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ABSTRACT 
 
 
Zamora, Ruben D., Population Ecology and Reproductive Biology of the Diamondback 

Watersnake, Nerodia rhombifer (Serpentes: Colubridae), in Southernmost Texas. Master 

of Science (MS), December, 2009, 120 pp., 14 tables, 26 figures, references, 117 titles. 

Nerodia rhombifer is a polytypic, semi-aquatic snake with a broad geographical 

distribution ranging from the American Midwest southward to Chiapas, Mexico.  

Although relatively abundant throughout much of its range, few ecological studies of the 

species have been conducted.  This study provides basic population ecology information 

in a subtropical habitat.  Population data were obtained in a mark-recapture study at Santa 

Ana National Wildlife Refuge, Hidalgo County, Texas, from August 1995 to December 

1998.  Specimens taken elsewhere in Hidalgo County provided information on the 

reproductive biology.  This study provides the first absolute density estimates from 

anywhere within the species’ range.  Quantitative information on seasonal activity, 

growth rates, size dimorphism, population structure, reproductive cycles, and lipid 

dynamics are presented.  
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CHAPTER I 
 
 

INTRODUCTION 
 
 

The diamondback water snake Nerodia rhombifer is a polytypic species 

consisting of three subspecies inhabiting the United States and Mexico.  Two subspecies, 

N. r. blanchardi and N. r. werleri, are limited in geographic range to Mexico.  The former 

occurs in the states of Nuevo Leon, Tamaulipas, San Luis Potosi, Hidalgo, and Veracruz, 

and the latter occurs in Veracruz, Tabasco, Campeche, and Chiapas (Conant, 1969).  

Intergrades between N. r. blanchardi and N. r. werleri occur in central Veracruz (Conant, 

1969).  Nerodia r. rhombifer is the only subspecies that occurs in the United States and is 

the only representative of its genus to occur naturally in the lower Rio Grande Valley 

(LRGV) of Texas.  The Florida water snake (N. fasciata pictiventris) is a non-native, 

accidental introduction to the LRGV and is limited to the Brownsville, Texas area 

(Tennant, 1984).  Nerodia r. rhombifer ranges from central Indiana westward to western 

Kansas and southward to southernmost Alabama through the eastern two-thirds of Texas 

into Mexico (Conant and Collins, 1991).  In Mexico, N. r. rhombifer occurs in the states 

of Coahuila, Nuevo Leon, Tamaulipas (Conant, 1969).  Intergrades between N .r. 

rhombifer and N. r. blanchardi occur from the Rio Salinas in Nuevo Leon (Conant, 

1969). 

Field identification of N. r. rhombifer is determined by a network of rhombi on 

the dorsum which are outlined by blackish brown scales.  The rhombi intersect with 
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similar-colored lateral vertical bars.  The background color is light olive-brown.  The 

eyes have round pupils and the iris may be red or orange.  The ventral side is yellow and 

randomly marked with blackish crescents.  There are 25 to 31 strongly keeled, mid-body 

rows of dorsal scales and a divided anal plate.  This non-venomous, semi-aquatic 

colubrid has an uncanny musking ability and will bite vigorously when molested 

(Tennant, 1984; Vermersch and Kuntz, 1986; Conant and Collins, 1991). 

Nerodia rhombifer generally occurs below 500 m elevation (Keck, 2004) and 

inhabits almost any permanent, non-urban body of water including lakes and ponds, 

rivers, streams, marshes, and man-made reservoirs (Tennant, 1984; Vermersch and 

Kuntz, 1986; Keck, 2004).  This snake also may be found in water hazards on golf 

courses, irrigation canals and drainage ditches (pers. obs.; Conant, 1969).  Individuals 

most commonly occur along gently sloping (< 45o), sparse to densely vegetated 

shorelines or resting on woody vegetation hanging above water (Cagle, 1937; Preston, 

1970; Hebrard and Mushinsky, 1978; Keck, 1998).  In irrigation canals, N. rhombifer 

may be most abundant among riprap associated with water control structures where they 

forage and bask (pers. obs.).  Compared to other watersnakes, N. rhombifer is highly 

aquatic but usually stays within 2 m of the shoreline (Hebrard and Mushinsky, 1978; 

Keck, 1998), although individuals have occasionally been observed moving on land 

(Keck, 2004) 

 Throughout much of its range, N. rhombifer may be the most abundant semi-

aquatic snake (Cagle, 1937; Conant, 1969; Hebrard and Mushinsky, 1978; Keck, 1994).  

This may be due to the ability of this snake to persist in borderline habitats (Tennant, 

1984), e.g., borrow and drain ditches along suburban and agricultural areas (pers. obs.). 
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 Despite relatively high abundances and a broad geographic distribution, little is 

known regarding the ecology of N. rhombifer, and studies have been conducted in only a 

few regions (Keck, 2004).  While food habits and reproduction in N. rhombifer have been 

well documented (e.g., Betz, 1963; Mushinsky and Hebrard, 1977; Plummer and Goy, 

1984; Aldridge et al., 1995), population structure and biomass have not been reported, and 

with the exception of one paper on litter size from extreme south Texas (Judd and Bray, 

1996) there has been no study of subtropical populations of N. rhombifer. 

Because this species is an intermediate predator, it may be a major trophic link in 

aquatic ecosystems.  With the increasing threats to biodiversity associated with an 

exploding human population, it has become ever more important to provide basic 

information on wildlife populations such as distribution, abundance, and reproduction.  

As wetland ecosystems have and continue to suffer enormously from various human 

activities (Zedler and Kercher, 2005), information on N. rhombifer populations should be 

invaluable to management and conservation matters where this species and associated 

biological communities occur (Dodd, 1993). 

The goal of this study is to fill the void in natural history information for N. 

rhombifer in the subtropical region of its geographic range.  Specifically, an estimate of 

population density is provided using mark-recapture techniques at Santa Ana National 

Wildlife Refuge which borders the lower Rio Grande.  From the mark-recapture field 

data set, patterns in seasonal abundance, population structure, sex-related size 

dimorphism, and size-specific growth are described.  Snakes were collected outside of the 

refuge to examine reproduction.  This data set provides information on the onset and 

termination of reproduction, litter, neonate and maternal female size, and size at maturity 
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for males and females.  Litter sizes are compared with other populations and coelomic 

fatbodies are examined for lipid cycling.
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CHAPTER II  
 
 

MATERIALS AND METHODS 
 
 

Study Sites.Field data for the population study were collected on Willow Lake at Santa 

Ana National Wildlife Refuge (SANWR) located in southernmost Hidalgo County, 

Texas, U.S.A. (26.0795oN, 98.1395oW, 25 m elev.).  This 845-hectare (2088 acre) refuge 

borders the Rio Grande and is situated in a region known as the Matamoran Biotic 

District of the Tamaulipan Biotic Province (Blair, 1950).  While some 95% of the 

regional native flora has been replaced by agriculture and urban development, the 

remaining plant life within the river floodplain is composed of a mixture of thornscrub, 

thorn forest, riparian forest, and wetlands (Jahrsdoerfer and Leslie, 1988).  The climate in 

this region may be classified as subtropical and semiarid (Lonard et al., 1991). 

The plant communities within the refuge range from riparian and bottomland 

hardwoods dominated by cedar elm (Ulmus crassifolia), anacua (Ehretia anacua), sugar 

hackberry (Celtis laevigata), and Rio Grande ash, Fraxinus berlandieriana (Vora, 1990; 

Lonard and Judd, 2002) to dry, open shrublands with mesquite (Prosopis glandulosa), 

Texas torchwood (Amyris texana), coma (Bumelia celastrina), spiny hackberry (Celtis 

pallida), black brush (Acacia rigidula), and cenizo, Leucophyllum frutescens (Vora, 

1990).  The variety of these habitats corresponds to differences in topography, soil, and 

flood regime (Vora, 1990).
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Since the 1950s, the seasonal flooding that once occurred along the Rio Grande 

floodplain has been completely interrupted with the construction of upstream dams.  

Consequently, as has been observed in other regulated river systems (Nilsson and 

Berggren, 2000), the remaining plant communities which depended on the historic 

seasonal overflow of the Rio Grande are threatened.  Wetland management on SANWR 

has included pumping well water into three main pools, including Willow Lake (Vora, 

1990), delivering water from a larger network of irrigation canals outside the refuge, 

pumping water directly from the adjacent portion of the Rio Grande, and periods of 

drawdown to control invasive plant species. 

Vora (1990) described the three shallow ponds at SANWR.  These ponds and 

other depressed areas where bottomland forests occur are old oxbows (or resacas) of the 

Rio Grande.  When flooded, the three ponds are colonized by various submergent, 

emergent, and floating aquatic plants (Vora, 1990).  During drawdown periods, densely 

growing emergents such as cattails (Typha domingensis) and bulrush (Schoenoplectus 

pungens) are removed to prevent complete invasion of these ponds.  The habitats 

surrounding Willow Lake resemble the former resaca bottoms and seasonally flooded 

plant communities described by Vora (1990).  The north side is bordered by a Rio Grande 

ash, sugar hackberry, and cedar elm.  The remainder is fringed by sugar hackberry, 

huisache (Acacia smallii), Rio Grande ash, and retama (Parkinsonia aculeata). 

Irrigation canals and associated drainage ditches transect much of Hidalgo 

County.  These irrigation canals serve to deliver water from the Rio Grande for 

agriculture use and municipalities.  Grasses and forbs grow along the banks and fringes 

of the canals above the bank slopes.  Trees including willow (Salix sp.), sugar hackberry, 
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huisache, and retama sometimes establish above the water line along with emergents such 

as cattail and bulrush.  This vegetation is periodically cleared to prevent backup of 

drainage during storms.  The network provides pathways where some wildlife including 

N. rhombifer can disperse and migrate (pers. obs.).  Specimens for the reproduction study 

were collected in these canals. 

 

Population Sampling and Data Collection.Population sampling was conducted using 

mark-recapture techniques.  Snakes were captured using funnel traps (Fitch, 1951) 

arranged into two trapping grids (Fig. 1).  The grids were erected on Willow Lake at 

SANWR.  The traps were run for two consecutive days at biweekly intervals from 30 

August 1995 to 18 December 1998.  Because of logistical problems, sampling effort was 

interrupted twice.  Consequently, only 61 trapping periods were conducted (Table 1). 

 The grids were established using 2.5 cm PVC pipes (stakes).  The stakes were 

arranged into rows ten meters apart.  Within each row, the stakes were placed at ten meter 

intervals.  The first grid was made up of five rows, each with six traps.  It was placed on 

the southeastern corner of impoundment #3 of Willow Lake with the long side parallel to 

the southern shoreline.  The grid had a total area of 0.20 hectares.  The second grid had 

three rows with seven traps each and was established on the northeast corner of 

impoundment #4.  The long side was parallel to the northern shoreline and had a total 

area of 0.12 hectares. 

 The funnel traps were constructed of 6-mm mesh hardware cloth.  The bodies of 

the traps were cylindrical and measured 100 cm long × 26 cm diameter.  Two funnels 

constructed of the same material with a 5-cm opening were fitted to each end of each of 
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the trap bodies.  The funnels made the lengths of the traps about 160 cm.  To allow 

snakes access to air at the surface, traps were attached to the grid stakes with hose clamps 

and s-hooks permitting adjustment as water levels increased or decreased.  Clamps were 

adjusted to have no more than 80% of the trap cylinder submerged. 

 At initial capture, individual N. rhombifer were marked with passive integrated 

transponders (PIT tags; Gibbons and Andrews, 2004).  The PIT tags were implanted 

subcutaneously with a syringe and 12 gauge modified needle on the right side of the 

snake, anterior to the vent.  The tags were each composed of a microchip encased in a 

glass capsule measuring 10 × 2.1 mm.  The mass of the tag was 0.6 g and the microchip 

had a unique preprogrammed code which was read by a scanner.  The code allowed for 

identification of individuals upon recapture. 

 For individual captures and recaptures during each sampling period, the location 

of capture, PIT tag number, sex, snout-to-vent length (SVL), total length (ToL), and mass 

were recorded.  Capture locations were identified by uniquely numbered traps.  Sex was 

diagnosed following the description of dimorphism by Conant and Collins (1991) and the 

method of Gregory (1983) for young snakes.  The SVL is measured from the tip of the 

rostrum to the posterior edge of the anal plate, and ToL is obtained by measuring the 

entire length of the snake.  Meteorological data were secured from the NOAA tables for 

the nearest two weather stations located in Weslaco and McAllen, Texas. 

 

Absolute Abundance. Absolute abundance estimates were calculated using three 

methods: minimum numbers alive (MNA), Schnabel, and Jolley-Seber (Krebs, 1998).  

Because capture frequency was low and because individuals were observed to move from 
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one grid to the next in a relatively short period of time, capture data for both grids were 

combined.  The capture data were arranged into a Method B table (Krebs, 1998) on a 

spreadsheet which was then used to calculate the population sizes and confidence 

intervals (except for MNA which is a direct enumeration).  In addition, the full Jolly-

Seber model was explored by formatting data into coded capture histories and importing 

the data into the program JOLLY (Pollock et al., 1990).  The program provides a 

goodness-of-fit test and was accessed from the Patuxent Wildlife Research Center 

software archive (Hines, 1988)  

 

Relative Abundance and Seasonality. Relative abundance was calculated by dividing 

the number of individuals captured per month, and per season, by the trapping effort.  

Thus, by this definition, relative abundance is defined as the capture frequency which 

assumes that the number of captures in a given period with a given effort is proportional 

to the number of snakes using the grids.  For convenience, the number of trapping periods 

in a given time period was used as a measure of trapping effort instead of number of trap-

days.  Using the total number of individuals captured and trapping effort per month and 

per season, expected capture rates were calculated.  To examine seasonal patterns, the 

expected capture frequencies were compared against the observed capture frequencies 

using chi-square goodness of fit tests (Sokal and Rohlf, 1995).  Correlation analyses also 

were employed to study the relative strengths in the relationships between abundance 

estimates and physical environmental factors including photoperiod, air temperature, and 

water temperature.  To facilitate comparisons of seasonal patterns of abundance among 

populations, monthly relative abundances were converted to percent relative abundances.  
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Population Structure. Capture records and growth rates were used to construct size and 

age structures at SANWR.  As with abundance estimates, data across years were 

combined.  However, because this analysis examines the structure of the population at a 

given time, within the limitations of this study (i.e., low capture rates), defined as 

individuals present in a calendar year, recaptures within a year were not counted but 

among years were.  For individuals that were captured more than once within a year only 

the first capture record was used.  Sex ratios were calculated for the entire study period.  

To detect any seasonal changes in sex ratios, data from all years were pooled and 

examined by season.  Six seasons were observed: early spring (February-March), late 

spring (April-May), early summer (June-July), late summer (August-September), fall 

(October-November), winter (December-January).  Six seasons were used to better 

resolve potential changes in sex ratios among seasons throughout a calendar year.  

Individuals recaptured within the same season of a given year were only counted once but 

were counted again if recaptured later.  All sex ratios generated were tested for unity (i.e., 

not different from 1:1) using a chi-square test according to recommendations of Sokal 

and Rohlf (1995) when there is only one degree of freedom. 

 

Biomass.Biomass was calculated for each month using the mass structure and 

population density values computed from the Jolly-Seber abundance estimates for each 

sampling period.  The average mass for the overall mass structure was multiplied by each 

density estimate.  The biomass values were converted to units of kg/ha to facilitate 

comparisons with literature values. 
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Reproduction. Males and females were collected monthly from several sites in Hidalgo 

County, Texas.  Most sites were part of the network of irrigation canals and included one 

reservoir.  The sites ranged from 1.5 km N (26o05’34.67” N, 98o08’09.52” W, 25 m 

elev.) to 34 km N (26°23'1.23" N, 98°09'44.62" W, 27 m elev.) of SANWR.  Additional 

snakes were taken from other sites when opportunity arose, e.g. accidental deaths from 

the mark-recapture efforts described above.  Snakes were collected with minnow traps 

similar to those described above or more often by hand.  Date and location of capture 

were recorded for each specimen collected. 

 Only snakes no less than 10 cm below the minimum size at maturity reported for 

either sex (Aldridge et al., 1995) or greater were kept.  Specimens were kept frozen in the 

lab until necropsies could be performed.  Gravid females were held in the lab and given 

water and food ad lib until parturition.  Date of birth and sizes (mass, SVL, and tail 

length, TL) of the female and neonates were recorded.  Sex for neonates was determined 

by manual eversion of the hemipenes (Gregory, 1983). 

 The mass of males and females was determined to the nearest tenth of a gram 

with an OHAUS® triple beam balance with animal container.  Total length and SVL 

were measured to the nearest millimeter.  Sex specific data were recorded.  For males, the 

following data were recorded: (1) the mass, length and width of each testis and (2) the 

presence or absence of spermatozoa in the ductus deferens as determined by opaqueness 

(Shine, 1980a).  The following data were obtained for females: (1) the masses and lengths 

of the right and left ovaries described as being from the oviductal infundibulum to the 

posterior limit of the kidneys by Betz (1963); (2) the number of vitellogenic follicles in 

preovulatory ovaries; (3) the number oviductal eggs or embryos for each ovary and 
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oviduct of postovulatory females; and (4) the lengths of the ten largest ovarian structures 

in preovulatory females or ten largest oviductal structures in postovulatory females. 

 The length and seasonality of reproductive activity for both sexes was determined 

by observing the months for which the respective gonads show reproductive condition.  

An estimate of the frequency of reproduction in females was determined by dividing the 

number of reproductively active females (those showing vitellogenesis, containing 

oviductal eggs or embryos, and displaying signs of recent parturition) by the sample size 

from the dates during which reproductive activity was observed.  To investigate the 

relationship between female size and litter size, litter size was regressed against female 

SVL.  Because litter size varied with female size, an analysis of covariance (ANCOVA) 

using female size (SVL) as the covariate was used to determine the relationship of this 

trait among subtropical, temperate, and tropical populations (Aldridge et al., 1995). 

 

Sexual Size Dimorphism.Because maximum size may be an indicator of relative size 

among species of water snakes (Gibbons and Dorcas, 2004), the same may be true among 

populations and between sexes within a population.  To examine sexual size dimorphism 

(SSD) for body length, the upper quartile values for SVL for males and females were 

compared using a Mann-Whitney U test.  This test assumed that all individuals had an 

equal probability of being captured.  According to Case (1976) such comparisons among 

populations may be less sensitive to age structure than comparisons of means or medians 

for the populations being considered. 

 In general, North American watersnakes display SSD for tail length (TL) with 

males having proportionally longer tails (Gibbons and Dorcas, 2004).   To ascertain the 
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extent of SSD for TL for this south Texas population, TL was plotted against SVL for 

each sex and because this scatter plot indicated that TL varied linearly with SVL for both 

males and females, an ANCOVA using SVL as the covariate was employed to determine 

the degree of the difference in TL between the sexes.   

 In the field, adult female N. rhombifer appeared broader in body form than did 

males of comparable SVL.  To investigate SSD for this character, mass was used as a 

proxy for body form.  Mass was plotted against SVL for both sexes and compared.  The 

scatter plot showed slightly different positive curvilinear relationships (Fig. 2).  To 

determine if there was a difference in this relationship between the sexes, mass and SVL 

were log-transformed and the log of mass in grams was regressed against the log of SVL 

in centimeters for both sexes.  A plot of the slopes of the regression lines comparing 

females and males suggested that the slopes were not homogenous, a violation of 

ANCOVA assumptions.  The slopes were checked for homogeneity with the general 

linear models (GLM) procedure using sex (the independent variable) by logSVL (the 

covariate) as the interaction term. 

 Neonates were also examined for SSD for SVL, TL, and mass.  Five neonates 

were stillborn (1 female and 3 males) or underdeveloped (1 individual, sex 

undeterminable).  The underdeveloped, and unsexed, neonate was left out of the analysis 

for SSD.  Because TL and mass in neonates also vary with SVL as for the older cohorts, 

an ANCOVA using SVL as the covariate also was used to examine differences between 

TL and mass between sexes.  But because the maternal female (i.e., litter origin) may also 

influence neonate size, a two-level mixed model ANOVA (Quinn and Keough, 2002) 

was employed treating sex as the fixed factor and litter as a random effect.  Snout-vent-
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length was used as a covariate for the analyses of TL and mass.  Treating litter as a 

random effect allows for inferences to be made about the population (King et al., 1999). 

