
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations

7-2017

Using Pedagogical Tools to Help Hispanics be Successful in Using Pedagogical Tools to Help Hispanics be Successful in

Computer Science Computer Science

Rodger Irish
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Irish, Rodger, "Using Pedagogical Tools to Help Hispanics be Successful in Computer Science" (2017).
Theses and Dissertations. 300.
https://scholarworks.utrgv.edu/etd/300

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fetd%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/300?utm_source=scholarworks.utrgv.edu%2Fetd%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

USING PEDAGOGICAL TOOLS TO HELP HISPANICS

BE SUCCESSFUL IN COMPUTER SCIENCE

A Thesis

by

 RODGER IRISH

Submitted to the Graduate College of

 The University of Texas Rio Grande Valley

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

July 2017

Major Subject: Computer Science

USING PEDAGOGICAL TOOLS TO HELP HISPANICS

BE SUCCESSFUL IN COMPUTER SCIENCE

A Thesis

by

 RODGER IRISH

COMMITTEE MEMBERS

Dr. Andres Figueroa

Chair of Committee

Dr. Angela Chapman

Committee Member

Dr. John Abraham

Committee Member

Dr. Zhixiang Chen

Committee Member

July 2017

Copyright 2017 Rodger Irish

All Rights Reserved

iii

ABSTRACT

Irish, Rodger, Using Pedagogical Tools to Help Hispanics Be Successful in Computer Science.

Master of Science (MS), July 2017, 48 pp., 4 tables, 2 figures, references 50 titles.

 Computer science (CS) jobs are a growing field and pay a living wage, but the Hispanics

are underrepresented in this field. This project seeks to give an overview of several contributing

factors to this problem. It will then explore some possible solutions to this problem and how a

combination of some tools (teaching methods) can create the best possible outcome. It is my

belief that this approach can produce successful Hispanics to fill the needed jobs in the CS field.

 Then the project will test its hypothesis. I will discuss the tools used to measure progress

both in the affective and the cognitive domains. I will show how the decision to run a Computer

Club was reached and the results of the research.

 The conclusion will summarize the results and tell of future research that still needs to be

done.

iv

DEDICATION

 The completion of my master’s degree would not have been possible without the love and

support of my family. My wife, Reina Irish, and my son, Tim, wholeheartedly inspired,

motivated and supported me by all means to accomplish this degree. Thank you for your love

and patience. I am also grateful for those who encouraged and prayed for me when I couldn’t

see the light at the end of the tunnel.

v

ACKNOWLEDGMENTS

 I will always be grateful to Dr. Andres Figueroa, chair of my thesis committee, for all his

mentoring and advice. As we both went through the process of proposal writing to IRB approval,

and forming a plan for carrying out the research, he encouraged me to complete this process

through his infinite patience and guidance. I also want to pay special tribute to Dr. Angela

Chapman on my committee. Whenever I needed help on formulating the proposal, or designing

the survey and interpreting its results, she was willing to help put thoughts into words. My

thanks go to my thesis committee members: Dr. John Abraham, and Dr. Zhixiang Chen. Their

advice, input, and comments on my thesis helped to ensure the quality of my intellectual work.

 Also, I would like to acknowledge the many volunteers who participated in the focus

group research and to Rio Grande City High School for allowing me to hold the Computer Club.

vi

TABLE OF CONTENTS

Page

ABSTRACT …………………………………………………………………………………. iii

DEDICATION ………………………………………………………………………………. iv

ACKNOWLEDGMENTS …………………………………………………………………… v

TABLE OF CONTENTS……………………………………………………………………. vi

LIST OF TABLES ………………………………………………………………………….. vii

LIST OF FIGURES ………………………………………………………………………… viii

CHAPTER I. INTRODUCTION AND BACKGROUND ………………………………… 1

 Analysis of the Problem …………………………………………………………….. 2

 Solution to These 2 Problems ………………………………………………………. 4

 Choosing the Programming Language ……………………………………………… 8

 My Vision to Fix the Problem ………………………………………………………. 11

CHAPTER II. TESTING TOOLS ………………………………………………………….. 13

CHAPTER III. IMPLEMENTATION ……………………………………………………… 15

 Plans A Through D ………………………………………………………………….. 15

 The Lessons …………………………………………………………………………. 17

CHAPTER IV. INTERPRETING THE RESULTS ………………………………………… 21

 The Survey …………………………………………………………………………… 22

 The Test ……………………………………………………………………………… 27

CHAPTER V. SUMMARY AND FUTURE INVESTIGATIONS ………………………… 28

REFERENCES ………………………………………………………………………………. 30

APPENDIX ………………………………………………………………………………….. 35

BIOGRAPHICAL SKETCH ……………………………………………………………….. 48

vii

LIST OF TABLES

Page

Table 1: Compiled Differences PTCS01 ………………………………………………..…. 23

Table 2: Compiled Differences PTCS02 …………………………………………………... 23

Table 3: Compiled Differences PTCS03 ………………………………………………..…. 24

Table 4: Differences of Means per Category ………….……………………………………. 25

viii

LIST OF FIGURES

Page

Figure 1: PTCS02 Answer Choices …………………………………………………………. 25

Figure 2: Summary ………………………………………………………………………….. 26

1

CHAPTER I

INTRODUCTION AND BACKGROUND

 There is a shortfall of graduating programmers in the United States. There is also a lack

of diversity in those that are graduating. Indeed, by 2020 there is a projected shortfall of 98,000

jobs per year [7]. Part of the reason for these conditions is that women and minorities, especially

Hispanics and African Americans are not seeking computer science (CS) as a career. This is

seen in the following statistics. Women make up 57% of undergrads, but only 18%, of CS

majors [13]. Hispanics are a fast growing group, but their portion of CS majors has actually

fallen to 7.4% [34]. There have been many papers examining either one reason why there is this

shortfall, or one theoretical solution. Some of these studies included: Preston talked about pair

programming [4]; Becker advocated introducing Karel the robot [5]; and Paralic and Pietrikova

suggested having the students create games as they learn programming [6]. Such is the method

science has to define and test theories one variable at a time. I wanted to present a more

comprehensive solution.

