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ABSTRACT

Morquin, Demian, A Neural Network-Based Vision System for Automated 

Separation of Onion from Clod Using Mechanical Harvester. Master o f Science (MS), 

May 2001, 70 pp.; 7 tables, 31 figures, references, 25 titles.

A neural network classifier for separating clods from onions during harvesting has 

been developed. The separator consists o f a multi-layer feedforward network that maps 

textural features computed from gray-scale images of onions and clods into the correct 

object. Texture features were computed from co-occurrence matrices that specify the 

spatial relationship o f pixel values in an image. The textural features selected for this 

application consist o f homogeneity, contrast, variance, and energy. The network was 

trained using the back-propagation algorithm. Based on the textural features 

classification, the effect of changing the network configuration on separation 

effectiveness was investigated. Factors including network topology and combination of 

textural feature measures forming the inputs of the network were systematically analyzed. 

Thirty three different network configurations were evaluated. The best separation 

effectiveness was obtained with three-layer (3-2-1) network with input set consisting of 

energy, contrast, and homogeneity feature measures. The separation effectiveness for 

3-2-1 network topology was 96 percent. An analysis of integration o f the neural network- 

based vision system with a mechanical separator is presented.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



DEDICATION

This thesis is dedicated to an exceptional group of people that have accompanied 

and supported me along this special journey. From the depth o f my heart I dedicate this 

work to my beloved and amazing wife, Gabriela; my marvelous mother, Diana; my 

philosopher father, Raul; my sister and friend, Gillian, and her husband, Juan; my 

beautiful niece, Francisquita; my loving aunt, Mirta; my caring cousins, Henry, 

Alejandra, Marla, and Andrea; my affectionate uncle, aunt, and cousins Carlos, Stella, 

Tammy, Romina, and Daniel; and my always present grandparents Elias (*>), Mary, 

Daniel (& ) and Clara(=&).

Esta tesis esta dedicada a un grupo de personas excepcionales que me han 

acompanado y apoyado a lo largo de este camino tan especial. Desde lo mas profimdo de 

mi corazon, dedico este humilde triunfo a mi magnifica y  amada esposa Gabu, a mi 

maravillosa madre, Diana; a mi filosofo padre, Raul; a mi hermana y amiga, Gillian, y a 

su esposo, Juan; a mi hermosa sobrina, Francisquita; a mi bondadosa tia, Mirta; a mis 

generosos primos, Quique, Alejandra, Marla, y Andrea; a mis afectuosos tios y primos, 

Carlos, Stella, Tammy, Romina, y Daniel; y a mis siempre presentes abuelos Elias ( $ ) ,  

Mary, Daniel ( $ )  and Clara ( $ ) .

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGMENTS

I would like to thank my two advisors, Dr. Subash Bose and Dr. Mounir Ben 

Ghalia for giving me their support, and sharing their knowledge and experience. I like to 

thank Dr. Robert Freeman for his willingness to serve as a member o f  my thesis 

committee and to recognize all the professors in the manufacturing engineering program 

at UT-Pan American. Finally, I would like to mention Miguel Torres for helping me 

along the graduate program.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

Page

ABSTRACT...................................................................................................... iii

DEDICATION..................................................................................................... iv

ACKNOWLEDGEMENTS............................................................................. v

TABLE OF CONTENTS.................................................................................... vi

LIST OF TABLES..............................................................................................  ix

LIST OF FIGURES.........................................................................................  x

CHAPTER I. INTRODUCTION...................................................................  1

CHAPTER 2. REVIEW OF LITERATURE.................................................  3

CHAPTER 3. TEXTURE ANALYSIS.......................................................... 11

3.1 Image Quantization..........................................................................  12

3.2 The Co-occurrence M atrix..............................................................  14

3.3 Selecting Texture Features...............................................................  16

3.4 Capturing Im ages.............................................................................  17

3.5 Process of Computing Texture Features........................................  18

CHAPTER 4. NEURAL NETWORKS..........................................................  21

4.1 Neural Network Justification.........................................................  21

4.2 Architecture of a Neural Networks................................................  24

4.2.1 Single-layer feedforward networks..............................  24

4.2.2 Multilayer feedforward networks................................ 25

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2.3 Recurrent networks........................................................  26

4.3 Back-Propagation Algorithm........................................................  26

4.3.1 Training process............................................................. 28

4.3.2 Function and error signals............................................  28

4.4 Motivation for Using Neural Network ........................................  29

CHAPTER 5. EXPERIMENTAL RESULTS................................................ 33

5.1 Data Collection for Image Processing.......................................... 33

5.2 Separation Algorithm..................................................................... 35

5.2.1 Neural network structure...............................................  35

5.2.2 Neural network training................................................. 36

5.3 Separation Results.........................................................................  37

CHAPTER 6. MECHANICAL INTEGRATION OF

VISION SYSTEM.................................................................. 43

6.1 Onion-Clod Separation Concepts................................................. 43

6.1.1 Rotating Brushes............................................................. 43

6.1.2 Restitution M ethod........................................................  44

6.1.3 Rotating Cylinder...........................................................  44

6.2 Harvesting Process.........................................................................  45

6.3 Cup Type Conveyor System.........................................................  46

CHAPTER 7. CONCLUSIONS........................................................................ 48

REFERENCES.................................................................................................... 50

APPENDIX A:

Texture Analysis Program .................................................................... 53

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B

Neural Network Training Program...................................................... 62

APPENDIX C

Neural Network Testing Program....................................................... 64

APPENDIX D

Textural Featrures Data for Clod and Onion...................................... 66

V IT A .................................................................................................................  70

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

Page

Table 3.1 Image quantization levels considered in this study ................................. 13

Table 3.2 Co-occurrence matrices containing the number o f pixel

pairs at a distance o f 1 and direction of 45° and 90°.............................. 16

Table 3.3 Texture features considered in this study................................................ 16

Table 3.4 Values obtained for the homogeneity feature for six

different orientations of the image of an onion (the distance

d  is set equal to 1 for all cases)................................................................  20

Table 4.1 Benefits and characteristics of a neural network structure.....................  22

Table 5.1 Image size and resolution values considered in this study.....................  33

Table 5.2 Neural network topologies examined in this study ................................. 35

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Page

Fig. 3.1 Visual perception o f the difference in surface texture

(a) an onion and (b) a c lo d .............................................................................12

Fig. 3.2 Images o f onion texture before and after using different

quantization levels.........................................................................................  13

Fig. 3.3 Simple surface texture and the matrix containing its

corresponding pixel values......................................................................... 14

Fig. 3.4 Illustration o f the method used to obtain all the different

images o f onions and clods...........................................................................  18

Fig. 3.5 Images showing six different orientation of an on ion ............................... 19

Fig. 3.6 Process o f computing the average values o f textural features..................  20

Fig. 4.1 Single-layer feedforward networks............................................................. 24

Fig. 4.2 Multi-layer feedforward network...............................................................  25

Fig. 4.3 Recurrent networks...................................................................................... 26

Fig. 4.4 A backpropagation algorithm m odel.........................................................  27

Fig 4.5 Scatter plot of textural features contrast and variance.............................. 30

Fig 4.6 Scatter plot of textural features contrast and homogeneity......................  30

Fig 4.7 Scatter plot o f textural features homogeneity and variance.....................  31

Fig 4.8 Scatter plot of textural features energy and homogeneity........................  31

Fig 4.9 Scatter plot o f textural features energy and contrast................................. 32

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig 4.10 Scatter plot o f textural features energy and variance..............................  32

Fig. 5.1 Images o f (a) onion with 256 gray levels, (b) onion with 16

gray levels, (c) clod with 256 gray levels, and (d) clod with 16

gray levels...................................................................................................... 34

Fig. 5.2 Architecture o f the neural network separator............................................  37

Fig. 5.3 Separation effectiveness o f neural networks with 2 hidden

neurons when they are presented with training d a ta ...............................  38

Fig. 5.4 Separation effectiveness o f neural networks with 3 hidden

neurons when they are presented with training d a ta ................................  39

Fig. 5.5 Separation effectiveness of neural networks with 4 hidden

neurons when they are presented with training d a ta ...............................  39

Fig. 5.6 Separation effectiveness of neural networks with 2 hidden

neurons when they are presented with testing d a ta .................................. 40

Fig. 5.7 Separation effectiveness of neural networks with 3 hidden

neurons when they are presented with testing d a ta .................................  40

Fig. 5.8 Separation effectiveness of neural networks with 4 hidden

neurons when they are presented with testing d a ta ................................  41

Fig. 6.1 Rotating Brushes........................................................................................  43

Fig. 6.2 Restitution M ethod..................................................................................... 44

Fig. 6.3 Rotating Cylinder........................................................................................ 44

Fig. 6.4 Rotating drum that will be integrated with the cup type 

Conveyor where the neural network-based vision system 

will be placed ...............................................................................................  45

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig. 6.5 Cup type conveyer where vision system will be placed........................  46

Fig. 6.6 Graphic representation o f the cup type conveyer...................................  47

Fig. 7.1 Flow chart of the onion harvesting process ....................................  48

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1

INTRODUCTION

Mechanical harvesters have been used for different types o f fruits and vegetables 

for more than 10 years. However, there are still some problems with mechanical 

harvesting that could be improved. For instance, one o f the major challenges is handling 

the separation process of onions and clods. Several improvements have been made in 

dealing with onion and clod separation; yet, there are still pieces of clods found at the end 

o f this process. This thesis focuses on improving mechanical harvesting o f onion using a 

neural network-based vision system in the process o f separation o f onion from clod.

According to several research which are reviewed in chapter two, one of the main 

problems o f mechanical harvesting of onion is the lack o f removal o f pieces o f clods that 

come from a field. These pieces o f clods cause damage to onions as well as to the blades 

o f the cutter, during the trimming o f roots. By integrating a neural network-based vision 

system, capable o f detecting onion from clod, it is possible to completely eliminate pieces 

o f clod in the separation process before the trimming process takes place.

The vision system is used to capture and analyze images o f onions and clods. The 

analysis o f the images includes computing textural features from the digitized images and 

identifying whether they represent features o f an onion or o f a clod. Even though, there 

are many different textural features that could be selected for identification of onion from 

clod, only four o f the significant features are considered in this thesis: homogeneity,

1
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contrast, energy and variance. The four feature measures provide the input data to a 

multi-layer feed-forward neural network. A back-propagation algorithm is used to train 

the network by adjusting its weights. Several network topologies are tested and evaluated 

to determine their efficiency in the separation process.

