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ABSTRACT 

Gao, Yi, Parameterized Algorithm for 3-SAT. Master of Science (MS), May, 2010, 29 pp., 

3 tables, 7 figures, and 35 references. 

The SAT problem is the classical NP-complete problem. In the past, many methods have 

been proposed for solving this problem. We investigated a new method for 3-SAT 

problem, which is a fixed parameterized algorithm proposed in this paper first. This 

method uses a fixed parameter k, where k is the number of true values in an assignment 

for checking whether the formula is satisfied or not. The complexity of our algorithm is 

O(3k), which is exponentially independent of the number of variables. Theoretical 

analysis shows that when k is small, this method has smaller search space and higher 

speed. 

 

 

 

 

 

 

 



 iv

TABLE OF CONTENTS 
 

Page 

ABSTRACT…………………………………………………………………………...…iii 

TABLE OF CONTENTS………………………………………………………………...iv 

LIST OF TABLES……………………………………………………………………….vi 

LIST OF FIGURES…………………………………………………………………......vii 

CHAPTER I. INTRODUCTION……………………………………………………........1 

P and NP-complete…………………………………………………...........................1 

Problem Description.………………………………………...……………….…...….2 

Application.……………..…………………………………………………………....3 

K-SAT Problem…………..…………………………………………………………..5 

Previous Works for K-SAT ..........................................................................................6 

CHAPTER II. PARAMETERIZED ALGORITHM FOR 3-SAT.......................................9 

Introduction of Parameterized Algorithm………………………………….….….......9 

Fixed Parameterized Algorithm for 3-SAT………………………………..………...10 

The Correctness of Our Fixed Parameterized Algorithm...........................................14 

The Complexity of Our Fixed Parameterized Algorithm...........................................15 

CHAPTER III. EXPERIMENTAL RESULTS…………………………………..............18



 v

Algorithm Implementation………………………………………………...……....18 

The Complexity of Our Fixed Parameterized Algorithm………………….....…....19 

Experimental Results………………...………………………………….................20 

CHAPTER IV. SUMMARY AND CONCLUSION…………………………................25 

REFERENCES…………………………………………………....................................26 

BIOGRAPHICAL SKETCH…………………………………………………...............29



 vi

LIST OF TABLES 
 

Page 

Table1: Complexities of Selected Algorithms for the Satisfiability Problem……….........8 

Table2: Running Times of Our Fixed Parameterized Algorithm………………………...21 

Table3: Comparisons of Two Algorithms……………………………………………….24



 vii

LIST OF FIGURES 

 
Page 

Figure 1: Diagram of P and NP-complete………………..…………………………….....2 

Figure 2: Our Algorithm for 3-SAT Problem……..………………..…………………….11 

Figure 3: Recursive Function 1…………………………………..……………………....12 

Figure 4: Example of Our Fixed Parameterized Algorithm…………..………….............13 

Figure 5: Recursive Function 2………………………………..........................................14 

Figure 6: Schöning’s Algorithm……………………...……………………......…………19 

Figure 7: Plots of Our Fixed Parameterized Algorithm for Different k……....................22 



1 

CHAPTER I 

INTRODUCTION 

The SAT problem is one of the typically classical NP-complete problems in 

computer science [1]. It is to determine whether the variables of a formula can be 

assigned in such a way that the formula evaluates to be true. In recent years, SAT 

problem is a central problem that has applications in numerous areas, such as artificial 

intelligence, mathematical logic, and computing theory with wide range of computer 

aided design applications [2-18]. Modern SAT-solvers can be generally used to solve 

many important and practical problems. Therefore, it has attracted the researchers’ 

interest and attention. 

P and NP-complete 

In computational complexity theory, NP is the set of all decision problems for which 

the “yes”-answers can be verified to be correct or not in polynomial time by a 

non-deterministic Turing Machine. In an equivalent formal definition, NP is the set of 

decision problems solvable in polynomial time by a non-deterministic Turing Machine, 

including P problems, NP- complete problems and etc.
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The relationship between the complexity classes P and NP is the famous open problem in 

theoretical computer science. See Figure 1 for their relationship. 

