop,

1994).

 Therefore, any method must require an exponential time to find an optimal solution when

using the second model, and doing exhaustive search is impractical for large proteins.

 Xu and Li converted the threading problem to a linear programming problem in 2003, and

they show that it has good accurate performance comparing with other famous protein structure

prediction servers. As we investigated, when applying the linear programming to a protein

threading problem, it may has numerous variables in the constraints that make the computation

very slow. In order to further improve the efficiency and accuracy of the linear programming

algorithm, we proposed a heuristic algorithm to reduce variables unnecessary in the linear

http://en.wikipedia.org/wiki/Optimization_(mathematics)�
http://en.wikipedia.org/wiki/Linear_equality�
http://en.wikipedia.org/wiki/Linear_inequality�
http://en.wikipedia.org/wiki/Constraint_(mathematics)�

27

constraints.

 Our approach first checks all the possible alignments for each core, and selects the alignment

pairs which have good solvent, profile, and secondary structure match. After that, we just select

one alignment as a center each time, and filter out all the alignments uncooperative. An

alignment is uncooperative if it has large gap with the center. Then we do linear programming to

find a optimal solution with the rest alignments. This method reduces the number of variables

greatly, and improves the time performance. In addition, our experimental results show that,

comparing with the original method, it always finds the same optimal solutions.

 We also developed a dynamic programming method for the protein threading problem. It can

find an optimal solution by following the order of both the query protein sequence and the atoms

in a template if variable length gaps are allowed in the loops and pairwise interactions are

considered only for the elements between neighboring cores.

Outline of Our Method for Linear Programming

Score functions

 There are total four kinds of score functions and a gap penalty function used in this paper:

Stotal = WmSm + WssSss + WsoSso + WpSp + WgSg

 The first term in the equation is a sequence profile matching score. The profile of the query

sequence is obtained by using the classical sequence search program PSI-BLAST to search

against the non redundant database NR. Given a query protein of length n, it is a [n, 20] matrix

includes the frequency P(i,k), which is the probability of the kth amino acid at the ith position of

the query protein. If the ith position of query sequence is aligned to the jth position of a template,

their sequence profiles matching score is ∑ P(i,k)M(j,k), where k = 1...20, and M is PAM250

matrix.

28

 The second term is to compare the different between the predicted secondary structure of a

query sequence and real secondary structure of a template. We use PSI-PRED to predict the

secondary structure for the query protein and use DSSP to obtain that of the template.

 The third term is similar with the second one. It calculates the solvent accessibility match

between a query protein and a template. The solvent accessibility for the query is predicted by

the program SABLE and the real solvent accessibility of the template is obtained by DSSP.

 The fourth term is a pairwise interaction score. The score is follows Xu and Li [48], and it is

to compute the potential between two amino acids, which has short distance.

 The last term in the equation is the gap penalty, and it includes a gap open penalty and a gap

extension penalty.

Improve the time performance

 The variables and constraints of linear programming used in this paper follow Xu and Li

[48]. There are two types of variables. Let xi,l denotes a Boolean variable and xi,l = 1 if the ith

core of the template is aligned to lth position of the query sequence, otherwise it is 0. The other

kind of Boolean variable yi,l,j,k. yi,l,j,k = 1 if both xi,j = 1 and xj,k = 1, otherwise it is 0. It is

obvious that the variable yi,l,j,k is for the pairwise interaction score and the xi,l is for other single

scores.

In this paper, our work focuses on reducing the number of variables in the linear

programming, while avoid missing good templates for the query protein. Given a query protein

sequence, we first find all the valid query sequence positions that each core of the template could

align to, and select the core C that has the minimum number of possible positions. The valid

positions for each core are selected according to their solvent, profile, and secondary structure

matching scores. Let P denotes the set of all the positions for core c. we align core C to each

29

position in P, and consider this alignment as a center to filter out all the positions for other cores

uncooperative. A position is uncooperative if its gap with the center is larger than the maximum

gap defined by us. We do linear programming with the rest of valid positions each time and

select the final alignment which has the best score. This method reduces the number of variables

a lot, and improves the time performance greatly.

Figure 8 Example of Our Filtering Method

Figure 8 shows an example of our filtering process. At the beginning, all the lines are the

possible alignment positions for the two cores. As well as we align the ith core to some position,

in this example it is the red position, all the dashed lines from the jth core can be ignored,

because they have big gap with the center. In addition all the dashed lines from the ith core can

be deleted, because the ith core is aligned to the read position fixedly.