The outline o f the thesis is as follows: in Chapter two, the most relevant literature 

on texture analysis, vision system, and neural networks are reviewed. Chapter three 

presents a detailed explanation o f texture analysis, image quantization process, co

occurrence matrix generation, and the computation o f  textural features. Chapter four 

summarizes the concept o f neural networks, various types o f neural network architecture, 

and the back-propagation algorithm. Chapter five discusses the experimental study 

conducted in this thesis. In Chapter six, the integration o f neural network-based vision 

system with a mechanical onion harvesting mechanism is described. Chapter seven 

summarizes the results obtained in this study with suggestions for future analysis and 

improvements o f  the neural network-based vision system.
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CHAPTER 2

REVIEW OF LITERATURE

Mechanical harvesting o f onions and other agricultural produce from below 

ground has not been quite successful due to large number of factors affecting the 

performance o f  harvesters. Soil conditions, type o f agricultural produce, stage o f  

harvesting, to name a few; pose a challenge in using state of the art technology. Maw et 

al. (1998) have developed a mechanical harvester for sweet onions. The features include 

a lifting head for lifting the tops, gathering wheels, an undercutter, lifting belts, depth 

gage wheels, a shaker to remove soils from the bulb, a topper to cut tops from the bulb, 

conveyor to transport onions from lifting head to a container and a conveyor to dispose 

the tops. An automatic lifting head control adjusts for ground undulations. Several 

factors affect the performance o f a machine. Examples o f  conditions that help improve 

machine performance include: sandy loam soil type, proper grasping of the onion top, 

ground speed o f  2.4 km/h, a speed lifting belt o f equal to 125 percent of ground speed, 

onion neck length o f  40 to 60 mm, and an onion bulb root length of 10 to 40 mm.

LePori and Hobgood (1970) have reported three major types of harvesters 

available commercially. All these machines use a rod digger chain for lifting bulbs but 

differ in toppping methods. One method o f  topping uses an air blast directed from below 

the rod chain to lift tops for cutting. Another method o f  topping uses counter rotating 

cylinders that pull tops between the rollers and pinch the top. A modification to this

3
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method uses counter rotating cylinders to position bulbs, while the cylinders direct bulbs 

to a  cutter. Coble et al. (1976) have developed an onion harvester which include the 

following systems: mowing the green tops from the onions, undercutting to break the 

roots from the soil and soften the soil crust, removing the onions from the row, cutting 

the remaining tops and the roots, and transporting the onions to packaging shed. 

However, many o f the onion harvesting machines already developed have not been 

successful in the southern states, particularly in the state o f Texas. Some o f the reasons 

behind this lack o f success are the type o f onion being harvested, the high humidity in the 

region, and mainly the large formation o f clods due to the type o f soil characteristics in 

south Texas. In dealing with significant amount o f clods, a mechanical roller system has 

been designed; yet, the clod percentage is high, and the roller separator decreases its 

efficiency considerably (Coble et al. 1976). Feller et al. (1984) have developed a unit 

that separates onions from soil clods based on the coefficient o f restitution property of 

onion and clod. Since onion has a greater coefficient o f restitution, it rebounds to a 

greater distance than clods when dropped onto a bouncing surface. Efficiency of 

separation o f  onions and clods was found to be 93 percent. The effectiveness of 

separation is calculated based on the recovery o f the desired produce, and the rejection of 

undesired element (Brown et al. 1951).

Several prototypes for automated onion harvesting have been tested and some 

others are currently in use. However, damaging o f onions due to the blades used to cut 

the roots o f the onion is still an important issue. Preventing clods from falling on the 

blades will certainly improve the life o f the blades and will increase the speed and quality 

o f the harvesting process (Cuellar et al. 2000).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5

In this thesis, a  machine vision system has been developed to help improve the 

effectiveness o f  separation between onion and clod. Several studies using machine vision 

systems have been conducted in many different areas. Digital image processing has a 

wide variety o f  applications, such as remote sensing via satellites, image transmission and 

storage for business, medical image processing, radar, sonar, acoustic, robotics, and 

automated inspection o f  industrial parts (Jain 1988, Slater et al. 1996, Yamamoto et al. 

1996). Slater et al. (1996) have used a machine vision system to automate the 

classification and counting o f neurons in brain tissue samples. Such a system will 

improve the time to count and classify neurons, allowing quick and accurate diagnosis. 

The categorizing process uses pixel classification using color variability to differentiate 

and identify certain type o f neurons. A database management system was used to count 

the cells in the region provided by the vision system. This research has proven that 

automated vision system is able to replace manual counting, which it was known to be 

low, prone to errors, and extremely tedious.

Vision system has also been used to monitor traffic in highways (Zhu et al. 1996). 

A television camera is used to study and monitor traffic in highways. Two types of 

images are used in this system: a panoramic view image (PVI) and an epipolar plane 

image (EPI). The developed system was able to count the number o f vehicles, estimate 

their speed, and classify vehicles by length, width, and height. Moreover, the vision 

system was able to work under diverse light conditions proving a sense o f  robustness and 

reliability. The cost o f the system is inexpensive since it was effectively tested on a PC 

486 using an image frame grabber.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

Image processing techniques have also been used for diagnostics o f lung cancer 

(Yamamoto et al. 1996). Two types o f methods have been used in the study: the 

maximum intensity projection method (MIP) characterized by its pseudo three- 

dimensional display, and the Quoit filter method which isolates shadows using a 2-D and 

3-D Quoit filters. This new image processing techniques were able to detect cancer by 

reducing the number o f cross sections in the lung.

Motivated by the wide variety o f real world applications that have gained from 

machine vision techniques, the work presented in this thesis shows that such techniques 

can also benefit agricultural applications. Bolle et al. (1996) have developed an automatic 

produce ID system named Veggie Vision that facilitates the checkout process o f fruits 

and vegetables in food stores. The Veggie Vision system extracts unique features from a 

produce, such as texture and color, and used them to train the system to recognize each 

produce. Some o f the issues reviewed by Bolle, such as recognition performance, 

system training, feature recognition, and texture analysis, provided important information 

for this study.

The representation o f  a produce item should be invariant to any type o f rotation 

and translation, regardless o f  the feature being used for classification purposes. During 

classification and training, color has a crucial effect defined by hue, saturation, intensity, 

and texture as primary features for proper identification. The results obtained in this 

study were evaluated using color analysis combined with texture. When only color was 

used, 79 percent o f  the produce was correctly selected, and 93 percent of the produce was 

identified correctly among the four top choices. In case where color and texture were
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used together, 84 percent o f the time the produce was correctly selected, and 96 percent 

of the time the correct produce was found among the four top choices.

Techniques used by Haralick et al. (1973) for image classification using textural 

features is applied to this research. Haralick used texture to identify objects or regions of 

interest in an image. Computable textural features based on gray tone spatial 

dependencies were used on three different kinds o f image data — photomicrograph of 

sandstone, and aerial photograph o f land use categories. The textural features are based 

on statistics, summarizing the relative frequency distribution o f gray levels in an image. 

Eighteen different textural features were computed and used for classification. Some of 

these features were sum of squares, entropy, difference variance, sum average, contrast, 

etc.

Tao et al. (1995) have used Fourier-based separation technique for shape grading 

of agricultural produce using machine vision for automated inspection. The relationship 

between object shape and its boundary spectrum values in Fourier domain was explored 

for shape extraction. A  shape separator based on harmonics of Fourier transform was 

defined and tested for potato.

Jain (1988) has described the most important requirement in the process o f image 

analysis during image sampling and quantization. According to Jain, image 

representation is possible via two-dimensional orthogonal functions known as basis 

images. These basis images are identified by unitary matrices, known as image 

transforms. The specific characteristics o f each image are related to the relationship 

among its pixels, such as their spatial frequency, band-width, and power spectrum. The 

analysis o f the relation among the pixels is evaluated by filter design, feature extraction,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8

segmentation, clustering, and many other techniques. For instance, segmentation 

separates different objects by their boundary while feature extraction evaluates the shape, 

texture, or moments o f certain object.

A significant issue to be considered during texture analysis is the use of proper 

quantization techniques. Most quantization methods are based on traditional clustering or 

thresholding operation (Lynn et al. 1996). The use of proper quantization techniques will 

increase the speed o f performance without losing the essential characteristics of a 

produce. A quantizer consists o f a mapping procedure in which a continuous variable u  is

projected into a discrete variable u ' taking values from a set finite numbers { r i . ., rn} 

(Jain 1988). There are many forms of quantization techniques, such as the Optimum 

Mean Square or Lloyd-Max, the Mean Square Gaussian, the Mean Square Laplacian, the 

Optimal Uniform Gaussian, the Optimal Uniform Laplacian, and several others. In this 

thesis, the uniform quantization technique is used. A more detail explanation o f this 

technique is presented in Chapter 3.

In this study, the difference in textural features between onion and clod is used as 

the basis for separation during harvesting. A neural network is trained to leam the 

specific textural features o f onion and clod. The structure of a neural network consists of 

simple processing units that are interconnected. The processing units called neurons are 

capable of storing information that are essential during neural network training. Each 

processing unit, characterized by a particular weight, carries an output signal that 

connects to one or many units. The output signal is defined by the activation function 

which control the amplitude range of the output signal to some finite value (Haykin 1999, 

Hecht-Nielsen 1989). During the training process o f a neural network, the weight values
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are constantly updated by analyzing the error signals calculated after each output signal. 

The learning rate and the number o f iterations that a network is executed, control the 

neural network training process (Haykin 1999).

Roberts et al. (1991) have investigated and demonstrated the quantifying ability 

o f a neural network to classify character image data. Because o f its fully connected and 

interrelated structure, a multi-layer neural network is able to cope with inconsistencies 

and uncertainty that commonly appear on live image data. For pattern recognition, a 

multi-level backpropagation network (MLBPN) provides consistent and reliable results 

(Chen et al. 1994). The MLBPN architecture or structure is based on the significance of 

each feature extracted from the image. Chen et al. (1994) performed a feature extraction 

experiment. Using separate training and testing sets, five different types o f  ships were 

evaluated. It was proven that a MLBPN model recognized and classified different objects 

more accurately and efficiently. In addition, selecting the appropriate features will ensure 

optimal results.

A neural-network classifier has been successfully used for detecting vascular 

structures in angiograms (Nekovei et al. 1995). The study has showed that neural 

network could be used effectively to classify objects based on the image gray-scale data. 

The most crucial part of this classification is the preprocessing stage o f image, since it is 

during this stage that the amount o f data to be analyzed is systematically and efficiently 

reduced (Nekovei et al. 1995).

For neural network analysis, several factors must be considered: the network 

topology, the number of iterations during training, the learning rate, the training sample 

set, and the network initial weights (Haykin 1999, Hecht-Nielsen 1989, Nekovei et al.
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1995). Nekovei et al. (1995) have reported the significance o f  the number o f samples and 

the network topology that affect die classification performance o f a neural network. Some 

o f the concepts presented in this thesis were already used during the development of a 

neural network to detect blood vessels in angiograms. The neural network structure used 

by Nekovei consisted o f a multilayer feed-forward network trained by the back- 

propagation algorithm. Pixel values taken from a center o f an image were used as input 

to train the netw ork.. In general, the selection o f an appropriate input data set is essential 

for the success and implementation o f a neural network classifier. The results have 

proved that neural network is an effective method for classification, regardless o f the 

field in which it is applied.
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CHAPTER 3

TEXTURE ANALYSIS

Because o f the importance o f selecting reliable data as input information to train a 

neural network, the textural feature measures computed from digitized images of onion 

and clod are used as the input data to the neural network separator. A general definition 

o f texture is given as the arrangement or characteristics o f the constituent elements of a 

surface (Landau 1990). A more technical definition useful for image processing defines 

texture as “an attribute representing the spatial arrangement of the gray levels of the 

pixels in a region” (IEEE Standard 1990). Jain (1988) defines texture as the spatial 

repetition o f basic patterns. Each pattern is formed by an ensemble o f pixels. Figure 3.1 

shows an image of an onion and a clod. In the image o f an onion, there are quasi-regular 

gray level transitions resulting in a distinct pattern texture that exhibits a visible quasi

regularity (Figure 3.1a). There is also a variation in gray level in a clod image. However, 

such variation exhibits a random texture, that is no regular pattern texture (Figure 3.1b). 