 This chapter seeks to give an overview of the entire problem and how some of the already

existing solutions may be combined to create the best possible outcome. I will examine some of

the main reasons minorities are underrepresented and their possible solutions. Then, I will look at

several of the computing languages that have been used throughout history to teach

programming. Finally, I will share my vision in putting together several of these tools to make a

2

comprehensive solution. It is my belief that this solution can produce successful women and

minorities to fill the needed jobs in the CS field.

Analysis of the Problem

 There are two general reasons why there is lack of minorities and women in computer

science. The first reason is a lack of interest. The second is a lack of preparation. I will explore

these reasons as well as seek some suggestions to resolve them.

 For women and minorities, a lack of interest in pursuing CS as a career comes from a

variety of roots. One of these roots is that there is a lack of role models who are women or

minorities for future programmers to follow [1]. Everyone knows about Steve Jobs, Bill Gates,

and Mark Zuckerburg, but no one knows about Jose Perez or Patricia Moore (friends of mine in

the field). (Grace Hopper and Francis Allen are exceptions as role models for women.) In

Silicon Valley, less than 1% of the workers are from Hispanic origins [3]. This may seem like a

paltry reason, but history tells us of the importance of role models in the recruiting of future

programmers. When Neil Armstrong landed on the moon, almost all boys were dreaming about

exploring space and becoming rocket scientists. This dream pushed some into that field and

encouraged those who were pursuing that dream. When Michael Jordan was winning

championships with the Bulls, boys, especially African-Americans, spent all their free time

practicing so they could become the next Michael Jordan. Thirty years later, potential NBA stars

are still being compared to him. When Bill Gates made it big with Windows, boys who were

considered nerds all bought computer kits and tried to become programmers. These are

examples from events around my lifetime where I or many of those around me were influenced

by these people.

3

 A second root for a lack of interest in entering the programming field is that it seems like

it is too hard, or it is only for geniuses. Women might feel that they do not have the skill set to

program [15]. Many minorities might feel they cannot commit to a four year college degree due

to the perceived rigor or financial difficulties [29]. A large portion of minorities are brought up

in poverty and see a four year degree as something for other people. In my high school, most of

the students feel they can get a one year certificate for doing a skilled trade, but they do not

consider getting a four year college degree as possible.

 Another possible root for a lack of interest is a lack of compelling problems in learning

programming. Research has shown that if the students were asked to construct a program to

remedy a socially significant problem, then women and Hispanics would see the value of

programming [29][15]. Young people across the board no longer want to just invent a “Hello

World” program, but want something fun. Many see a group of disparate programs about

manipulating a string or working a formula as boring and having no relevance to their lives.

 There also is a lack of early opportunities for potential programmers. Even though

Computer Science is a growing field, many high schools do not offer a class on programming.

In fact, there has been a decline in the number of students taking these classes of over 20% [34].

Often, students who have to take a programming class as part of their curriculum in college have

said that they might have considered programming, but they were already too far into their

current choice of major [21].

 A final root of lack of interest stems from the culture not seeing programming as relevant.

Especially in minority groups, there is a view of computer programming that says it is okay for a

hobby, but it is not a career that can offer stability and advancement [1]. Even though computer

4

science has helped to make some of the world’s richest people and organizations, many do not

seem interested in allowing others to pursue a career in this field.

 The second main reason many students do attempt computer science classes or drop out

is due to a lack of preparation. This is basically seen as a lack of math skills. In fact, Reilly and

Tomai found that 45% of those who only had a college algebra background either dropped out or

failed CS1 [22]. However, it can also be more generally applied to a lack of problem solving or

logic skills.

Solutions to These 2 Problems

 The fact that there are few famous role models for minorities or women who want to get

into programming does make it a less visible option for young people [1]. Nevertheless, no one

says that one of our students cannot become the first role model for their group. To help with

this, students can have mentors from the local community who can tell them about what

programming is like and help guide them [26]. This can build a pride in wanting to become a

programmer. Another solution to this would be to give the students an authentic experience like

Bridge to College. This is a camp or seminar where the students experience programming and

meet with leaders in the field. In this way, they get a taste of programming, and lets the students

hear how leaders got their start. This can help break the stigma of CS being too difficult or

having a lack of relevance also [27]. Many classroom teachers might not have the resources to

be able to accomplish the above solutions. On alternative that I used was to have a time to talk

about some of the leaders in technology and how they got their starts.

 As for the root of not being able to get a four year degree or that programming is only for

geniuses or nerds there are several tools to help overcome this. Let us start with having good

5

guidance counselling in high school [2]. Students should be given career assessment tests early

in their secondary education. This will help spot students with interests or aptitudes for

programming. The counselor should make sure the student is well-prepare before entering a

programming class (see paragraph on pre-requisites). The advisement should also include seeing

the relevance of programming, career potential and the necessary education involved in

obtaining those careers. Some of the facts that can be shared with students are that CS is part of

the core curriculum for many degrees. Many might be able to imagine that engineers need at

least some background in programing, but other careers like business also call for at least one

programming class. Students should be shown that a four year degree is good, and does offer the

most opportunities, but there are other paths into computer science as well. There are 1 year

certificates and 2 year associate degrees that can open the doors for jobs where they can earn a

living. For example, a 2 year web designer degree has an average starting salary of $60,000 and

an equivalent computer support can start with a salary of $61,000. Of course programmers

($77,000) and software engineers (120,000) make more with their respective bachelor’s and

master’s degrees [35]. Much of this also falls outside the scope of a classroom teacher, but

posting this information and reinforcing it to the students they are able to reach may help.

 This leads into the next solution. More high schools need to offer programming classes.

One way to do this is to try to get the local mentors and businesses to express this need to high

school administrators. If the superintendents and principals believe in its importance, they will

find students to take these classes. Once a non-computer science major takes their required

programming class in college, it is often too late for that person to switch careers if they feel

successful [21]. Another reason for high schools to push programming classes is that there is

only a limited time that Gates and Zuckerburg will inspire youths to seek to become self-taught

6

hobbyists. CS needs to be seen as a main-stream career. Again, this is outside of what many

classroom teachers have resources.