 

NP Problems 

P Problems 

NP-complete 

Figure 1 Diagram of P and NP-complete 

Problem Description 

SAT problem is a decision problem. It tests whether a given Boolean formula, 

usually represented in conjunctive normal form, is satisfiable or not by searching for an 

assignment of true or false values to variables that makes all the clauses of the formula 

evaluate to true. 

A Boolean formula is said to be in CNF, conjunctive normal form, if it is a 

conjunction (“and”) of disjunctions (“ors”) of literals. A literal is either x , or its 

negation x , for a Boolean variable x . According to Boolean logic, a literal has two 

different types; one is positive, the other is negative. For example,  is a positive literal 

and 

5x

5x  is a negative literal. Disjunctions are called clauses. Propositional formulas that 
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are not in CNF can be transformed into CNF in a standard way [29] and [30], and this 

process is called clausification. Determining the satisfiability of a formula in which each 

clause is limited to at most three literals is NP complete. An assignment for a certain 

formula can be checked in polynomial time. We explain it by using the example below: 

( ) ( ) ( ) ( ) ( )543542531432321 xxxxxxxxxxxxxxx ∨∨∧∨∨∧∨∨∧∨∨∧∨∨  

This formula has five clauses and five literals, and there are exactly three literals in each 

clause. Suppose there is such an assignment,  = TRUE,  = TRUE,  = TRUE, 

 = TRUE,  = TRUE. The answer to the instance is “YES”, because each clause is 

TRUE. Actually any set of assignments that includes  = TRUE,  = TRUE,  = 

TRUE is satisfiable. If there is no such assignment, the answer to the instance is “NO” 

and the formula is not satisfiable. 

1x 2x 3x

4x 5x

1x 2x 3x

Application 

Up to now, SAT problem is not only studied in theoretical computer science but also 

intensively used in hardware design, electronic design automation (EDA) [2], delay-fault 

testing, equivalence checking, circuit delay computation, logic synthesis and functional 

vector generation [3], among other applications. (See [2, 4, 5, 6, 7, and 8]). Moreover, 

SAT problem can especially help researchers to solve instances of binate covering 

problems for those in which the constraints are hard to satisfy [9, 10, 11, 12, and 13]. In 

addition, its application involves to other domains, such as Artificial Intelligence [14, 15] 

and Operations Research [16]. 

Recently we have seen dramatic improvements in SAT algorithms, which have been 

thoroughly validated in different application areas. With respect to applications of SAT in 

EDA, in most cases, the original problem formulation starts from a circuit description, for 
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which a given (circuit) property needs to be validated for at least one primary input 

vector. The resulting circuit formulation, which may only be implicitly specified, is then 

mapped into an instance of SAT, in most cases, using Conjunctive Normal Form (CNF) 

formulas. 

SAT solving algorithms involve compute-intensive, logic bit-level, highly 

parallelizable operations, which makes reconfigurable computing appealing [17]. Many 

methodologies have been proposed to accelerate SAT solving using reconfigurable 

computing by either migrating the whole problem to hardware or partitioning the problem 

into hardware and software parts [18, 19]. SAT solving is hard and in no way precludes 

its use in solving the particular SAT instances that arise in real problems. Recent progress 

in practical applications of SAT has built upon two bases: improved SAT-solving engines 

and innovative ways to encode real problems in ways that can exploit those engines. 

Recent SAT-solvers have been developed in a scientific community that has greatly 

practical applicability, and the development of the solvers has, in turn, spurred work on 

new ways to exploit such solvers. The resulting positive spiral has led, for instance, to the 

development of commercial hardware verification tools in which SAT-solvers play an 

important role. 