This was the motivation for using texture as the basis for separation o f onion from clod.

While random textures can be characterized by statistical properties such as 

standard deviation and auto-correlation of gray level in an image, pattern textures require 

additional measurements to quantitatively characterize the nature and directionality of the

11
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pattern. These measurements, called texture features (Haralick et al. 1973), are computed 

from the image o f an object (onion or clod).

(a) Onion Texture (b) Clod Texture

Fig. 3.1 Visual perception o f the difference in surface texture between (a) an onion and (b) a clod

3.1 Image Quantization

The next step after image digitization is image quantization (Jain 1988). The main 

role o f  a quantizer is to map a continuous variable into a discrete one, and the methods to 

accomplish such an unique task may vary based on the type o f  quantization algorithm 

used.

The Optimum Mean Square, also known as Lloyd-Max quantizer, minimizes the 

mean square error for a given number of quantization (Jain 1988). The idea behind this 

quantizer is to distribute the mapping as uniformly as possible. In this study, the uniform 

quantization has been adopted. During uniform quantization a range o f  pixel values is set 

to a predetermined value. For example, the pixel values from 0 to 15 are set to 15, values 

from 16 to 30 are set to 30, and so on. Fig. 3.2 shows images o f an onion before and after 

uniform quantization using different quantization levels.
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(a) Original onion texture (b) Onion texture using 
quantization level set to 8

(b) Onion texture using (d) Onion texture using
quantization level set to 16 quantization level set to 32

Fig. 3.2 Images of onion texture before and after using of different quantization levels

Since each image contained 256 pixel values (0 to 255), it was possible to select 

from four levels o f quantization as shown in Table 3.1. The idea behind the quantization 

process is to find the smallest number of quantization levels that will maintain the 

characteristics o f the image, while increasing the speed of image processing.

Table 3.1 Image quantization levels considered in this study

Resolution
Values

Quantization
Levels

0 to 7 8
Oto 15 16
Oto 31 32
Oto 63 64
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For gray scale quantization o f monochrome images, an event called contouring is likely 

to occur. When the number o f quantization levels is insufficient, regions o f constant gray 

levels result (Jain 1988).

3.2 The Co-occurrence Matrix

Based on the assumption that a pattern texture information of an image /  

contained in a  spatial relationship between the gray levels of the image, the spatial 

relationship can be specified by a matrix P, called the co-occurrence matrix (Davis et al. 

1981). The co-occurrence matrix is a square matrix of dimension NxN, where N  is the 

number o f different gray levels in the image /. An element Py o f a co-occurrence matrix P 

o f an image I  represents the relative frequency with which two pixels, one with gray level 

i and the other with gray level j ,  separated by a distance d  along a direction 6, occurs in 

an image. That is, an element Py is computed as the number o f times the gray levels i and 

j  occur in two pixels separated by the distance d  (d= 1 pixel, or 2 pixels, etc.) along the 

direction 6 (6 = 0°, or 45°, or 90°, or 135° etc.) in an image I.

For a same image, different co-occurrence matrices can be formed for each 

combination o f distance d  and directional angle Q. Once the co-occurrence matrices are 

formed, texture features can be computed. To illustrate the procedure of computing 

textural feature measures, a simple example o f an image of 4 by 4 is considered (Fig. 

3.3). The matrix in which the pixel values are stored contains 4 rows and 4 columns with 

only two possible values, 0 for black and 1 for white.
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0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

(a) Simple Texture (b) Simple Texture Matrix

Fig. 3.3 Simple surface texture and the matrix containing its corresponding pixel values

While the image represents some type o f texture with certain pattern, the matrix 

stores the original pixel values maintaining the same pattern. Thus, by analyzing the 

original matrix, unique textural features of that image can be distinguished. To 

accomplish the task, several gray-level co-ocurrence matrices are generated. These 

matrices represent the number of the same pixel pair in certain direction. The size o f the 

co-ocurrence matrix depends on the number of pixel values. In this simple example, the 

size of the co-ocurrence matrix is 2 by 2, since there are only two possible pixel values, 0 

and 1. Position (1,1) stores the number of pixel-pair with value (0,0), position (1,2) stores 

the number of pixel-pair with value (0,1), and so on.

Two different algorithms have been developed to count the number of pixel-pairs. 

The first algorithm is referred to the symmetric algorithm. It counts the number o f pixel- 

pairs at a certain angle in both directions (up and down). The second algorithm, referred 

to as the non-symmetric algorithm, counts only the pixel-pairs in one direction (down). 

For example, in the symmetric algorithm at 45° angle (1,1 direction), there are five (0,0) 

and four (1,1) pixel-pairs, while there are no (0,1) and (1,0) pixel-pair (Table 3.2). In the 

non-symmetric algorithm at 45° angle (1,1), there are twice as many pixel-pairs.
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Table 3.2. Co-occurrence matrices containing the number of pixel pairs at a distance of 1 and
direction of 45° and 90°

Displacement (0,1) at 90° angle

Using Non- 
Symmetric algorithm

Using Symmetric 
algorithm

0 6 0 12

6 0 12 0

Displacement (1,1) at 45° angle

Using Non- 
Symmetric algorithm

Using Symmetric 
algorithm

5 0 10 0

0 4 0 8

3.3 Selecting Texture Features

Several co-occurrence matrix-based texture features have been proposed and 

tested in the literature (Davis et al. 1981, Haralick 1979, Tamura et al. 1978, Weszka et 

al. 1976). The texture feature measures considered in this study are reported in Table 3.3.

Table 3.3 Texture features considered in this study

Feature Measure Formula

Homogeneity
JV-l .V-l p

y y  j

Energy
N - 1 f f - 1

Contrast

,= 0  y = 0

t f - l  f f - 1

Variance

,=o o 

y - i  f f - i

/=0 j=0
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For the variance feature measure, the mean or average gray level value n  is given by

where N is the total number o f gray levels in an image.

Some texture features can be perceived by a human eye, such as contrast and 

homogeneity. However, many other texture features are insensitive to a human eye. It has 

been reported that a human eye cannot perceive texture differences higher than second 

order (Tamura et al. 1978). For the onion-clod separation, the selection of the texture 

features is based on some experimental investigation, the results of which are discussed 

in Chapter 5. The results show the usefidness of these features for effectively 

discriminating  between an image o f an onion and that of a clod.

3.4 Capturing Images

To collect enough images, the same onion and clod were used several times. 

However, the position o f an onion and a clod were rotated after taking images for certain 

orientations. The procedure to capture each image consists o f  placing an onion or a clod 

on a 10 degree scale pie chart showing all the angles from 0° to 360°. After taking a 

picture, the onion or the clod was rotated to a different angle, and another image was 

taken. Each onion and clod was rotated six times, obtaining twelve different images; six 

images for onion and six images for clod. For this study, a total o f two hundred images 

were used; one hundred images o f onions and one hundred images o f clods. Fig. 3.4 

illustrates the method used to obtain the images o f onions and clods.

H  - 1  N  - 1

(3.1)
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Fig. 3.4 Illustration of the method used to obtain all the different images of onions and clods

3.5 Process of Computing Texture Features

Since the texture of an object is independent of object orientation, texture features 

computed from co-occurrence matrices must produce the same separation results 

independently o f the orientation of an object. To verify this, four different co-occurrence 

matrices corresponding to four different values o f orientation angle 6 (0°, 45°, 90°, and 

135°) were established for each image and for a specific value of distance d. Each feature 

measure is computed from the co-occurrence matrix. Figure 3.5 shows six images for 

different orientations o f an onion. For each image, four co-occurrence matrices were 

established for the following combinations o f distance and orientation angle (1,0°), 

(1,45°), (1,90°), and (1,135°). The contrast feature is computed for each image from the 

four co-occurrence matrices. The results are summarized in Table 3.4.
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(a) Image 1at 0° (b) Image 2 at 20° (c) Image 3 at 30°

(d) Image 4 at 130° (e) Image 5 at 240° (f) Image 6 at 300°

Fig. 3.5 Images showing six different orientation of an onion

It can be seen that for each o f the distance and orientation angle combinations, 

different values o f contrast features are obtained for the images o f onion. However, the 

average values o f  the homogeneity feature for the six images are very close. This means 

that the average value is independent o f orientation o f onion. Consequently, for each 

textural feature, the average value is used as one o f the inputs to the neural network 

separator, and not the four individual values o f the textural feature. This is illustrated in 

Figure 3.6.
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Table 3.4 Values obtained for the homogeneity feature for six different orientations of the image 
of an onion (the distance d  is set equal to 1 for all cases)

Angle Homogeneity Feature 
Image 1 at 0°

Homogeneity Feature 
Image 2 at 20°

Homogeneity Feature 
Image 3 at 30°

0 = 0” 0.8460 0.8447 0.8504
0 = 45" 0.8384 0.8170 0.8193
0 = 90” 0.8921 0.8872 0.8781
0=135” 0.8389 0.8544 0.8608
Mean 0.8538 0.8508 0.8521

Angle Homogeneity Feature 
Image 4 at 130°

Homogeneity Feature 
Image 5 at 240°

Homogeneity Feature 
Image 6 at 300°

0 = 0” 0.8528 0.8602 0.8661
0 = 45” 0.8525 0.8365 0.8616
0 = 90" 0.8801 0.8723 0.8661
0=135" 0.8364 0.8480 0.8344
Mean 0.8555 0.8543 0.8592

(d, 135°)Co-occurrence
Matrices

(d, 90°)

(d, 45°)
Feature k

Average 
Feature k

1/4

(d, 0°)

Neural
Network

Fig. 3.6 Process of computing average values of textural features.
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CHAPTER 4

NEURAL NETWORKS

This chapter describes the concepts o f neural networks, various structures, and the 

back-propagation algorithm used in this thesis. This chapter lays the foundation and 

motivation for using neural networks to identify onion from clod for separation.

4.1 Neural Network Justification

Neural networks have been applied to solve problems dealing with identification 

and classification. The reliability and versatility o f neural network was used in many 

disciplines, such as digital communication, nuclear engineering, business, and weather 

forecasting (Chen et al. 1994, Haykin 1999, Hecht-Nielsen 1989, Nekovei et al. 1995). In 

medicine, neural network was used to detect blood vessel in angiograms, and in 

engineering, it has been applied to recognize different shapes o f ships (Chen et al. 1994, 

Nekovei et al. 1995). Because o f the problem presented in this study focuses on feature 

extraction, identification and separation, the use of a robust and reliable neural network 

system was thought about.

Some o f the main reasons of using neural networks in such diverse fields are 

based on the characteristics and benefits that emerge from a well designed and robust 

parallel distributed processing structure. The most relevant aspects are summarized in 

Table 4.1 (Haykin 1999, Hecht-Nielsen 1989).

21
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Table 4.1 Benefits and characteristic of a neural network structure.

CHARACTERISTICS DESCRIPTION
Nonlinearity This attribute makes neural network extremely versatile and allows its use in 

different fields such as medicine, business, and engineering among others.
I/O Mapping It is used for the network to be trained and learned to provide a proper 

response under certain input information.
Adaptivity The network are designed to adapt its weights to new changes, and 

constantly improve its capability.
Evidential Response A robust neural network helps to select and rely on its decision

Contextual Its structure exposes information globally since its response is based on a
Information contextual data.