 

Growth. Growth rates (GR) were calculated as the change in snout-vent-length (SVL) 

in centimeters divided by the time interval between capture in days (Van Devender, 

1978).  Occasionally, individuals captured more than once apparently decreased in size 

giving negative values for growth rates.  This was most likely due to error in 

measurement of SVL.  Because the power growth model (see below) requires that all 

growth rates are positive, negative growth rates were eliminated from the analysis 

described below.  This assured that all models were compared with the same bias. 

For some individuals that were captured three or more times, consecutive growth 

rates for a capture history of an individual were calculated.  While this might represent a 

sort of temporal pseudo replication (Cox, 1996), doing this allowed more opportunities to 

measure growth rates for different sizes.  Another measure of growth, the specific growth 

rate (G), also was calculated for all time intervals for each capture history as was done for 

GR.  Specific growth rate is the GR divided by size.  This value is equivalent to an 

estimate of percent increase in size per day (Kaufmann, 1981).  Values for G were 

estimated according to Kaufmann’s recommendation, where  

 

( )
t

SVLSVL
G

∆

−
= 12 lnln

 
Equation 1 

 

Cross-sectional growth data, i.e. observations of growth for many individuals of 

different sizes, were used to examine differences in growth rate between males and 
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females.  It has been shown that such data can be used to represent, on average, the 

growth trajectories for individuals in a population (Marvin, 2001).  Since growth rates for 

many organisms are functions of size, cross-sectional GR values were plotted against the 

algebraic mean SVL (SVL�����) during the time interval in which the change in SVL was 

observed (Van Devender, 1978).  The same was done for G except that the average size 

was calculated as the geometric mean of SVL1 and SVL2 (hereafter referred to as S).  

Further, G was also plotted against certain transformation of S.  The curves of all plots, 

when properly fit as a straight line, describe a different schedule at which growth rate 

decreases.  These different schedules are more commonly represented as one of several 

integrated growth curves (Van Devender, 1978; Kaufmann, 1981).  The advantage of 

using these differential equations (Table 2) is that it allows one to determine which 

growth curve best fits the data.  Further, it allows a comparison of growth curves of 

different treatments with simple linear regression techniques (Van Devender, 1978; 

Kaufmann, 1981).  Using these techniques, all models were plotted to determine the best 

fit growth model.  The best fit models were then used to compare growth rates between 

males and females using an ANCOVA with SVL����� or S, depending on the model being 

analyzed, as the covariate. 

Integrated growth models were constructed for each sex using the parameters 

estimated from the best fit differential models (Kaufmann, 1981).  The relationship 

between the estimated parameters and the integrated growth models are presented in 

Table 2.  A well fit integrated model could be useful for estimating age of an individual if 

size is known (Cox, 1996); however the age at a specific size must be known when fitting 

these models.  Size at birth could be conveniently assigned an age of zero (t = 0).  While 
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the size of neonates can be estimated from neonate data, no growth data were collected 

for neonates in this study.  The mean SVL for the growth increment of the smallest male 

captured was 34.7 cm and 40.2 cm for females.  Therefore, the fitted models only 

describe growth for males and females greater than or equal to the respective values. 

An obstacle to fitting an integrated growth model to data from this population was 

that age was not known for any individuals.  A plot of size versus date of capture (Fig. 3) 

suggests that the size of neonates and juveniles captured at Willow Lake were similar to 

those reported by Scudder-Davis and Burghardt (1996).  Therefore, the size ranges 

reported for one year-old males and females (Scudder-Davis and Burghardt, 1996) 

indicate that the ages for the smallest male and female captured at Willow Lake were 

approximately 365 days. 

 

Lipids.During the necropsies, coelomic fatbodies were removed, dried with paper 

towels and massed to the nearest 0.001 g.  Regression analyses revealed that fatbody 

mass (FBM) varied positively with body size (SVL and body mass, BM).  Typically, an 

ANCOVA using body size as a covariate would be appropriate for group comparisons of 

FBM, however the assumptions of equal slopes and homogenous variances among groups 

did not hold even after various transformations of the variables.  An alternative for 

controlling for the influence of a covariate is to compare group variances of the residuals 

from a regression between covariates (in this case FBM and BM), referred to as a residual 

index.  Another involves calculating an index by dividing each variant by the respective 

covariant, e.g. percent FBM by BM.  Garcia-Berthou (2001) and Packard and Boardman 

(1999) discussed the flaws in both techniques that lead to systematic statistical errors.  Of 
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particular problem in the latter technique is that the underlying assumption that the two 

variables are isometric is often violated (Packard and Boardman, 1999).  Thus a plot of 

the index versus the covariate would have a slope that differs from zero indicating 

allometry.  Such a case occurs when log-log plot reveals an allometric coefficient of 1 but 

the intercept is not 1, i.e. when the relationship is linear but the intercept is not the origin.  

This was the case when FBM was regressed against BM for both sexes. 

Because there was still a need to control for the effect of body size on FBM for 

group comparisons, an index was calculated but with consideration of the allometric 

relationship between FBM and BM.  For males and females separately, a fatbody index 

(FBI) was calculated for each variant by first subtracting the value of the respective 

regression intercepts from FBM before dividing by BM.  These index values were arcsine 

transformed and checked for normality within groups and homogenous variances among 

groups before means were compared.  When these assumptions were violated, non-

parametric comparisons of central tendency were employed.  
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CHAPTER III 
 
 

RESULTS 
 
 

Capture Frequencies. Since snakes freely moved from one grid to the other, in some 

cases the next day, data for the two grids were combined.  Between August 1995 and 

December 1998, a total of 61 trapping periods were conducted (Table 1).  This was 

equivalent to 6222 trap⋅days (61 periods × 2 day⋅period-1 × 51 traps).  During this time a 

total of 254 captures were recorded, for a capture rate of 4.2 snakes per period, or 0.041 

snakes per trap day.  Because capture rates were relatively low, capture data were pooled 

for each month.  Individuals that were captured more than once in a month were not 

counted as recaptures since the entire month was considered the sampling period.  This 

reduced the number of captures to a total of 232, but increased the mean capture rate to 

7.5 snakes per period (calculated for 31 periods; Table 3).  Of the 232 captures, a total of 

78 were recaptured at least once for a recapture rate of 2.5 snakes per period.  Thus 154 

individuals were handled at least once (232 captures – 78 recaptured individuals). 

 

Absolute Abundance. The Schnabel, Jolly-Seber, and MNA methods of estimating 

population size for the 0.32 ha combined grid area generated markedly different results 

for the same mark-recapture data set (Table 4).  Overall, the Schnabel method produced 

the highest values, while MNA produced the lowest values.  The cumulative average 

estimated number of individuals using the Schnabel method was 194.4 and ranged from
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 85 individuals in September of 1995, to 250.0 in July of 1998.  In general, the Schnabel 

estimates increased with time.  The average estimated number of individuals with the 

Jolly-Seber method was 47.6 individuals and ranged from 5.0 in October of 1998, to 

115.7 in August of 1996.  These estimates appeared to vary irregularly displaying peaks 

in March, August, and November.  The average MNA was 14.5 and ranged from three in 

October 1998, to 30 in August 1996.  The MNA values peaked and dipped similarly to 

Jolly-Seber estimates.  Although Schnabel population size estimates generally increased 

from 1996 to 1998, the Jolly-Seber population size estimates were strikingly lower in 

1998 than in the previous two years (Table 4). 

 

Relative Abundance and Seasonality. Monthly capture rates for all individuals were 

significantly different from expected captures generated from trapping effort (Fig. 4A; χ2 

= 97.2, df = 10, P < 0.001).  Thus relative abundances deviated significantly from an 

even distribution in most months (Fig. 4B).  When the sample was divided by age and 

sex, mean monthly captures were significantly different from expected captures 

generated from trapping effort for juveniles (Fig. 5A; χ
2 = 25.2, df = 4, P < 0.001), adult 

females (Fig. 5B; χ2 = 53.3, df = 8, P < 0.001), and adult males (Fig. 5C; χ
2 = 40.5, df = 

8, P < 0.001).  Thus relative abundances of these three groups deviated significantly from 

an even distribution in most months (Figs. 6A, B, and C).  Further, there were differences 

among the cohorts in how abundance was distributed among months (Figs. 6A, B, and 

C). 

 The four-year monthly averages for total precipitation and temperature (Fig. 7) 

varied somewhat from the 40 yr averages reported by Lonard et al. (1991).  The average 
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annual temperature was 0.64 oC higher and average total annual precipitation was down 

12.81 cm during the four-year period.  Correlation analyses revealed strong relationships 

between relative abundance and mean monthly air temperature (r = 0.897, N = 12, P < 

0.001) and mean monthly photoperiod (r = 0.851, N = 12, P < 0.001), but not mean total 

monthly precipitation (r = 0.311, N = 12, P = 0.326).  Multiple regression analysis did not 

reduce error below that predicted by mean monthly air temperature alone, probably 

because photoperiod was colinear with air temperature.  While precipitation was not 

colinear, partial correlation after holding air temperature constant was not significant (r = 

0.004, df = 9, P = 0.991). 

 

Population Structure. Only 175 capture records fit the conditions to be included in the 

population structure analyses.  Thus 21 records come from individuals that were 

recaptured in at least one other calendar year and counted in the snapshot of the 

population structure for that year (Table 5).  The results from combining the snapshots 

from all years follow. 

The sex of 13 juveniles was either not known or not recorded (Fig. 8).  Of the 

individuals that were sexed, the majority of males captured in traps (approximately 85%) 

were between 55.0 and 95.0 cm (Fig. 8).  No males were observed in categories greater 

than 95.0 cm.  In contrast, captured females were distributed somewhat evenly among the 

size categories ranging from 45.0 to 115.0 cm (Fig. 8).  Approximately 47% of females 

were between 55.0 and 95.0 cm, and almost 30% of females were greater than 95.0 cm.  

Of the 13 individuals not sexed, 11 were young of the year as they were less than 35 cm 

and captured between 25 July and 17 October.  The mass structure (Fig. 9) shows that 
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females had a broader range of masses and attained much greater masses than did males.  

The largest female was 3.7 times the mass of the largest male (Table 5), although no 

attempt was made to separate gravid from no-gravid females.  Approximately 86% of 

males and 37% of females had masses ranging from 101-500 g.  While one male was just 

greater than 500 g, approximately 45% of females attained such masses. 

 An age structure (Fig. 10) was generated based on power growth models (see Size 

and Growth below).  The age structure suggests that approximately 55% of all 

individuals captured were one and two year olds.  Only 3% of males and 23% of females 

were greater than five years old.  Individuals less than one year old likely were 

underrepresented making up only 5% of the sample.  Even when the 11 unsexed juveniles 

less than 35 cm SVL are added, young of the year make up only about 11% of the 

sample.  Thus all proportions in this age class analysis are biased against the greater 

weight of the 0-1 year old age class. 

 Sex was determined for 142 of 154 individuals captured.  Sixty-one individuals 

were recorded as male and 81 individuals were recorded as female.  This ratio, while 

favoring females, did not differ from unity (χ2 = 2.54, df = 1, P = 0.111).  When 

excluding juveniles from analysis, a ratio of 58 individual adult males to 69 individual 

adult females was observed which did not differ from unity (χ
2 = 0.787, df = 1, P = 

0.375).  A separate analysis of those juveniles that were sexed (n = 25) showed that the 

sex ratio (7M:18F) was weakly female biased (χ
2 = 4.00, df = 1, P = 0.0.046).  When all 

records including recaptures were combined, males were captured on 105 occasions and 

females were captured on 128 occasions.  The overall male to female capture ratio did not 

differ from unity (χ2 = 2.27, df = 1, P = 0.132). 
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When sex ratio is examined by month (Fig. 11), slightly more individual males 

were observed in April and May, and more individual females were observed in August 

and September.  The sex ratio in August was significantly skewed in favor of females (χ2 

= 7.042, df = 1, P = 0.008).  When captures were pooled by season excluding recaptures 

within a season, the overall male to female ratio was 99:124 and did not differ from unity 

(χ2 = 2.80, df =1, P = 0.094).  When the pooled data were examined by season, only the 

ratio in late summer (August-September) was significantly female biased (15M:37F, χ2 = 

8.48, df =1, P = 0.004).  In all other seasons, the ratios did not differ from unity (P ≥ 

0.487 for other seasons). 

 

Biomass. The average mass used to determine biomasses for each sampling period was 

396.3 g/snake.  Biomass values ranged from 0.3 kg/ha in October 1998, to 6.4 kg/ha in 

August 1996.  The average biomass calculated from individual biomass values for each 

sampling period was 2.60 kg/ha.  As expected, biomass for Willow Lake N. rhombifer 

varied with density (Table 4), thus the values are apparent and related to snake activity in 

the trapping grids. 

 

Reproduction. Seventy-one females and 54 males were collected for the reproductive 

study (Table 6).  Of these individuals, 21 females displayed some form of reproductive 

activity (i.e., had enlarged follicles, oviductal eggs or embryos, or evidence of recent 

parturition in the uterus) and 53 males had sperm in the ductus deferens.  Reproductive 

females ranged from 75.5 to 112.7 cm SVL and 494.0 to 1564.5 g, while mature males 

ranged from 51.8 to 78.8 cm SVL and 86.1 to 481.4g. 
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 Three litters were born in the lab to females ranging from 83.0 to 89.0 cm SVL; 

birth dates were from 19 July to 12 September (Table 7).   Litter sizes were 12, 14, and 

17, and overall female to male sex ratio was 20:22 (χ
2 = 0.024, df = 1, P = 0.877).  The 

sex for one underdeveloped neonate was not determinable.  For the three litters 

combined, the mean neonate size (±1 SE) was 22.4±0.32 cm SVL (range: 17.3-25.0 cm) 

and mean neonate mass (±1 SE) was 9.05±0.32 g (range: 3.10-11.57g). 

 Enlarging follicles were observed as early as 27 May, oviductal eggs as early as 

31 May, and oviductal embryos as early as 28 June.  Vascular spots in the uterus were 

observed as late as 30 September, which is likely a conservative date for the termination 

of the reproductive season (Fig. 12A).  Males showed an increase in average testicular 

mass from mid-August to late October and perhaps into November (Fig. 12B).  This 

indicated that spermatogenesis in males occurred while females were still gravid or 

giving birth. 

 The three litters born in the lab and the dissections of 14 females provided 

estimates of litter size.  The average litter size (±1 SE) for Hidalgo County, Texas was 

15.4±2.03 (N = 17) and ranged from four to 39.  The average female size (±1 SE) was 

91.66±2.912 cm SVL.  Litter size was strongly correlated with female SVL (r = 0.721, N 

= 17, P = 0.001).  Despite female Nerodia rhombifer from Hidalgo County being larger 

in SVL compared to populations from east-central Texas, and Veracruz, Mexico, but not 

Arkansas, mean litter size ranked lowest (Table 8).  A general linear model (GLM) 

procedure testing for the interaction between female SVL and location among 

populations indicated that the slopes of the regressions of litter size versus female SVL 

were homogenous (Fig. 13; F3,55 = 1.59, P = 0.202).  After controlling for female SVL, 
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there was a significant difference in litter size among populations (ANCOVA: F3, 58 = 

6.98, P < 0.001).  Pairwise comparisons of the marginal means for litter size suggested 

that N. rhombifer from the south Texas population had significantly smaller litter sizes 

than both the Arkansas and Veracruz populations, but not the east-central Texas 

population (Fig. 14). 

 

Sexual Size Dimorphism.For size comparisons, if an individual was captured more than 

once only the first capture was used to meet the assumption of independence.  On 

average, females were larger than males for both SVL and mass but not TL (Table 9), but 

because population structure may influence comparisons of means while investigating 

sexual size dimorphism, comparisons of upper percentiles may be more instructive (Case, 

1976).  A Mann-Whitney U test indicated that the upper-quartile female SVL, (median = 

106.0 cm, range = 97.3-120.0 cm, N = 19) were significantly greater than that for males 

(median = 82.0 cm, range = 76.8-93.5, N = 16; U = 0, P < 0.001). 

 Tail length and SVL were positively correlated for both females and males (Fig. 

15).  After controlling for the effects of SVL, males had significantly greater TLs than 

did females (ANCOVA: F1, 135 = 16.07, P < 0.001).  Mass and SVL were strongly 

correlated for both sexes after log transforming the data (Fig. 16).  However, the slopes of 

the regression lines were not homogenous (GLM interaction term sex*SVL: F1, 134 = 

4.75, P = 0.031), indicating that females gained mass at greater rates than did males. 

 For three litters born in the lab (Table 10), there was a significant influence of 

maternal female on neonate SVL, but SVL did not differ between sexes (Table 11).  A 

graphical analysis showed a tendency for larger females to produce both larger male and 



25 
 

 
 

female offspring (Fig. 17).  There were strong positive correlations between neonate SVL 

and neonate TL (r = 0.840, N = 42, P < 0.001) and between SVL and mass (r = 0.937, N 

= 42, P < 0.001).  Neonate mass and neonate TL also were strongly influenced by 

maternal female (as expected from proportional relationships between these measures of 

size and SVL), but after accounting for both SVL and maternal female effects, only TL 

was significantly different between the sexes (Table 11); males had longer TLs 

(Estimated Marginal Means (±1 SE) for TL at 22.6 cm SVL: male = 6.95±0.055 cm, 

female = 6.21±0.067 cm). 

 

Growth. The power model best fit the growth data, while the Von Bertalanffy models 

explained the least amount of variation associated with size related growth rates (Table 

12).  Because of a violation of the assumption of independence (some repeated measures 

were used) the regression lines were not compared to make formal inferences about 

growth rates between males and females.  Although there was no significant difference in 

growth rates, lnG, between males and females after controlling for size, lnS (ANCOVA: 

F1, 64 = 2.141, P = 0.148), considering that growth rates were highly variable, the 

regression lines suggest that females grew faster at a given size than males and that the 

rates decreased with increasing size (Fig. 18).  Nonetheless the top three models were 

integrated for visual comparisons (Fig. 19).  Since only the power growth curves were 

used to construct the age structure above (Fig. 10), only those equations are provided: Fig 

19A; females: ��in mm� � 
8.405E6���� �in days� � 320.9� !.!"#$%
; males: 

��in mm� � 
6.106E6���� �in days� � 309.5� !.!'!$%
.  The equations for the other 

growth curves can be constructed using the relationships between the regression 
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coefficients and the respective differential and integrated growth equations (Tables 2 and 

12).  All growth curves show that females grew at faster rates than males.  The growth 

rates for males declined more rapidly, diverging from females at between 1 and 2 years of 

age.  The asymptotic growth rates for males occurred at approximately 93 cm and 102 cm 

for the logistic and Gompertz curves respectively (Fig. 19B and 19C).  For females, a 

rapid decrease in growth occurred at about 2.5 years of age for all curves, but the logistic 

and Gompertz models approached asymptotic growth at approximately 106 cm and 111 

cm, respectively (Fig. 19B and 19C). 

Because specific growth rate (G) is considered to be a percent increase in size per 

day (Kaufmann, 1981), the associated regression equations from Table 12 can be used to 

estimate this parameter.  This was done for the power model.  As expected from the 

regression coefficients, females grew at faster rates measured as a percent of body length 

than males at comparable sizes and both male and female specific growth rates decreased 

with size (Table 13). 

 

Lipids.  Females were significantly larger and had significantly more fat stored in body 

cavities than males (P < 0.001 for all comparisons; Table 14).  In males (N = 52), fatbody 

mass (FBM) was positively correlated with both SVL (r = 0.487, P < 0.001, Fig. 20A) 

and body mass (r = 0.689, P < 0.001, Fig. 21A).  Females also a showed positive 

relationship between FBM and both SVL (r = 0.438, N = 42, P = 0.024; Fig. 20B) and 

body mass (r = 0.636, N = 41, P < 0.001, Fig. 21B). 