Suppose the two cores has pairwise interaction, and the number of all the possible query

sequence position for the ith core is m, the number of that for the jth core is n. Thus the number

of the x type variables of the ith core and jth core are m and n respectively. The number of the y

 ith core jth core
template

 … …… … … (…… …)…… … …

target center allowed positions

30

type variables for these two cores is O(mn). Therefore, our method not only reduces the x type

variables, but also reduces y type variables significantly.

Our Dynamic Programming Algorithm

 As we know if the scoring system does not include the pairwise interaction score, the

threading problem can be solved by a simple dynamic programming algorithm. However if

pairwise interaction is considered, dynamic programming cannot be applied to optimize the

score. In this paper, we developed a dynamic programming method for finding the optimal

solution subject to (1) variable length gaps are allowed in the loops and (2) pairwise interactions

are considered only for the elements between neighboring cores. Figure 9 briefly describes our

algorithm.

The number of possible query sequence position for each core is less than the length of the

sequence. Therefore, the complexity of our dynamic programming is O(n2m), where n is the

length of query sequence and m is the number of cores in the template.

31

Figure 9 Our Dynamic Programming Algorithm

Experimental Result

 In this section, we show the experimental results for an implementation of our algorithm and

some examples of its prediction result.

 The algorithm is implemented with C program, and worked on a personal machine with an

Intel Pentium 1.66 GHz processor and 2,048 megabytes of RAM memory. We test the time

performance of our method by using sequences from the CASP9 (Critical Assessment of

Techniques for Protein Structure Prediction) competition as targets. In the CASP9 set, we have

91 target sequences, 74 from them have length between 100 than 500. For each of those targets, a

suitable template, which has 15%-25% sequence similarity is identified by using PSI-BLAST to

The Input is a template Ta and a query sequence S. The output is the
optimum matching score for Ta and S.

Let M denotes the score matrix and n denotes the number of the
cores in Ta. Fs() is the function to calculate the profile, secondary
structure and solvent scores and Fp() is to compute the pairwise
score.

1. For i = 1 to n
2. Let m denotes the number of valid query sequence position
for ith core, m' denotes the number of that for (i-1)th core, and D[i]
denotes the corresponding query sequence position set;

3. For j = 1 to m
4. If i is 0
5. M[i][j] = Fs(Ta[i],S[D[i][j]]);
6. Else

7. M[i][j] = Max(Fs(Ta[i],S[D[i][j]])+M[i-
1][k]+Fp(S[D[i][j]],S[D[i-1][k]])), where k = 1, 2, ..., m';
8. Output Max(M[n][l]), where l is from 1 until u, where u is the
number of positions last core could align to;

32

search against the PDB. We do the target-template alignments for the entire 74 pairs by the

original linear programming algorithm and our new algorithm. The two methods share the same

constraint system and score system. Their average running time is 14.4 seconds and 155.8

seconds respectively, our new algorithm is about 12 times faster than the original one. Most of

the pairs have the same alignment results and optimal scores for the two methods expect one

pair, the target T0526 and template 1JOVA. The optimal score obtained by the original method

for this pair is 6286.47 and the optimal score by our algorithm for it is 6116.67. The slight

difference is for the reason that a gap in the alignment of the original method is larger than the

maximum gap allowed in our new algorithm.

 We also use our dynamic programming method to do the alignment for the above test pairs.

The average running time is 2.9, which is much faster than that of the approaches based on linear

programming. However when using the same score system to verify its alignment result, the

scores obtained by the alignments of our dynamic programming method are lower than that of

our linear programming for most of the test cases. It is reasonable since our dynamic

programming method is for templates that only have pairwise interactions between neighboring

cores, or the pairwise interactions are only considered for the elements between neighboring

cores.

 We test the accuracy of our protein structure prediction algorithm by sequences from newly

discovered proteins in the SCOP1.7.5. Since our algorithm is relatively fast, we construct a large

non-redundant templates database which contains about 13000 proteins from SCOP1.7.3. Given

a target sequence with length n, our algorithm only considers the templates whose lengths are

between 2n and n/.2. We present an example of the prediction result by our algorithm.