The concept of neuro-computing comes from the roots of the human brain 

thinking process (Haykin 1999, Hecht-Nielsen 1989). Unlike conventional digital 

computers, the human brain operates in a very unique way, where complex information is 

constantly analyzed generating different types of responses. Basically, the structural 

elements of the brain are the neurons (nerve cells) with infinite interconnections through 

which all sensory information flows. In a very general form, a neural network machine is 

designed to somehow model the human brain, and it is implemented using electronic 

components or software packages on conventional digital computers (Haykin 1999, 

Hecht-Nielsen 1989).

Analogously, as the human brain receives, analyzes, stores, and learns 

information; a neural network system is exposed, trained, and tested with certain type o f 

information to process and recognize similar information. In other words, a neural 

network has the capability of storing data and making it available for future use. It 

simulates the human brain by acquiring knowledge through a learning process, and uses 

inter-neuron connections or connecting links to strengthen its weight.

Perhaps a more functional view of neural network is a signal-flow graph, where 

directed links are interconnected at certain points named nodes. A direct link starts at
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node j  and finishes at node k. A typical node j  has its respective node signal Xj, and an 

associated function in which the input signal is transmitted to an output signal Yk. There 

are three elemental rules that control a  signal flow (Haykin 1999):

RULE 1: A signal flows along a link in one direction. There are two types of 
links:

a) synaptic (dictated by a linear input-output relation)
Wkj

Xj o ___________ ^  o  Yj = Wkj Xj

where node signal Xj is multiplied by a synaptic weight Wkj to produce the output node 
Yk.

b) activation (dictated by a non-linear input-output relation)

fC)Xi o ____________ ^ __________ q  Yk = f(xj)

where node signal Xj is controlled by nonlinear activation function f( ')  to produce the 
output node Yk.

RULE 2: A node signal equals the algebraic sum o f all signals entering the 
appropriate node via the incoming links ("fans in").

Yk = Yi + Yj
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RULE 3: The signal at a node is transmitted to each outgoing link originating
from that node, with the transmission being completely independent of 
the functions o f the outgoing links.

Xj

The description and rules of a directed graph reflect both the signal flow from 

neuron to neuron and the signal flow inside each neuron. This is just a simple model that 

helps to understand a neural network system.

4.2 Architecture of a Neural Networks

There are three types of neural network structures discussed in the thesis.

4.2.1 Single-layer feedforward network

The single layer feedforward network is the simplest of all. It consists o f an input 

layer o f source nodes projecting onto an output layer o f neurons in one direction (Fig. 

4.1) (Haykin 1999, Hecht-Nielsen 1989).

Input layers Output layers

Fig. 4.1 Single-layer feedforward networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

4.2.2 Multilayer feedforward networks

The second type o f feedfoward network is the multilayer networks that 

differentiates from feedforward single-layer network with hidden layers between input and 

output layers. These hidden layers allow to model higher-order statistics by adding another 

dimension to the network (Fig. 4.2).

Layers o f  
output neurons

Layer o f  hidden 
neurons

Input layer o f 
source nodes

Fig. 4.2 Multi-layer feedforward networks

4.2.3 Recurrent networks

A third type of neural networks structure is known as recurrent network in which 

the output signal rather than feedforward is looped back to input neurons. This form of 

architecture has a deep impact on the learning capability of the network as well as on its 

performance.
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Recurrent network with seif-feedback

Fig. 4.3 Recurrent networks

4.3 Backpropagation Algorithm

For problems or applications where the input presented to a network has never 

been used, backpropagation algorithm is generally used. This selection is based on the 

fact that for backpropagation algorithm, new input tends to give similar output after the 

network has been trained with similar input values. These results are based on the type of 

function signals selected to train the network. In a multilayer neural network there are 

mainly two types o f signals which are essential for the development o f a network, the 

function signal and the error signal.

A backpropagation algorithm using two hidden layers is modeled in Fig. 4.4. The 

structure o f the model is basically the same as the one used in this study,
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W
W

1 w
w

w
w

w
w

22

w

t t t
Input layer Hidden layer Output layer

Fig. 4.4 A backpropagation algorithm model 

where an input such as k  indicates the layer, n the number o f neurons, b  the bias, and

a indicates the w k input weight for each neuron, i indicates the input number. Thus,
ft n i

the value o f a neuron n  is determined by,
n

<  =  b0 WM + ° > n ,  + 4 > ‘<i+1, (4.1)

and a  is obtained by,

=  n o
(4.2)

where f ( n k)  is the transfer function that generates the outputs between 0 and 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

4.3.1 Training process

During the training phase, the weights were updated until one complete 

presentation o f the entire training, called epoch. During the training process, two crucial 

passes o f significant computations take place. The first pass is the forward pass in which 

the synaptic weights are not modified, and the function signals o f the entire network are 

evaluated neuron by neuron. During the forward pass, the signal error o f the desired 

output is computed. The second pass, known as the backward pass, begins at the output 

layer and passes the error signals layer by layer throughout the entire network.

The number o f training cycles (epochs) as well as the learning rate parameter has 

a significant effect on the success o f the neural network training process. During the 

course o f this study, different epochs and learning rate values as well as numerous 

network topologies were tested until best results were obtained.

4.3.2 Function and error signals

The function signal is an input signal that is set at the input end of a network. It 

moves forward through the network to each neuron, and turns out at the output end o f the 

network as an output signal. The signal is related to the weights applied to each neuron 

(Haykin 1999). There are many different function signals, such as tan-sigmoid transfer 

function, linear transfer function, log-sigmoid transfer function, etc. The selection of the 

function signal depends on the type of problem to be solved.

An error signal occurs at the output neuron o f a network, and it moves backward 

via layers through the network. The computation o f an error signal originates in every 

neuron o f the network, and it affects the input o f the next neuron.
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The error signal at the output o f a neuron j  at iteration n is given by

ej (n) = d j i n ) - y y in) (4.3)

where dj (n) is the desired response for neuron j, andyy (n) refers to the function signal at 

the output o f a neuron (Haykin 1999).

The instantaneous value o f error for neuron j  is defined by,

( 4 - 4 )jGC

where c includes all the neurons in the output layer o f a network.

4.4 Motivation for Using Neural Network

After computing the average of textural features for the 200 images of onion and 

clod, the values obtained were plotted in a scatter plot to determine whether the 

difference in texture given in Fig 3.1, was also observed in the scatter plot. In order to 

obtain complete information, combinations of each pair of textural feature were plotted. 

The scatter plots built for this analysis are shown in Fig. 4.5 through 4.10. The results 

from the plot indicate that there is difference between the textural features of onion and 

clod. However, it is also observed that several values overlapped. To successfully 

separate onion from clod, it is necessary to rely in a process that is capable of classifying 

new data based on previously learned information. Such a classification must be done 

accurately and flawlessly. This preliminary study lead to the application o f neural 

networks for identification o f onion from clod from vision based images. The next 

chapter describes the results o f the texture based studies o f onion and clod separation.
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Fig. 4.5 Scatter plot o f textural features contrast and variance
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Fig. 4.6 Scatter plot of textural features contrast and homogeneity
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Homogenity vs. V ariance
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Fig. 4.7 Scatter plot o f textural features homogeneity and variance
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Fig. 4.8 Scatter plot o f textural features energy and homogeneity
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Data Collection for Image Processing

Samples o f onion and clod were collected after harvesting from a field in the Rio 

Grande Valley o f Texas. One hundred (64 x 64) images o f  onions and one hundred (64 x 

64) images o f clods were taken using a vision system. All images were taken at 256 gray 

levels. To obtain large number o f images, several images o f onions and clods were taken 

with different orientations. Since the size of a co-occurrence matrix (NxN) was 

determined by the number o f gray levels o f an image, a high number o f gray levels lead 

to excessive computations when evaluating all the entries o f the matrix. Thus, an attempt 

was made to reduce the number o f gray levels in the image before the co-occurrence 

matrices were established. Different quantization levels (8, 16, 32 and 64) were tested. It 

was found that if  the gray levels o f the images were quantized into 16 levels, efficient 

texture-based separation performance was obtained, while reducing processing time. 

Figure 5.1 shows images o f  onion and clod before and after quantization.

Table 5.1 Image size and resolution values considered in this study

Image
Size

Resolution
Values

Quantization
Level

image
Resolution

Later Data 
Analysis

64 Oto 7 8 Excellent Very Slow
64 Oto 15 16 Very Good Acceptable
64 Oto 31 32 Poor Very Fast
64 Oto 63 64 Very Poor Fastest

33
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Fig. 5.1 Images of (a) onion with 256 gray levels, (b) onion with 16 gray levels, (c) clod with 256 
gray levels, and (d) clod with 16 gray levels

The texture features namely, homogeneity, contrast, energy, and variance were 

computed for 200 images for the following combinations (d = 1, 6 = 0°), (d= 1, 6 =45°), 

(d= 1, 0 = 90°), and (d= 1, 6 = 135°). These combinations were used to form the co

occurrence matrices. Average values o f each texture feature were then obtained. The 800 

values (400 texture features for onion and 400 texture features for clod) constitute the 

pool o f data for the neural network separator. Half o f the 800 values were used for 

training the neural network, and the other half was used for testing.
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5.2 Separation Algorithm

5.2.1 Neural network structure

For this type o f problem in which extracting higher-order statistics is o f primary 

importance, a fully-connected multi-layer feed-forward neural network becomes an 

appropriate candidate for the separation task. The appearance of hidden layers containing 

a predefined number o f  hidden neurons is one o f the major characteristics of this form of 

neural network. These hidden neurons intercede between the inputs and the outputs of the 

network, allowing flexibility and global perspective, despite their local connections 

(Haykin 1999). The neural network is fully connected, meaning that every neuron in each 

layer is connected to all the nodes in the previous layer.

Although in a multi-layer neural network structure, several hidden layers might be 

included between the input layer and the output layer, for this particular application, only 

one hidden layer was used. However, several network topologies were considered 

differing by the number of input nodes, the combination of textural features used as 

inputs to the network, and the number of neurons in the hidden layer. Thirty three neural 

network configurations were examined. A summary o f the network configurations is 

given in Table 5.2.

Table 5.2 Neural network topologies examined in this study

Possible combinations of textural features 
used as inputs to the network 

Contrast (Co), Energy (En), Homogeneity (Ho), Variance (Va)
Network
Topology

Co-En-Ho-Va 4-5-1
Co-En-Ho-Va 4-3-1
Co-En-Ho-Va 4-2-1
Co-En-Ho, Co-En-Va, Co-Ho-Va, En-Ho-Va 3-5-1
Co-En-Ho, Co-En-Va, Co-Ho-Va, En-Ho-Va 3-3-1
Co-En-Ho, Co-En-Va, Co-Ho-Va, En-Ho-Va 3-2-1
Co-En, Co-Ho, Co-Va, En-Ho, En-Va, Ho-Va 2-5-1
Co-En, Co-Ho, Co-Va, En-Ho, En-Va, Ho-Va 2-3-1
Co-En, Co-Ho, Co-Va, En-Ho, En-Va, Ho-Va 2-2-1
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5.2.2 Neural network training

The single most significant aspect in the implementation o f neural network is 

mapping o f  the training set of data to the output layer. Its significance directly influences 

the learning behavior and performance of the network. The activation function signal is 

induced by the log-sigmoid function that generates output between 0 and 1. The error 

signal is given by,

e * ( 0  =  d k{t )  -  y k( t )  (5. 1)

where dk (t) is the desired response for neuron k, and ytft) is the output signal of neuron k 

at iteration t (Haykin 1999).