 The perception that computer science as not a compelling career needs to be attacked on

two fronts. First, the material needs to be more engaging. Making the lessons have their own

inspiration helps keep students motivated. Writing a program to find the area of a room to be

painted or how much tax will be charged is okay for practicing certain programming functions,

but they lack any relevance to the student programmer. For women and Hispanic students

setting the problems in a socially significant way can give the students a sense of satisfaction [3].

For example, in programming formulas to give the user results, a programmer could incorporate

a formula that tells the owner of a pet rescue how much dog food to feed to different sized dogs.

 Also, youth always enjoy games. An easy way to get students into the programs they are

writing is to have them write programs they can play with when they are done [19]. Here are

some examples one could use in a beginning CS class. Use a Mad Libs like game to teach

input/output (I/O). Make a dice game to teach random numbers and control statements. Tic-tac-

toe uses arrays. Tetris can introduce graphics. Any game that demonstrates the skills learned in

the chapter but do not require going beyond that is fine. I have seen papers where teachers

mention hangman, and Sokoban. The games I chose to use are Mad Libs, Number guess, Dice,

and Tic-Tac-Toe for the first semester.

 Secondly, the teaching methods need to be more engaging. Class should be more than a

teacher just reading PowerPoint slides. Computing is hands on. Although I, as a math geek,

don’t mind working alone so that I can make all the decisions, it is also a group activity. There

are many types of grouping. A traditional group of 4 or 5 students with a leader, a recorder, and

various titles for the other members may work well in an English class. In programming though,

7

it has a lot of waste because really only 1 or 2 are doing the work. Even open grouping where

everyone in the group is equal turns out to be the same thing; only 1 or 2 do the work.

 A grouping technique that seems to work is called pair programming. In pair

programming, two students work together (remember 1 or 2 do the work so little waste). One is

the “driver” and uses the computer to type code. The second student is the “advisor” who is

observing to give corrections and alternate solutions [30]. This technique necessitates that the

instructor design projects that take two people. It also works best if there is at least some degree

of friendship between the two before the project starts.

 This technique helps solve many problems for our target groups. The increase in

socialization is a boon for women and African Americans who otherwise think of programming

as solitary and lonely. Having a pair has built in support. This is important for all minority

groups because the affirmation of having two say the same thing gives confidence [20]. Results

show several areas of improvement. There is a deeper understanding of the project and a higher

enjoyment factor by the pair. The pair spends less time coding, but the code is more optimized

than if the students were working individually. These factors contribute to higher course

completion rates [20]. I will be using pair programming most of the time in my class.

 Looking at the second problem – lack of preparation, there are a number of factors that

can contribute to eliminating it. First of all, I already mentioned guidance counselors. These

counselors should make sure that students take the necessary pre-requisites. I mentioned math as

a significant pre-requisite. Math is integral to programming especially having a strong algebra

skill set. On the one hand, higher mathematics like trigonometry and calculus can enhance one’s

ability to program, on the other hand, logic and problem solving could also meet much of that

need [7]. I would propose that successfully navigating a proof based geometry, a logic, or a

8

rhetoric class would also help the students overcome most problem solving situations. Secondly,

offering only advanced AP or dual enrollment classes will not work, but offering the students the

opportunity take an introductory class will prepare them for the rigor of AP [31]. This class

might incorporate a “robotic” language (this will be discussed below) or some other learning

language, but it would give students more time to understand the basics. Finally, I would pair

the woman or minority students with a mentor. This mentor could be there when the student gets

frustrated and be able to help him/ her refocus and not give up. Once the program is running for

a couple of years, the mentors will be students who are in high level classes. Until then, the

teacher has to be everyone’s mentor to the best of his/ her ability.

Choosing the Programming Languages

 Ever since the beginning of computers, people have been trying to create easier ways to

communicate with them and to teach others how to use them. At first, one had to use punch

cards, then machine language, then assembly language, and finally high level languages. Some

of these languages have been created for beginners or for use in educational settings. There are

also a category of languages I call “robotic” languages [24]. These are languages that use

immediate feedback so students can see what their code is doing. They employ either an avatar

of a robot, or an actual robot.

 Basic was developed in the 1960’s and is an acronym for Beginner’s All-purpose

Symbolic Instruction Code [36]. This was a procedural language with English like commands

and was meant to be an educational language. Basic has developed into .NET VisualBasic. It

can now be used as either a procedural or object oriented language and with Visual Studio, it

allows for easy GUI creation for professional programs. Its integration into MS Office also

9

makes it essential for business to have someone who can program in it. I chose not to use Basic

because of two reasons. First, it can only be used with Windows operating systems. Secondly, it

uses indentations instead of braces for grouping and Dim to introduce a variable. These

differences cause a learning curve when transitioning to other languages.

 A competitor to Basic was Pascal. It was designed in 1970 strictly as an educational

language. However, Pascal has mostly disappeared and it was not designed for industry use.

 Another language called Python was designed in the 1990’s to fill an on the job need

[37]. Yet, its simple syntax and high level made it great for beginners. While it is popular in

education, it also has a growing importance in job markets. Still, it also has several problems

with using it as an introductory language. Like Basic it uses indentations instead of braces for

groupings. It also only has vectors and not arrays. Finally, it is an interpreted language which

means it is not compiled once and is set. It gets compiled every time you want to run it.

 These languages are great for introducing students to programming because they are not

quite as strict or and syntax heavy as more traditional languages like C, C++, and Java. Java is

the language I will be teaching my students. It also has faults. It is difficult to learn the basics;

even to run simple programs requires skills like classes and instances. It also is an interpreted

language. In spite of this, Java is very widely used around the world. In fact, it is the language

the state of Texas recognized for high school programming. It is also used in Texas UIL

competitions and on the national AP exam.