 In the experiment, we use the target sequence of a protein whose PDB code is 2F15A, it has

33

89 residues and is classified into All-β class in the SCOP1.75. Its most suitable template founded

by our linear programming algorithm and dynamic programming algorithm in the template

database has PDB code 2BHUA and 1M7XA respectively. To investigate how structurally

similar they are with the target protein, we use our protein structure comparison tool to compare

their structures. The target protein and the template protein 2BHUA have 69 matched pairs and

the RMSD value is only 1.8, which means they are structurally similar. Figure 10 shows the

comparison details.

Figure 10 Structure Comparison Result for 2BHUA

 Figure 11 shows the structure comparison details for the target protein and the template

1M7XA, which is the best template according to the result of our dynamic programming

algorithm. They have 76 matched pairs and the RMSD value is 2.4. It is obvious that the two

structures in the figure are very similar. The dynamic programming algorithm also has good

performance in our experiment.

34

Figure 11 Structure Comparison Result for 1M7XA

Our protein threading algorithm is fast and accurate. This makes it very suitable for large

scale computing. In the future we want to improve the score system of the threading approaches

and apply it to predict the folds of SCOP for newly discovered proteins.

35

REFERENCES

[1] Levitt M: Growth of novel protein structural data.Proceedings of the National Academy of
Sciences of the United States of America 2007, 104:3183-3188.

[2] Chew LP, Kedem K, Huttenlocher DP, Kleinberg J: Fast detection of geometric substructure
in proteins.J of Computational Biology 1999, 6(3-4):313-325.

[3] Falicov A, Cohen FE: A surface of minimum area metric for the structureal comparison of
protein.Journal of Mol Biol 1996, 258:871-892.

[4] Fischer D, Nussinov R, Wolfson H: 3D substructure matching in protein molecules.Proc 3rd
Intl Symp Combinatorial Pattern Matching, Lecture Notes in Computer Science 1992, 644:136-
150.

[5] Holm L, Sander C: Protein structure comparison by alignment of distance matrices.J Mol
Biol 1993, 233:123-138.

[6] Ilyin VA, Abyzov A, MLeslin C: Structural alignment of proteins by a novel TOPOFIT
method, as a superimposition of common volumes at a topomax point.Protein Science 2004,
13:1865-1874.

[7] Kolodny R, Linial N: Approximate Protein Structural Alignment in Polynomial
Time.Proceedings of the National Academy of Sciences of the United States of America 2004,
101(33):12201-12206.

[8] Krissinel E, Henrick K: Secondary-structure matching (SSM), a new tool for fast protein
structure alignment in three dimensions.Acta Crystallogr D Biol Crystallogr. 2004, 60(12):2256-
2268.

[9] Lessel U, Schomburg D: Similarities between protein 3-D structures.Protein Engineering
1994, 7(10):1175-87.

[10] Madej T, Gibrat JF, Bryant SH: Threading a database of protein cores.Proteins 1995,
23:356-369.

[11] Ortiz A, Strauss C, Olmea O: MAMMOTH (matching molecular models obtained from
theory): an automated method for model comparison.Protein Science 2002, 11:2606-2021.

[12] Shindyalov IN, Bourne PE: Protein structure alignment by incremental combinatorial
extension (CE) of the optimal path.Protein Eng 1998, 11:739-747.

javascript:turn();�

36

[13] Singh AP, Brutlag DL: Hierarchical protein superposition using both secondary structure
and atomic representation.Proc Intelligent Systems for Molecular Biology 1997, 284-293.

[14] Taylor WR, Orengo C: Protein structure alignment.J Mol Biology 1989, 208:1-22.

[15] Taylor WR: Protein structure comparison using iterated double dynamic
programming.Protein Science 1999, 9:654-665.

[16] Ye Y, Godzik A: Database searching by flexible protein structure alignment.Protein
Science 2004, 13(7):1841-1850.

[17] Ye J, Janardan R, Liu S: Pairwise protein structure alignment based on an orientation-
independent backbone representation.Journal of Bioinformatincs and Computational Biology
2005, 4(2):699-717.

[18] Yona G, Kedem K: The URMS-RMS hybrid algorithm for fast and sensitive local protein
structure alignment.Journal of Computational Biology 2005, 12:12-32.