The utilization of CNF models and SAT algorithms has important advantages: 

 Existing and extensively validated SAT algorithms can be used instead of 

dedicated circuit algorithms. 

 New improvements and SAT algorithms can be easily applied to each target 

application. 

 As observed in [23], the structural information of the circuit can be ignored. 
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 In many electronic design automation problems, a large number of instances of 

SAT have to be solved for each circuit. Hence, mapping a given problem 

description into SAT can represent a significant percentage of the overall 

running time [24]. 

The general SAT problem is NP complete and is hard to solve when input size is 

large. However, there are some special cases of SAT problem, which can be solved 

efficiently, have significant application. One of the most important restrictions of SAT 

problem is HORNSAT, where the formula is a conjunction of Horn clauses [20]. This 

problem is solved by the polynomial-time Horn-satisfiability algorithm [21], and is in 

fact P-complete [22]. It can be seen as P's version of the Boolean satisfiability problem. A 

Horn clause is a clause with, at most, one positive literal, called the head of the clause, 

and any number of negative literals, forming the body of the clause. A Horn formula is a 

propositional formula formed by conjunction of Horn clauses. 

K-SAT Problem 

K-SAT problem is a special case of SAT problem, where clauses have at most k 

literals. If an assignment of variables that satisfies the formula exists, the formula is said 

to be satisfiable, otherwise it is unsatisfiable. A clause is satisfied if one of its literals is 

bound to true, unsatisfied if all its literals are bound to false. 

2-SAT problem can be solved in polynomial time. It is to determine the satisfiability 

of a formula in which each clause is limited to at most two literals. 

3-SAT is a special case of k-SAT. It is a well known NP complete problem and has 

many practical applications, like consistency check in expert system knowledge bases 

and asynchronous circuit synthesis [3]. 3-SAT problem remains NP-complete even if all 
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expressions are written in conjunctive normal form with exactly three literals per clause. 

Each literal is a variable or a negation of a variable and each variable can appear multiple 

times in the expression. Table 1 briefly introduces some well-known algorithms and their 

best upper bounds of 3-SAT. 

Previous Works for K-SAT 

The k-SAT problem is to judge whether a k-CNF G has a satisfying assignment. If 

NP P, for k > 2, it has no polynomial time algorithm for the k-SAT. ≠

In [25], the first well-known algorithm for 3-SAT problem was proposed by Monien 

and Speckenmeyer, it has a bound of O(1.618n). 

In [26], a well known randomized algorithm bound for 3-SAT problem was given by 

Paturi, Pudlak, Saks, and Zane in 1998, this algorithm is called PPSZ. To find satisfying 

assignments of Boolean formulas in conjunctive normal form, they proposed and 

analyzed ResolveSat, which is a simple randomized algorithm. The algorithm consists of 

two stages: a preprocessing stage in which resolution is applied to enlarge the set of 

clauses of the formula, followed by a search stage that uses a simple randomized greedy 

procedure to look for a satisfying assignment. For each value of k, the algorithm is faster 

than any currently known algorithm. 

In [27], Schöning proposed a simple randomized algorithm for solving the k-SAT 

problem. In the case of 3-SAT, the algorithm has an expected running time O(1.334n) 

when given a formula F on n variables. This was the best running time known for an 

algorithm solving 3-SAT. To solve k-SAT and constraint satisfaction problems, they 

present a simple probabilistic algorithm. This algorithm follows a simple local-search 

paradigm: randomly guess an initial assignment and then, guided by those clauses that are 
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not satisfied, by successively choosing a random literal from such a clause and flipping 

the corresponding bit, try to find a satisfying assignment. If no satisfying assignment is 

found after O(n) steps, start over again. Their analysis shows that for any satisfiable 

k-CNF formula with n variables this process has to be repeated only t times, on the 

average, to find a satisfying assignment, where t is within a polynomial factor of 

(2(1-1/k))n. 