 Alongside these languages, “robotic” languages also appeared. The first of these to enter

the field was LOGO in 1967 [8], which used an on-screen turtle to obey commands typed from

the programmer. The turtle would leave a trail and the programmer would make designs from

10

that trail. However, LOGO is its own language, not connected to others. It works great for

teaching commands and loops, but there is little else to do with it.

 Then in 1981, Karel the robot was introduced. It was originally based on Pascal, but

Java, C++, and Python versions also exist [5]. Karel was essentially a red, triangular cursor on a

grid. Now it looks like a robot with a red arrow on the stomach. The programmer could send the

following commands: move forward, turn left, pick up/ put down beacon, and detect beacon.

Any other command would be a function made from these [12]. With Karel, the programmer

must type in the commands using the appropriate syntax. It comes with a maze that the robot

can navigate. It also allows for instances of classes; therefore, many “robots” could be on the

screen acting independently of one another. This allows for extreme scalability. Unlike other

“robotic” languages like Scratch, one must actually type in the commands and follow a syntax.

One of the best things about Karel is since it is adapted to several languages, switching from it to

a traditional language requires no additional relearning [28]. One college of note that uses Karel

is Stanford. This is what I will be using.

 Lego Mindstorms is a true robotic language because you build a robot using Lego parts.

Just like one snaps pieces of Lego together to build the robot, one snaps together programming

blocks to make the robot do what is planned. It uses the following categorization of code blocks.

Green is for actions like move, turn, etc. Orange is flow control like loops and conditionals.

Yellow is for input from the sensors. Red is data operation, which means variables. Allowing

variables makes Mindstorms a full functioning language [18]. Programming in Mindstorms is

done by connecting (snapping) the appropriate blocks on the screen in the order desired to try to

get the robot to do what was intended. This teaches algorithm design, programming constructs,

11

and I/O [17]. A top university that uses Mindstorms is MIT. Unfortunately, each robot costs

over $200; this puts it out of my reach.

 The final language in this group is Scratch. Scratch was based on a language called

Squeak [24]. It is multiplatform in that it runs in a browser with Flash. It has come a long way

since its inception. It is no longer only controlling a cat on the screen. Now there are untold

numbers of sprites. Users can use Scratch to make games, animations, and stories. While

teaching programming constructs and logic, it avoids syntax. It does this by using block shapes

based on their functions. For example, it uses a C shape to denote loops [11]. MIT and Harvard

have been involved with this project. Kids like this, and it does teach programming concepts.

But, it is not practical, and it does not translate to other languages.

My Vision to Fix the Problem

 My vision is to develop 3 classes. These include an Introduction to Programming,

Programming 1, and Advanced Programming. I want to develop projects for each of these

classes that meet mass appeal. This means have projects that include some games and some

where the programmer solves a social problem. I plan on using Pair Programming to help

bolster the students’ confidence and where possible match them with mentorships to current

programmers. Throughout the courses, I will also tell them of leaders in the field and new

accomplishments in order to keep them encouraged and motivated.

 The Introduction to Programming class would use JKarel but maybe start off with

Scratch if time permits. Some of the topics covered would be conditionals, loops, objects, and

classes. Flowcharting to help develop logic and program planning would be taught to help

12

develop logic. Other tools to help teach logic would include truth tables, deduction, rhetoric,

logic games, and designing algorithms.

 The Programming 1 class would use Java. I would teach 4 chapters and at the end of

each chapter the students would design a game instead of taking a test. Chapter one would teach

basics like remarks, Input, Output, variables, arithmetic and string manipulation. The game

would be Mad Libs. Chapter two would cover relational, Boolean, logical and conditional

operators, plus random numbers. The game would be a number guess game. Chapter 3 teaches

loops and its game would be a dice game. Chapter four would cover arrays, sorting, and file

manipulation. Its game is Tic-tac-toe.

 The advanced Programming class would use Java and prepare the students for the AP

exam. The primary difference is that it would cover objects, classes, and structures as well as

other topics, which are tested on the AP test. The tests here would be based on building a real

world application that could help out a community program. It would be a capstone project.

 My vision is that by putting together several tools and methods, schools can help women

and minorities successfully enter the CS field. As a nation, we need to act or risk computer

innovations moving out of the country. Women, Hispanics, African-Americans, etc. need to be

in the nation’s pool of programmers to afford the broadest possible set of solutions. By adding a

beginner’s class and using projects that interest everyone, our country can have a diverse,

successful group of programmers.

13

CHAPTER II

TESTING TOOLS

 To test my hypothesis that not only will students learn the material quicker and in a

deeper way, they will also be influenced to pursue computer science (CS) as a career. This

means I have to have a tool to test their cognitive ability with regard to programming, but I also

need a tool to test their attitude in various attributes in regards to pursuing CS as a career.

 Once I have the surveys and the tests from the students, I will redact their names and

assign a Pedagogical Tools in Computer Science (PTCS) number. For the academic test, I will

grade them and see if their score improves or not. For the attitudinal test, I will input the results

into an Excel spreadsheet, and use the capabilities of the program to collate their scores for each

of the attributes. In this way, I should be able to see if there were any changes of significant

difference.

 Finding a tool to test knowledge of programming is easy. Any comprehensive test that

covers the first year of programming would be fine. Since many classes are based around the AP

exam (and the fact that our school has a book with released AP tests), I used the first part of a

released AP test for both my pre-test and my post-test. To see how much each student

 To test the affective significance of my plan, I needed a survey that used the following

attributes: Interest in pursuing computer science (CS) as a career, Self-efficacy, Relevance of CS

in the student’s future, Determination, Intrinsic motivation, and Extrinsic motivation. In order to

make sure the survey did correctly quantify these attributes, I decided to look for already tested

14

surveys. I found two that I put together and adapted for computer science. The first one come

from a program at the University Transportation Center for Railway Safety (UTCRS) at the

University of Texas RGV [38]. The second survey I used was from Eric Wiebe called

“Computer science attitude survey.”[39] With some help from Dr. Chapman, I combined the 2

surveys and narrowed the survey into a few background questions and 40 questions that would

quantify the above attributes. I would use this tool as both a pre-survey and a post-survey.