Initial weights have a crucial role on the performance of the neural network 

training. For this study, the initial weight values were randomly assigned, and they were 

adjusted during training via the back-propagation algorithm (Maw et al. 1998).

A set o f 400 textural feature values (200 images corresponding to onion and 200 

images corresponding to clod) was used for neural network training. The training consists 

o f (i) presenting the network with textural features measure to its input nodes, (ii) 

compute the corresponding network output, (iii) compute the error between the desired 

output and the actual output of the network, and (iv) back-propagate the error and adjust 

the network weights (Figure 5.2). After the neural network is trained and final values for 

the weights are obtained, its separation performance is tested first by using the training 

data set, and then, by using the new 400 test data that contains the 200 textural feature 

values o f onion and 200 textural feature values of clod. This process was repeated for all
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the 33 different neural network configurations and the results are presented in the next 

section. For each configuration, the training data set is selected from the 400 textural 

features (depending on the network topology and the corresponding combination of 

textural features used as inputs to the network).

Average Textural Features

Input
Weights

k- Hidden
Weights

Output
Layer \  >It\

\

Layer \ ^VI\\
Layer

Correct
Classification

Network Output 
(Onion or clod) 
 >

Figure 5.2 Architecture of the neural network separator

5.3 Separation results

The objective of the separation process is to recover onions and reject clods. We 

define the recovery variable, Rc , and the rejection variable, R j ,  for onions and clods 

respectively as ratios given by,

R =  ° p =1- ° r
Op +Or Op + Or

(5.2)

and

Rj = -  Cr—
J C .+ C .

=  1 —
C r  +  C p

(5.3)

where,
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Op : onions in the product exits 

Or : onions rejected with clods 

Cr : clods rejected 

Cp : clods remaining with onions.

The separation effectiveness (SE) is calculated from the following product (Hecht- 

Nielsen 1989):

SE =  100 x R c x R j  ( 5  4 )

The performance of the neural network as a separator was evaluated by 

computing its separation effectiveness, SE. The latter was evaluated for all the 33 neural 

network configurations. First, the performance of each neural network was evaluated by 

running the input data used for training. The results are reported in Figures 5.3-5.5.
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Fig. 5.3 Separation effectiveness of neural networks with 2 hidden neurons when they are 
presented with training data
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presented with training data
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Fig. 5.5 Separation effectiveness o f neural networks with 5 hidden neurons when they are 
presented with training data
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The performance o f each neural network was evaluated by running  the new test data and 

the results are presented in Figures 5.6-5.8.
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Fig. 5.6 Separation effectiveness of neural networks with 2 hidden neurons when they are 
presented with new testing data
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presented with new testing data
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In several cases, separation effectiveness was equal to 100% when some neural 

networks were presented with the training data. The neural networks that achieved the 

maximum separation effectiveness were the following (Figures 5.3-5.8): (3-2-1 with 

inputs En-Co-Ho), (3-2-1 with inputs Co-Ho-Va), (4-2-1 with inputs En-Co-Ho-Va), (2- 

3-1 with inputs Co-Va), (2-3-1 with inputs En-Ho), (3-3-1 with inputs Co-Ho-Va), (3-3-1 

with inputs En-Co-Va), (3-3-1 with inputs En-Ho-Va), (3-5-1 with inputs En-Co-Va), (3- 

5-1 with inputs En-Ho-Va), and (4-5-1 with inputs En-Co-Ho-Va).

When the neural networks were presented with new test data, the highest 

separation effectiveness was obtained for the following structure, 3-2-1 with inputs En- 

Co-Ho (Figure 5.6). The combination o f textural features consisting o f energy, contrast 

and homogeneity (En-Co-Ho) used as inputs, provided consistent high separation 

effectiveness for different network topologies; 3-2-1, 3-3-1, and 3-5-1, with separation 

effectiveness values o f 96%, 90%, and 92% respectively (Figures 5.3-5.8).
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The combination of textural features consisting o f  energy, contrast, homogeneity, 

and variance (En-Co-Ho-Va) provided the maximum number of inputs to the neural 

networks. However, the separation effectiveness was only 92% due to the fact that the 

variance feature generated a noise, rather than contributing additional information to the 

neural network.

If  the separation effectiveness (SE) is evaluated based on the number o f input 

textural features, we see from Figures 5.3-5.8 that in most cases using two textural 

features lead to low separation effectiveness, especially for the following combinations: 

En-Va, En-Ho, and Ho-Va. The simulation results also show that the performance o f 

effectiveness for the combination En-Co-Va does not exceed 60%.

If the separation effectiveness (SE) is evaluated based on the number o f hidden 

neurons o f the neural network, it can be seen that the highest values o f separation 

effectiveness are obtained with two hidden neurons, hi addition, the number o f hidden 

neurons has a significant effect on the network performance.

From all the cases examined, the network topology 3-2-1 with inputs En-Co-Ho 

gives the highest separation effectiveness with values reaching 100%, when the network 

was tested with training data, and 96% when network was tested with new test data.
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CHAPTER 6

MECHANICAL INTEGRATION OF VISION SYSTEM

6 .1 Onion-Clod Separation Concepts

The proposed neural network-based vision system is planned to be integrated with 

a mechanical harvester system that has the capability to separate clods from agricultural 

produce during harvesting. Some o f the different design concepts used to separate onions 

and clods are described.

6.1.1 Rotating Brushes

As the name indicates, the concept o f  rotating brush is based on using brushes to 

“scrub” the onions to separate them from the clods. The brushes are positioned at a 

predetermined angle to promote forward movement along the axis of the cylinder. A 

simple schematic sketch of the rotating brushes concept is shown in Fig. 6.1 (Cuellar

D I R T  C L O D S

Fig. 6.1 Rotating Brushes

43
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6.1.2 Restitution Method

The restitution method uses the concept o f coefficient o f restitution to separate 

onions from clods. Since onion has a greater coefficient of restitution than clod, it 

rebounds farther than clods when they are dropped onto a bouncing surface (Coble et al. 

1976, Davis et al. 1981, Feller et al. 1984). A schematic sketch o f the restitution method 

is shown in Fig. 6.2.

D E F L E C T I O N  H E R EO N I O N S  S t D I R T

Fig. 6.2 Restitution Method

6.1.3 Rotating Cylinders

This concept consists o f  two rotating cylinders. The cylinders are inclined and 

have slots cut for the clods to fall through. Onions and clods are dropped at the top end of 

the cylinder. As the onions and clods rotate and bounce, clods break and fall through the 

slots. Onions roll down to the bottom o f the cylinder (Cuellar 2000).

ONIONS &  
DUCT

ONIONS

DEP-T CLODS

Fig. 6.3 Rotating Cylinder
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6.2 Harvesting Process

Onions and clods are transported and dropped by a link type chain conveyor to an 

inclined feeder which has part o f the surface solid and the rest has holes for clods to fall 

through. The impact o f  drop of onions and clods from the chain conveyor will break 

some o f  the clods, letting smaller clods to fall through the holes. The onions and clods 

are dropped from the feeder to a rotating drum, which has slots cut at predetermined 

distance. The inner surface o f the rotating drum is glued with poron to prevent damage 

o f onions. The length and diameter of the drum are designed such that most of the clods 

will break and fall through the slots (Coble et al. 1976, Cuellar et al. 2000) Figure 6.4 

shows a 3-D view o f the rotating drum.

Fig. 6.4 Rotating drum that will be integrated with the cup type conveyor where the 

neural network-based vision system will be placed.
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6.3 Cup Type Conveyor System

Any remaining clods are separated by the neural network-based vision system in a 

cup type conveyor system as they are transported for sorting and bagging. This conveyor 

will be linked to the rotating drum, shown in Fig.6.4. It consists o f several rows o f cups 

that will be filled with either onions or pieces o f  clods that were not separated by the 

rotating drum.

The neural network-based vision system will be placed at the end o f the cup type 

conveyor, and it will be used to eliminate any piece o f  clod still remaining. This 

classification system will determine if  the cup is holding an onion or a clod based on its 

texture analysis, and will trigger a signal that will open the cup to drop the clod. A 3-D 

model o f the proposed cup type conveyor system is shown in Fig. 6.5.

Holding cup

Cup type 
conveyer Vision System

Inclined tray

Fig 6.5 Cup type conveyor with a vision system
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Although the exact specifications o f the cup type conveyor go beyond the scope 

o f this study, it is important to mention some o f  parameters that will have critical impact 

in the development phase o f  the conveyor. Some o f  these significant parameters are the 

width and length o f the conveyor, the diameter o f  the cups, the number o f cups in the 

conveyor, the distance between cups, the distance between the vision system and the 

produce, and the number o f cameras to be used in the system. Figure 6.6 shows different 

views o f the significant components to be considered during the design phase o f the cup 

type conveyor.

Side View

0= J

Front View

[ET U U U U U

luuuinju

Top View

1
1

s
©©M\

Fig. 6.6 Graphic representation of the cup type conveyor
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CHAPTER 7

CONCLUSIONS

It has been successfully demonstrated that a neural network-based vision system 

could be used to separate onions from clods based on textural features. If a prototype of 

the neural network-based vision system is to be built, it will be added to the end o f a 

mechanical harvester, as shown in the flow chart in Fig. 7.1.

Digging
Process

Cup type 
Conveyor

Chain
Conveyor Mechanical

Separator

Neural Network- 
based Vision System 

Separator

Fig. 7.1 Flow chart of the onion harvesting process

Thirty three network topology configurations were evaluated using combinations 

o f the four textural features: homogeneity, contrast, energy, and variance. The neural 

network with 3-2-1 topology and inputs: energy, contrast, and homogeneity gave the best 

separation effectiveness o f 96 percent. The least effective configurations were mostly 

resulted when only two inputs were used. There is a possibility to increase the number of 

textural features, since only four o f the textural features were tested. When adding more

48
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number of inputs to the neural network, the possibility to obtain better results will depend 

on the information provided by additional inputs, since it could generate unnecessary 

noise to the neural network as shown in Chapter 5. The cup type conveyor system with a 

neural network-based vision system should be accurately designed precisely, analyzed, 

and tested to obtain optimal results.