The fatbody index (FBI) was strongly correlated to the residual index from the 

regression of FBM against body mass (BM; Fig. 22), therefore FBI appeared to 
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adequately control the effects of body size on FBM.  Scatter plots of FBI by date showed 

that FBI values for males were generally lower in spring but began to increase by mid-

summer (Fig. 23 A).  Quiescent and reproductive females did not appear to have a 

discernable pattern although data for spring and mid- to late-fall were limited (Fig. 23 B).  

When FBI values were grouped by month, differences in FBI values among months were 

significant for males (Kruskal-Wallis test: χ
2 = 21.70, df = 7, P = 0.003; Fig. 24 A) but 

not for females (Kruskal-Wallis test: χ2 = 8.78, df = 7, P = 0.269; Fig. 24 B). 
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CHAPTER IV 
 
 

DISCUSSION 
 
 

Capture Frequencies.While there was an overall recapture rate of approximately 33% 

(range = 0 - 100%), the actual number of captures per sampling period was low (mean = 

7.7, range = 0 - 19).  Six of the periods had no captures and half of all trapping periods 

had no more than five total captures.  Such low rates of capture appear to be common 

among studies of snake populations.  Parker and Plummer (1987) cite reduced 

“tractability” when compared to studies involving other types of animals.  They mention 

four factors for this reduction which include often being inconspicuous and nocturnal, 

having inactive periods, low apparent densities, and displaying irregular and extensive 

movements.  Sampling aquatic snakes may add an additional dimension of lessened 

tractability as their habitat is a virtually hidden, three-dimensional space.  For example, 

using a similar method of trapping as in this study, Keck (1998) had a return of just 12% 

of 284 semi-aquatic snakes that were originally marked.  The snake species in his 

samples in order of decreasing capture frequency included N. rhombifer, Nerodia 

erythrogaster, Nerodia fasciata, and Agkistrodon piscivorus. 

 

Absolute Abundance. The population size estimates (Table 4) likely have bias, low 

precision, or both.  To better explain the bias in the Schnabel estimate, it may be easier to 

view all mark-recapture estimates as being based on the Lincoln-Peterson method: the 
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proportion of marked animals in a subsequent sample, 
()

*)
, is directly related to the 

proportion of all animals previously marked in the population, 
(%

+
 (Greenwood, 1996).   

 

Thus,  

 ,- �
(%*)

()
   Equation 2 

 

If capture rates are low, especially recapture rates as in other snakes (Parker and 

Plummer, 1987), the population size estimates, ,-, will be positively biased.   

The Schnabel estimates generally increased over the study period from August 

1995 to November 1998, probably because of recruitment by way of births (or at least 

individuals moving up into the catchable population) and migration was likely.  Quite 

simply, the snakes from the Willow Lake population were moving into and out the 

trapping grids from throughout the lake.  Given a reasonably sized population, it may be 

that more unmarked snakes immigrated into the grid than emigrant-marked snakes were 

reentering.  Since the Schnabel model does not provide for losses with replacement in 

study populations (definition of a closed population), recruitment before a sampling 

period would continue to decrease the ratio of marked to unmarked snakes in each of the 

subsequent samples over the duration of the study.  Assuming that the probabilities of 

natural mortality for both marked and unmarked snakes are the same, which would not 

affect the estimation (Hayne, 1949; Krebs, 1998), the decreasing ratio would cause the 

observed increase in the Schnabel estimates over time.  Emigration away from not just 

the trapping grids but from Willow Lake entirely, while less likely for N. rhombifer than 

for other semi-aquatic snakes (Hebrard and Mushinsky, 1978; Keck, 1998), would have 



30 
 

 
 

the same effect as natural mortality unless marked animals are more likely to emigrate or 

emigrants are replaced from outside.  In which case, the result would further dilute the 

number of marked animals available for recapture and also cause a positive and 

increasing bias in consecutive estimates. 

The bias associated with the population size estimates discussed for the Schnabel 

method should be removed with the Jolly-Seber method since it is designed for open 

populations (Krebs, 1998).  For a series of at least three trapping periods, the bias is 

handled by the addition of an estimate of the number of individuals marked in the 

population at the time of sampling (.-).  The estimated number of marked animals 

includes three new terms: the number of animals marked and captured before a sample 

but not captured until a future sample is taken (z), the number released at the time of 

sampling (R), and the number of released from the current sample (i.e., R) of which a 

number (r) are subsequently captured.  The estimate is calculated as follows: 

 

.- �
/0

1
2 3  Equation 3 

 

And the Jolly-Seber population size estimate is then, 

 

,- �
*4-

(
�

*/0

(1
2 5  Equation 4 

 

In Equations 3 and 4, n and m are the same as n2 and m2 from Equation 2.  The 

difference is that the number marked previously, m1, is now replaced with the estimate 

.- .  This adjustment allows for flux in the proportion of marked animals which occurs in 
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real (open) populations.  Thus the Jolly-Seber estimates for N. rhombifer in Table 4 

should be unbiased assuming that all individuals have an equal probability of being 

captured, an assumption of all mark-recapture estimators mentioned (Jolly and Dickson, 

1983).  While the Jolly-Seber population estimates here may be free of bias, there is 

virtually no confidence in them as the percent relative precision (Greenwood, 1996) for 

the population estimates ranged from 118-1600%.  The extremely broad confidence 

limits are a consequence of small sample sizes that result in large standard errors for 

population estimates (Parker and Plummer, 1987). 

The reason for the significant decrease in the Jolly-Seber population size 

estimates for 1998 is not entirely clear (Table 4).  However, during the mid-1990s, the 

region suffered a string of drought years.  Because local waterways such as resacas, 

irrigation canals, and wetlands are artificially flooded from reservoirs upstream from the 

portion of the Rio Grande that borders southern Hidalgo County, N. rhombifer 

populations are not likely to suffer significantly during dry years.  But, as competition for 

dwindling reservoir water increased during the mid-1990s, local water authority 

restrictions caused Willow Lake to dry up in late 1997.  Consequently, trapping effort 

was halted by September 1997.  It is likely during this period that individuals of the 

Willow Lake N. rhombifer population either migrated or perished.  Indeed, one 

previously marked individual from Willow Lake was captured approximately 500 m 

away in a low laying pond (Pintail Lake) that still contained water during the 

intermission.  This may help explain the significant drop in Jolly-Seber population 

estimates when Willow Lake was again flooded and trapping resumed in March 1998. 
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The MNA has no estimate of precision because it is an enumeration method.  

Jolly and Dickson (1983) have shown that the use of MNA as a measure of population 

size will consistently provide underestimates.  At best, when catchability is high MNA 

approaches the true population size (Krebs, 1998).  The Jolly-Seber population estimate 

,- will be equal to MNA when the following condition is met: u = R – r = 0; where u is 

the number of unmarked individuals in the sample (Jolly and Dickson, 1983).  Thus from 

Equation 4, when m = n and R = r,  ,- = z + n = MNA.  This may be illustrated with 

tortoises which may be considerably more catchable than snakes.  In a population study 

of the Texas tortoise Gopherus berlandieri (Judd and Rose, 1983) all five MNA values 

reported were negatively biased (percent difference range: 0.60 – 43%), however four of 

the five annual estimates had a percent difference of less than 19%.  In contrast, all but 

one of 28 monthly MNA values for this N. rhombifer population were more than 40% 

lower than the Jolly-Seber estimates (percent difference range: 0 – 87%).  The one 

exception was in December 1996, when no snakes were captured despite 204 trap-days of 

effort that month.  In this case, MNA was equal only to z, i.e. previously marked snakes 

that were later captured in subsequent trapping periods.  Thus in December 1996, at least 

12 snakes were known to be alive even though there was no apparent activity in the 

trapping grids. 

The biases and low precisions of the population estimates for N. rhombifer in this 

study (Table 4) limit their use for species management or studies involving population 

and community dynamics.  Caution should be taken when using these reported values to 

calculate density and biomass, not only in recognizing the errors previously discussed but 

also recognizing that the study area is greater than that of the two grids as individuals 
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regularly moved into an out of the grids.  Using merely the areas of the grids will most 

likely introduce a positive bias inflating density values (Krebs, 1998) and further 

confound the interpretation of the original abundance estimates.   

There are four lines of evidence that justify both combining the data from the two 

grids (see methods) and using the area that makes up all the impoundments of Willow 

Lake to estimate the density for the N .rhombifer population.  First, snakes readily moved 

from one grid to the next.  Of 154 individuals that were recaptured, 23 were captured at 

least once in each of the grids.  Four were recaptured in the other grid the very next day.  

Four individuals were captured in one grid, then recaptured in the other grid, and then 

recaptured again in the original grid of capture.  Second, the total area of the of Willow 

Lake is approximately 7.2 ha which is just above the upper home range limit reported by 

T. Michot for N. rhombifer in Louisiana (Keck, 2004).   Keck (2004) also reported a 

mean range length (maximum distance between any two points) of 678 m.  Third, other 

investigators reported that N. rhombifer was typically found no greater than 2-3 m away 

from the water (Diener, 1957; Hebrard and Mushinsky, 1978; Keck, 1998).  Lastly, in 

this study, there were 155 captures recorded in rows 3, 4, and 5, with offshore 

distances−perpendicular from the main grid axes−of about 20, 30, and 40 m, respectively, 

suggesting that snakes were not limited to near shore water.   

Conceptually, the entire lake can be viewed as a large cauldron in which marked 

snakes mixed back into the population.  As snakes went about their activities during 

trapping periods, the grids acted as a sieve in which random samples of the mixture were 

taken.  Because there is no evidence to suggest that snakes were not using the entire area 

of Willow Lake or to a significant degree were not restricted to the area of Willow Lake 
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where the traps were located, the most conservative density estimate should then use the 

entire area (7.2 ha) of Willow Lake.  A less cautious density estimate would use only the 

areas of the impoundments where the trapping grids were located, approximately 5.5 ha. 

Using the most conservative value for the size of study area, the maximum 

density for N. rhombifer at Willow Lake is 16.1 snakes/ha (Table 4).  The one attempt at 

estimating density for N. rhombifer from Louisiana was reported as a linear density of 

180.7 snakes/km (Hebrard and Mushinsky, 1978).  Because the value is given as a linear 

density and some details regarding the application of the population estimation method 

were left out, it is difficult to make comparisons.  However, given the description of the 

Louisiana study site and using the same rationale in determining the study area above 

(see also Fig.2 of Laurent and Kingsbury, 2003: 27% of N. rhombifer were observed > 15 

m offshore), the linear density estimate converts to a true density estimate of 24.1 

snakes/ha, a value slightly higher than the Willow Lake population. 

There are few reports on the densities for snakes of the genus Nerodia (Gibbons 

and Dorcas, 2004), probably because of the difficulty in obtaining adequate capture-

recapture data.  However, Brown and Weatherhead (1999) estimated values of 25 and 28 

individuals/ha for N. sipedon which are comparable to 24.1 snakes/ha (calculated from 

Hebrard and Mushinsky, 1978) and the maximum estimate of 16.1 snakes/ha for this 

study.   In contrast, Fitch (2000) reported a density of 0.30 individuals/ha for N. sipedon 

from Kansas and King et al. (2006) reported a median density of 141 individuals/ha 

(range: 11-1107 individuals/ha) for the Lake Erie watersnake, N. sipedon insularum, 

representing extreme density values for the genus.  Of the density estimates reviewed by 

Parker and Plummer (1987) for 57 snake populations, half were ≤ 5 individuals/ha of 
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which almost three quarters were ≤ 1 individual/ha.  Thus the maximum density 

estimated for Willow Lake N. rhombifer in this study of 16.1/ha is well above the 

median.  However, higher densities have been reported for other snakes including those 

mentioned above for N. sipedon, 20 individuals/ha for tiger snakes Notechis scutatus 

(Bonnet et al. 2002), 107 individuals/ha for the plains gartersnake Thamnophis radix 

(Stanford and King, 2004), 430 individuals/ ha for the rough green snake Opheodrys 

aestivus (Plummer, 1985), and 1289 individuals/ha for the striped crayfish snake Regina 

alleni (Godley, 1980). 

 

Relative Abundance and Seasonality. Because capture rates may be considered indices 

of relative abundance and short-term changes in abundances are often  influenced by 

activity patterns (Parker and Plummer, 1987; Willson et al., 2008), the observed capture 

rates for N. rhombifer at Willow Lake strongly suggest that activity varied significantly 

among months (Figs. 4A and 5A-C).  However, the activity pattern was not apparent 

from absolute numbers of monthly captures until they were corrected for monthly 

sampling effort (Table 1).  For adult and juvenile N. rhombifer combined, activity 

appeared to have two peaks, one in late spring-early summer and the other in early fall 

(Fig. 4B).  Thus, N. rhombifer from Willow Lake may exhibit a slightly bimodal activity 

pattern, one of two typical activity patterns seen in temperate zone snakes such as 

Heterodon spp. and Virginia valeriae (Gibbons and Semlitsch, 1987).  Interestingly, 

other semi-aquatic snakes belonging to the closely related genera Regina and Seminatrix 

as well as congeners may exhibit a unimodal pattern with most activity occurring in 

spring and early summer (Gibbons and Dorcas, 2004).  However, Seminatrix pygea from 
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South Carolina may also have a bimodal activity pattern, though data collection from this 

population occurred only during one field season (Winne et al., 2005).  Indeed, inter-year 

variation in relative abundances can influence attempts to describe activity patterns in 

snake populations.  For example, in this study, in September of 1995 N. rhombifer were 

captured at a rate of 0.17 snakes/trap⋅day but in September of 1998 N. rhombifer were 

captured at 0.024 snakes/trap⋅day, an apparent 7-fold drop in activity.  The reason for 

such a drastic change in relative abundance is not clear but highlights the importance of 

considering the duration of sampling regimen when generalizing activity patterns for 

populations using capture frequencies. 

When comparing geographically distinct populations of N. rhombifer specifically, 

there appears to be no pattern in peak activity with latitude (Fig. 25).  There were two 

major peaks in activity for the tropical Veracruz population (Manjarrez and Garcia, 

1991), the first in April and the second in June.  For subtropical south Texas, activity 

appears to initially peak in May, but remains high through September.  In Ascension 

Parish, Louisiana, N. rhombifer displayed a pronounced peak of activity in July 

(Mushinsky et al., 1980), while in Titus County, Texas peak activity appeared to happen 

earlier in June (Keck, 2004).  In all populations, activity apparently decreases 

precipitously by early to mid-autumn and remains low through winter and early spring.  

The unusual peak in September for Hidalgo County, Texas (this study; Fig. 25) may be at 

least in part due to several neonates occurring in the September samples (Fig. 3), however 

even when all juveniles were excluded and adults examined separately a second peak in 

activity still remained in September.  Therefore, N. rhombifer from extreme south Texas 
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may have an extended and sustained period of peak activity as measured by relative 

abundance. 

The comparisons of seasonal activity among populations may be confounded by 

biases associated with sampling techniques (Keck, 1994), yearly variation in 

climatological factors (Manjarrez and Garcia, 1991), and seasonal changes in behavior of 

subpopulations (Fitch, 1987).  For example, while not the objective of their study, the 

peaks in activity observed by Manjarrez and Garcia (1991) occurred during the dry 

season when water pools were drying, concentrating the fish the watersnakes were 

preying upon.  Further, the two peaks calculated in Fig. 25 were the result of averaging 

two years of data collected by the investigators in which the peak abundance shifted from 

July in one year to April in the next.  The authors attributed this change in peak activity 

to annual variation in temperatures and water levels (Manjarrez and Garcia, 1991).  Thus 

the bias here resulted from major changes in available habitat to the population making 

among season comparisons of abundance within the population and among the other 

three populations of N. rhombifer (Fig. 25) difficult. 

In comparing the three other populations N. rhombifer from the United States 

(Fig. 25), there is evidence that suggests that the use of funnel traps to sample semi-

aquatic snakes may be biased to sampling foraging snakes as the traps can become 

naturally baited (Keck, 1994; Winne, 2005).  However, even if snakes are engaged in 

other activities associated with fitness such as basking or mate searching (Gibbons and 

Semlitsch, 1987), separating the behaviors on the time scale in which the naturally baited 

traps mechanically sample snakes may not cause biases that would affect comparisons of 

seasonal activity patterns.  For example, springtime males that may forego foraging to 
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search for mates may actively pursue foraging females into traps (cf. Zamora and 

Valadez, 2007).  Indeed, multiple snakes of both sexes were captured in individual traps 

on several occasions during sampling.  Furthermore, individual N. rhombifer have been 

observed basking while others are foraging (pers. obs.).  

With respect then to these possible biases, although the N. rhombifer population 

from Hidalgo County in this study and the population from northeastern Texas were 

sampled with naturally baiting funnel traps while the population from Louisiana was 

sampled by active searches (thought to favor capture of  basking snakes by Gibbons and 

Dorcas, 2004), any biases associated with either technique should not influence relative 

abundances so long as the techniques were systematically used throughout the respective 

studies.  Therefore, the differences in activity patterns discussed above as measured by 

relative abundances should represent actual disparities among the three populations at 

least for the years in which the respective populations were sampled.  The extended 

period of activity and bimodality seen in south Texas N. rhombifer were strikingly similar 

to other snakes from the Everglades National Park, Florida (Dalrymple et al. 1991), an 

area with a similar subtropical climate to south Texas. 

Although N. rhombifer was not captured in January and December in some 

studies including December for this one (Fig. 25), other authors have anecdotally 

reported this species to be active throughout the year (Aldridge et al., 1995; Tu and 

Hutchison, 1995).  Vermersch and Kuntz (1986) wrote that in Bexar County of south-

central Texas this snake has been observed basking on branches a few feet above water in 

mid-winter when air temperatures were above 21.7 oC.  This is consistent with the 

generalization that species which hibernate for long periods of time in the coldest regions 
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of their range may hibernate for shorter periods in warmer areas, even becoming 

intermittently active during the cold season (Gregory, 1982).  It seems reasonable then 

that the lack of captures in this study for December was due to reduced activity in the 

cooler months coupled with low capture rates in the trapping girds (Table 3). 

Of the meteorological variables examined, temperature explained the most 

variation (80.4%) in activity for Willow Lake N. rhombifer.  Photoperiod also explained a 

significant amount of variation (72.4%) in activity.  The difference in explanatory power 

may be due to lag in air temperature change when compared to change in photoperiod 

(Fig. 7).  This strong influence of temperature on activity in reptiles is well documented 

(Gregory, 1982) and likely due to environmental constraints on the ability of snakes to 

regulate body temperatures that optimize important activities such as digestion, 

reproduction, predatory escape, and growth (Lillywhite, 1987).  It is important to point 

out that the correlations between relative abundance and the meteorological variables 

were performed on average values across years for each month thus dampening annual 

variation in activity patterns.  When the data were reanalyzed by year, temperature 

explained only 36.1% of the variation in relative abundance highlighting inter-year 

variation in activity.  Thus, within years there is much unexplained variation in activity 

which may be due in part to the limitations of the sampling design (2 to 5 field 

days/month), especially as snake activity can vary greatly from day to day within a 

season (Brown and Shine, 2002). 

That precipitation had no apparent influence on this population should not 

eliminate this factor from consideration especially in areas that experience wet and dry 

seasons (Reynolds, 1982; Manjarrez and Garcia, 1991; Brown et al. 2002).  Historically, 
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before anthropogenic influence, the local hydrologic cycle which included overflows of 

the Rio Grande may have had a strong influence on N. rhombifer abundance.  On a broad 

time scale, though, the extended activity period for Willow Lake N. rhombifer may be 

most influenced by shorter and milder winters. 

The activity patterns varied among subpopulations.  All groups showed dips in 

activity in July or August (Fig. 6A-C).  The general causative factors for this reduction 

are not clear as any risk from reaching upper thermal tolerance limits are reduced by the 

apparent nocturnal activity of N. rhombifer (Mushinsky et al., 1980).  However, the peaks 

for each group may be explained by differences in the types of activities occurring within 

each group.  Most of the activity for juveniles should be associated with acquiring energy 

for growth.  The increased peak in late summer and early fall is at least in part due to the 

inclusion of young of the year in the samples for August and September (Figs. 3 and 6A).   