 This survey gives numbers for each answer. 4 means Agree Strongly; 3 means Agree

Somewhat; 2 means Disagree Somewhat, and 1 means Disagree Strongly.

 To find how much influence this program made, I will find the differences in their

answers and compile them according to the different attributes. This will give us a total change

for each category.

15

CHAPTER III

IMPLEMENTATION

Plans A through D

 The implementation of my plan was not without its problems. I got the idea of doing a

thesis on the pedagogy of computer science after an assistant principal at my high school told me

I would probably be teaching programming the following year. I know that for a truly scientific

test of a hypothesis one needs a control group as well as an experimental group. My high school

had a shakeup of administrators; we ended up with a new principal the following year, and the

assistant principal who had given me the hope of teaching programming was moved into a

principalship in another school. The new principal explained to me that our school did not have

enough math teachers as it was and that he definitely couldn’t give me two classes of

programming.

 Plan A was gone. Therefore I came up with Plan B. I would find programming teachers

in another school district and try to convince them to follow my model in one of their computer

classes. As a teacher can understand wanting to teach students my way and not be dictated to by

someone who wasn’t even there. I wrote to several teachers in the Rio Grande Valley, but

needless to say I did not hear back from them.

 Plan C was to hold a “Computer Camp.” I proposed holding and intensive camp during

either Thanksgiving or Christmas break where in three days, I would try to cover the first 6

16

weeks of lessons. However, I was informed that the school would not be open and that

transportation could not be provided. As our school is a rural school and many students do not

have their licenses, this option would not work.

 On to Plan D, this involved running a computer club after school. I was previously

avoiding this situation for several reasons. First, I already had to sign up for two classes for both

semesters and knew just those would push my limits. Secondly, most students do not like to stay

after school unless they have to. For example, band students stayed after because it was part of

their grade for their class. Thirdly, the transportation issue for our students is real, and even the

tutorial program was not started yet due to a lack of funding for busing.

 In December, the funding was finally approved for bussing after school. I decided to go

ahead with the plan. I got permission from my principal. I found out clubs have to be organized

so I wrote a charter for the computer club (referred to as the Club from here on out). To prepare

the computer lab, I got the administrator password for a lab and installed publically available

programs including JKarel, Java jdk, NetBeans, and Eclipse. I also uploaded a book that I

convinced the previous administration to buy called Blue Pelican Java[40]. I made and

distributed a poster and started recruiting students. I was encouraged that before Christmas

break, I had 15 students show an interest in the club.

 The Club was to meet two 1.5 hour periods after school each week for about 12 weeks.

Unfortunately this is only possible in ideal conditions. It turns out to start that I had about 8

different students attending during the week. Some would first go get their free “supper” from

the school; this took about ½ an hour. Others could only come for the first ½ hour. Some came

on Tuesday, others came on Wednesday. Then EOC/ STAAR testing came, and the IT

department re-imaged the computers without the tools to use Java. I moved the Club to my

17

classroom and had them take turns using my laptop to code altogether. Eventually I scrounged

up two more working computers and put them in my room, but by this time I only had 3 regular

students coming. Even though I was still going forward with the lessons, I lost the rest of the

students when the school district stopped the bussing when I was only halfway through the

lessons. I was fortunate to get all three of the students who attended most to fill out the post-

surveys, but only two of them returned the post-test.

The Lessons

 I started the lessons by showing the students how to access Scratch (41). I showed the

students how to move the cat around, use the When clicked event, create a loop, and change what

the Sprite (the cat) looked like. Then I let them have independent time where they were

supposed to create something interesting. They had a great time exploring, but it served it dual

purpose after just the first week. Those purposes were to create excitement and interest in

programming and to allow the students to take the pre-test and pre-survey.

 The next week I started with JKarel. I showed them how to load up a pre-configured

maze and showed them how to type in the commands to move JKarel in the maze. There are

only 5 commands to learn, but in typing them, the students learn the syntax of having the

program run a method on an object including the ubiquitous semicolon. They had to first define

the class and its main method. They had to initialize an instance of the “robot,” and they had to

put braces to start and end each section. I also taught them about adding comments to the code.

 In the next class I taught them how to make their own methods to give JKarel more

abilities, like the ability to turn right. They liked this much better instead of typing in

jkarel.turnleft(); three times (copy and paste were disabled). The assignment was to navigate the

18

sample maze and pick up the three “beepers.” The last lesson in JKarel dealt with using a new

robot with more abilities that included the abilities of loops and if else conditionals. The

assignment was a more complicated maze with more beepers.

 Although the students were enjoying manipulating the robot and getting used to the

syntax of object-oriented programming, I had to keep the program moving. As I say lesson, may

I insert a reminder that students were either coming Tuesdays or Wednesdays; therefore each

lesson basically took a week.

 The rest of the lessons deal strictly with traditional Java. I had to show them how to start

a class and then all how what to type for Java’s Main method. They also were introduced to

importing classes at the beginning of each class and how to use comments. The first lesson dealt

with input/ output (I/O) and was simply a hello world style program using println. They had to

practice adding their own statements to get printed.

 The second lesson taught print and printf statements. I discussed the three main types of

variables and how to declare and store values in them. The practice was to redo their statements

from the last lesson using printf, \n, and %s. I also demonstrated how you can have a number

before the % sign to help format how much room it will take.

 The third lesson dealt with input. Thanks to already knowing how to initiate a robot in

JKarel, they were able to quickly comprehend how to initiate a Scanner to read input into a

variable. Now the class could start getting ready for its first game. Unfortunately, this is when

the lab was closed.

 The fourth lesson was to create a Mad Libs style game. I gave each student a story with a

lot of blanks on it. I talked them through the different parts of the program they would need.

They would need to import the classes for I/O, have a main method, and come up with variables

19

for each of the blank lines. They would also need interactions asking the user to input certain

types of words or numbers, and then later displaying them inserted as part of the whole story.

Since I was down to just three students at this time, the strongest programmer was actually the

one who showed up the most. I had him be the navigator and let the other two be the drivers.