The proposed neural network-based vision system is intended to work with a new 

integrated mechanical harvester system. However, the scope o f  this system goes beyond 

the field in which it was applied in this thesis.
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APPEN DIX A

TEXTURE AN A L Y SIS PROGRAM

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  

% %
% This function COMBINES both the QUANTIFICATION process and %
% calculate the TEXTURAL FEATURES of images of %
% onion and clod %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

square is the original picture matrix
square=imread('c:\eye\closeups\Oni_Picl.tif'); 
imshow(square)□
q_number = input('Enter Quantization number (32,64,128): ');
while (q_number ~= 32) & (q_number ~= 64) & (q_number ~= 128) 

disp ('You have entered a wrong Quantization number '); 
q_number = input('Enter Quantization number (32,64,128): ');

end
%q_number = 64;
quant_m =zeros(q_number,q_number); %(128,128) 
limit_matrix = q_number % 128 
%imshow(square)
%limit stats = 17 %128

Reduce is a new matrix that reduces the quantisized image
reduce=zeros(q_number,q_number); % 128
reduce_limit = q_number; % 128 % The reduce_limit is the reduce image 
center = ((256 - q_number)/2) - 1 
tic % BEGIN timing for reducing original image 
for row = 1:reduce_limit 

%i=i+l;
for col = 1:reduce_limit

reduce(row,col)= square(row+center,col+center);
end

end
toe % END time for reducing original image
disp (' Above are the seconds it takes to reduce original image') 
reduce_pic=(mat2gray(reduce)); % picl is the matrix after grayscale

convertion

Rotate reduce image to be a quantisized image
answer= input('Do you want to rotate the image? (Enter: 1 for YES ; 0 
for NO): ');
if answer == 1

deg = input('How many degrees do you wish to be rotated: ');
rot = imrotate(reduce,deg,'nearest','crop');
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rotate_pic = (mat2gray(rot)) ; 
for row = 1: reduce_limit 

for col = 1:reduce_limit
reduce(row,col)= rot(row,col);

end
end

elseif answer - 0
disp ('There was NO rotation on the image'); 
deg = 0;

else
disp('You have entered an incorrect answer');

end

This is the loop to quantimize the original matrix (containing 
pixel 0 to 255) into a new matrix called TRANS.
Its size still will be 256 x 256, but
the pixel values will only be 51, 102, 153,204, or 255 
Then, another statistical matrix of size 5 x 5  will be 
generated to analize pixel patterns.

tic % BEGIN timing for image QUANTIMIZATION 
pixel = 15;
gr_level = input ('Please enter the gray level desired (8,16,32,64):

' ) ;
while (gr_level ~= 8) & (gr_level ~= 16) & (gr_level ~= 32) &
(gr_level ~= 64)

disp (1 You have entered a wrong gray level !!! ') ;
gr_level = input (1 Please enter the gray level desired 

(8, 16, 32, 64): ');
end
for row = 1:limit_matrix 

%i=i+l; 
for col = 1:limit_matrix 

%j=j+l;
%if (col+dy) <= limit_matrix 

%if (row+dx) <= limit_matrix 
if reduce(row,col)<= pixel 

quant_m(row,col)= pixel; 
elseif reduce(row,col)<= pixel + gr_level 

quant_m(row,col)= pixel + gr_level; 
elseif reduce(row,col)<= pixel + 2*gr_level 

quant_m(row,col)= pixel + 2*gr_level; 
elseif reduce(row,col)<= pixel + 3*gr_level

quant_m(row,col)= pixel + 3*gr_level; %255 with 64 gr_level 
elseif reduce (row, col) <= pixel +- 4*gr_level 

quant_m(row,col)= pixel +• 4*gr_level; 
elseif reduce(row,col)<= pixel + 5*gr_level 

quant_m(row,col)= pixel + 5*gr_level; 
elseif reduce(row,col)<= pixel + 6*gr_level 

quant_m(row,col)= pixel + 6*gr_level; 
elseif reduce(row,col)<= pixel + 7*gr_level

quant_m(row,col)= pixel + 7*gr_level; %255 with 32 gr_level 
elseif reduce(row,col)<= pixel + 8*gr_level 

quant_m(row,col)= pixel + 8*gr_level;
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elseif reduce(row,col)<= pixel +- 9*gr_level 
quant_m(row,col)= pixel + 9*gr_level; 

elseif reduce(row,col)<= pixel + 10*gr_level 
quant_m(row,col)= pixel +■ 10*gr_level; 

elseif reduce (row, col) <= pixel +• ll*gr_level 
quant_m(row,col)= pixel + ll*gr_level; 

elseif reduce(row,col)<= pixel + 12*gr_level 
quant_m(row,col)= pixel + 12*gr_level; 

elseif reduce(row,col)<= pixel + 13*gr_level 
quant_m(row,col)= pixel + 13*gr_level; 

elseif reduce(row,col)<= pixel + 14*gr_level 
quant_m(row, col)= pixel + 14*gr_level; 

elseif reduce(row,col)<= pixel + 15*gr_level 
quant_m(row,col)= pixel + 15*gr_level; %255 with 16 gr_level 

elseif reduce(row,col)<= pixel + 16*gr_level 
quant_m(row,col)= pixel + 16*gr_level; 

elseif reduce(row,col)<= pixel + 17*gr_level 
quant_m(row,col)= pixel + 17*gr_level; 

elseif reduce(row,col)<= pixel + 18*gr_level 
quant_m(row,col)= pixel + 18*gr_level; 

elseif reduce(row,col)<= pixel + 19*gr_level 
quant_m(row,col)= pixel + 19*gr_level; 

elseif reduce(row, col)<= pixel + 20*gr_level 
quant_m(row,col)= pixel + 20*gr_level; 

elseif reduce(row,col)<= pixel + 21*gr_level 
quant_m(row,col)= pixel + 21*gr_level; 

elseif reduce(row,col)<= pixel + 22*gr_level 
quant_ra(row, col) = pixel + 22*gr_level; 

elseif reduce(row,col)<= pixel + 23*gr_level 
quant_m(row,col)= pixel + 23*gr_level; 

elseif reduce(row,col)<= pixel + 24*gr_level 
quant_m(row,col)= pixel + 24*gr_level; 

elseif reduce (row, col) <= pixel + 25*’gr_level 
quant_m(row,col)= pixel + 25*gr_level; 

elseif reduce(row,col)<= pixel + 26*gr_level 
quant_m(row,col)= pixel + 26*gr_level; 

elseif reduce(row,col)<= pixel + 27*gr_level 
quant_m(row, col) = pixel + 27*gr__level; 

elseif reduce(row,col)<= pixel + 28*gr_level 
quant_m(row,col)= pixel + 28*gr_level; 

elseif reduce(row,col)<= pixel + 29*gr_level 
quant_m(row,col)= pixel + 29*gr_level; 

elseif reduce(row,col)<= pixel + 30*gr_level 
quant_m(row,col)= pixel + 30*gr_level; %255 with 8 gr_level 

end 
end 

end
toe % END timing for image QUANTIMIZATIONdisp ('Above are 

seconds it takes for image QUANTIMIZATION')The building-in function 
MAT2GRAY converts atrices to a grayscale intensity 
image.quant_picl=(mat2gray(quant_m)); % picl is the matrix after
grayscalevertionD
%imshow(square),figure,imshow(reduce_pic) , figure,imshow(quant_picl)□ 
if answer == 1
imshow(reduce_pic),figure,imshow(rotate_pic) , figure,imshow(quant_picl), 
figure,imshow(square)
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else
imshow (reduce_pic) , figure, imshow (quant_picl) , figure, imshow (square)

end

The STATS MATRIX will hold the values of the NEW STATISTICAL MATRIX

limit_matrix - reduce_limit;
% limit size of the statistical matrix 
if gr_level =  64 

limit_stats = 4 
elseif gr_level =  32 

limit_stats = 8 
elseif gr_level =  16 

limit_stats = 16 
else

limit_stats = 32
end
limit_count = input('How many DISPLACEMENT you wish to run ? : ');
for count = 1:limit_count % limit_count holds the times the program

%will run
stats=zeros(limit_stats,limit stats);

dy and dx will hold the displacement values enter by the user 
The displacement intends to reflect any type of patterns that 
will be unique from each feature

dx= input('Enter displacement for rows: ' ) ; 
dy= input('Enter displacement for columns: '); 
tic
while dx > limit_matrix I dy > limit_matrix

if dx > limit_matrix
disp('The number of row displacement must be <= 

limit_matrix');
dx= input('Enter displacement for rows : ');
disp( ' ' ) ;

end
if dy > limit_matrix

disp('The number of column displacement must be <= 
limit_matrix');

dy= input('Enter displacement for columns: ');
disp(' ' ) ;

end
end
Stats Matrix Results

i_range=0; % i_range keeps track of the PIXEL value in the i_row 
i=l; % i counts the row position on the statistical matrix 
while i <= limit_stats

j=l; % j counts the column position on the statistical matrix 
j_range=0; % j_range keeps track of the PIXEL value in the j_column 
while j <= limit stats
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for row = 1:limit_matrix % checking all row values
for col = 1:limit_matrix % checking all column values

if (col+dy)>= 1 & (col+dy) <= limit_matrix % checking for
end of

columns
if (row+dx)>= 1 & (row+dx) <= limit_matrix % checking

for end
of rows

if quant_m(row,col} =  (i_range+16)-1 %i-l
if quant_m(row+dx,col+dy)=  (j_range+16)-1 %j—1; 

stats(i,j)= stats(i,j)+1;
end

end
end

end
end 

end 
%stats;
j=j+i;
j _range=j _range+gr_level;

end
i=i+l;
i_range=i_range+gr_level

end

Co-Ocurrence Matrix
j = 1;
co_stats = stats; 
while j <= limit_stats 

for i = j : limit_stats 
if i == j

co_stats(i,j) = 2*co_stats(i,j); 
else

%if (dx == -1) I (dy == -1)
co_stats(i,j) = stats (j,i)+ stats(i,j); 
co_stats(j,i) = stats (j,i)+ stats(i,j); 

%else
%co_stats(i,j) = stats(j,i)+ stats(i,j); 

%end
end

end
j = j+i;end

co stats

Prepare external file to send the STATISTICAL MATRIX with 
size of 16 by 16

displace=[dx;dy];
sta= fopen('Oni_Pl_Try_M_Stats.txt','a ') ; 
if count == 1
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fprintf(sta,'PICTURE ROTATION: ');
fprintf(sta,'%5.Of ’,deg); 
fprintf(sta,'\n');
fprintf(sta,'QUANTIZATION NUMBERXn'); 
fprintf(sta,'(%1.0f)',q_number); 
fprintf(sta,'\n'); 
fprintf(sta,'GRAY LEVEL\n1); 
fprintf(sta,'(%1.0f)',gr_level); 
fprintf(sta,'\n'); 

end.
fprintf(sta,'\n');
fprintf(sta,'\n');
fprintf(sta,'DISPLACEMENT \n');
fprintf(sta, ’ (%1.Of,%2.Of) 1,displace);
fprintf(sta,'\n’);
fprintf(sta,'MATRIX METHOD 1, NO SYMMETRICXn'); 
fprintf(sta,'\n');
for i = 1:limit_stats % printing all row values

for j = 1:limit_stats % printing all column values 
fprintf(sta, 1%5.Of1,stats(i,j)); 
fprintf(sta,1 ' ) ;

end
fprintf(sta, ’\n');

end
fprintf(sta,'\n');
fprintf(sta,'MATRIX METHOD 2, SYMMETRICXn'); 
fprintf(sta,'\n');
for i = 1:limit_stats % printing all row values

for j = 1:limit_stats % printing all column values 
fprintf(sta,'%5.Of',co_stats(i,j)); 
fprintf(sta,' ');

end
fprintf(sta,'\n');

end
fclose(sta); % CLOSE STATISTICAL EXTERNAL FIILE % 
toe % END timing for creating STATISTICAL MATRIX
disp (' Above are the seconds it takes for calculate the STATISTICAL 