This has been observed for other viviparous snakes (Dalrymple et al., 1991).  In 

northeastern Texas, Keck (2004) also observed greater than expected numbers of juvenile 

N. rhombifer during July-September, although statistical significance was observed only 

in mid-summer.  As mentioned earlier, this also helped contribute to the second peak 

activity for the overall Willow Lake population (Figs. 4B and 25). 

  The peak for adult females in May and relatively sustained activity until 

September (Fig. 6B) are consistent with female Nerodia continuing to feed throughout 

the reproductive season (Aldridge and Bufalino, 2003).  For specimens collected for the 

reproductive study outside of the refuge, three reproductive females, one vitellogenic, one 

with oviductal eggs and one with embryos, had food items.  While this constituted a 
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small percentage (20%) of reproductive females sampled, the individuals were collected 

by hand while active and presumably foraging. 

Adult male Nerodia rhombifer were more bimodal in activity than adult females 

and reached peak activity in April, at least a month before females (Fig. 6B and C).  The 

earlier activity is presumably due to aphagic male mate searching (i.e., non-feeding males 

regardless of proximate factors but correlated to mating activity) at the start of spring 

activity followed by resumed feeding later in the active season (Gibbons and Semlitsch, 

1987; O'Donnell et al., 2004).  It is interesting that Willow Lake male N. rhombifer were 

readily captured during the months of April and May (Fig. 6C) when mating is reported 

to occur (reviewed by Keck, 2004; Zamora and Valadez, 2007).  Conversely, Winne 

(2005) observed an underrepresentation of males in early spring samples of funnel-

trapped S. pygaea.  He hypothesized that the funnel traps, which become naturally baited 

(Keck, 1994; Winne, 2005), were biased toward capturing foraging females and that 

males were foregoing feeding to search for females.  If this is true and male N. rhombifer 

do not take food during the breeding season, then male N. rhombifer may be more likely 

to pursue foraging females into traps than male S. pygaea.  There may be, of course, other 

possibilities to explore in both cases; male pursuit of females into traps provides a 

possible solution to this inconsistency. 

 

Population Structure. Other than a few accounts of sex ratios, there are no reports 

detailing population structure for N. rhombifer.  This may be due in part to the difficulty 

in sampling all age groups, especially juveniles, which are typically underrepresented 

from field captures (Parker and Plummer, 1987).  This was true for this study as at most 
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10% of the sample was made up of young of the year (including the 11 unsexed 

juveniles).  This was due at least in part to the funnel traps themselves which have been 

shown to have increased escape rates for smaller snakes either through the funnel 

opening or directly through the mesh from the hardware cloth used to construct the traps 

(Willson et al. 2005).  Indeed one such event was observed when a neonate became stuck 

in the mesh because of the bulge in the abdomen from a recently ingested prey item.  

There was, however, no reason to suspect that the traps used in this study were excluding 

larger class sizes from sampling (cf. Willson et al., 2008).  Therefore, all size groups 

greater than young of the year cohort were assumed to be captured roughly according to 

their proportion in the population. 

The difference in size distributions between female and male Willow Lake N. 

rhombifer (Figs. 8 and 9) was expected as members of this genus exhibit female biased 

sexual dimorphism (Gibbons and Dorcas, 2004).  The extent of this dimorphism for 

Willow Lake N. rhombifer is discussed below.  Ecologically, this difference is 

significant.  Including juveniles, females made up approximately 75% of the population 

biomass.  Even if more juveniles were captured, this estimate would probably not change 

much.  Thus, female watersnakes are significant in contributing to productivity, probably 

serving as important links in matter cycling and energy flow in the Willow Lake 

ecosystem (Pough, 1980).  As with other snakes, the size differences allow for the 

exploitation of different food sources (Mushinsky, 1987).  Because juvenile, male and the 

larger female N. rhombifer may partition food by size (Kofron, 1978; Plummer and Goy, 

1984; Manjarrez and Garcia, 1991), size may dictate where these subpopulations forage 

(Mushinsky et al., 1982).  The small number of juveniles observed during sampling could 
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also be partially explained if traps were not placed in areas where juveniles regularly seek 

prey. 

The age structure for Willow Lake N. rhombifer (Fig. 10) reflects the paucity of 

juveniles in samples, however assuming that proportion of individuals assigned to each 

age group by the sex-specific growth curves (see below) is representative of a relatively 

stable population over the four years of field work some useful information may be 

inferred.  Using the further assumption that yearly survivorship rates are constant at ages 

≥ 1, the inverse mortality rates can be estimated with simple exponential decay (Fig. 26).  

The data suggest that after age 1 is reached, annual mortality rates are higher for males 

(56%) than for females (30%).  Overall, the annual mortality rate is high at 45%, thus 

annual survivorship is low.  This and other data associated with reproduction and growth 

are consistent with demographic characteristics exhibited by other early-maturing 

colubrids: low adult survivorship, low longevity, short cohort generation time, high 

fecundity, and annual reproduction (Parker and Plummer, 1987).  Although information 

on population structures for Nerodia species is limited (Gibbons and Dorcas, 2004), the 

age structure for Willow Lake N. rhombifer appears to agree well with the age structure 

reported for a population of N. sipedon from Kansas (Fitch, 2000) suggesting similarities 

in mortality schedules.  Because juveniles from age group 0-1 yr are likely 

underrepresented in the sample the mortality rates presented here are probably 

underestimates.  Thus annual survivorship may be lower. 

The overall primary sex ratio for the three litters born in the lab did not differ 

from unity (Table 7).  The secondary sex ratios varied somewhat depending on the way 

the sample was broken down.  In examining the total number of individuals captured 



44 
 

 
 

throughout the study (excluding any records of recapture) no significant differences were 

found for the entire population (61M:81F) or for adults only (58M:69F).  While neither 

was significant, the slightly female-favored overall secondary sex ratios may due to 

higher mortality rates from males (Fig. 26).    The skewed sex ratio in August (Fig. 11) 

was due to greater activity of females compared to males.  Alternatively, males displayed 

greater increases in activity in beginning in early spring (April-May) while female 

increases lagged until May-June (Figs. 6B and C).  The earlier increases in male activity 

are echoed by the shift in male to female sex ratios from > 1.0 in April and May to < 1.0 

in June (Fig. 11), but these differences were not significant.  The early spring activity for 

males is likely due to mate searching (Gibbons and Semlitsch, 1987).  Such early male 

activity has been observed in another population of N. rhombifer (Keck, 2004).  But the 

reason for the abrupt decline in male activity in August that led to a female biased sex 

ratio for that month is not readily apparent. 

 

Biomass. Explanations for the proximate factors influencing variability in densities 

among populations discussed above are largely absent.  Nevertheless, better insight may 

be gained by examining biomass and secondary productivity.  The maximum biomass 

calculated for the Willow Lake population of N. rhombifer, 6.4 kg/ha, ranks among some 

of the highest values available for snake populations.  Iverson (1982: Table 2) reviewed 

estimates of biomass for 38 snake populations; the maximum was 4.6 kg/ha.  Other high 

biomass estimates include 6.3 kg/ha for N. scutatus (calculated from Bonnet et al. 2002), 

7.1 kg/ha for O. aestivus (Parker and Plummer, 1987), and 30 kg/ha for R. alleni (Godley, 

1980).  At the other extreme, some snake populations may have standing crops one to 
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two orders of magnitude lower (see Fitch, 2000).  Among the likely proximate factors 

influencing the unusually high density and biomass for R. alleni include extraordinarily 

high primary productivity, its trophic position and its relation to highly abundant prey, 

nearby alternative exploitable habitats, and reduced competitive and predatory pressures 

(Godley, 1980). 

With exception of herbivorous mammals, the maximum biomass for Willow Lake 

N. rhombifer exceeds that of other mammals and all birds reviewed by Iverson (1982).  

Ultimately, such a high biomass is to be expected as ectothermic vertebrates have lower 

energy requirements and comparable, if not higher, productivity rates than most 

endotherms (Pough, 1980).  The population structure for Willow Lake N. rhombifer (see 

above) is typical of early maturing colubrids with high mortality rates (Parker and 

Plummer, 1987).  Assuming a stable population, this would suggest a relatively high 

population turnover requiring a necessarily high productivity.  While the density estimate 

on which the biomass calculation is based is preliminary, it appears that, N. rhombifer 

plays a significant role in shaping ecosystem dynamics at Willow Lake. 

 

Reproduction. Distinguishing between mature and immature females was somewhat 

problematic, because corpora lutea (both during pregnancy and lingering, as described by 

Betz, 1963) were difficult to identify.  This may have been due to freezing and extended 

cold storage of specimens.  Consequently, the identification of reproductive females was 

based on individuals with vitellogenic follicles, oviductal eggs or embryos, females that 

gave birth, or females that displayed a distended uterus with reddish spots (herein 

referred to as uterine spots) which were assumed to be recently post-parturient.  The 
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uterine spots were considered to be areas of increased vascularization associated with the 

site of attachment of embryonic membranes to the lumen of the uterus as seen in S. 

pygaea (Sever et al. 2000).  Litter sizes were determined by counting all oviductal eggs, 

embryos, neonates, both live and dead (Gregory et al., 1992), and number of uterine spots 

acknowledging that overestimation may be possible with all structures except for neonate 

counts (Bonnet et al., 2008). 

The smallest reproductive female N. rhombifer in this study (75.5 cm SVL) was 

within the range reported for populations from Arkansas (78.5 cm: Plummer, 1992), 

northeastern Texas (71.8 cm: Keck, 2004), Louisiana (68.8 cm: Kofron, 1979), and 

Veracruz (67.0 cm: Aldridge et al., 1995).  The smallest reproductive male at Willow 

Lake was 51.8 cm SVL.  This individual was markedly larger than the smallest males 

reported for northeastern Texas (49.8 cm SVL: Keck, 2004) and Veracruz (47.5 cm SVL: 

Aldridge et al. 1995). 

The data from female reproductive tracts and from litters born in the lab 

suggested that there is a clearly defined season (Fig. 12A).  Taking the period from late 

May when vitellogenesis was observed to late September when the last post-parturient 

female was collected, 21 out of 30 females greater than 75.5 cm SVL (or 70% of this 

sample) were reproductive.  This proportion is likely an underestimate as some of the 

smaller females used in the analysis may delay their initial reproductive effort by a year 

(cf. Ford and Seigel, 1994).  For example, Plummer (1992) found for an Arkansas 

population that although the smallest reproductive female was 78.5 cm SVL, only 56% of 

females between 79.0-85.0 cm SVL were reproductive, but those > 85.0 cm SVL were all 
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reproductively active.  Thus, reproduction for Willow Lake females appears to be annual 

as in other Nerodia (e.g., N. cyclopion: Kofron, 1979; N. sipedon: King, 1986). 

The onset of vitellogenesis for Willow Lake N. rhombifer in spring is difficult to 

tell from the data set as no individuals were collected between 14 April and 23 May (Fig. 

12A).  However, females may be receptive as early as the first week of April (Meade, 

1934; Zamora and Valadez, 2007).  They are beginning to increase activity in April (Fig. 

6B), and the general progression in the lengths of ovarian and oviductal structures 

suggest that the process of follicular enlargement begins in early to mid-April.  This 

agrees with Kofron’s (1979) earliest observation of vitellogenesis of 2 April for a 

Louisiana population.  Oviductal eggs were observed as early as 31 May while other 

females were still vitellogenic (Fig. 12A), thus ovulation probably occurs in late May and 

early June.  This ovulation date is consistent with estimates by Betz (1963) for a Missouri 

population.  However, if gestation is approximately 3 months (Betz 1963), the early birth 

date observed in this study (Table 7) would place ovulation at around the middle third of 

April.  Conversely, the ovarian cycle, or at least vitellogenesis, appears aseasonal in 

Veracruz (Aldridge et al., 1995).  It appears, therefore, that Willow Lake female 

watersnakes have seasonal reproductive cycles typical of temperate snake populations as 

well as prenuptial vitellogenesis typical of viviparous colubrids (Seigel and Ford, 1987). 

The male testes exhibited hypertrophy in early August which continued through 

much of the fall (Fig. 12B).  This suggests that spermatogenesis was postnuptial for 

Willow Lake males which is typical of most colubrids (Seigel and Ford, 1987).  Although 

the population from Veracruz was classified as having a prenuptial spermatogenic cycle 

(Aldridge et al. 1995; Keck, 2004), there appears to be more similarities to a postnuptial 



48 
 

 
 

cycle for that population.  Spermatogenesis did begin and end one month later in 

Veracruz than for this population, but was completed at least two months before the first 

female was detected with sperm in oviducts of females (Aldridge et al. 1995).  Therefore, 

there must be a period of sperm storage in the ductus deferens before mating; 

accordingly, reproductive behavior and androgen production are dissociated (Seigel and 

Ford, 1987).  The two specimens (#76 and #106) in this study displaying unusually high 

mean testicular masses in spring (Fig. 12B) both had an anomalous growth in one testis.  

The remainder of the respective testicular tissue was quiescent. 

Information on female and litter characteristics has been reported from various 

localities throughout the geographic range of N. rhombifer (Keck, 2004).  Most are 

anecdotal observations (e.g., Tucker and Camerer, 1994; Judd and Bray, 1996) whereas 

others involved more detailed reproductive studies (e.g., Plummer, 1992; Aldridge et al. 

1995).  With the exception of the early birth date reported here (Table 7) the remainder of 

dates were within the period expected for north-temperate populations (Seigel and Ford, 

1987) and other Nerodia (Gibbons and Dorcas, 2004).  The exceptional birth date was on 

19 July, two days earlier than the earliest reported date of 21 July (Judd and Bray, 1996).  

Interestingly, births from the litter were spread out over three days.  Thirteen were born 

on 19 July, another on 20 July, and three more on 21 July, of which one was a full-

formed stillborn. 

Sex ratios for the three litters in this study were highly variable (Table 7), but 

overall primary sex ratio was not different from 1:1.  Such observations appear to be 

typical for most snake populations (Parker and Plummer, 1987) and for this species 

(Plummer, 1992).  Neonate lengths and masses (Table 7) were within the limits reviewed 
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by Keck (2004: Table 14, p. 167) for other N. rhombifer populations.  The mean neonate 

length for all three litters combined was very similar to one litter also reported from 

Hidalgo County (22.8 cm: Judd and Bray, 1996), but there appears to be as much 

variability in the neonate SVLs and masses here as that seen throughout the distribution 

of N. rhombifer (Keck, 2004: Table 14).  This variation may be due to maternal size since 

at a given SVL, heavier females had larger neonates (Plummer, 1992).  Although all 

snake species do not express this type of phenotypic variability in offspring, those that do 

suggest the influence of governing factors such as genetics, maternal allocation, and 

environmental effects on the female and the developing embryos (Shine, 2003). 

Maternal size was positively correlated with litter size and explained 52% of the 

variation in this trait for Hidalgo County N. rhombifer (regression: 6788�9 :7;� �

�30.7 2 0.503�=>, , � 17, @A � 0.520, B � 0.001).  Of general consideration, this 

relationship was significant in more than three quarters of the snake populations reviewed 

by Seigel and Ford (1987), signifying relevance in both practical and theoretical matters 

(e.g., controlling for maternal size when comparing litter sizes).  It appears that other 

populations of N. rhombifer also follow this trend (Fig. 13; Arkansas = 73%: Plummer, 

1992; Veracruz = 40%: Aldridge et al., 1995; east central Texas = 63%: Keck, 2004).  

The unexplained variance in litter size by SVL suggests that genetic or environmental 

factors may be important determinants of fecundity (Seigel and Ford, 1987). 

The significant differences in average litter size found among N. rhombifer 

populations after correcting for maternal SVL did not appear to be clinal (Fig. 14) and are 

likely confounded by the occurrence of plastic phenotypic responses to proximate factors 

rather than optimized traits associated with adaptations to dissimilar long-term and 
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prevailing environmental conditions (Seigel and Ford, 1991).  For example, litter size 

may vary annually within the same population (Seigel and Fitch, 1985).  Thus litter sizes 

in N. rhombifer may not be tightly constrained by genetic makeup of a population, but 

instead molded within certain genetic limitations by immediately encountered conditions 

such as food availability (Ford and Seigel, 1989).  More detailed field and common 

garden studies are needed to elucidate the nature of the variation in litter size, and more 

generally maternal investment, as they relate to optimized reproductive strategies among 

populations of this widely distributed species.  Shine (2003) reviews some of the factors 

associated with reproductive strategies that may be responsible for the observed 

differences in litter size among N. rhombifer populations.  Shine’s (2003) review should 

be useful in designing future studies that evaluate geographic variation in reproduction.  

Among these factors are female body condition, energy allocation, food availability, 

offspring size and quality, and thermal preference during gestation. 

 

Sexual Size Dimorphism.The minimum and maximum sizes for Willow Lake N. 

rhombifer (Table 9) were within the limits reviewed by Keck (2004).  Female-biased 

sexual size dimorphism (SSD) for body size (SVL) was observed as in other populations 

of North American watersnakes including diamondbacks (Gibbons and Dorcas, 2004; 

Keck, 2004; Winne et al., 2005).  The ranges for SVL for the top 25% of the male and 

female subsamples did not show overlap (maximum male = 93.5 cm, minimum female = 

97.3 cm).  This dimorphism was mirrored by the differential size at maturation in this 

population as the smallest mature male was 31% smaller than the smallest reproductive 

female (Table 6).  Snake populations in which females grow to larger sizes than males 



51 
 

 
 

make up about 67% of the populations studied (Shine, 1993).  Female-biased SSD is 

associated with the absence of male-male combat (Shine, 1994), reduced fecundity-

dependent costs for males, and maximizing reproductive success in females by delaying 

maturity to increase clutch size for the first reproductive effort (Shine, 1993).  The 

proximate mechanisms that are responsible for females attaining larger sizes include 

sexual bimaturism, reduced growth rates after maturation, lower survival rates in males, 

and faster female growth (Shine 1993).  Indeed, each of these mechanisms was observed 

in N. rhombifer from south Texas. 

 Willow Lake N. rhombifer expressed male-biased SSD for TL.  Longer tails 

appear to be typical of other North American watersnakes (Semlitsch and Gibbons, 1982; 

Winne et al., 2005).  According to Shine’s (1993) review male-biased SSD for TL is also 

seen in many snake species and appears to have functional significance in housing the 

hemipenes and retractor muscles (King, 1989; Shine, 1993). 

As with SVL, there was female-biased SSD for mass, however this was expressed 

as a difference in the rate at which mass was gained.  This was indicated by the 

significant difference in slopes (scaling coefficients; Figs. 2 and 16).  According to this 

analysis, the change in the rate at which females gained mass with size was greater than 

in males.  While the analysis was confounded because gravid females were not separated 

in the analysis, it demonstrates that at least mature females exhibited a considerably 

increased allometric mass-length ratio.  Since mass was used as a proxy for body form, 

this indicated that females, perhaps because of gravidity, had stouter bodies.  Wider body 

forms for females are viewed as the product of fecundity selection as more space is 

available for offspring (Semlitsch and Gibbons, 1982; Shine, 1993).  Whether or not non-
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gravid female N. rhombifer are more robust in build than males is a question that cannot 

be answered with this data set.  Although the data do not allow one to draw conclusions 

about body form without gravid females included, there was a qualitative intersexual 

body shape gestalt allowing for some accuracy in predicting sex before closer inspection.  

Similarly, other data sets for other Nerodia species have found that females are more 

massive than males but also failed to separate gravid from non-gravid females (Semlitsch 

and Gibbons, 1982; King et al., 1999).  There appears to be evidence that females of 

some species are heavier than males regardless of reproductive condition (Acrochordus 

arafurae: Shine, 1986; S. pygaea: Winne et al., 2005) or age (Acrochordus arafurae: 

Shine, 1986; Storeria dekayi and Thamnophis sirtalis: King et al., 1999; T. sirtalis: 

Krause and Burghardt, 2007).  For S. pygaea from South Carolina, Winne et al. (2005) 

found significant differences between females and males in size corrected body mass; 

both gravid females and non-gravid females were heavier than males at a given SVL. 