In [28], Iwama and Tamaki improved the upper bound for 3-SAT to O (1.324n) in 

2003. They focused on the 3-SAT problem. The basic idea is to combine two existing 

algorithms, the one by Paturi, Pudl´ak, Saks and Zane and the other by Schöning. It 

should be noted, however, that simply running the two algorithms independently does not 

seem to work. Also, their approach can escape one of the most complicated portions in 

the analysis. 

There are many other famous algorithms proposed in the past, a well known 

deterministic algorithm was proposed by Dantsin et al in [34]. A randomized algorithm 

was proposed by Iwama and Tamaki in [28]. 

Table 1 briefly introduces some well-known algorithms and their upper bounds of 

k-SAT, where k . { }6,5,4,3∈
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Table1 Complexities of Selected Algorithms for the Satisfiability Problem [35] 

Authors Algorithm 
Type 3-SAT 4-SAT 5-SAT 6-SAT 

Backtracking 
Algorithm deterministic O(1.91n) O(1.96n) O(1.98n) O(1.99n)

Monien 
[25] deterministic O(1.61n) O(1.83n) O(1.92n) O(1.96n)

Dantsin et al. 
[34] deterministic O(1.48n) O(1.60n) O(1.66n) O(1.71n)

Paturi et al. 
[26] randomized O(1.36n) O(1. 47n) O(1.56n) O(1.63n)

Schöning 
[27] randomized O(1.33n) O(1.50n) O(1.60n) O(1.66n)

Iwama and 
Tamaki [28] randomized O(1.32n) O(1.47n) N/A N/A 
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CHAPTER II 

PARAMETERIZED ALGORITHM FOR 3-SAT 

Introduction of Parameterized Algorithm 

According to the common belief that P≠ NP, NP-complete, or otherwise NP-hard, 

problems require time that is exponential in input size. Therefore, if the input size is 

large, it is unfeasible to find solutions to those problems such as SAT problem. 

In real world, applications of NP-complete may have some small parameters which 

can be used to find solutions efficiently. Some problems with certain parameter fixed can 

be solved by algorithms that are exponential only in the size of the fixed parameters 

while polynomial in the size of the input size. Such an algorithm is called a 

fixed-parameter tractable algorithm. A parameterized problem that allows for such a 

fixed-parameter tractable algorithm is said to be a fixed-parameter tractable problem and 

belongs to the class FPT. It seems a good supplement of the theory of NP-completeness. 

The problem in FPT can be solved efficiently for small values of the fixed parameters. 

For example, the vertex cover problem is in FPT. This problem is that given a graph 

G, to find k number of vertices in G such that every edge of G is incident to at least one 

of those vertices. It is a NP-complete problem which has been applied in many areas such 

as network optimization and bioinformatics.
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An exhaustive search algorithm can solve the problem in time 2O(k)nO(1). Vertex 

cover is therefore a fixed-parameter tractable problem, and there may only need a vertex 

cover of a few vertices in some applications. For those applications of small vertex cover 

(i.e. k is small), we can solve the problem efficiently. After many researches, many fixed 

parameterized algorithm for this problem have been developed. A well known algorithm 

for this problem has a running time O(1.286k+kn) in [32]. 

However, some problems are not believed to be in FPT. An example is deciding 

whether an n-vertex graph contains an independent set of cardinality k or not. The 

complement of a maximum independent set is the set of vertices not belonging to the 

independent set, forms a minimum vertex cover, which is a fixed-parameter tractable 

problem. There is an algorithm which can solve the independent set of cardinality k with 

an upper bound of O(n0.792k) in [31]. So far no algorithm with a running time of the form 

f(k)nO(1) is known. 

Fixed Parameterized Algorithm for 3-SAT 

We proposed a fixed-parameter tractable algorithm for 3-SAT problem in this paper. 