[19] Zhang Y, Skolnick J: TM-align: a protein structure alignment algorithm based on the TM-
score.Nucleic Acids Research 2005, 33(7):2302-2309.

[20] Zhao Z, Fu B: A Flexible Algorithm for Pairwise Protein Structure Alignment.Proceedings
International Conference on Bioinformatics and Computational Biology 2007 2007.

[21] Zhao Z, Fu B, Alanis FJ, Summa CM: Feedback Algorithm and Web-Server for Protein
Structure Alignment.Journal of Computational Biology 2008, 15:505-524.

[22] Salem S, Zaki MJ: Iterative Non-Sequential Protein Structural Alignment.Proceedings of
the 7th Annual International Conference on Computational Systems Bioinformatics (CSB'08)
2008.

[23] Jiang M, Xu Y, Zhu B: Protein Structure Structure Alignment With Discrete Frechet
Distance.Journal of Bioinformatics and Computational Biology 2008, 6:51-64.

[24] Alexandrov NN, Fischer D: Analysis of topological and montopological structural
similarities in the PDB: new examples from old structures.Proteins 1996, 25:354-365.

[25] Koch I, Lengauer T, Wanke E: An algorithm for finding maximal common subtopolgies in a
set of protein structures.Journal of Computational Biology 1996, 3-2:289-306.

[26] Mizguchi K, Go N: Comparison of spatial arrangements of secondary structural elements
in proteins.Protein Eng 1995, 8:353-362.

[27] Rufino SD, Blundell TL: Structure-based identification and clustering of protein families
and superfamilies.Journal of Comput Aided Mol Dec 1994, 233:123-138.

[28] Camoglu O, Kahveci T, Singh AK: PSI: Indexing protein structures for fast similarity
search.Proceedings of Elventh International Conference on Intelligent Systems for Molecular
Biology 2003, 81-83.

37

[29] Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z: Gapped blast and psi-blast: a
new generation of protein database.Nucleic Acids Research 1997, 17:3389-3402.

[30] Chi PH, Scott G, Shyu CR: A Fast Protein Structure Retrieval System Using Image-Based
Distance Matrices and Multidimensional Index.Proceedings of the 4th IEEE Symposium on
Bioinformatics and Bioengineering 2004, 522-532.

[31] Lo WC, Huang PJ, Chang CH, Lyu PC: Protein structrual similarity search by
ramachandran codes.BMC Bioinformatics 2007, 8(307):1-14.

[32] Altschul S, WMEM , Gish W, Lipman D: Basic local alignment search tool.Journal of
Molecular Biology 1990, 3:403-410.

[33] Yang JM, Tung CH: Protein structure database search and evolutionary
classification.Nucleic Acids Research 2006, 1:3646-3659.

[34] Lu Z, Zhao Z, Garcia S, Fu B: New Algorithm and Web Server for Finding Proteins with
Similar 3D Structures.Proceedings of the International Conference on Bioinformatics and
Computational Biology (BIOCOMP'08) 2008.

[35] Aung Z, Tan KL: Rapid 3D protein structure database searching using information
retrieval techniques.Bioinformatics 2004, 20(7):1045-1052.

[36] Martin ACR: The Ups and Downs of Protein Topology; Rapid Comparison of Protein
Structure.Protein Engineering 2000, 13:829-837.

[37] Holm L, Kaariainen S, Rosenstrom P, Schenkel A: Protein structure database searching by
Dalilite v. 3.Bioinformatics 2008, 24(23):2780-2781.

[38] S Subbiah DL, Levitt M: Structural similarity of DNA-binding domains of bacteriophage
repressors and the globin core.Current Biology 1993, 3:141-148.

[39] Murzin AG, Brenner SE, Hubbard T, Chothia C: SCOP: a structural classification of
proteins database for the investigation of sequences and structures.J Mol Biol 1995, 247:536-
540.

[40] Conte LL, Brenner SE, Hubbard T, Chothia C, Murzin A: SCOP database in 2002:
refinements accommodate structural genomics.Nucl Acid Res 2002, 30:264-267.

[41] Andreeva A, Howorth D, Brenner SE, Hubbard TJP, Chothia C, Murzin AG: SCOP
database in 2004: refinements integrate structure and sequence family data.Nucl Acid Res 2004,
32:D226-D229.