This program, while simple, did take a lot of typing. It probably took the students two weeks of

Club meetings to get everything typed. One of the requirements was to use the printf command

and make sure the story lined up nicely on the display.

 The next subject the class tackled was control statements. I talked about the symbols <=,

<, >, and >=. Then I discussed about how = and == are different in programming. Then, they

learned about the if and if else statements, and how to use braces to show which lines go with

which statements. The students practiced these concepts by printing different statements that

depended on which grade that was input into the program. They also learned how to make a

random number generator and assign its value to a variable.

 The game they did for this section is called guess the number. The only thing is that the

students still have not been introduced to loops. Therefore, they had to come up with a way for

the user to guess at least three times with different statements occurring after each time the user

guessed wrong.

 Once they got that game finished, I asked the students if they wished there were not a

way to make it less typing. I showed them how they could have made a new method, and call

that method whenever the user was going to guess a number. This reminded them of how they

used to make new methods for JKarel and so it made sense to them. They re-wrote the program

to take advantage of methods. I was going to show them for loops in the next lesson, but during

20

this lesson came a call over the intercom that this would be the last day of busing. The Computer

Club was over.

 Just to wrap everything up and get the post- survey and post –test taken care of, I had to

hunt them down. Even then, I had to keep reminding them to finish and turn in the test and

survey. It was not how I wanted to finish because the three that were coming had a lot of

potential and I was afraid that they would not be able to continue receiving lessons in computer

programming since I’m hoping to have a job in a community college soon.

 At the end of the year many students came and told me they heard about the Club. They

were not able to take part of it this year, but they were hoping it would be offered next year.

21

CHAPTER IV

INTERPRETING THE RESULTS

 Although there were not enough students to achieve a large significance and the program

did not get to run until completeness, I will attempt to interpret the results according to the data I

compiled.

 I did not compare the differences in the students’ background information because that

information does not change, even though there were some answers that were slightly different.

I interpreted this as their feelings of recent events changed their perspectives. For example,

being strongly encouraged or somewhat encouraged can change if a teacher said that their input

was wrong that day.

 100% of my students were Hispanic; there were two boys and one girl. Only one had a

parent go to college, and only one is very sure of going to college even though the school

encourages them to go constantly. Only of the students had a computer in the home and a USB

drive. I provided USB drives to those who didn’t have one in order to save individual work.

 Although just a small population, the students still represented a wide range of abilities.

One was in the AP program, one was mostly in regular classes, and one had some special

education classes (though this student had a lot of artistic talent). Before the closing of the

computer lab, I had 2 special education students 3 AP students and 3 regulars.

 Question one through 3 dealt with their perceptions of grades in general and then for

math and science. Most expected to get A’ and B’s.

22

 From the question #4, most of them answered that they were at least fairly diligent with

their class work. To find this, I assigned a number from 1 to 5 based on their answers. I also

assigned numbers to their answers on questions #5 on how many people did they turn to for help

with math classes. Most of them looked to only 1 source for help. For more information, please

see the appendices for the survey questions and the table showing the compiled background

information.

The Survey

 One of the problems in compiling the following results is that some of the

questions were written in the negative, and sometimes the student may not have noticed. For

example, question 21 states “Programming is boring.” PTCS01 said Strongly Disagree on the

pre-survey, but on the post-survey, the student put Strongly Agree. Unfortunately, I do not want

to read into what this student put because maybe that was his/ her opinion on that day. Another

problem is that PTCS02 and PTCS03 each forgot to answer a question, which mean there was no

difference to measure on those questions. This at least does not skew the results.

 The survey consists of 40 questions that mixed up the six attributes we are trying to

influence. The first category is Career Interest. In other words, are the students interested in

pursuing a career in CS? The second is Self-Efficacy, or how sure are they of their ability to

program? The third is Relevance. Do the students view the information about computer science

relevant to their future lives? Next is Determination. This attribute measures how far the student

is willing to push him/ herself to be successful. The last two categories deal with internal and

external motivation. These measure what makes the students want to pursue programming.

23

PTCS01

Career 3

Self-efficacy 0

Relevance 0

Determination 3

Motivation 0

External 0

 The first thing I did was put the students’ answers into an Excel spreadsheet, and found

the change from the pre-survey to the post-survey. Then, I had the program sum the differences

in each category. As one can see in Table 1, PTCS01 had no change except in Career and

Determination. Again, maybe Career would have been 0 if it were not for question 21. The rise

in determination shows that the student probably learned that is work involved in programming,

but this student was willing to do it. The equal rise in career interest shows that the student

might be a little more inclined to pursue CS as a career. But these numbers though positive still

only show a slight change.

PTCS02

Career -2

Self-efficacy 0

Relevance -5

Determination -1

Motivation -3

External -3

 Looking at Table 2, one will see that several categories went down for PTCS02. Most of

these changes were small. For example, Question 5 was a Relevance question. The answer went

from Strongly Agree to Somewhat Agree. This might be interpreted as the student feels

computer science will not be as important as once thought. Or it might be that during the pre-

Table 1 – Compiled
Differences PTCS01

Table 2 – Compiled
Differences PTCS02

24

survey, the student didn’t feel like taking much time to think about the difference between

strongly and somewhat. At any rate, this is exactly the opposite of what this study was hoping to

see. Relevance was the only category to make a significant change since the average drop was

by about .68. Both internal and extrinsic motivation seemed to fall a little but in reality, this

student was the most consistent attendee of all the students and brought the most visitors to see if

others wanted to join the Club.

PTCS03

Career -1

Self-efficacy -7

Relevance -2

Determination 1

Motivation -1

External -2

 Table three shows that several categories also went down, but most by only the smallest

of amounts. Determination actually increased a little. The big drop, however, came in Self-

efficacy. This -7 represents an average drop of 1.4 per question. This was because this student

thought that programming was going to be easy. This student did struggle with learning the

concepts, but still learned them before the class moved on as a group. Considering that this

student had a harder time than the others, I think that the slight rise in determination, and

consistent desire to go into computer science speaks volumes for this student’s future in

computer science.