Of the size dimensions studied for neonates from three litters, the grand means for 

SVL and mass were greater for females (Table 10), however after controlling for 

maternal (litter) influence (nested within sex and treated as random to make inferences 

about the population) neither SVL or mass were significantly different between males 

and females (Table 11).  There was significant variation however among litters within sex 

indicating maternal or genetic influence on both SVL (Fig. 17) and mass.  Indeed 

variation within and among litters has been observed in snakes and has been related to 

maternal condition, litter or clutch size, and genotypes (Plummer, 1992; Krause and 

Burghardt, 2007).  Weatherhead et al. (1995) found that female neonate N. sipedon from 

eastern Ontario, Canada had significantly higher SVL and mass than neonate males.  
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Conversely, King et al. (1999) did not find a significant difference in body size for 

conspecific neonates from Ohio, although the SSD index used for this population favored 

female neonates in both SVL and mass.  Interestingly a separate one-way ANCOVA (not 

shown) treating all neonates in this study as random variants, though not appropriate for 

the data set, approached significance (P = 0.060) with females having greater masses.  

These consistencies in female-biased body size dimensions in Nerodia, while not 

significant, may indicate that the mechanisms regulating size differences are at work in 

the prenatal environment.  It has been proposed that such differences may be due to 

differential maternal energy allocation (Krause and Burghardt, 2007), however data on 

first and second year postnatal growth on three separate litters of Nerodia showed that 

there were female-biased differences in the ratio of production to ingestion suggesting 

that females had higher dietary assimilation efficiencies or allocated more energy to 

growth (Scudder-Davis and Burghardt, 1996).  These metabolic differences, if they exist, 

should be present during prenatal development. 

 

Growth. Despite some of the complications associated with fitting the growth data for 

N. rhombifer from Willow Lake to growth curves (e.g., using a combination of 

longitudinal and cross-sectional data, and highly variable time intervals in which growth 

increments were recorded; see Kaufmann, 1981, for discussion), all growth curves appear 

to provide one of the likely mechanisms for the observed female biased SSD for body 

length.  Given some of the assumptions taken in constructing these models it is not 

surprising that the growth model that is commonly used to describe reptilian growth, the 

von Bertalanffy (e.g., Van Devender, 1978; Plummer, 1985; Brito and Rebelo, 2003; 
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Stanford and King, 2004), was the least useful in explaining the average rate changes in 

growth with size in these samples.  Perhaps this is a consequence of using growth 

increments with variable and wide-ranging time intervals, observed not just through days 

but across seasons and years.  Because reptilian growth is known to fluctuate seasonally 

(Van Devender, 1978; Andrews, 1982) and using too short or too long a time interval for 

a growth measurement can introduce biases (Andrews, 1982), the limitations of the data 

sets used here (i.e., low capture rates within any given season) make estimating the 

effects of such biases extremely difficult.  Furthermore, the regression models upon 

visual inspection showed problems with heteroscedasticity (Fig. 18) and 21% of male 

growth rates and 28% of female growth rates were repeat measures making the variants 

not entirely independent.  Thus, the data should be interpreted with caution. 

Considering these flaws, the results represent the first attempt to provide a 

comprehensive quantitative description of growth for N. rhombifer from a field 

population.  Assuming that all biases affecting the estimates of growth rates are equal 

between the male and female data sets some rough conclusions can be drawn.  Females 

had a tendency to grow at faster rates (Figs 18 and 19) although this difference was not 

statistically significant.  This could in part explain SSD seen in adults.  Using the 

minimum ages at maturity for each sex (male: 518 mm, female: 755 mm) and the 

respective power growth curves (Fig. 19), males mature at about 1.5 yr and females at 2.5 

yr (after converting the age function in days to years).  Because growth rates slow when 

reptiles reach maturity (Andrews, 1982), the delay in maturity of females by one year 

provides another mechanism for the observed SSD.  The age at maturity estimates in this 
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study also agree with those Betz (1963) for females (2.2 yr) and M. Keck (Keck, 2004) 

for males (1.2 yr) and for females (2.2 yr). 

Keck (2004) noted that the only data available for growth of N. rhombifer in the 

field was from an Oklahoma study by Preston (1970).  The following account of these 

data is based on Keck (2004).  The sample sizes for the age groups were small and 

measured during the active season (from April-October).  For individuals ≤ 1 yr in age, 

males (N = 2) grew at about 0.32% of their SVL per day and females (N = 4) grew at 

0.22%.  For individuals between 1 and 2 yr in age, males (N = 4) grew at 0.09% and 

females (N = 1) 0.17%.   Males greater than 2 yr in age (N = 4) grew at 0.04% and 

females (N = 1) grew at 0.01%.  Clearly, the sample sizes are too small to determine if 

the Oklahoma population exhibited sexual dimorphism for growth rate.  In comparison 

with the specific growth rate estimates from this study (Table 13), the percent growth 

estimates from the Oklahoma population for the first age group correspond to a 39 cm 

male at about 1.1 yr in age and a 49 cm female at about 1.2 yr in age.  For the second age 

group, the estimates correspond to a 57 cm male at about 1.7 yr in age and a 53 cm 

female at about 1.5 yr in age.  In the age group described as > 2 yr, the estimates 

correspond to a 73 cm male at about 2.9 yr in age and a 120 cm female at about 8.5 yr in 

age. 

Nerodia rhombifer from Willow Lake may exhibit sexual dimorphism in growth 

rate.  However, the relative importance of the proximate mechanisms that lead to the 

observed SSD require more field studies.  Detailed demographic and growth data could 

provide insight on how selective forces shape the life history characteristics for this 

species.  Field growth rates are virtually unknown for all Nerodia species and few 
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detailed demographic studies are available (Gibbons and Dorcas, 2004).  Although, data 

on growth rates for N. sipedon showed that females grew at significantly greater rates 

than males (King, 1986), and females of N. rhombifer grew faster than their siblings in a 

laboratory setting (Scudder-Davis, 1996) suggesting that differential growth rates may 

play a significant role in determining adult sizes in Nerodia. 

 

Lipids.The positive correlations between fatbody mass (FBM) and size for both sexes 

(Figs. 20 and 21) were expected as larger snakes have a greater coelomic volume (Seigel 

and Ford, 1987).  Larger snakes also may have a greater variety of food items available to 

them because of reduced limitations of gape size (Arnold, 1993; King 2002).  

Consequently, larger snakes may take larger prey (Plummer and Goy, 1984), and may 

have greater foraging success (Lind and Welsh, Jr., 1994). 

There was little size overlap between males and females (Figs. 20 and 21) making 

an intersexual comparison of FBM difficult.  However, the FBM-SVL and FBM-BM 

regression lines suggest that per unit SVL and per unit mass, males stored more lipids in 

fatbodies than did females where size did overlap (at 75.5 cm and 400 grams).  If these 

differences were significant, male and female N. rhombifer from south Texas might 

compartmentalize lipids differently. 

Aldridge et al. (2003) did not find a significant difference between the regression 

lines of FBM and SVL for N. rhombifer werleri from Veracruz, Mexico.  This 

comparison may be confounded by dimorphism for body form where female N. 

rhombifer appear to be wider than males, as seen in a number of species (Shine, 1993).  

Because of this attribute among N. rhombifer populations, FBM by BM comparisons may 
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be more instructive biologically.  For example, male Natrix maura in the Ebro Delta of 

northeastern Spain had heavier carcasses after controlling for SVL than did females even 

though the absolute amount of lipids stored in this compartment, also controlled for SVL, 

were not different (Santos and Llorente, 2004).  Conversely, female N. maura had larger 

livers and stored more lipids in this organ than did males (Santos and Lorente, 2004).   

Numerous studies also have generally noted an inverse correlation between fatbody size 

and vitellogenesis (Seigel and Ford, 1987; Blem and Blem, 1990; Aldridge and Bufalino, 

2003).  Thus, in reproductively active females, vitellogenic follicles, oviductal eggs and 

embryos would contain a significant portion of overall lipids in females. 

Indeed these observations reflect the different ecological roles of males and 

females.  Females invest much energy in the production of offspring, while males may 

invest significantly more through active mate searching and courtship.  Although the 

regression models from Figures 20 and 21 do not reflect these roles, it is likely that more 

matter and energy pass through females than males during a calendar year.  The apparent 

difficulty in observing this from snapshots of FBM is due to differential 

compartmentalization and rates of utilization of body lipids between sexes. 

Despite the obstacles associated with using fatbodies to describe the dynamics of 

lipid reserves for different aspects of snake life history, variation in FBM may be useful 

in tracking changes in overall lipid reserves since fatbodies can be the main component of 

(Santos and Llorente, 2004), and can be highly correlated to, total body lipids (Blem, 

1997).   Observations of changes in FBI (FBM corrected for body size) in male N. 

rhombifer from south Texas suggest that males go through cycles of fat storage and 

mobilization.  The lowest FBI values for males were in spring and began to increase in 
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early summer (Figs. 23 and 24).  A similar pattern was observed for male N. rhombifer 

from Veracruz (Aldridge et al. 2003).  The shift in energy balance coincides with changes 

in activity (Fig. 6C).   Peak activity for males was observed in May, the same month in 

which the lowest FBI values were recorded.  The initial increase to peak activity in May 

is likely associated with mate searching as suggested for males of other species (e.g. 

Coluber viridiflavus: Bonnet and Naulleau, 1996).  However, the increase in activity was 

sustained through July.  If this is beyond peak mating activity, then there must be a 

reduction in feeding while males are searching for and courting females. 

Circumstantial evidence suggests not only that male N. rhombifer from south 

Texas stop feeding during a short period, but that this aphagia is endogenous as seen in 

Thamnophis sirtalis parietalis (O’Donnell et al., 2004).  The evidence includes the 

concomitant peak activity with drop in FBI in May for males in this population, reported 

dates for mating in the field (6 April to 29 May: Keck, 2004; Zamora and Valadez, 2007), 

estimated gestation period (3 months: Betz, 1963) and peak birth dates (14 of 25 births 

from 20 August to 10 September: Keck, 2004), and an apparent lack of interest by several 

males in both feeding and a potential predator while courting a female (Zamora and 

Valadez, 2007). 

Unlike males, females did not exhibit significant variation in FBI among months.  

This was similar for female N. rhombifer werleri from Veracruz, Mexico (Aldridge et al., 

2003).  Although, Aldridge and Bufalino (2003) suggest that other Nerodia may display a 

decrease in the mass of fatbodies during vitellogenesis as observed for females of other 

species (Seigel and Ford, 1987).  Such losses may have been regained during pregnancy 

(Aldridge and Bufalino, 2003).  However, any seasonal differences in fatbodies among 



59 
 

 
 

female Nerodia may be less dramatic than in other snake populations (e.g., Cortals atrox: 

Tinkle, 1962; Agkistrodon piscivorus: Blem, 1997). 

Because the BM used to calculate FBI in this study included the 

massdepending on the reproductive state of the femaleof quiescent ovaries, 

vitellogenic follicles, oviductal eggs and embryos, one would expect FBI to be relatively 

lower in reproductively active females even when the mass of fatbodies remains 

relatively stable because vitellogenic follicles and developing embryos would increase 

the BM (the denominator used to calculate FBI) relative to FBM.  The FBI values 

reported here for females in all categories, both reproductive and non-reproductive, 

appear to be similar (Figs. 21B and 23B).  Although no detailed feeding frequency 

analyses were performed here because of potential biases from sampling actively 

foraging snakes (see Preston, 1970; Aldridge et al., 2003), these data provide indirect 

evidence that female N. rhombifer from south Texas continue to feed at a rate at least 

equal to that which would replenish lipid reserves used during vitellogenesis. 

Conversely, several species of snakes have been observed to reduce food intake during 

pregnancy (Shine, 1980b).  This modus operandi, whether adaptive or artifact, would 

require energy storage prior to the onset of vitellogenesis that could then be used at a later 

time to support the production of offspring, a tactic referred to as “capital” breeding 

(Bonnet et al., 1998).  A strict capital breeder should display a strong cycling of lipid 

reserves.  The alternative is referred to as “income” breeding in which recently acquired 

nutrients are used (Bonnet et al. 1998).  There are numerous examples in which snakes 

may not only supplement vitellogenesis by foraging during this time but continue to feed 

through oviposition, or parturition (Berry and Lim, 1967; Aldridge and Bufalino, 2003; 
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Winne et al., 2006).  The lack of evidence for cycling of fatbody lipids in this study 

implies that female N. rhombifer from south Texas exhibit a significant degree of income 

breeding. 
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CHAPTER V 
 
 

CONCLUSIONS 
 
 

Capture rates for Willow Lake Nerodia rhombifer (about one snake for every 24 

trap-days) were low as in other snake studies.  Such low capture rates result in absolute 

abundance estimates with very broad confidence limits.  Increasing trapping effort over 

several days per trapping period and the use of drift fences might improve capture rates 

and narrow confidence limits for abundance estimates.  Despite a lack of precision in the 

abundance estimates reported here for Willow Lake N. rhombifer, the average density for 

all sampling periods in which estimates were calculated, 6.6 snakes/ha (Table 4), is still 

greater than the median value for 57 populations reviewed by Parker and Plummer 

(1987).  The relatively high density of this population is likely supported by relatively 

high primary productivity typical of wetlands that occur along river flood plains.  The 

standing crops calculated from the density values reported here indicate that N. rhombifer 

is a significant component of the Willow Lake ecosystem.  The densities on which the 

biomass estimates are based are the first true density estimates reported anywhere within 

the range of N. rhombifer. 

 The relative abundance estimates used to measure activity in this study indicated 

that Willow Lake N. rhombifer increased activity from May through September.  This 

observed active season was sustained a month longer than for populations in 
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Louisiana and northeastern Texas (Fig. 25).  Activity was reduced significantly from 

October through January of the following calendar year, but activity slowly increased 

from February to April.  This overall activity pattern appears to be similar to other 

subtropical snake populations from Florida (Dalrymple et al., 1991).  Adult and juvenile 

subpopulations of Willow Lake N. rhombifer differed in activity patterns, however all 

displayed two peaks in activity.  When the data from the subpopulations are combined, 

the variation among the subpopulation activity patterns resulted in an overall decrease in 

activity during July (Figs. 4 and 25).  The differences in activity patterns among 

subpopulations are probably due to differences in the types of activities associated with 

life history patterns that are shaped by selective forces that dictate fitness for individuals 

within a given cohort. 

Adult males displayed a strong bimodal activity pattern with an initial peak 

activity in May and another in September.  An approximate 66% drop in adult male 

activity was observed in August resulting in the two activity peaks (Fig. 6C).  Although 

the activity pattern for adult females was not as strongly bimodal as adult males, females 

displayed peaks in activity in June and September with an approximate 24% drop in 

activity in July (Fig. 6B).  Juveniles also displayed a strong bimodal activity pattern 

similar to adult males, however a dip in activity was observed from June to July (Fig. 

6A).  The activity pattern of juveniles is likely confounded by births in summer and early 

fall and by second year juveniles moving to into adult cohorts.  Interestingly, although the 

overall activity pattern for the Willow Lake population appears slightly bimodal, analyses 

of the activity patterns of the subpopulations indicate that the small dip in activity 



63 
 

 
 

observed in July for the overall population (Fig. 4B) may be due to more significant 

trends occurring within the subpopulations. 

Survivorship curves estimated from the age structure of Willow Lake N. 

rhombifer showed both high mortality rates and low longevity (Fig. 26).  Further, data on 

reproduction and growth indicated that Willow Lake N. rhombifer have short generation 

times (2.5 yr), have high fecundity (average litter size, 15.4), and reproduce annually.  

These demographic characteristics displayed by Willow Lake N. rhombifer appear to be 

typical of other early maturing Colubridae (Parker and Plummer, 1987). 

Overall primary and secondary sex ratios did not differ significantly from 1:1.  In 

seasonal comparisons of sex ratios, a significantly female-biased sex ratio (1.8:1.0) was 

observed only in August.  This difference was probably due to changes in activity 

patterns between females and males. 

Reproduction in N. rhombifer in Hidalgo County appears to be seasonal.  Mating 

is known to occur as early as April (Meade, 1934; Zamora and Valadez, 2007).  In 

females, vitellogenic follicles were observed as early as 27 May, however vitellogenesis 

probably begins in early to mid-April.  Ovulation likely occurs in late May or early June.  

The last reproductive female was observed on 30 September with vascular spots in the 

uterus indicating recent parturition.  In males, testes were enlarged from early August 

through fall.  Thus, spermatogenesis was postnuptial which is typical of most colubrids 

(Seigel and Ford, 1987). 

An exceptionally early birth date for N. rhombifer was recorded in Hidalgo 

County on 19 July, but the general progression of female reproductive structures such as 

vitellogenic follicles and developing embryos, and two other birth dates were within the 
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range reported for other N. rhombifer populations (Keck, 2004).  Litter size for Hidalgo 

County N. rhombifer was positively correlated to maternal SVL as seen in many other 

snake populations and was significantly lower than populations from Arkansas and 

Veracruz, but not east-central Texas (Fig. 14).   Thus, litter size variation in N. rhombifer 

populations does not appear to be clinal.  It is likely that litter size is a phenotypically 

plastic trait and its expression is dependent upon immediately encountered environmental 

conditions such as food availability (Ford and Seigel, 1989; Seigel and Ford, 1991).  

Consequently, variation in litter sizes among N. rhombifer populations can be better 

understood only with consideration of the proximate factors that influence litter sizes. 

Nerodia rhombifer in southernmost Texas are sexually dimorphic for size with 

females being larger in SVL and mass than males.  The largest female captured was 

120.0 cm SVL and the largest male captured was 93.5 cm SVL.  The rate at which mass 

changed with SVL was greater for females (Figs. 2 and 16) indicating that females were 

wider in body form.  The female biased sexual size dimorphism is typical of North 

American watersnakes (Gibbons and Dorcas, 2004; Keck, 2004; Winne et al., 2005) and 

is thought to occur in a wider range of snake taxa, in part, as a consequence of fecundity 

selection (Shine, 1993).  Conversely, males had longer tails proportionately than did 

females.  The larger tails in males function to house the hemipenes and retractor muscles 

(King, 1989; Shine, 1993).  The male-biased sexual dimorphism for tail length was 

already present at birth.  However, no differences were detected between male and 

female neonates both for SVL and for mass.  Maternal females appeared to have an 

influence on the size of neonates as larger females gave birth to larger young (Fig. 17). 
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Female N. rhomibifer in Willow Lake had slightly higher average growth rates at 

a given SVL than males.  Although not significant, this difference in growth may be real, 

but problems with precision in estimating female and male growth curves in this study 

made resolving this issue difficult.  Indeed, other Nerodia have been shown to exhibit 

female biased growth rates (King, 1986; Scudder-Davis, 1996).  Furthermore, power 

analyses in general demonstrate that given a large enough sample size a statistical 

significance will always be found between two populations (Nakagawa and Cuthill, 

2007).  The question remains as to whether such differences are biologically significant 

or not.  Because growth curves derived from cross-sectional data should provide a good 

approximation of average growth rates for a population at a given size (Marvin, 2001), 

assuming that the negative and positive biases that contributed to decreased precision in 

this analysis had similar influences on both sexes, the average differences in growth rates 

at a given size (Table 13) should be biologically significant.  Such differences in growth 

rates could, in part, along with differential mortality rates and sexual bimaturism, explain 

the observed female-biased sexual size dimorphism for SVL in this population. 

The precision in the growth curves generated from growth increments (calculated 

as a change in length per unit of time) depends on precision of the growth increments 

themselves.  Precision could be improved by increasing trapping effort as described 

above.  The increased effort should increase the number of snakes recaptured within 

regular time intervals and within a specific time period.  Regular time intervals are 

necessary to reduce biases associated with the calculation of rates.  If a time interval used 

to calculate a growth increment is too long, it causes negative bias; too short, positive 

bias.  Growth rates in snakes also are known to vary throughout the year (Andrews, 1982) 
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emphasizing the need to use a specified time period (e.g., a calendar year, or a season) in 

which growth increments will be observed.  Furthermore, a squeeze box (Quinn and 

Jones, 1974) could be used to reduce the error associated with stretching snakes to obtain 

lengths.  Accordingly, given an adequate but constant time period in which to estimate 

individual growth increments along with the use of a squeeze box, negative growth rates 

could virtually be eliminated and precision improved. 