[42] Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJP, Chothia C, Murzin
AG: Data growth and its impact on the SCOP database: new developments.Nucl Acid Res 2008,
36:D419-D425.

[43] Eggert D, A Lorusso RF: A comparison of four algorithms for estimating 3-d rigid
transformations.British Machine Vision Conference 1995, 237-246.

38

[44] Umeyama S: Least-squares estimation of transformation parameters between two point
patterns.IEEE Transactions on Pattern Analysis and Machine Intelligence 1991, 13(4):376-380.

[45] Lu Z, Zhao Z, Fu B [http://fpsa.cs.panam.edu/]

[46] Zaixin Lu, Zhiyu Zhao, Sergio Garcia, Krishnakumar Krishnaswamy, and Bin Fu: Search
Similar Protein Structures with Classfication, Sequence and 3-D Alignments. Journal of
Bioinformatics and Computational Biology 2009, 7(5):755-71.

[47] Zaixin Lu, Zhiyu Zhao and Bin Fu: Efficient Protein Alignment Algorithm for Protein
Search. BMC Bioinformatics 2010, 11(Suppl 1):S34.

[48] Xu J, Li M, Kim D, Xu Y: Optimal Protein Threading by Linear Programming.Journal of
Bioinformatics and Computational Biology 2003, 1(1):95-117.

[49] Sali, A. and T.L. Blundell: Comparative protein modelling by satisfaction of spatial
restraints. J Mol Biol 1993, 234(3):779-815.

[50] Fiser, A., R.K.G. Do, and A. Sali: Modeling of loops in protein structures. Protein Science
2000, 9(9):1753-1773.

[51] Bowie, J.U., R. Luthy, and D. Eisenberg: A method to identify protein sequences that fold
into a known three-dimensional structure. Science 1991, 253(5016):164-70.

[52] Wu, S. and Y. Zhang, MUSTER: Improving protein sequence profile-profile alignments by
using multiple sources of structure information. Proteins 2008, 72(2):547-56.

[53] Jones, D.T., W.R. Taylor, and J.M. Thornton: A New Approach to Protein Fold
Recognition. Nature 1992, 358(6381):86-89.

[54] Xu, Y. and D. Xu: Protein threading using PROSPECT: design and evaluation. Proteins
2000, 40(3):343-54.

[55] Skolnick, J., D. Kihara, and Y. Zhang: Development and large scale benchmark testing of
the PROSPECTOR_3 threading algorithm. Proteins 2004, 56(3):502-18.

[56] Wu, S. and Y. Zhang: LOMETS: a local meta-threading-server for protein structure
prediction. Nucleic Acids Res 2007, 35(10):3375-3382.

[57] Bradley, P., K.M.S. Misura, and D. Baker: Toward high-resolution de novo structure
prediction for small proteins. Science 2005, 309(5742):1868-1871.

[58] Simons, K.T., C. Strauss, and D. Baker: Prospects for ab initio protein structural genomics.
Journal of Molecular Biology 2001, 306(5):1191-1199.

[59] Kihara, D., et al.: TOUCHSTONE: an ab initio protein structure prediction method that
uses threading-based tertiary restraints. Proc Natl Acad Sci USA 2001, 98(18):10125-30.

http://fpsa.cs.panam.edu/�

39

BIOGRAPHICAL SKETCH

ZAIXIN LU got his B.E degree in 2006 from the computer science department of Yanshan

University, China. He got his M.S degree from the computer science department of the

University of Texas-Pan American. His permanent mailing address is 18-3, 4-2-2, Nujiang North

St, Shenyang City, Liaoning Province, China 110000.

 He was doing research about algorithms and bioinformatics under Dr. Bin Fu's direction

during his master; He has developed several practical algorithms and software for protein

structure comparison, protein structure prediction and protein similarity search. Three of his

papers have been published in this field, which are available at http://fpsa.cs.panam.edu/.

	New Algorithms for Protein Structure Comparison and Protein Structure Prediction
	Recommended Citation

	1
	2-1
	2-11
	2-2
	2-3
	2-33
	2-4
	2-44
	3
	4
	Description of Algorithm
	Methods of speeding up the alignment and search
	Evaluation of the alignment results
	Discussion on the alignment results

	5
	Evaluation of the query accuracy
	Performance for searching weak similarities
	Evaluation of reliability
	Evaluation of query speed

	6
	7
	8