In other words, our algorithm has a fixed parameter k to solve the 3-SAT problem and 

here k is the number of true values for variables in an assignment. Therefore, our 

algorithm can determine if there is one assignment with exactly k number of variables 

true to make a given formula satisfiable. We select the variables in the assignment for true 

by finding the clauses whose literals are all positive. To make a clause of all positive 

literals true, we must set at least one variable to true. The assignment is unsatisfied unless 

it can make all the clauses true. Therefore, for all positive clauses, we must select one 

literal and set its variable in the assignment to true. In the next section, we proved that the 
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complexity of our algorithm is 3k, and it is exponentially independent of the number of 

variables. 

The pseudo codes and details of our fixed parameterized algorithm are in Figure 2, 

Figure 3 and Figure 5. Figure 2 is the main function of our algorithm. It runs two 

recursive functions alternatively. Figure 3 is the one recursive function to check if the 

given formula can be satisfied by assignment with exactly k number of true values and 

Figure 5 is the other recursive function to check if the given formula can be satisfied by 

assignment with exactly k number of false values. 

 

Figure 2 Our Algorithm for 3-SAT Problem 

The Algorithm in Figure 2 calls the recursive function in Figure 3 and Figure 5 to 

find assignments with exactly k number of variables true and false separately. The 

recursive function P1 and P2 need a fixed parameter k to search a 3-tree structure T by 
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using Deep First Search algorithm. The 3-tree T has exactly k layers. Each node of T is a 

clause whose literals are all positive or negative, and each line of the 3-tree denotes a 

choice of setting one of the three variables in a clause to true or false. Figure 4 shows an 

example of the process of our algorithm in Figure 3. In Figure 3, the output of the 

function p1 is “True” or “False”. Output “True” means a satisfied assignment with k 

number of true values. The recursive function p2 in Figure 5 has the same logic of p1. 

 

Figure 3 Recursive Function 1 

In this example, we suppose k = 2, and select variables by finding the clause with all 
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positive literals. The process stop and return true when a satisfied assignment is found; it 

return false if there is no satisfied assignment has been found until the last leaf of this 

3-tree has been tested.  

1. Find some clauses with all positive literals (suppose we find the 

clause ( )32 ). 1 xxx ∨∨

2. Set 1x  = true. 

3. Find another all positive clause, suppose we find the clause . ( )654 xxx ∨∨

4. Set 4x  = true, 5x  = true, 6x  = true respectively, and test the assignment is 

satisfied or not. If unsatisfied, reset them false (suppose not satisfied). 

5. Set 1x  = false, 2x  = true; repeat step 3 and step 4. 

6. Set 2x  = false, 3x  = true; repeat step 3 and step 4. 

7. If not satisfiable, return No. 

 
   …   ...     ...4x =T =T =T 5x 6x

 
…      ...    ... 

4x , ,  5x 6x .., .., .. 

1x = T 

1x = F 3x = T 

.., .., .. 

1x , ,  2x 3x

Figure 4 Example of Our Fixed Parameterized Algorithm 
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Figure 5 Recursive Function 2 

The Correctness of Our Fixed Parameterized Algorithm 

In this section, we show our algorithm solves the 3-SAT correctly. Given a 3-CNF 

instance F, and an integer parameter k, it is obvious that if the result of our algorithm to 

the instance F is “TRUE”, F can be satisfied by an assignment of less or equal than k true 

variables. 

We will prove if the result of our algorithm to F is “FALSE”, there is no assignment 

with less or equal k true variables exists to make F satisfied. 
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Suppose, there is one such assignment A and the result of our algorithm to F is 

“FALSE”. 

First of all, the assignment A can make all the clauses true, thus it makes the first 

selected clause true, the first selected clause means the root of the 3-tree based on our 

method. Therefore, at least one variable of this clause in the assignment A is true. In 

addition, A also makes the clause of corresponding child node true, thus at least one 

variable of this child node in the assignment A is true. This process can be repeated until 

it reach a leaf of the 3-tree, otherwise Assignment A is unsatisfied. It is clear that the 

assignment generated by that leaf should be the same assignment as A. It is that the two 

assignments share k number of true variables and both of them have exactly k number of 

true variables. 