Female N rhombifer in southernmost Texas did not show evidence for lipid 

cycling from fatbody mass data and may then be categorized as income breeders.  Indeed, 

anecdotal observations suggest that vitellogenic and gravid females continue to forage in 

the field even as their increased mass may make them more vulnerable to predation.  In 

one such instance, while trapping snakes in Willow Lake, two large gravid female N. 

rhombifer attempted to ingest the same large Siren intermedia while all three were 

captured in the same trap.  Further, except for the relatively small dip in activity in July 

(Fig. 6B), females remained highly active and presumably feeding within the trapping 

grids at Willow Lake during the time in which they are reproductively active (April to 

September).  Males appeared to cycle lipids as fatbody masses displayed significant 

declines in early spring.  This coincides with the time in which mating activity has been 

observed.  Because this species is largely restricted to water, opportunities to feed on fish 

should have been available.  Therefore, the reduction in fatbody mass during this time 

period suggests either that more energy was used than was ingested, or that males became 

anorexic, or both.  Lipid reserves in males are apparently quickly regained after the 

mating season (Fig. 23A). 
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TABLE 1. Summary of trapping effort for Nerodia rhombifer from Willow Lake at Santa 
Ana National Wildlife Refuge.  Each bi-weekly trapping period encompassed two 
consecutive days. Fifty-one traps were set each day of the trapping period.  Effort for the 
entire study was 6222 trap⋅days.  Number of periods per month is in parentheses.  Total 
number of periods for each month (years combined) and each year are also presented.  
Because capture rates were low, capture data were pooled by month making a total of 31 
sampling periods. 

 Trapping Dates  

Month 1995 1996 1997 1998 Total 
Periods 

January   9, 10, 23, 24 (2)  2 

February 
 

 21, 22 
(1) 

6, 7, 20, 21 (2)  3 

March  6, 7, 20, 21 (2) 6, 7, 20, 21 (2) 27, 28 
(1) 

5 

April  3, 4, 17, 18 (2) 3, 4, 17, 18 (2) 10, 11, 24, 25 
(2) 

6 

May  1, 2, 15, 16, 30, 
31 (3) 

1, 2, 15, 16, 29, 
30 (3) 

8, 9, 20, 21 (2) 8 

June  12, 13, 26, 27 
(2) 

12, 13, 26, 27 
(2) 

3, 4, 17, 18 (2) 6 

July  10, 11, 24, 25 
(2) 

10, 11, 26, 27 
(2) 

1, 2, 15, 16, 29, 
30 (3) 

7 

August 30, 31 
(1) 

7, 8, 21, 22 (2) 9, 10 (1) 12, 13, 26, 27 
(2) 

6 

September 13, 14 
(1) 

4, 5, 19, 20 (2)  9, 10, 24, 25 (2) 5 

October  3, 4, 17, 18, 31 
(2.5) 

 8, 9, 22, 23 (2) 4.5 

November  1, 14, 15, 28, 
29 (2.5) 

 5, 6, 19, 20 (2) 4.5 

December  12, 13, 26, 27 
(2) 

 3, 4, 17, 18 (2) 4 

Total  Periods 2 23 16 20 61 
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TABLE 2. Equations for the growth models tested for fit to growth increments collected 
on Nerodia rhombifer from Willow Lake at Santa Ana National Wildlife Refuge.  The 
first von Bertalanffy equation follows Van Devender (1978); and the second Von 
Bertalanffy equation, and the logistic, Gompertz, and power equations follow Kaufmann 
(1981).  The integrated equations on the left are the more commonly used forms and 
show size (S) as a function of time (t).  The differential equations show the relationship 
between the measure of growth rate (GR or G) and size.  GR is the growth rate and G is 
the specific growth rate as defined in the text.  The relationship is linear when S is 
properly transformed.  S∞ is the asymptote of the integrated equations for determinate 
growth models.  The relationship between S∞, a, and b is shown in the right hand column.  
The parameter to is the constant of integration. All equations follow Kaufmann’s (1981) 
notation. 

Integrated Equation Differential Equation Relation of the Parameters 
 
Von Bertalanffy 
SVL = SVL∞ + [exp a(t − to)] a

−1 

 
 
GR = −aSVL + b 

 

a

b
SVL −=∞   

 
Von Bertalanffy 
S = S∞ [1 −exp − b(t + to)] 

 

b
S

aG −=
1

 

 

a

b

S
−=

∞

1
 

 
Logistic 
S = S∞ [1+ exp − b(t + to)]

−1 

 
 
G = −aS + b 

 

a

b
S −=∞  

 
Gompertz 
S = S∞ exp[−exp − a(t + to)] 

 
 
G = −a ln S + b 

 

a

b
S −=∞ln  

 
Power 

( )[ ] a
ottabS /1

+=  

 

 
 

bSaG lnlnln +−=  

 
 
 
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TABLE 3. Summary of capture rates for Nerodia rhombifer over 31 monthly trapping 
periods at Santa Ana National Wildlife Refuge.  Individuals recaptured within the same 
month were not counted.  Individuals recaptured in subsequent months were counted as 
recaptures for absolute abundance estimates and simply as captures for relative 
abundance indexes.  Capture and recapture rates are based on 31 trapping periods.  
Percent recaptures were calculated from the ratios of recapture rate to total capture rate 
for each grouping.  Juveniles were defined as any individual < 51.8 cm, the size of the 
smallest mature male in this study.  Effort for trapping periods ranged from 102-306 
trap⋅days, most were 204 trap⋅days. 

   Cohort 
 All  Juvenile Adult Female Adult Male 

No. of individuals a 154a  38 69 58 

No. of captures 232  45 103 84 

      

No. of individuals captured 1× 100  32 45 39 

No. of individuals recaptured 1× 36  5 16 12 

No. of individuals recaptured 2× 12  1 6 7 

No. of individuals recaptured 3× 6  0 2 0 

      

Capture rate (snakes/period) 7.48  1.45 3.32 2.71 

Recapture rate (snakes/period) 2.52  0.226 1.10 1.00 

Percent recapture 33.7 %  15.6 % 33.1 % 36.9 % 
a Lack of correct summation of cohorts is due to some juveniles that were captured earlier during field work 
and then captured  again later as adults. 
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TABLE 4. Comparison of population sizes generated using three different methods of estimation for mark-recapture data taken from a 
population of Nerodia rhombifer at Santa Ana National Wildlife Refuge.  Numbers were calculated by combining data from Grids 1 
and 2, a total area equal to 0.32 ha.  Densities are based on Jolly-Seber estimates and a study area of 7.2 ha.  Biomass is calculated 
from the mass structure, mean mass = 396.3 g.  N = population size estimate, C.L. = confidence limits, MNA = minimum number 
known to be alive. 

 Schnabel  Jolly-Seber  Density Biomass 

Month N 95 % C.L.  N 95 % C.L. MNA  (ha-1) (kg/ha) 

Aug-95 - -  - - 6 - - 

Sep-95 85.0 (16.0 - 1666.7)  41.4 (17.5 - 415.2) 18 5.8 2.3 

    ,C � 41.4 (17.5 - 415.2)    

Feb-96 106.0 (19.9 - 2078.4)  20.0 (2.5 - 604.0) 6 2.8 1.1 

Mar-96 150.0 (28.2 - 2941.2)  45.0 (5.4 - 1406.5) 7 6.3 2.5 

Apr-96 147.0 (44.0 - 828.2)  36.2 (10.5 - 332.7) 10 5.0 2.0 

May-96 189.5 (79.0 - 554.9)  54.1 (23.6 - 263.9) 20 7.5 3.0 

Jun-96 176.5 (82.6 - 405.3)  66.0 (22.2 - 399.4) 18 9.2 3.6 

Jul-96 201.2 (108.0 - 406.1)  85.0 (37.4 - 342.3) 26 11.8 4.7 

Aug-96 188.7 (119.1 - 349.4)  115.7 (51.3 - 438.9) 30 16.1 6.4 

Sep-96 169.4 (114.4 - 261.1)  75.8 (32.9 - 311.3) 24 10.5 4.2 

Oct-96 168.8 (116.9 - 271.6)  37.5 (6.8 - 584.1) 14 5.2 2.1 

Nov-96 175.4 (121.4 - 282.2)  108.0 (11.9 - 3286.8) 14 15.0 5.9 

Dec-96 175.4 (121.4 - 282.2)  12.0 (1.2 - 357.5) 12 1.7 0.7 

    ,C � 59.6 (18.70 - 757.04)    

Jan-97 178.8 (123.8 - 287.6)  48.0 (5.4 - 1439.5) 13 6.7 2.6 

Feb-97 171.3 (118.3 - 265.7)  32.0 (5.9 - 496.2) 12 4.4 1.8 
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TABLE 4.  Continued. 

 Schnabel  Jolly-Seber  Density Biomass 

Month N 95 % C.L.  N 95 % C.L. MNA  (ha-1) (kg/ha) 

Mar-97 174.1 (123.2 - 266.6)  20.0 (6.2 - 149.1) 12 2.8 1.1 

Apr-97 176.0 (125.6 - 255.5)  61.3 (21.8 - 352) 17 8.5 3.4 

May-97 204.2 (149.9 - 302.0)  76.0 (35.0 - 300.8) 25 10.6 4.2 

Jun-97 212.2 (160.1 - 288.1)  45.6 (26.3 - 134.2) 24 6.3 2.5 

Jul-97 217.0 (167.0 - 288.0)  64.0 (26.2 - 320.2) 20 8.9 3.5 

Aug-97 221.9 (170.8 - 294.5)  63.0 (7.3 - 1944.4) 9 8.8 3.5 

    ,C � 51.2 (16.8 - 642.0)    

Mar-98 229.7 (177.9 - 324.0)   24.6 (8.5 - 170.0) 11 3.4 1.4 

Apr-98 232.6 (180.7 - 326.6)  26.0 (7.2 - 223.8) 12 3.6 1.4 

May-98 237.7 (186.9 - 326.4)  38.0 (19.1 - 141.9) 18 5.3 2.1 

Jun-98 246.5 (195.3 - 334.1)  30.2 (15.5 - 111.2) 16 4.2 1.7 

Jul-98 250.0 (198.8 - 336.7)  25.6 (9.8 - 137.0) 14 3.6 1.4 

Aug-98 241.8 (194.4 - 319.8)  38.3 (13.9 - 235.5) 14 5.3 2.1 

Sep-98 238.7 (193.0 - 312.8)  26.4 (6.9 - 346.1) 8 3.7 1.5 

Oct-98 236.3 (191.6 - 308.3)  5.0 (2.0 - 63.9) 3 0.7 0.3 

Nov-98 237.1 (192.5 - 308.5)  - - - - - 

    ,C � 26.8 (10.4 - 178.7)    

Average 194.4 (131.7 - 533.5)  47.6 (15.3 - 245.4) 14.5 6.6 2.60 
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TABLE 5.  Mean snout-vent length (SVL) and mass for the sample used to construct size and age structures for Nerodia rhombifer 
from Willow Lake at Santa Ana National Wildlife Refuge.  The sample includes 175 size records for 154 individuals.  Records of 
individuals recaptured within the same calendar year were excluded from the analysis.  Records of individuals recaptured in other 
years were included.  Thus, 21 size records included in these summaries are from inter-year recaptures.  N = sample size, SE = 
standard error. 

  SVL (cm)  Mass (g) 
 N Mean (SE) Range  Mean (SE) Range 

Juvenile 39 37.72 (1.49) 20.7 – 51.0  049.678 (4.873) 007.40 – 108.80 

Female 73 84.86 (2.39) 51.9 – 120.0  690.674 (59.570) 106.50 – 1880.90 

Male 63 70.93 (1.30) 52.8 – 94.9  269.783 (13.632) 068.00 – 508.40 

All 175 69.34 (1.78) 20.7 – 120.0  396.302 (32.129) 007.40 – 1880.90 

 
  



 
 

 
 

73 

TABLE 6.  Mean SVL and mass for specimens collected from irrigation canals in Hidalgo County, Texas.  (A) Characteristics for all 
females and males examined for reproduction.  (B) Characteristics for reproductive females and mature males only. F = female, M = 
male, N = sample size, SVL = snout-vent length, SE = standard error. 

  SVL (cm)  Mass (g) 

 Sex N Mean (SE) Range  N Mean (SE) Range 

A F 71 80.12 (1.70) 50.60 – 112.70  71 553.2 (35.9) 111.0 – 1564.5 

 M 54 64.16 (0.99) 48.40 – 78.80  53a 237.6 (11.7) 068.3 – 481.4 

         

B F 21 90.14 (2.22) 75.50 – 112.70  21 812.4 (56.5) 494.0 – 1564.5 

 M 53 64.46 (0.959) 51.80 – 78.80  52a 240.9 (11.4) 086.1 – 481.4 
a Reduced sample size of male sample due to severe freeze dehydration of one of the specimens. 
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TABLE 7.  Female and litter characteristics for Nerodia rhombifer collected from irrigation canals in Hidalgo County, Texas.  SVL = 
snout-vent length, SE = standard error, F = female, M = male, U = sex undetermined.   

a Two births were stillborn and two were stillborn and underdeveloped.  All four stillborns were smaller than the individuals born live. 
  

   
 Neonate   

Female SVL (cm) Mass (g) 
Litter  
Size 

 SVL (cm) 
Mean (SE)  

Mass (g) 
Mean (SE) Sex Ratio Birth Date 

         

1 83.0 553.4 14  19.81 (0.37)a 06.50 (0.41)a 05F:8M:1U 9/12/1997 

2 89.8 660.0 17  24.05 (0.15) 10.91 (0.12) 12F:5M 7/19-7/21/2003 

3 85.0 733.3 12  23.21 (0.16) 09.38 (0.11) 03F:9M 8/21/2003 

         

Mean 
(SE) 

85.7 
(1.76) 

648.9 
(52.2) 

14.3 
(1.45) 

 22.4 
(0.32) 

09.05 
 (0.32) 

  

Total/Range       20F:22M:1U 7/19-9/12 
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TABLE 8.  Female and litter size characteristics for four populations from subtropical, temperate and tropical regions.  The results of 
the correlation analyses between litter size and snout-vent length (SVL) also are reported.  N = sample size, SE = standard error, r = 
correlation coefficient, P = probability that null hypothesis is true. 

  Female SVL (cm)  Litter Size    
Location N Mean (SE) Range  Mean (SE) Range r P Data Source 

Hidalgo Co, TX 17 91.66 (2.912) 75.5-115.0  15.4 (2.03) 4-39 0.721 0.001 This study 

Lonoke Co, AK 21 90.82 (2.114) 78.5-109.1  23.1 (2.10) 12-48 0.857 < 0.001 Plummer (1992) 

Freestone Co, TX 13 87.96 (2.010) 74.5-98.5  16.1 (2.29) 7-35 0.791 0.001 M. Keck (Unpublished Data) 

Veracruz, Mex 14 84.54 (2.441) 74.0-102.6  17.1 (2.24) 8-35 0.633 0.015 Aldridge et al. (1995) 
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TABLE 9.  Size summaries for Nerodia rhombifer from Willow Lake, Santa Ana National Wildlife Refuge.  For individuals captured 
more than once, only the first record of capture was used in the analysis.  Individuals with incomplete size records or that were not 
sexed were not included in the analysis.  F = female, M = male, N = sample size, SVL = snout-vent length, TL = tail length, SE = 
standard error. 

   SVL (cm)  TL (cm)  Mass (g) 
Sex N  Mean (SE) Range  Mean (SE) Range  Mean (SE) Range 

F 76  75.96 (2.95) 22.3-120.0  17.64 (0.75) 4.3 – 37.4  560.7 (60.6) 10.5 – 1880.9 

M 62  67.32 (1.58) 33.6-93.5  18.90 (0.62) 8.2 – 28.6  237.0 (14.7) 27.1 – 460.1 

 
  



 
 

 
 

77 

TABLE 10.  Summary of neonate sizes born to three female Nerodia rhombifer collected in Hidalgo County, Texas.  F = female, M = 
male, U = sex undetermined, N = sample size, SVL = snout-vent length, TL = tail length, SE = standard error. 

    SVL (cm)  TL (cm)  Mass (g) 
Grouping Sex N  Mean (SE) Range  Mean (SE) Range  Mean (SE) Range 

Female 1 F 5  20.20 (0.654) 18.6-22.0  5.42 (0.185) 4.9-5.9  7.18 (0.477) 5.40-8.10 

  M 8  19.89 (0.404) 17.9-21.3  5.94 (0.124) 5.4-6.3  6.50 (0.462) 4.20-8.20 

  U 1  17.3 −  5.9 −  3.1 − 

  Combined 14  19.81 (0.369) 17.3-22.0  5.75 (0.115) 4.9-6.3  6.50 (0.409) 3.10-8.20 

             

 2 F 12  24.08 (0.165) 23.2-25.0  6.92 (0.063) 6.5-7.2  10.90 (0.146) 9.80-11.40 

  M 5  23.98 (0.379) 22.8-24.9  7.74 (0.157) 7.2-8.1  10.92 (0.224) 10.30-11.60 

  Combined 17  24.05 (0.154) 22.8-25.0  7.16 (0.11) 6.5-8.1  10.91 (0.118) 9.78-11.57 

             

 3 F 3  22.60 (0.306) 22.2-23.2  6.10 (0.300) 5.8-6.7  9.05 (0.161) 8.70-9.30 

  M 9  23.41 (0.134) 22.8-24.2  7.09 (0.096) 6.8-7.6  9.49 (0.113) 9.00-10.10 

  Combined 12  23.21 (0.159) 22.2-24.2  6.84 (0.161) 5.8-7.6  9.38 (0.107) 8.74-10.09 

             

Sex F 20  22.88 (0.417) 18.6-25.0  6.42 (0.163) 4.9-7.2  9.69 (0.390) 5.40-11.40 

 M 22  22.26 (0.429) 17.9-24.9  6.82 (0.169) 5.4-8.1  8.73 (0.424) 4.20-11.57 

            

All neonates − 43  22.44 (0.318) 17.3-25.0  6.61 (0.119) 4.9-8.1  9.05 (0.322) 3.10-11.57 
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TABLE 11.  ANOVA summaries examining sex and litter differences in neonate snout-
vent length (SVL), neonate mass, and neonate tail length (TL) for three Nerodia 
rhombifer litters from Hidalgo County, Texas.  The ANOVA design was a two-level 
mixed model ANOVA treating sex as the fixed factor and litter as a random effect.  
Snout-vent-length was used as a covariate for the analyses of mass and TL.  df = degrees 
of freedom, SS = sum of squares, MS = mean squares, F = F-ratio, P = probability that 
null hypothesis is true 

Test Source df SS MS F P 

SVL Sex 1 0.155 0.155 0.005 0.944 

 Litter within sex 4 125.031 31.258 43.266 < 0.001 

 Error 36 26.008 0.722   

 Total 41     

       

Mass SVL (covariate) 1 10.060 10.060 31.243 < 0.001 

 Sex 1 0.210 0.210 0.132 0.736 

 Litter within sex 4 5.583 1.396 4.335 0.006 

 Error 35 11.270 0.322   

 Total 41     

       

TL SVL (covariate) 1 1.588 1.588 25.467 < 0.001 

 Sex 1 4.661 4.661 13.651 0.023 

 Litter within sex 4 1.197 0.299 4.800 0.003 

 Error 35 2.182 0.0623   

 Total 41     
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TABLE 12.  Regression equations and coefficients of determination for all five models fitted to growth data for Nerodia rhombifer 
from Willow Lake, Santa Ana National Wildlife Refuge.  The models are listed in order of decreasing explained variation in growth 
rate by size.  The slopes show that growth rates decrease with size.  Calculation of growth rate (GR), specific growth rate (G), 
geometric mean SVL (S), and �=>����� are described in Van Devender, (1978) and Kaufmann (1981).  F = female, M = male, N = sample 
size, R2 = coefficient of determination, P = probability that the null hypothesis is true. 