MATRIX')
stats

Obtaining the values for ENTROPY, ENERGY, CONTRAST, and HOMOGENEITY 
Those values are sent to tne SCREEN as well as to an EXTERNAL FILE
norm = 0 ;  
co_norm = 0 ;  
for i = 1:limit_stats 

for j = 1:limit_stats
norm = stats(i,j)+ norm; 
co_norm = co_stats(i,j) + co_norm;

end
end
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Norm_Matrix = 1/norm;
Co_Norm_Matrix = l/co_norm 
Entropy = 0;
Energy = 0;
Contrast = 0 ;
Homogeneity = 0 ;
Check = 0;
Co_Energy = 0;
Co_Contrast = 0;
Co_Homogeneity = 0;
Co_Check = 0 ;
for i = 1:limit_stats 

for j = 1:limit_stats
Energy = Norm_Matrix*(stats(i, j)~2)+ Energy;
Contrast = Norm_Matrix*(i-j)~2 * stats(i,j) + Contrast; 
Homogeneity = Norm_Matrix*stats(i,j)/(1+abs(i-j))+ Homogeneity; 
Check = Norm_Matrix*stats(i, j) + Check; 
if stats(i,j) == 0

log_tropy = loglO(0.000001); 
else

log_tropy = loglO(stats(i,j));
end
Entropy = - Norm_Matrix*(stats(i,j))*log_tropy;
Co_Energy = Co_Norm_Matrix*(co_stats(i, j)^2)+ Co_Energy; 
Co_Contrast = Co_Norm_Matrix*(i-j)~2 * co_stats(i,j) + 

Co_Contrast;
Co_Homogeneity = Co_Norm_Matrix* co_stats(i,j)/(1+abs (i-j)) +

Co_Homogeneity;
Co_Check = Co_Norm_Matrix*co_stats (i, j ) + Co_Check; 
if co_stats(i,j) =  0

Co_log_tropy = loglO(0.000000000001) ; 
else

Co_log_tropy = loglO(co_stats(i,j));
end
Co_Entropy = - Co_Norm_Matrix*(co_stats(i, j ))*Co_log_tropy;

end
end

TP = Entropy
E=Energy
C=Contrast
H=Homogeneity
Co_TP = Co_Entropy
Co_E=Co_Energy
Co_C=Co_Contrast
Co_H=Co_Homogeneity

Sending the Data Results to an external file
f id= fopen (' Oni_Pl_Try. txt', ' a ' ) ;
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if count =  1
fprintf(fid, 'PICTURE ROTATION: 1 ) ;
fprintf(fid,1%5.Of ’,deg); 
fprintf(fid,'degrees’); 
fprintf(fid,'\n’);
fprintf(sta, 'QUANTIZATION NUMBER\n') ;
fprintf (sta, ' (%1. Of) ', q_nuinber) ;
fprintf(sta,'\n');
fprintf(sta,'GRAY LEVEL\n');
fprintf(sta,'(%1.Of)',gr_level);
fprintf(sta,'\n:);
fprintf(fid,'\n ');
fprintf(fid,'DISPLACEMENT Entropy Energy

Homogeneity\n');
end
fprintf(fid,'\n');
fprintf(fid,' (%1.Of,%2.Of)',displace);
fprintf(fid,' %14.4f',TP);
fprintf(fid,1 %11.4f',E);
fprintf(fid,' %12.4f',C);
fprintf(fid,1 %10.4f\n',H);
fprintf(fid,' %21.4f',Co_TP);
fprintf(fid,’ %11.4f',Co_E);
fprintf(fid,' %12.4f',Co_C);
fprintf(fid, ' %10.4f\n',Co_H);
fprintf(fid,'\n');

fclose(fid); 
end

Contrast
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APPENDIX B

NEURAL NETWORK TRAINING PROGRAM

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

%DEMIAN MORQLJIN %
%CREATED ON: 3/4/2000 %
%LAST MODIFIED ON :3/27/200 %
% %
%TITLE: This is the Onion-Clod TRAINING Neural Network %
% %
% This is a function use to TRAIN the neural networks. %
% Its read the TRAINING data from an external file %
% containing all the textural feature previously calculated.%
% All the values are normalized before feeding the network. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fidl = fopen('Train_Data_OrdEnCoHo.dat' , 'r '); % Read training data

from a file
fid2 = fopen('Tr_Norm_dataECH.datw'); % Normalize data and sending

to file
All_Data = fscanf(fidl,1%f'); % Matrix holding training data
N = max(size(All Data))
1  =  1 ;
for k = 1:4:N,

ENE(l) = All_Data(k); 
CON(1) = All_Data(k+l); 
HOM(1)= All_Data(k+2); 
Sue (1) = All_Data(k+3); 
1= 1+ 1; 

end;
ENE_max = max(ENE)
ENE min = min(ENE)

% Sorting data into appropiate group 
% Energy data 
% Contrast data 
% Homogeneity data 
% Onion (1) or Clod (0)

% Find the MAX value of the ENERGY Data 
% Find the MIN value of the ENERGY Data

ENEn = (ENE - ENE_min) / (ENE_max - ENE_min); % Normalize the values
of ENERGY Data between 

0 & 1
Data=[ENEn; CON; HOM; Sue]
PData=[ENEn; CON; HOM] ;
TData=[Suc];
fprintf(fid2,1%6.3f %6.3f %6.3f %7.Of\n',Data); % Sending Normalized

data
fclose(fidl); 
fclose(fid2);
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CREATING THE NEURAL NETWORK. THIS IS A 3-2-1, using TANSIG function, 
LEARNING RATE = 0.95;
INPUTS WEIGHTS, LAYER WEIGHTS, & BIASES are RANDOM;
EPOCHS = 2000;
GOAL = 10/'—10 ;

rand('state’, 0) ;
net = newff([0 1;0 1;0 1],[2 1],{1tansig','tansig'});%,'traingdm');
net.layers{l}.initFcn = 'initwb';
net.layers{2}.initFcn = 'initwb';
net.inputweights{1,1}.initFcn = 'rands';
net.layerweights{2,1}.initFcn = 'rands';
net.biases{1,I}.initFcn = 'rands';
net.biases{2,1}.initFcn = 'rands';
net=init(net);
net.trainParam.epochs=800;
net.trainParam.lr=0.90;
%net.trainParam.mc=0.90; 
net.trainParam.show=200; 
net .trainParam. goal=10/'-4; 
net= train(net,PData,TData); 
a=sim(net,PData)
IW = net.IW{I,l}
LW = net.LW{2,1}
Biasl = net.b{l,l}
Bias2 = net.b{2,1}
fid4 = fopen('Values_Ob.dat','w'); 
fprintf(fid4,'InputWeights = IW\n'); 
fprintf(fid4,'%3.4f \n',IW); 
fprintf(fid4,'LayersWeights = LW\n'); 
fprintf(fid4,'%3.4f \n',LW); 
fprintf(fid4,'Biases{1,1} = Biasl\n'); 
fprintf(fid4,'%3.4f \n',Biasl); 
fprintf(fid4,'Biases{2,1} = Bias2\n'); 
fprintf(fid4,'%3.4f \n',Bias2); 
fclose(fid4);
fid3 = fopen('Results_ECH_2hd.dat', 'w ') ;
fprintf(fid3,'%1.4f\n',a); % Sending Normalized data
fclose(fid3);
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APPENDIX C

NEURAL NETWORK TESTING PROGRAM

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% DEMIAN MORQUIN %
%CREATED ON: 3/4/2000 %
%LAST MODIFIED ON : 3/27/200 %
% %

%TITLE: This is the Onion-Clod TESTING Neural Network %
% %

% This is a function use to TEST the neural networks. %
% Its read the TESTING data from, an external file %
% containing all the textural feature previously calculated.% 
% All the values are normalized before feeding the network. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fidl = fopen('Test_Data_EnCoHo.d a t r '); % Read testing data from a 
file
fid2 = fopen('TS_Norm_ECHdata.d a t w '); % Normalize data and sending 
to file
All_Data = fscanf(fidl,'%f'); % Matrix holding training
data

N = max(size(All Data));

1 = 1;
for k = 1:4:N, 
appropiate group

ENE(1) = All_Data(k) ;
C ON(1) = All_Data(k+1) ;
HOM(1)= All_Data(k+2) ;
Sue(1) = All_Data(k+3) ;
1=1+1;

end;
ENE_max — max(ENE)
ENE_min = min(ENE)
ENEn = (ENE - ENE min) / (ENE max - ENE min);

% Sorting data into
% Energy data 
% Contrast data 
% Homogeneity data 
% Onion (1) or Clod (0)

Data=[ENEn; CON; HOM; Sue]
PData=[ENEn; CON; HOM];
TData=[Sue];
fprintf(fid2,'%6.3f %6.3f %6.3f %7.0f\n',Data); % Sending Normalized 
data
fclose(fidl); 
fclose(fid2);

Neural Network TESTING
net = newff([0 1;0 1;0 1],[2 1],{'t a n s i g t a n s i g ' })%,'traingdm');
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net.layers{1}.initFcn = 'initwb'; 
net.layers{2} .initFcn = 'initwb';
net.IW{1,1} = [484.5 -172 -2234.4;-18.6 113.6 -110.9];%[-0.7326 3.8766 
23.7110;14.4053 18.4210 -69.7602;-2.5320 2.5671 30.5420];% [341.2 -121.1 
—1576;—79.2 168.9 -39];%[670.3 -238.1 -3091.5;-21.6 177.4 -50.2];%[- 
0.3097 -0.3252 -0 .5820; 0 .8535 0.7620 0.5775,-0.8447 -0.8774 - 
0.9614];%[0.0283 0.7751 -0.5519;0.9142 3.9069 -1.4578];%[-57.0555 - 
22.6698 -77.1848;5. 6151 23.7439 -5.9540,-61.3307 25.8418 73 . 5409;-9 . 3047 
21.9858 91.4168;—4.6100 23.8665 96.7689];(Tansig);
net.LW{2,l}= [-113.7983 -6.8028];%[-25.97 0.1681 53.4458];%[-65.9741 -
2.9137];%[-188.9312 -3.1826];%[-0.3219 0.0606 -0.4363];%[0.8386 -
2.1771]%[-179.7782 -31.4636 -179.8332 -347.5578 339.5677];(Tansig);
net.b{l, 1}= [17 99.5,-70.8] ;% [-24 . 6135,-40.2970;-
27.6758] ;% [1269. 9,-20. 6] ; % [2489 .2;-0] ,-% [0 . 4990 ; 0 . 417 6;-
0. 6257] ,-% [0.4 560,-0.0373] ; % [86.1326;-2 . 7873;-8 6. 2285;-8 6. 2285;-
93.6938];(Tansig);
net.b{2,1}= [120.6202];%[27.6758];%[68.9579];%[192.1879];%%[- 
0.003];%[1.6788];%;%[23.4365];(Tansig); 
net=init(net);
%net.trainParam.epochs=1000;
%net.trainParam.lr=0.95;
%net.trainParam.show=200;
%net.trainParam.goal=10~-20 ;
%net= train(net,PData,TData) 
a=sim(net,PData); 
for i= 1:100 
fid3 = fopen('TestResults_EnCoHo_h2.dat1, ' w ') ; 
if a(i) <= 0.6 

output(i) = 0 ;
fprintf(fid3,’%1.Of\n',output);%Sending adjusted data result 

else
output(i ) = 1;
fprintf(fid3,'%1.0 f \ n o u t p u t ) ;%Sending adjusted data result 

end 
end
fid4 = fopen('Test_a_Results_EnCoHo.dat1, 'w'); 
fprintf(fid4,'%1.4f\n',a); % Sending actual data result 
fclose(fid4); 
fclose(fid3);
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APPENDIX D