The result of our algorithm to F is “FALSE”, which means the assignment generated 

by that leaf is not satisfied, however A is satisfied, which is a contradiction. Thus we 

obtain the following theorem. 

Theorem 1 Given a 3-CNF instance F, there is an assignment with less or equal than 

k number of true variables satisfied if and only if the result of our parameterized 

algorithm to F is “TRUE”. 

The Complexity of Our Fixed Parameterized Algorithm 

Suppose the operation of test an assignment is O(1), our algorithm need O(3k) time 

to check whether an satisfied assignment exists with less or equal than k true values. 

This is a recursive process which can be shown by a 3- tree structure in Figure 4. 

Without loss of generality, assume k>=1. To determine k number of variables, it first 

finds a clause with all positive literals ( )lji xxx ∨∨ , and set ,  and  to true ix jx lx
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respectively. After one variable in the clause has been selected and set to true, it continue 

find other clauses of all positive literals and set one variable to true per time until k 

number of true variables have been selected. After that, it checks whether the assignment 

is satisfied or not. If not, it set the true variable back to false; and set another variable in 

the clause to true to do the satisfiability test again. If all the variables in the clause have 

been selected and no assignments satisfied, it has to go back to the previous clause, do the 

above steps again. There are two conditions make this recursive process stop. The one is 

that a satisfied assignment is found; the other is that there is no satisfied assignment has 

been found until the last leaf of this 3-tree has been tested 

Suppose that the complexity of the recursive function is f(x), where x is the number 

of true values. Based on the recursive function in Figure 3 or Figure 5, f(x) = 3f(x-1). We 

suppose that f (0) is O(1), therefore the complexity of f (k) = 3f (k-1) = 32f(k-2) = … = 

O(3k). It is just the same as the number of nodes n in the 3-tree. 

Furthermore, the common 3-SAT problem can be solved by our method in O(3n/2 ) 

time. To solve a general 3-SAT problem, we can try our method with k = 1, 2, 3, …, n/2 

for the number of variables of true value, if there is no assignment satisfied, we then try 

our method with k = 1, 2, 3, …, n/2 for the number of variables of false value. The 

complexity is O(31) + O(32) + … + O(3n/2), which is O(3n/2). The formula is unsatisfiable 

if there is no solution after that. If there is an assignment makes the formula satisfiable, at 

least n/2 numbers of its variables are true; otherwise, at least n/2 number of its variables 

are false. 

Thus we obtain the following theorems. 

Theorem 2 Given a 3-CNF instance F and an integer k, our algorithm need no more 
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than the O(3k) time to check if there exists an assignment with equal or less than k true 

variables make F satisfied. 

Theorem 3 Given a 3-CNF instance F with n variables, our algorithm need no more 

than O(3n/2) time to check its satisfiability. 
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CHAPTER III 

EXPERIMENTAL RESULTS 

Algorithm Implementation 

There are two algorithms for the 3-SAT problem we implemented in this paper. The 

first algorithm is a fixed parameterized algorithm proposed by us firstly. The second one 

is the algorithm proposed by Schöning in [27] in this paper. 

Schöning proposed a simple randomized algorithm for solving the K-SAT problem. 