Model Sex N Equation R2 P 

Power F 
 

39 ln E � -3.368 ln � 2 14.730  0.507 < 0.001 
 M 28 ln E � -3.373 ln � 2 14.409  0.401 < 0.001 
      
Logistic F 39 E � -3.97E-6 � 2 0.00419  0.375 < 0.001 
 M 28 E � -3.92E-6 � 2 0.00366  0.269 0.005 
      
Gompertz F 39 E � -0.00284 ln � 2 0.01996  0.369 < 0.001 
 M 28 E � -0.00233 ln � 2 0.01617  0.246 0.007 
      
Bertalanffy F 39 E � 1.80 �FG � 0.00139  0.334 < 0.001 
 M 28 E � 1.24 �FG � 0.00090  0.208 0.015 
      
Bertalanffy  
(Van Devender, 1978) 

F 39 E@ � -0.00186 �=>����� 2 2.142  0.287 < 0.001 

M 28 E@ � -0.00160 �=>����� 2 1.696  0.114 0.078 
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TABLE 13.  Estimated growth as a percent of SVL per day (specific growth rate, G) and 
95 % predicted limits (P.L.) for selected SVLs.  The estimates are based on the regression 
analyses producing the differential equations for the power model.  SVL = snout-vent 
length. 

 Female  Male 

SVL (cm) 
% Growth 

per day 95 % P.L.  
% Growth 

per day 95 % P.L. 

35.0 0.674 0.077 - 5.925  0.475 0.053 - 4.241 

40.0 0.430 0.051 - 3.601  0.303 0.037 - 2.457 

45.0 0.289 0.036 - 2.338  0.203 0.027 - 1.544 

50.0 0.203 0.026 - 1.600  0.143 0.020 - 1.033 

      

55.0 0.147 0.019 - 1.141  0.103 0.015 - 0.728 

60.0 0.110 0.014 - 0.842  0.077 0.011 - 0.534 

65.0 0.084 0.011 - 0.639  0.059 0.009 - 0.406 

70.0 0.065 0.009 - 0.497  0.046 0.007 - 0.317 

      

75.0 0.052 0.007 - 0.394  0.036 0.005 - 0.254 

80.0 0.042 0.005 - 0.319  0.029 0.004 - 0.208 

85.0 0.034 0.004 - 0.261  0.024 0.003 - 0.173 

90.0 0.028 0.004 - 0.217  0.020 0.003 - 0.146 

      

95.0 0.023 0.003 - 0.182  0.016 0.002 - 0.125 

100.0 0.0196 0.0025 - 0.155    

105.0 0.0167 0.0021 - 0.133    

110.0 0.0142 0.0018 - 0.115    

      

115.0 0.0123 0.0015 - 0.100    

120.0 0.0106 0.0013 - 0.088    

125.0 0.0093 0.0011 - 0.078    
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TABLE 14.  Mean snout-vent length (SVL), body mass, and fatbody mass for male and 
female Nerodia rhombifer collected from Hidalgo County, Texas. 

  Male Female 

SVL (cm) Mean 64.73 89.25 

 SE 0.94 1.42 

 Range 51.8-78.8 75.5-112.7 

 N 52 43 

    

Body Mass (g) Mean 241.646 718.883 

 SE 10.996 39.350 

 Range 86.14-481.43 364.10-1563.47 

 N 52 42 

    

Fatbody Mass (g) Mean 14.5339 36.7422 

 SE 1.4815 4.2104 

 Range 0.966-54.718 1.332-130.769 

 N 52 42 
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FIG. 1.  Map of the study site displaying the location and arrangement of each of two trapping grids. 
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FIG. 2.  Mass versus snout-vent length (SVL) for Nerodia rhombifer captured at Willow Lake, Santa Ana National Wildlife Refuge 
from August 1995 to December 1998.  R2 = coefficient of determination. 
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FIG. 3.  Size of Willow Lake Nerodia rhombifer
for neonates, 1 year-olds, and 2 year-olds reported by Scudder
represents females and the bottom, males.  The vertical window represents the approximate range of birth dates reviewed by Ke
(2004).  SVL = snout-vent length. 

 

Nerodia rhombifer versus date of capture.  The horizontal windows represent the approximate size ranges 
olds reported by Scudder-Davis and Burghardt (1996).  For 1 and 2 year

represents females and the bottom, males.  The vertical window represents the approximate range of birth dates reviewed by Ke
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versus date of capture.  The horizontal windows represent the approximate size ranges 

d 2 year-olds, the top ranges 
represents females and the bottom, males.  The vertical window represents the approximate range of birth dates reviewed by Keck 
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FIG. 4.  (A) Monthly comparisons of the number of Willow Lake Nerodia rhombifer 
captured with expected values generated from trapping effort.  Data are combined across 
years by month.  The numbers of captures among months were significantly different 
from expected values (P ≤ 0.001).  Note that because trapping effort varied among 
months, the numbers of captures are not directly comparable.  (B) Monthly relative 
abundances for all Willow Lake Nerodia rhombifer represented as a percent of sample 
corrected for sampling effort.  Data are combined across years by month.  Dashed line 
represents the expected values if watersnakes were equally active throughout the year.   

[% �I3J6� � %@� �
0K

∑ 0K
M 100 �

∑ +N.  OPQRS1TU ∑ +N.  V1PQQW*X YT1WNZU⁄

∑�∑ +N.  OPQRS1TU ∑ +N.  V1PQQW*X YT1WNZU⁄ �
M 100.  For 

reference, ∑ @� � 38.65.] 
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FIG. 5.  Monthly comparisons of the number of Willow Lake Nerodia rhombifer captured 
with expected values generated from trapping effort.  Data are combined across years by 
month for (A) juveniles, (B) adult females, (C) and adult males.  All three displayed 
significantly different capture rates than expected (P ≤ 0.001 for all three).  Note that 
because trapping effort varied among months, the numbers of captures are not directly 
comparable. 
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Fig. 6.  Monthly relative abundances of Willow Lake Nerodia rhombifer represented as a 
percent of sample corrected for sampling effort for (A) juveniles, (B) adult females, and 
(C) adult males.  Data are combined across years by month.  The dashed line in each 
graph represents the expected values if watersnakes were equally active throughout the 

year. [ % �I3J6� � %@� �
0K

∑ 0K
M 100 �

∑ +N.  OPQRS1TU ∑ +N.  V1PQQW*X YT1WNZU⁄

∑�∑ +N.  OPQRS1TU ∑ +N.  V1PQQW*X YT1WNZU⁄ �
M 100.  

For reference, ∑ @� � 7.50 for juveniles, ∑ @� � 17.48 for adult females, and ∑ @� �

13.67 for adult males.] 

  



90 
 

 
 

A 

 
B 

 
C 

 
FIG. 6 

0

5

10

15

20

25

30

P
er

ce
nt

 o
f S

am
p

le

Month

Observed

Expected

0

5

10

15

20

25

P
er

ce
nt

 o
f S

am
p

le

Month

Observed

Expected

0

2

4

6

8

10

12

14

16

18

20

P
er

ce
nt

 o
f S

am
p

le

Month

Observed

Expected



91 
 

 
 

 
A 

B 

FIG. 7.  (A) Mean monthly photophase, and (B) mean total monthly precipitation and 
mean monthly temperatures for years 1995-98.  Precipitation and temperature data were 
from two weather stations closest to Santa Ana National Wildlife Refuge: McAllen 
(National Weather Service MCAT2), 17 km NNW; and Weslaco 2E (National Weather 
Service WEST2), 21 km ENE. 

 

12

13

14

15

16

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

M
ea

n 
P

ho
to

ph
as

e 
(h

)

Photophase

0

5

10

15

20

25

30

35

0

2

4

6

8

10

12

14

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
M

ea
n 

Te
m

pe
ra

tu
re

 (o C
)

To
ta

l P
re

ci
pi

ta
tio

n 
(c

m
)

Month

Precipitation

Temperature



 
 

 

 
 

92 

 

FIG. 8.  Size structure for Nerodia rhombifer constructed from data collected from Willow Lake, Santa Ana National Wildlife Refuge 
from 1995-1998.  N = sample size, SVL = snout-vent length. 
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FIG. 9.  Mass structure for Nerodia rhombifer constructed from data collected from Willow Lake, Santa Ana National Wildlife Refuge 
from 1995-1998.  N = sample size. 
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FIG. 10.  Age structure for Nerodia rhombifer constructed from size data collected from Willow Lake, Santa Ana National Wildlife 
Refuge from 1995-1998.  Ages for individuals used to generate the age structure were estimated from power growth models 
empirically fit to growth increments for females and males, separately.  Numbers beside the frequency bars indicate the number of 
individuals assigned to each age group. 



 
 

 

 
 

95 

 
FIG. 11.  Sex ratios for individual adult Nerodia rhombifer by month from Willow Lake, Santa Ana National Wildlife Refuge.  Data 
are combined from years 1995-1998.  Because of small sample sizes, only ratios from April to September are formally comparable.  
The only significantly biased sex ratio was in August, where females outnumbered males by a ratio of 1.8:1.0 (P = 0.008). 
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Fig. 12.  (A) Size of reproductive structures for female Nerodia rhombifer ≥ 75.5 cm 
SVL collected in irrigation canals in Hidalgo County, Texas.  (B) Mean mass of testes for 
male Nerodia rhombifer ≥ 48.4 cm SVL collected in irrigation canals in Hidalgo County, 
Texas.  SVL = snout-vent length.
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FIG. 13.  Comparison of regression lines of litter sizes versus maternal snout-vent lengths (SVL) for Nerodia rhombifer from Hidalgo 
County, Texas and three other populations from temperate and tropical regions.  Data for the other three populations are from 
Plummer (1992), Aldridge et al. (1995), and M. Keck (unpublished data).  The slopes were not significantly different (F3,57 = 1.69, P = 
0.179).
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FIG. 14.  Comparison of common slope models and marginal mean SVLs for Hidalgo County, Texas Nerodia rhombifer and 
three other populations from temperate and tropical regions.  Models by location are identified by number in parentheses.  Data 
for the other populations are from Plummer (1992), Aldridge et al. (1995), and M. Keck (unpublished data).  Marginal means 
(±1SE) are compared at 89.12 cm SVL (vertical line).  Significant comparisons are by location number. Lonoke Co., AK (N = 
21, 22.0±1.28, Location 1): 3*** ; Freestone Co., TX (N = 13; 16.9±1.62, Location 2): not significant; Hidalgo Co., TX (N = 17, 
13.6±1.43, Location 3): 1*** , 4*; Veracruz, Mex (N = 14, 20.2±1.60, Location 4): 3*.  Degree of significance is indicated by 
asterisks (P < 0.05 indicated with *, P ≤ 0.001 indicated with ***).  SVL = snout-vent length. 
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FIG. 15.  Comparison of the regression lines of tail length (TL) versus snout-vent length (SVL) between male and female Nerodia 
rhombifer from Willow Lake, Santa Ana National Wildlife Refuge.  An ANCOVA comparing TL using SVL as the covariate 
indicated that males had significantly longer tails than females proportionately (F1, 135 = 16.07, P < 0.001).  From the analysis, the 
marginal means (±SE) were 19.8±0.539 cm (N = 62) and 16.9±0.486 cm (N = 76) for males and females, respectively, and were 
estimated at 72.1 cm SVL. 
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FIG. 16.  Comparison of the regression lines of log(Mass in grams) versus log(SVL in cm) between male and female Nerodia 
rhombifer from Willow Lake, Santa Ana National Wildlife Refuge.  A test for homogeneity of slopes was significant (GLM 
interaction term sex*SVL: F1, 134 = 4.75, P = 0.031) indicating that the rate of change in logMass with logSVL was not the same 
between the sexes.  SVL = snout-vent length, R2 = coefficient of determination, GLM = general linear model. 
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FIG. 17.  A graphical comparison of mean neonate size by maternal female size for both male and female neonates for three Nerodia 
rhombifer litters from Hidalgo County, Texas.  Circles are means.  Error bars represent ±1SE.  Numbers above the error bars give 
sample size.  SVL = snout-vent length.  Note that the horizontal axis is not to scale.
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FIG. 18.  Regression lines by sex (males = � − −, females =   ) for the differential forms 
of the (A) power, (B) logistic, and (C) Gompertz growth models fit to growth data for 
Nerodia rhombifer from Santa Ana National Wildlife Refuge.  G = specific growth rate, 
S = geometric mean snout-vent length for growth increment. 
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FIG. 19.  Growth curves generated by integrating the regression equations estimated from 
field growth rates of female and male Nerodia rhombifer from Willow Lake, Santa Ana 
National Wildlife Refuge.  (A) Power model; (B) Logistic model; (C) Gompertz model.  
Regression analyses showed that the power models explained the greatest amount of 
variation in size-related growth rates.  SVL = snout-vent length. 
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FIG. 20.  The relationship between fatbody mass (FBM) and snout-vent length (SVL) for 
(A) adult male (N = 52) and (B) adult female (N = 42) Nerodia rhombifer collected in 
Hidalgo County, Texas.  Only males ≥ 51.8 cm SVL and females ≥ 75.5 cm SVL were 
used in the analyses.  The reproductive condition for individual females is indicated by 
symbols:  = quiescent, � = vitellogenic, � = oviductal eggs, � = oviductal embryos, 
� = uterine spots, and � = gave birth.  For males, FBM � 0.764SVL � 34.9, @A �

0.237, B _ 0.001.  For females, FBM � 1.32SVL � 80.8, @A � 0.192, B � 0.004.  R2 = 
coefficient of determination, P = probability that the null hypothesis is true. 
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Fig. 21.  The relationship between fatbody mass (FBM) and body mass (BM) for (A) 
adult male (N = 52) and (B) adult female (N = 41) Nerodia rhombifer collected in 
Hidalgo County, Texas.  Only males ≥ 51.8 cm SVL and females ≥ 75.5 cm SVL were 
used in the analyses.  The reproductive condition for individual females is indicated by 
symbols:  = quiescent, � = vitellogenic, � = oviductal eggs, � = oviductal embryos, 
� = uterine spots, and � = gave birth.  For males, FBM � 0.096BM � 7.887, @A �

0.474, B _ 0.001.  For females, FBM � 0.065BM � 10.59, @A � 0.361, B _ 0.001.  R2 
= coefficient of determination, P = probability that the null hypothesis is true. 
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FIG. 22.  Residual index versus fatbody index for (A) adult male (r = 0.955, N = 52, P < 
0.001) and (B) adult female (r = 0.964, N = 42, P < 0.001) Nerodia rhombifer collected 
in Hidalgo County, Texas.  r = correlation coefficient, N = sample size, P = probability 
that the null hypothesis is true. 

  



107 
 

 
 

A

 
B

  
Fig. 23.  Fatbody index (FBI) calculated for (A) adult male (N = 52) and (B) adult female 
(N = 42) Nerodia rhombifer collected in Hidalgo County, Texas.  The dashed lines 
indicates the overall mean FBI for each sex.  Only males ≥ 51.8 cm SVL and females ≥ 
75.5 cm SVL were used in the analyses.  The reproductive condition for individual 
females is indicated by symbols:  = quiescent, � = vitellogenic, � = oviductal eggs, 
� = oviductal embryos, � = uterine spots, and � = gave birth.  SVL = snout-vent length. 
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FIG. 24.  Fatbody index (FBI) by month for (A) adult male (N = 52) and (B) adult female 
(N = 42) Nerodia rhombifer collected in Hidalgo County, Texas.  The dashed lines 
indicate the overall mean FBI for each sex.  Only males ≥ 51.8 cm SVL and females ≥ 
75.5 cm SVL were used in the analyses.  The interpolation lines indicate monthly means.  
Kruskal-Wallis Tests indicated that males displayed an significant among month 
difference in FBI (χ2 = 21.70, df = 7, P = 0.003), but females did not (χ

2 = 8.78, df = 7, P 
= 0.269).  Months are indicated by number (i.e., 4 = April, 5 = May…11 = November).  
N = sample size. SVL = snout-vent length, χ

2 = chi-square value, df = degrees of 
freedom, P = probability that the null hypothesis is correct.
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FIG. 25.  Comparison of monthly relative abundances among four geographically distinct populations of Nerodia rhombifer ranging 
from tropical Mexico to the northeastern Texas.  Effort was made to correct for sampling effort based on information provided in 
reports for the populations from Veracruz, Mexico (Manjarrez and Garcia, 1991), Ascension Parish, Louisiana (Mushinsky et al. 
1980), and Titus County, Texas (Keck, 2004).  Data for Hidalgo County, Texas are from this study. 
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FIG. 26.  Survivorship curves for Nerodia rhombifer from Willow Lake at Santa Ana National Wildlife Refuge.  The groupings were 
modeled as simple exponential decays that assume constant mortalities after age 1.  The regression models were, for females ( ⋅⋅⋅⋅), 
` � 30.70�Fa.!ab (R2 = 0.82, P = 0.002), males (� − −),  ̀ � 55.81�Fa.c"b (R2 = 0.79, P = 0.042), and combined (� ), ̀ �

91.56�Fa.dcb (R2 = 0.97, P < 0.001).  R2 = coefficient of determination, P = probability that the null hypothesis is true. 

.

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9

N
u

m
b

er
 o

f 
In

d
iv

id
u

al
s 

in
 A

g
e 

C
la

ss

Age (yr)



111 
 

 
 

LITERATURE CITED 
 
 
Aldridge, R. D., W. P. Flanagan, and J. T. Swarthout. 1995. Reproductive biology of the 

water snake Nerodia rhombifer from Veracruz, Mexico, with comparisons of 
tropical and temperate snakes. Herpetologica 51:182-192. 

 
Aldridge, R. D., and A. P. Bufalino. 2003. Reproductive female common watersnakes 

(Nerodia sipedon sipedon) are not anorexic in the wild. Journal of Herpetology 
37:416-419. 

 
Aldridge, R. D., K. A. Williams, and R. R. Teillery. 2003. Seasonal feeding and coelomic 

fat mass in the watersnake Nerodia rhombifer werleri in Veracruz, Mexico. 
Herpetologica 59:43-51. 

 
Andrews, R. M. 1982. Patterns of growth in reptiles. In G. Gans and F. H. Pough (eds.), 

Biology of the Reptilia, Vol. 13, pp. 273-320. Academic Press, New York. 
 
Arnold, S. J. 1993. Foraging theory and prey-size−predator-size relations in snakes. In 

R. A. Seigel and J. T. Collins (eds.), Snakes: Ecology and Behavior, pp. 87-115. 
McGraw-Hill, Inc., New York. 

 
Berry, P. Y., and G. S. Lim. 1967. The breeding pattern of the puff-faced water snake, 

Homalopsis buccata Boulenger. Copeia 1967:307-331. 
 
Betz, T. W. 1963. The gross ovarian morphology of the diamond-backed water snake, 

Natrix  rhombifera, during the reproductive cycle. Copeia 1963:692-697. 
 
Blair, W. F. 1950. The biotic provinces of Texas. Texas Journal of Science 2:95-117. 
 
Blem, C. R. 1997. Lipid reserves of the eastern cottonmouth (Agkistrodon piscivorous) at 

the northern edge of its range. Copeia 1997:53-59. 
 
Blem, C. R., and L. B. Blem. 1990. Lipid reserves of the brown water snake Nerodia 

taxispilota. Comparative Biochemistry and Physiology 97A:367-372. 
 
Bonnet, X., S. Akoka, R. Shine, and L. Pourcelot. 2008. Disappearance of eggs during 

gestation in a viviparous snake (Vipera aspis) detected using non-invasive 
techniques. Acta Herpetologica 3:129-137.



112 
 

 
 

Bonnet, X., D. Bradshaw, and R. Shine. 1998. Capital versus income breeding: an 
ectothermic perspective. Oikos 83:333-342. 

 
Bonnet, X., and G. Naulleau. 1996. Are body reserves important for reproduction in male dark 

green snakes (Colubridae: Coluber viridiflavus)? Herpetologica 52:137-146. 
 
Bonnet, X., D. Pearson, L. Ladyman, O. Lourdais, and D. Bradshaw. 2002. ‘Heaven’ for 

serpents? a mark-recapture study of tiger snakes (Notechis scutatus) on Carnac 
Island, Western Australia. Austral Ecology 27:442-450. 

 
Brito, J. C., and R. Rebelo. 2003. Differential growth and mortality affect sexual size 

dimorphism in Vipera latastei. Copeia 2003:865-871. 
 
Brown, G. P., and R. Shine. 2002. Influence of weather conditions on activity of tropical 

snakes. Austral Ecology 27:596-605. 
 