TEXTURAL FEATURES DATA 
FOR CLOD

# ENERGY CONTRAST HOMOGENEITY VARIANCE
1 718.5612 0.4642 0.8045 61.4548
2 724.9751 0.3519 0.8361 65.7615
3 372.7242 0.6249 0.7612 62.2533
4 250.9673 0.5237 0.7839 75.3392
5 323.466 0.6226 0.7663 68.9289
6 280.3443 0.7095 0.7518 59.5805
7 291.3216 0.5454 0.7826 89.3343
8 346.1635 0.5818 0.7634 106.8427
9 273.5763 0.548 0.7812 84.3505
10 344.5827 0.6374 0.7601 61.5854
11 429.4928 0.4893 0.807 105.7077
12 337.1694 0.522 0.7827 39.4142
13 250.4478 1.0435 0.6965 30.9102
14 638.8095 0.4221 0.8329 111.5517
15 228.6157 0.8476 0.7419 33.6736
16 512.706 0.3354 0.8492 63.0805
17 294.0656 0.6356 0.7635 71.7299
18 178.0358 1.0888 0.6959 61.5928
19 219.3381 0.7611 0.7381 66.2645
20 209.5203 0.8747 0.715 56.9111
21 420.7048 0.5877 0.7831 71.4867
22 389.4334 0.6724 0.7501 60.1548
23 141.3657 1.4863 0.6805 70.783
24 228.8446 0.8462 0.7483 71.0771
25 195.6635 1.1791 0.7129 84.5702
26 356.9236 0.7319 0.7587 30.3886
27 202.0833 0.7299 0.7452 44.0746
28 275.5815 0.6869 0.7526 51.3829
29 502.9622 0.5437 0.792 37.1234
30 167.8411 0.9378 0.7151 62.1852
31 194.0336 0.8363 0.7199 64.7978
32 233.5895 0.9478 0.7187 49.1863
33 243.9755 0.629 0.7661 70.9878
34 269.7039 0.5705 0.7694 69.221
35 260.9232 0.6386 0.7593 84.01
36 332.8701 0.5269 0.7893 93.769
37 248.7738 1.1069 0.7384 87.5791
38 194.4835 0.8316 0.7265 66.6719
39 265.3631 0.7921 0.7601 91.1517
40 363.1337 0.514 0.7899 109.2036
41 303.7211 0.6495 0.7516 80.0333
42 243.9437 0.6756 0.7524 79.3381
43 250.5278 0.8304 0.7451 93.4119
44 314.5505 0.5951 0.7715 86.6324
45 277.9423 0.6252 0.7614 84.917
46 316.2946 0.8087 0.7192 65.3068
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ENERGY CONTRAST HOMOGENEITY VARIANCE

47 308.4548 0.5976 0.7741 93.924
48 190.1943 0.909 0.7071 69.5302
49 399.5499 0.7245 0.7729 107.4966
50 275.5253 0.7106 0.7435 74.6789
51 338.9216 0.6699 0.7541 69.11
52 263.2887 0.6821 0.7448 99.2229
53 289.2371 0.5564 0.7817 95.3309
54 224.7824 0.7007 0.7511 64.5405
55 242.4447 0.6756 0.7454 74.3892
56 304.9091 0.6301 0.7645 63.1745
57 520.5531 0.3871 0.8396 50.6889
58 741.4699 0.319 0.849 16.0177
59 234.7713 0.7594 0.748 79.0517
60 208.4736 0.713 0.7453 52.9858
61 195.1987 0.7039 0.742 60.9065
62 279.6895 0.6617 0.7633 54.4163
63 207.2689 0.6931 0.7498 55.2262
64 322.7725 0.6934 0.7658 45.1063
65 340.895 0.6707 0.7687 99.018
66 302.0633 0.6412 0.7548 83.4233
67 256.0238 0.5833 0.7664 70.1414
68 291.5922 0.6433 0.76 64.2786
69 278.6849 0.5452 0.7951 96.571
70 227.4159 0.6798 0.7466 80.0687
71 297.8983 0.5714 0.7795 89.2926
72 359.4097 0.471 0.7904 98.3153
73 175.5498 0.709 0.7465 51.9441
74 282.2568 0.5572 0.7773 54.2472
75 210.7514 0.857 0.7236 25.2503
76 388.5284 0.6177 0.7709 18.3009
77 258.3324 0.8112 0.7327 28.6438
78 197.6927 0.8461 0.7376 28.5863
79 138.3788 1.2078 0.6852 36.7462
80 208.7629 0.8126 0.7326 35.4851
81 296.4984 0.6972 0.7561 17.5828
82 165.1034 0.6421 0.761 46.9822
83 245.4117 1.1074 0.6918 17.3308
84 524.6874 0.5331 0.8103 3.9134
85 130.9072 1.1466 0.6832 45.267
86 435.3058 0.573 0.7813 15.1298
87 990.1651 0.4502 0.8483 4.8636
88 502.4659 0.439 0.8244 4.2872
89 273.4109 0.8487 0.7285 19.1252
90 306.06 0.6768 0.75 30.7308
91 1030.3289 0.2504 0.8846 0.7642
92 335.1038 0.4305 0.8153 22.0666
93 277.5689 0.6182 0.7681 40.6216
94 293.5765 0.6105 0.7648 24.8586
95 167.6965 0.9212 0.707 46.0255
96 221.3961 0.6408 0.7464 34.7689
97 315.2105 0.5742 0.7714 33.6675
98 227.4302 0.7857 0.7445 41.6495
99 485.4915 0.4528 0.808 20.4279
100 195.3459 0.6124 0.758 40.956
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TEXTURAL FEATURES DATA 
FOR ONION

# ENERGY CONTRAST HOMOGENEITY VARIANCE
1 461.2366 0.2615 0.8722 55.1006
2 295.1193 0.5104 0.8172 61.7682
3 341.0161 0.3918 0.8263 51.4447
4 408.4915 0.3677 0.8369 21.8098
5 730.0752 0.1996 0.9002 74.4959
6 1099.7807 0.2077 0.8962 59.6831
7 785.7397 0.1873 0.9112 57.0508
8 845.5414 0.2596 0.8714 19.3948
9 569.9889 0.2729 0.8712 66.9653
10 489.415 0.2813 0.8754 64.0216
11 1080.8552 0.2105 0.8957 74.449
12 1157.6632 0.2366 0.8887 55.7744
13 799.8471 0.2114 0.8945 14.7864
14 231.0239 0.837 0.7583 76.3207
15 810.4945 0.2671 0.8723 20.9485
16 350.3564 0.384 0.8248 24.745
17 388.2727 0.2981 0.8646 17.5408
18 384.258 0.3508 0.8491 41.4832
19 340.8092 0.3596 0.8465 42.4271
20 343.0831 0.3764 0.846 53.398
21 723.4346 0.2719 0.8686 72.3162
22 538.6203 0.2904 0.859 30.8246
23 359.6037 0.5059 0.8079 10.8198
24 294.8199 0.8318 0.7611 7.8263
25 153.4732 1.0681 0.7187 27.5127
26 682.933 0.1591 0.9206 25.3852
27 822.5324 0.1785 0.9107 29.2138
28 300.2307 0.6732 0.7663 59.8316
29 361.3523 0.2878 0.8643 14.6367
30 685.3386 0.2497 0.8762 9.1858
31 326.9176 0.3079 0.8626 59.6809
32 448.7731 0.4203 0.8314 62.8036
33 973.7845 0.2196 0.8915 33.0756
34 415.3757 0.4812 0.8226 22.9773
35 673.6074 0.2974 0.8615 8.2678
36 554.8776 0.2786 0.8812 11.1934
37 736.8728 0.2329 0.8907 48.0164
38 381.2363 0.3528 0.8455 35.3307
39 667.6915 0.2509 0.878 44.8782
40 1263.6564 0.0987 0.9507 4.9584
41 579.6406 0.2783 0.888 9.9678
42 435.6618 0.3304 0.8482 32.2131
43 354.3381 0.4806 0.7936 17.4748
44 809.2444 0.1609 0.9201 2.7862
45 896.9673 0.2175 0.8947 1.16
46 344.5799 0.3005 0.8645 37.0557
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# ENERGY CONTRAST HOMOGENEITY VARIANCE
47 284.3894 0.3791 0.8363 37.2359
48 504.8665 0.2947 0.8598 13.2615
49 455.0888 0.2117 0.8949 27.6139
50 1088.1655 0.1973 0.9141 1.902
51 327.4504 0.4238 0.8323 14.2564
52 1295.6626 0.1475 0.9304 1.0105
53 364.8716 0.3619 0.8392 21.5274
54 412.5534 0.3556 0.8464 33.8381
55 1203.1394 0.13 0.935 18.2936
56 381.8784 0.332 0.8443 23.3401
57 490.2953 0.4247 0.8279 58.4447
58 82.7128 2.5948 0.645 44.4942
59 1230.0939 0.1916 0.9137 1.9385
60 257.9965 0.4446 0.8227 39.144
61 1117.5684 0.1985 0.9023 18.6174
62 521.5808 0.3263 0.8545 13.4385
63 649.9416 0.2298 0.8872 6.2937
64 511.7614 0.3316 0.8488 14.0339
65 1943.2586 0.1581 0.9423 0.534
66 142.1463 1.3987 0.68 32.4007
67 946.8991 0.1293 0.937 3.1589
68 1923.9843 0.1179 0.9457 0.7519
69 362.0975 0.3304 0.8564 28.8669
70 426.2654 0.2787 0.8711 11.4484
71 1398.9531 0.5004 0.8558 0.8472
72 448.977 0.2606 0.8735 21.6473
73 623.6946 0.2114 0.897 7.7883
74 1947.7252 0.0503 0.9748 0.321
75 464.078 0.2006 0.9039 7.2936
76 713.5554 0.1817 0.9108 16.2713
77 959.025 0.1996 0.9064 30.5625
78 379.6271 0.4223 0.8232 57.4432
79 290.6593 0.3874 0.8297 73.1315
80 197.9952 0.6963 0.7768 30.0981
81 858.4797 0.5464 0.8322 7.6406
82 641.1246 0.2411 0.8983 9.5747
83 1050.5551 0.0864 0.9568 1.2224
84 883.8392 0.26 0.8764 1.6995
85 802.9143 0.1986 0.9039 9.5297
86 392.6223 0.2897 0.8725 33.0505
87 505.2815 0.2812 0.8705 8.9012
88 265.9359 0.4076 0.821 46.7186
89 853.2931 0.2323 0.888 2.6365
90 446.3145 0.2473 0.8845 28.2762
91 418.0852 0.4051 0.8326 8.1681
92 1138.5702 0.2777 0.8837 119.5143
93 224.1864 0.5025 0.8034 18.1951
94 1094.0735 0.0914 0.9543 2.0128
95 365.135 0.275 0.8671 36.4069
96 1166.9927 0.0759 0.9621 1.3734
97 246.2769 0.418 0.8131 20.8695
98 1025.9877 0.1913 0.9083 1.31
99 632.995 0.3222 0.859 2.4563
100 361.3523 0.2878 0.8643 14.6367
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