In the case of 3-SAT, the algorithm has an expected running time O( ) when given 

a formula F on n variables. To solve k-SAT and constraint satisfaction problems, they 

present a simple probabilistic algorithm. This algorithm follows a simple local-search 

paradigm: randomly guess an initial assignment and then, guided by those clauses that are 

not satisfied, by successively choosing a random literal from such a clause and flipping 

the corresponding bit, try to find a satisfying assignment. If no satisfying assignment is 

found after  steps, start over again. 

n334.1

n3

This method is a simple randomized algorithm and it is not only very efficient but 

also easy to implement. Therefore, we first implement this method as the beginning of 

our research.
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Figure 6 Schöning’s Algorithm 

Figure 6 is the core function in Schöning’s algorithm. The algorithm is a randomized 

algorithm which tries the function in Figure 2 at most O( ) times. Therefore, its 

complexity is O( ). If no satisfied assignment can be found after O( ) time, It 

says the formula is unsatisfiable. 

n334.1

n334.1 n334.1

The Complexities of Our Fixed Parameterized Algorithm 

If the input formula is unsatisfiable, the result of running the above two algorithms 

will always be rejected. However, if it is satisfiable, we suppose that the probability of 

getting a satisfied assignment is p. It is clear that p is related with the input size n. Then, 

if we try the procedure m times and the probability that we do not find a satisfying 
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assignment after m repetitions with independent random bits is , which is equal 

or less than . Therefore, to achieve an acceptable error probability of  one 

needs to choose  independent repetitions of try. It was shown in [27] that p 

is equal or greater than  for k-SAT. Therefore, for 3-SAT problem, if we try 

the above algorithm  times, the complexity of the algorithm for 3-SAT is 

O( ) and achieve an error probability of no more than . 

mp)1( −

20

pme− 20−e

120 −×= pm

kk (2/(

3/4(20×

n))1−

n)

n334.1 −e

Schöning’s algorithm is a simple algorithm and it is easy to implement. When the 

input size is small, the algorithm is very fast. However, It is obvious that the complexity 

of this algorithm is exponential related with the number of variables n in a formula, 

which means when n is larger; its speed is very slow. In this paper, we proposed a new 

algorithm to solve the 3-SAT problem; it is a fixed-parameter tractable algorithm. In other 

words, our algorithm needs a fixed parameter k to solve the 3-SAT problem, where k is 

the number of true values for variables in an assignment. Therefore, our algorithm can 

determine if there is one assignment with exactly k numbers of variables true to make a 

given formula satisfiable. The complexity of our algorithm is 3k, and it is exponentially 

independent of the number of input variables. 

Experimental Results 

The solvers are implemented by c++. The experiments were performed on a 

computer with an Intel Pentium 2.8 GHz processor and 1,024 megabytes of RAM 

memory. We use the generator mkcnf.c for the test cases. The program “mkcnf.c” [33] is 

loosely based on “mwff.c”, which was contributed to the Dimacs Challenge by Bart 

Selman of AT&T. 

We first test the performance of our fixed parameterized algorithm by using different 
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ranges of k with test data 1. 1000 test cases are generated by the program “mkcnf.c”. 

Each case has 50 variables and 120 clauses. In addition, we guarantee that each of them is 

satisfiable. 

Table 2 lists the experimental results. The Total Running Time is the running time 

for checking the whole cases in test data 1, and the Number of Satisfied Cases is how 

many cases are satisfied in test data 1 according to the result of our algorithm when k is 

smaller than 5, 10, 15, 20 and 25.  

If k is equal or less than 5, the average running time is 0.00134 seconds, and 23 

instances have solutions. If k is enlarged to 15, all the instances are satisfied and the 

average running time is 0.07376 seconds. This experiment shows if k is small, this fixed 

parameterized algorithm has smaller search space and higher speed. 

Table 2 Running Times of Our Fixed Parameterized Algorithm 

 k<=5 
(n=50) 

k<=10 
(n=50) 

k<=15 
(n=50) 

k<=20 
(n=50) 

k<=25 
(n=50) 

Total Running Time 
(sec) 1.34 52.27 73.76 73.75 73.76 

Average Running Time 
(sec) 0.00134 0.05227 0.07376 0.07375 0.0.7376

The Number of Satisfied 
Cases 23 846 1000 1000 1000 

Accuracy (satisfied 
number / total number) 2.3% 84.6% 100% 100% 100% 

 

Figure 7 shows the detail of the first experiment, when k is becoming bigger, the 

number of satisfied cases is increasing exponentially, however the running is also 

becoming longer. Therefore, the experimental results show that our fixed parameterized 

algorithm is very suitable for the 3-SAT problems that need assignments with limit 

number of true values. 
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Figure 7 Plots of Our Fixed Parameterized Algorithm for Different k 

To further test the time performance of the algorithm, we compare it with 

Schöning’s algorithm by using test data 2. We generated 1000 test cases for this 

experiment. Each of them has 30 variables and 100 clauses. 