Table 3 – Compiled
Differences PTCS03

25

 Let’s look at how PTCS02 answered questions in figure 1 (PTCS01 and PTCS03 also

shared this trend). One can see that the pre-survey almost only had 1’s and 4’s as answers except

for 6 questions, but the post-survey includes more answers in the middle than the extremes. This

is due to the ceiling effect. The students answered so high on the first survey, in part due to

exuberance, in part due to ignorance, that there was no way to go higher. I should have used a

second survey that asks how much did the student’s attitude change since beginning the program.

In this way, no matter what the student put at the beginning, I would not have doubts about the

data.

 Mean Pre Mean Post
Difference
of Means

Career 3.19 3.19 0.00

Self efficacy 4.00 3.53 -0.47

Relevance 3.29 2.83 -0.46

Determination 2.63 2.74 0.11

Motivation 3.27 2.93 -0.33

External 3.89 3.67 -0.22

 Table 4 is another look at this data. Since we already know that the data was limited due

to the ceiling effect, seeing just how little the average change was will help us to see that

fundamental hypotheses are not necessarily proven wrong with this data. The interest in

Figure 1 –This
graph shows all of
the answer
choices of
PTCS02

Table 4 – Differences of

Means per Category

444

3333

44

3

4444

3

2

33

2

4

2 2

3333333

2

11

4

2

33

2

33

444444444444444

1

4

2

1

4

2

1

4444

2

3

444

3

2

4

22

3

1

4

3

0

1

2

3

4

5

C R R C S R S C M D C R E D M R D R M R

PTCS02

Post Survey

Pre Survey

26

pursuing computer science as a career stayed exactly the same even if CS as relevant to their

future careers dropped by about ½ of a point. If the students thought that CS was not going to be

relevant to their careers, they would not have still had the same score for pursuing it as a career.

Determination rose slightly even as self-efficacy also dropped by ½ a point and both internal and

external motivation also dropped by smaller amounts. If people are not motivated either by

motivations within themselves or by some outside influence, they usually would not be very

determined, yet determination actually rose. Logically, if one is not very good at doing

something, many times that person avoids that task, not becomes more determined to do it. This

leads me to believe that either because of only having such a small pool of data or because the

instrument needs to be adjusted, but it in no way disproves my original hypothesis that these

changes to the pedagogy of teaching programming will help the students become successful in

the CS field.

 In summary on the pre-and post- surveys, I believe the students learned a lot of what

programming is like, and they all thought it was worth it to pursue programming more. One

wanted to be a graphic designer, another wanted to be a game designer, and the last student was

-8

-6

-4

-2

0

2

4

Career Self efficacy Relevance Determination Motivation External

Summary

PTCS01 PTCS02 PTCS03

Figure 2 – This graph

shows if the students

went up or down on the

surveys

27

wavering between CS and engineering. Finally, in looking at Figure 2, we do see the students

going down in some categories, but for the most part they are minimal. The only significant

drop was by as student in self-efficacy, which is probably a more realistic picture of how hard

that student will have to work in the future to become successful.

The Test

 I will now move on to discuss the academic tool, the pre- and post-test. Remember, this

test is usually given at the end of a 36 week course, but the Club did not quite complete week 6.

Therefore most of the test contained elements which were never covered. Also, it is a multiple

choice test, but rigorous.

 Unfortunately, I only have 2 students who completed both parts and turned them in.

PTCS01 missed 12 on the pre-test and 14 on the post test. PTCS02 missed 15 and 17

respectively. Again, although these numbers seem to be going the wrong way, I know these

students learned the lessons that were covered well. It was probably a mistake to use such a tool

once I knew I had only a short-termed Computer Club instead of full-length classes to compare.

Most of the questions were beyond the knowledge that was taught. One bad outcome of using

multiple choice tests is that it is possible to guess the right answer at times. I have to attribute

the better pre-scores to chance. Maybe I should have given them the uncorrected copies of their

pre-tests and see which answers they would change.

28

CHAPTER V

SUMMARY AND FUTURE INVESTIGATIONS

 Doing research in the real world with real world people is much different than doing

research in a lab. In a lab, one can be change of everything. In the real world, there are many

things that might be out of the control of the researcher. Researching people contains even more

variables. For a scientific paper to be accurate, bumps in the road would mean scrapping the

plan, re-evaluating, and starting again. Unfortunately, my need to graduate by this time dictates

that either I find a way to still do the research, or I quit. I am not a quitter.

 I realize that I was not able to come to final conclusions on my hypothesis, but I do have

some suggestions in how future research con be done, and I can say that those who participated

in the Computer Club remain highly motivated to learn programming and to seek a career in, or

near that field. This means three Hispanics down, and only 89,997 to go.

 As for further investigations, I would like to one day accomplish this study. I truly

believe that if teachers can reach these students while they are in high school, then they can be

successful as they study for a computer science degree and make an impact in their jobs.

However, some changes should be made. First of all, being done as a Club made it hard to have

a cohesive cohort. Some would come on time, some late. Some came on day 1, others on day 2.

It needs to be tested in a classroom atmosphere.

 Secondly, because “real” life came up and interfered with the amount of lessons I was

able to teach, I should have adapted the tools. The post-survey should have had questions that

29

asked how much does one’s feelings or opinions change since the beginning of the program.

This would eliminate ceilings. The post-test was way above the level of the questions that were

taught. They were meant for the end of the year. I should have used a test that reflected more

accurately the information that was covered in the time the Club met.

 A final change I would make has to do with relevance and motivation. I would start off

one class a week with a talking point designed to increase the relevance of CS. Sometimes it

was why I was motivated by programming, or that story about the high school that won the

underwater robotics competition, but some of the students would not have arrived yet. I think it

would have had more impact if all the students were there and we had a time to discuss it or

maybe write a little about it in a journal.

 Meeting more regularly in itself would great influence the students because then we

would make more steady progress through the lessons and the students would have seen their

progress especially as the games got more complicated and more fun.