Brown, G. P., R. Shine, and T. Madsen. 2002. Responses of three sympatric snake 

species to tropical seasonality in northern Australia. Journal of Tropical Ecology 
18:549–568. 

 
Brown, G. P., and P. J. Weatherhead. 1999. Demography and sexual size dimorphism in 

northern water snakes, Nerodia sipedon. Canadian Journal of Zoology 77:1358-
1366. 

 
Cagle, F.R. 1937. Notes on Natrix rhombifera as observed at Reelfoot Lake. Journal of 

the Tennessee Academy of Science 12:179-185. 
 
Case, T. J.  1976.  Body size differences between populations of the chuckwalla, 

Sauromalus obesus.  Ecology 57:313-323. 
 
Conant, R. 1969. A review of the water snakes of the genus Natrix in Mexico. Bulletin of 

the American Museum of Natural History 142:1-140. 
 
Conant, R., and J. T. Collins. 1991. A Field Guide to Reptiles and Amphibians of Eastern 

and Central North America (3rd ed.). Houghton Mifflin Company, New York. 
 
Cox, G. W. 1996. Laboratory Manual of General Ecology (7th ed.). Wm. C. Brown 

Publishers, Boston. 
 
Dalrymple, G. H., T. M. Steiner, R. J. Nodell, F. S. Bernardino, Jr. 1991. Seasonal 

activity of the snakes of Long Pine Key, Everglades National Park. Copeia 
1991:294-302. 

 
Diener, R. A. 1957. An ecological study of the plain-bellied water snake. Herpetologica 

13:203-211 
 
 



113 
 

 
 

Dodd, C. K, Jr. 1993. Strategies for snake conservation. In R. A. Seigel and J. T. Collins 
(eds.), Snakes: Ecology and Behavior, pp. 363-393. McGraw-Hill, Inc., New 
York. 

 
Fitch, H. S. 1951. A simplified type of funnel trap for reptiles. Herpetologica 7:77-80. 
 
Fitch, H. S. 1987. Collecting and life-history techniques. In R. A. Seigel, J. T. 

Collins, and S. S. Novak (eds.), Snakes: Ecology and Evolutionary Biology, pp. 
143-164. Blackburn Press, Caldwell, New Jersey. 

 
Fitch, H. S. 2000. Population and biomass of some common snakes in central North 

America. Scientific Papers of the Natural History Museum of the University of 
Kansas 17:1-7. 

 
Ford, N. B., and R. A. Seigel. 1989.  Phenotypic plasticity in reproductive traits: evidence 

from a viviparous snake. Ecology 70:1768-1774. 
 
Ford, N. B., and R. A. Seigel. 1994. An experimental study of the trade-offs between age 

and size at maturity: effects of energy availability. Functional Ecology 8:91-96. 
 
Garcia-Berthou, E. 2001. On the misuse of residuals in ecology: testing regression 

residuals vs. the analysis of covariance. Journal of Animal Ecology 70:708–711. 
 
Gibbons, J. W., and K. M. Andrews. 2004. PIT tagging: simple technology at its best. 

BioScience 54:447-454. 
 
Gibbons, J. W., and M. E. Dorcas.  2004.  North American Watersnakes: A Natural 

History.  University of Oklahoma Press, Norman, Oklahoma. 
 
Gibbons, J. W., and R. D. Semlitsch. 1987. Activity patterns. In R. A. Seigel, J. T. 

Collins, and S. S. Novak (eds.), Snakes: Ecology and Evolutionary Biology, pp. 
396-421. Blackburn Press, Caldwell, New Jersey. 

 
Godley, J. S. 1980. Foraging ecology of the striped swamp snake, Regina alleni, in 

southern Florida. Ecological Monographs 50:411-436. 
 
Greenwood, J. J. D. 1996. Basic techniques. In W. J. Sutherland (ed.), Ecological Census 
 Techniques: A Handbook, pp. 11-110. Cambridge University Press, New York. 
 
Gregory, P. T. 1982. Reptilian hibernation. In  Biology of the Reptilia. Vol. 13. C. Gans 

and F. H. Pough (eds.), pp. 53 154. Academic Press, New York. 
 
Gregory, P. T. 1983. Identification of sex of small snakes in the field. Herpetological 
 Review 14:42-43. 
 
 



114 
 

 
 

Gregory, P. T., K .W. Larson, and D. R. Farr. 1992. Snake litter size = live young + 
 deadyoung + yolks. Herpetological Journal 2:145-146. 
 
 Hayne, D. W. 1949. Two methods for estimating population from trapping records. 
 Journal of Mammalogy 30:399-411. 
 
Hebrard, J. J., and H. R. Mushinsky. 1978. Habitat use by five sympatric water snakes in 

a Louisiana swamp. Herpetologica 34:306-311. 
 
Hines, J. E. 1988. Program “Jolly”: user instructions. United States Geological Survey, 

Patuxent Wildlife Research Center. Accessed: 30 October 3007 <www.mbr 
pwrc.usgs.gov/software/doc/jolly.html>. 

 
Iverson, J. B. 1982. Biomass in turtle populations: a neglected subject. Oecologia 55:69 

76. 
 
Jahrsdoerfer, S., and D. M. Leslie, Jr. 1988. Tamaulipan brushland of the Lower Rio 

Grande Valley of South Texas: description, human impacts, and management 
options. Biological Report 88 (36), United States Fish and Wildlife Service, 
Washington, D.C. 

 
Jolly, G. M., and J. M. Dickson. 1983. The problem of unequal catchability in mark 

recapture estimation of small mammal populations. Canadian Journal of Zoology 
61:922-927. 

 
Judd, F. W., and M. Bray. 1996. Date of birth, litter and neonate size of a diamondback 

water snake, Nerodia rhombifer, from southernmost Texas. Texas Journal of 
Science 48:85 86. 

 
Judd, F. W., and F. L. Rose. 1983. Population structure, density and movements of the 

Texas tortoise Gopherus berlandieri. Southwestern Naturalist 28:387-398. 
 
Kaufmann, K. W. 1981. Fitting and using growth curves. Oecologia 49:293-299. 
 
Keck, M. B. 1994. A new technique for sampling semi-aquatic snake populations. 

Herpetological Natural History 2:101-103. 
 
Keck, M. B. 1998. Habitat use by semi-aquatic snakes at ponds on a reclaimed strip mine. 

Southwestern Naturalist 43:13-19. 
 
Keck, M. B. 2004. Nerodia rhombifer. In J. Gibbons and M. Dorcas, North American 

Watersnakes: A Natural History, pp. 138-177. Univ. of Oklahoma Press, Norman. 
 
King, R. B. 1986. Population ecology of the Lake Erie water snake, Nerodia sipedon 

insularum. Copeia 1986:757-772. 
 



115 
 

 
 

King, R. B. 1989. Sexual dimorphism in snake tail length: sexual selection, natural 
selection, or morphological constraint? Biological Journal of the Linnean Society 
38:133-154. 

 
King, R. B. 2002. Predicted and observed maximum prey size-snake size allometry. 

Functional Ecology 16:766-772. 
 
King, R. B., T. D. Bittner, A. Queral-Regil, and J. H. Cline. 1999. Sexual dimorphism in 

neonate and adult snakes. Journal of Zoology 247:19-28. 
 
King, R. B., A. Queral-Regil, and K. M. Stanford. 2006. Population size and recovery 

criteria of the threatened Lake Erie watersnake: integrating multiple methods of 
population estimation. Hepetological Monographs 20:83-104. 

 
Kofron, C. P. 1978. Foods and habitats of aquatic snakes (Reptilian, Serpentes) in a 

Louisiana swamp. Journal of Herpetology 12:543-554. 
 
Kofron, C. P. 1979. Reproduction of aquatic snakes in south-central Louisiana. 

Herpetologica 35:44-50. 
 
Krause, M. A., and G. M. Burghardt. 2007. Sexual dimorphism of body and relative head 

sizes in neonatal common garter snakes. Journal of Zoology 272:156-164. 
 
Krebs, C. J. 1998. Ecological Methodology (2nd ed.). Addison-Wesley Educational 

Publishers, New York. 
 
Laurent, E. J., and B. A. Kingsbury. 2003. Habitat separation among three species of 

water snakes in northwestern Kentucky. Journal of Herpetology 37:229-235. 
 
Lillywhite, H. B. 1987. Temperature, energetic, and physiological ecology. In R A. 

Seigel, J. T. Collins, and S. S. Noval (eds.), Snakes: Ecology and Evolutionary 
Biology, pp. 422-477. Blackburn Press, Caldwell, New Jersey. 

 
Lind, A. J., and H. H. Welsh, Jr. 1994. Ontogenetic changes in foraging behavior and 

habitat use by the Oregon garter snake, Thamnophis atratus hydrophilus. Animal 
Behaviour 48:1261-1273. 

 
Lonard, R. I., J. H. Everitt, and F. W. Judd. 1991. Woody Plants of the Lower Rio Grande 

Valley. Miscellaneous Publications Number 7, Texas Memorial Museum, 
University of Texas at Austin. 

 
Lonard, R. I., and F. W. Judd. 2002. Riparian vegetation of the lower Rio Grande. 

Southwestern Naturalist 47:420-432. 
 
Manjarrez, J., and C. M. Garcia. 1991. Feeding ecology of Nerodia rhombifera in a 

Veracruz swamp. Journal of Herpetology 25:499-502. 



116 
 

 
 

Marvin, G. A. 2001. Age, growth, and long-term site fidelity in the terrestrial 
plethodontid salamander Plethodon kentucki. Copeia 2001:108-117. 

 
Meade, G. P. 1934. Some observations on captive snakes. Copeia 1934:4-5. 
 
Mushinsky, H. R. 1987. Foraging ecology. In R. A. Seigel, J. T. Collins, and S. S. Noval 

(eds.), Snakes: Ecology and Evolutionary Biology, pp. 302-334. Blackburn Press, 
Caldwell, New Jersey. 

 
Mushinsky, H. R., and J. J. Hebrard. 1977. Food partitioning by five species of water 

snakes in Louisiana. Herpetologica 33:162-166. 
 
Mushinsky, H. R., J. J. Hebrard, and D. S. Vodopich. 1982. Ontogeny of water snake 

foraging ecology. Ecology 63:1624-1629. 
 
Mushinsky, H.R., J. J. Hebrard, and M. G. Walley. 1980. The role of temperature on the 

behavioral and ecological associations of sympatric water snakes. Copeia 
1980:744-754. 

 
Nakagawa, S., and I. C. Cuthill. 2007. Effect size, confidence interval, and statistical 

significance: a practical guide for biologists. Biological Reviews 82:591-605. 
 
Nilsson, C., and K. Berggren. 2000. Alterations of riparian ecosystems caused by river 

regulation. BioScience 50:783-792. 
 
O'Donnell, R. P., R. Shine, R. T. Mason. 2004. Seasonal anorexia in the male red-sided 

garter snake, Thamnophis sirtalis parietalis. Behavioral Ecology and 
Sociobiology 56:413-419. 

 
Packard , G. C., and T. J. Boardman. 1999. The use of percentages and size-specific 

indices to normalize physiological data for variation in body size: wasted time, 
wasted effort?  Comparative Biochemistry and Physiology Part A 122:37-44. 

 
Parker, W. S., and M. V. Plummer. 1987. Population ecology. In R. A. Seigel, J. T. Collins, 

and S. S. Noval (eds.), Snakes: Ecology and Evolutionary Biology, pp. 253-301. 
Blackburn Press, Caldwell, New Jersey. 

 
Plummer, M. V. 1985. Demography of green snakes (Opheodrys aestivus). Herpetologica 

41:373-381. 
 
Plummer, M. V. 1992. Relationships among mothers, litters, and neonates in diamondback 

water snakes (Nerodia rhombifer). Copeia 1992:1096-1098. 
 
Plummer, M. V., and J. M. Goy. 1984. Ontogenetic dietary shift of water snakes (Nerodia 

rhombifera) in a fish hatchery. Copeia 1984:550-552. 
 



117 
 

 
 

Pollock, K. H., J. D. Nichols, C. Brownie, and J. E. Hines. 1990. Statistical inference for 
capture-recapture experiments. Wildlife Monographs 107: 3-97. 

 
Pough, F. H. 1980. The advantages of ectothermy for tetrapods. American Naturalist 

115:92-112 
Preston, W. B. 1970. The comparative ecology of water snakes, Natrix rhombifera and 

Natrix erythrogaster, in Oklahoma. Unpubl. Ph.D. Diss., Univ. of Oklahoma, 
Norman. 

 
Quinn, G. P., and M. J. Keough. 2002. Experimental design and data analysis for 

biologists. Cambridge University Press, New York. 
 
Quinn, H., and J. P. Jones. 1974. Squeezebox technique for measuring snakes. 

Herpetological Review 5:35. 
 
Reynolds, R. P. 1982. Seasonal incidence of snakes in northeastern Chihuahua, Mexico. 

Southwestern Naturalist 27:161-166. 
 
Santos, X., and G. A. Llorente. 2004. Lipid dynamics in the viperine snake, Natrix 

maura, from the Ebro Delta (NE Spain). Oikos 105:132-140. 
 
Scudder-Davis, R. M., and G. M. Burghardt. 1996. Ontogenetic changes in growth 

efficiency in laboratory-reared water snakes of the genus Nerodia. Snake 27:75- 
84. 

 
Seigel, R. A., and H.S. Fitch. 1985. Annual variation in reproduction in snakes in a 

fluctuating environment. Journal of Animal Ecology. 54:497-505. 
 
Seigel, R. A., and N. B. Ford. 1987. Reproductive ecology. In R A. Seigel, J. T. Collins, 

and S. S. Noval (eds.), Snakes: Ecology and Evolutionary Biology, pp. 210-252. 
Blackburn Press, Caldwell, New Jersey. 

 
Seigel, R. A., and N. B. Ford. 1991. Phenotypic plasticity in the reproductive 

characteristics of an oviparous snake, Elaphe guttata: implications for life history 
studies. Herpetologica. 47:301-307. 

 
Semlitsch, R. D., and J. W. Gibbons. 1982. Body size dimorphism and sexual selection in 

two species of water snakes. Copeia 1982:974-976. 
 
Sever, D. M., T. J. Ryan, T. Morris, D. Patton, and S. Swafford. 2000. Ultrastructure  of 

the reproductive system of the black swamp snake (Seminatrix pygaea). II. annual 
oviductal cycle. Journal of Morphology 245:146-160. 

 
Shine, R. 1980a. Comparative ecology of three Australian snake species of the genus 

Cacophis (Serpentes: Elapidae). Copeia 1980:831-838. 
 



118 
 

 
 

Shine, R. 1980b. "Costs" of reproduction in reptiles. Oecologia 46:92-100. 
 
Shine, R. 1986. Sexual differences in morphology and niche utilization in an aquatic 

snake, Acrochordus arafurae. Oecologia 69:260-267. 
 
Shine, R. 1993. Sexual dimorphism. In R. A. Seigel and J. T. Collins (eds.), Snakes: 

Ecology and Behavior, pp. 49-86. McGraw-Hill, Inc., New York. 
 
Shine, R. 1994. Sexual size dimorphism in snakes revisited. Copeia 1994: 326-346. 
 
Shine, R. 2003. Reproductive strategies in snakes. Procedures of the Royal Society of 

London B. 270:995–1004. 
 
Sokal, R. R., and F. J. Rohlf. 1995. Biometry: the principles and practice of statistics in 

biological research (3rd ed.). W. H. Freeman and Company, New York. 
 
Stanford, K. M, and R. B. King. 2004. Growth, survival, and reproduction in a northern 

Illinois population of the plains gartersnake, Thamnophis radix. Copeia 2004:465 
478. 

 
Tennant, A. 1984. The Snakes of Texas. Texas Monthly Press, Inc., Austin. 
 
Tinkle, D. W. 1962. Reproductive potential and cycles in female Crotalis atrox from 

northwestern Texas. Copeia 1962:306-313. 
 
Tu, M-C., and V. H. Hutchison. 1995. Interaction of photoperiod, temperature, season, 

and diel cycles on the thermoregulation of water snakes (Nerodia rhombifera). 
Copeia 1995:289 293. 

 
Tucker, J. K., and J. B. Camerer. 1994. Nerodia rhombifer rhombifer (diamondback 

water snake): reproduction.  Herpetological Review 25:28 29. 
 
Van Devender, R. W. 1978. Growth ecology of a tropical lizard, Basiliscus basiliscus. 

Ecology 59:1031-1038. 
 
Vermersch, T.G., and R.E. Kuntz. 1986. Snakes of South-central Texas.  Eakin 

Press, Austin, Texas. 
 
Vora, R. S. 1990. Plant communities of the Santa Ana National Wildlife Refuge, Texas. 

Texas Journal of Science 42:115-128. 
 
Weatherhead, P. J., F. E. Barry, G. P. Brown, and M. R. L. Forbes. 1995. Sex ratios, 

mating behavior and sexual size dimorphism of the northern water snake, Nerodia 
sipedon. Behavioral Ecology and Sociobiology 36:301-311. 

 
 



119 
 

 
 

Willson, J. D., C. T. Winne, and L. A. Fedewa. 2005. Unveiling escape and capture rates 
of aquatic snakes and salamanders (Siren spp. and Amphiuma means) in 
commercial funnel traps. Journal of Freshwater Ecology 20:397-403. 

 
Willson, J. D., C. T. Winne, and M. B. Keck. 2008. Empirical tests of biased body size 

distributions in aquatic snake captures. Copeia 2008:401-408. 
Winne, C. T. 2005. Increases in capture rates of an aquatic snake (Seminatrix pygaea) 

using naturally baited minnow traps: evidence for aquatic funnel trapping as a 
measure of foraging activity. Herpetological Review  36:411–413. 

 
Winne, C. T., M. E. Dorcas, and S. M. Poppy. 2005. Population structure, body size, and 

seasonal activity of black swamp snakes (Seminatrix pygaea). Southeastern 
Naturalist 4:1-14. 

 
Winne, C. T., and J. D. Willson, and J. W. Gibbons. 2006. Income breeding allows and 

aquatic snake Seminatrix pygaea to reproduce normally following prolonged 
drought-induced aestivation. Journal of Animal Ecology 75:1352-1360. 

 
Zamora, R. D., and P. Valadez. 2007. Nerodia rhombifer (diamond-backed watersnake). 

courtship and diet.  Herpetological Review 38:468-469. 
 
Zedler, J. B., and S. Kercher. 2005. Wetland resources: status, trends, ecosystem services, 

and restorability. Annual Reviews of Environment and Resources 30:39-74. 
 



120 
 

 
 

BIOGRAPHICAL SKETCH 
 
 

Ruben D. Zamora grew up in Linn-San Manuel, a rural community north of 

Edinburg, Hidalgo County, Texas.  After graduating from Edinburg High School, he 

enrolled at the University of Texas-Pan American (UTPA) as an undeclared major where 

he was told that eventually he would have to select a course of study.  Unsure of a career 

field, he selected the pre-medical program.  For an upper-level biology elective, he took 

the field-based course “Ornithology” and was hooked.  Almost immediately after taking 

the course, but before completing his undergraduate work, he served as an AmeriCorps 

volunteer with the U.S. Fish & Wildlife Service assuming duties as a biological 

technician.  It was during this time that he realized that he might be able to earn a living 

chasing after the critters that he use to when growing up in San Manuel.  And, it was 

during this time that he began the field work for this project.  Upon completion of his 

undergraduate work earning a B.S. in Biology in 1997, he immediately enrolled in the 

biology graduate program at UTPA.  Near the end of his second year of graduate work, a 

couple of bumps and a fork in the road landed him in a position as a secondary classroom 

science teacher.  Since then he has held various teaching positions and has worked as a 

natural resource specialist for the Texas Parks & Wildlife Department.  He maintains 

interests in vertebrate ecology, conservation biology, science education, and 

interpretation of natural history.  He currently lives and works in Edinburg and can be 

contacted at 917 W Stubbs, Edinburg, TX 78539. 


	Population Ecology and Reproductive Biology of The Diamondback Watersnake, Nerodia Rhombifer (Serpentes: Colubridae), in Southernmost Texas
	Recommended Citation

	Microsoft Word - $ASQ33088_supp_85F68462-EC1B-11DE-80E1-0C56D352ABB1.docx