The test cases of the second experiment are special and different with the previous 

test data 1. The test cases in test data 1 are produced by the program “mkcnf.c”. The test 

cases in test data 2 were generated by our won. For each test case, we guarantee that at 

least one assignment with less or equal than 5 variables true can make it satisfiable. To 

make sure that each test case has a satisfiable solution with less or equal variable true, we 

did the following steps when generate the test data 2. 

1. Generate the 120 clauses one by one; each clause has exactly 3 literals. 

2. Make sure the 3 literals in a clause are different variables. 
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3. Make sure the clauses generated are different. 

4. For each literal in a clause, randomly select a variable ix  from the variable set 

{ 1x , …, ix , …, 30x }. 

5. If the selected i  is less or equal than 5, make the literal positive. 

6. If a clause doesn’t contain variables i  less or equal than 5, randomly make one 

of its literals negative. 

Test cases generated by the above method are satisfied by the assignment 

that , , ,  and  are true, and from  to  are false. Therefore, the 

assignment has exactly 5 true values and it is clear that all the test cases in test data 2 are 

satisfied by it. 

1x 2x 3x 4x 5x 6x 30x

We check the satisfiability of the test cases by the SAT solver implemented by 

Schöning’s algorithm and by our fixed parameterized algorithm, and compare their 

running time. 

The data in Table 3 shows that the running time of our algorithm is shorter than that 

of Schöning’s Algorithm. It means that when k is smaller than 5, the SAT solver 

implemented with our fixed parameterized algorithm has smaller search space and higher 

speed than the well known SAT solver by Schöning. 

It is reasonable because the parameter k is no more than 5. Suppose the operation of 

testing the assignment is O(1), the running time of our algorithm is O(35), and the 

running time of Schöning’s is 20×1.33n, where n is the number of variables. In the 

experiment, the number of variables is 30. It is obviously that our algorithm is faster than 

that of Schöning. 
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Table 3 Comparisons of Two Algorithms 

 Schöning’s Algorithm Fixed Parameterized 
Algorithm 

Total Running Time 
(sec) 48.72 21.01 

Average Running 
Time (sec) 0.04872 0.02101 

The Number of Test 
Cases 1000 1000 

 

The experimental results show that our algorithm can help to improve efficiency on 

resolve a 3-SAT problem when the input size n is large and the parameter k is relative 

small. It is better than Schöning’s Algorithm for solving 3-SAT when k is less or equal 

than five. Our theoretical analysis proves that, when parameter k is a small value, the 

SAT solver implemented with our method has smaller search space and higher speed.
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CHAPTER IV 

SUMMARY AND CONCLUSION 

We investigated algorithms for the 3-SAT problem and. First we study the well 

known SAT solver proposed by Schöning. Next we develop a fixed parameterized 

algorithm for 3-SAT problem. Our algorithm needs a fixed parameter k to solve the 

3-SAT problem and k is the number of true values for variables in an assignment. The 

theoretical analysis shows that the complexity of our algorithm is O(3k), which is 

exponentially irrelevant with the number of variables. We test its performance by 

comparing it with Schöning’s algorithm. Our experimental results show that when k is 

smaller or equal than 5, its speed is fast than that of Schöning’s. Therefore, we hold that 

the SAT problem can be solved efficiently for small values of the fixed parameters. 

In the future, we would like to further study the fixed parameterized algorithm for 

K-SAT problem. 
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