30

REFERENCES

1. Ashcraft, Catherine; Eger, Elizabeth; Friend, Michelle. “Girls in IT: The Facts.” National

Center for Women & Information Technology. 2012; http://www.ncwit.org/thefactsgirls.

2. Andujar, Marvin; Aguilera, Lauren; Jimenez, Yerika; Zabe, Farah; and Morreale, Patricia.

2013. “Improving Hispanic High School Student Perceptions of Computing.” In

Proceeding of the 44th ACM technical symposium on Computer science education

(SIGCSE '13). ACM, New York, NY, USA, 741-741.

DOI=http://dx.doi.org/10.1145/2445196.2445448.

3. Backer, P.; Wei, B. “Work in progress-recruiting Hispanic students into computing through

community service learning.” Frontiers in Education Conference (FIE), 2010 IEEE Year:

2010 Pages: F4D-1 - F4D-2, DOI: 10.1109/FIE.2010.5673302.

4. Beck, L. and Chizhik, A. 2013. “Cooperative learning instructional methods for CS1: Design,

implementation, and evaluation.” ACM Trans. Comput. Educ. 13, 3, Article 10 (August

2013), 21 pages. DOI: http://dx.doi.org/10.1145/2492686.

5. Becker, Byron Weber. "Teaching CS1 with karel the robot in Java." ACM SIGCSE Bulletin.

Vol. 33. No. 1. ACM, 2001.

6. Brusilovsky, P. et al. “Teaching Programming to Novices: A Review of Approaches and

Tools.” World Conference on Educational Mulitmedia and Hypermedia. Vancouver,

Canada. 1994 Pages 103-110.

7. Christin Landivar, Liana. “Disparities in STEM Employment by Sex, Race, and Hispanic

Origin.” American Community Survey Reports. United States Census Bureau. Sept 2013.

8. Crum, W.N.; Capobianco, B. “Work in Progress - Collaboration Pedagogy in the Introductory

Computer Science Programming Course for Engineers.” Frontiers in Education, 2005.

FIE '05. Proceedings 35th Annual Conference Year: 2005 Pages: S1E - S1E, DOI:

10.1109/FIE.2005.1612181.

9. DiSalvo, Betsy & Bruckman, Amy. “Education: From Interests to Values.” Comunication of

the ACM. Vol 54 No 8 August 2011 pgs 27-30. Doi:10.1145/1978542.1978552.

10. Esquinca, A.; Villa, E.Q.; Hampton, E.; Ceberio, M.; Wandermurem, L. “Latinas' resilience

and persistence in computer science and engineering: Preliminary findings of a

qualitative study examining identity and agency.” Frontiers in Education Conference

http://www.ncwit.org/thefactsgirls
http://dx.doi.org/10.1145/2492686

31

(FIE), 2015. 32614 2015. IEEE Year: 2015 Pages: 1 - 4, DOI:

10.1109/FIE.2015.7344172.

11. Franklin, Diana; Conrad, Phillip, et al. “Assessment of Computer Science Learning in a

Scratch-Based Outreach Program.” 2013. In Proceeding of the 44th ACM technical

symposium on Computer science education (SIGCSE '13). ACM, New York, NY, USA,

371-376. DOI=http://dx.doi.org/10.1145/2445196.2445304.

12. Guoyu Sun; Wenjuan Chen; QingJie Sun; Haiyan Li “Teaching innovation based on robot

Karel auxiliary program design.” Computer Science & Education (ICCSE), 2013 8th

International Conference on Year: 2013 Pages: 1346 - 1349, DOI:

10.1109/ICCSE.2013.6554131.

13. Holland, Nancy. http://www.directemployers.org/2012/08/16/the-college-class-of-2013-

current-demographics Aug 16, 2012.

14. Jacobson, D.; Davis, J. See one, do one, teach one . . . two faculty member's path through

student-centered learning.” Frontiers in Education Conference, 1998. FIE '98. 28th

Annual Year: 1998, Volume: 2 Pages: 795 - 799 vol.2, DOI: 10.1109/FIE.1998.738802.

15. Margolis, Jane, Allan Fisher, and Faye Miller. "The anatomy of interest: Women in

undergraduate computer science." Women's Studies Quarterly 28.1/2 (2000): 104-127.

16. Minjie Li. “Research on the pedagogies of computer science.” Computer Science and

Education (ICCSE), 2010 5th International Conference on Year: 2010 Pages: 266 - 270,

DOI: 10.1109/ICCSE.2010.5593637.

17. Mota, M.I.G. “Work in progress - Using Lego Mindstorms and Robolab as a Means to

Lowering Dropout and Failure Rate in Programming Course.” Frontiers in Education

Conference - Global Engineering: Knowledge without Borders, Opportunities without

Passports, 2007. FIE '07. 37th Annual Year: 2007 Pages: F4A-1 - F4A-2, DOI:

10.1109/FIE.2007.4418124.

18. Nagchaudhuri, A.; Singh, G.; Kaur, M.; George, S. “LEGO robotics products boost student

creativity in precollege programs at UMES.” Frontiers in Education, 2002. FIE 2002.

32nd Annual Year: 2002, Volume: 3 Pages: S4D-1 - S4D-6 vol.3, DOI:

10.1109/FIE.2002.1158729.

19. Paralic, M.; Pietrikova, E. “Learning by game creation in introductory programming course:

5-Year-long study.” Emerging eLearning Technologies and Applications (ICETA), 2014

IEEE 12th International Conference on Year: 2014 Pages: 391 - 396, DOI:

10.1109/ICETA.2014.7107617.

20. Preston, David. 2006. “Adapting pair programming pedagogy for use in computer literacy

courses”. J. Comput. Sci. Coll. 21, 5 (May 2006), 84-93.

32

21. Redmond, Katie; Evans, Sarah and Sahami, Mehran. 2013. “A large-scale quantitative study

of women in computer science at Stanford University.” In Proceeding of the 44th ACM

technical symposium on Computer science education (SIGCSE '13). ACM, New York,

NY, USA, 439-444. DOI=http://dx.doi.org/10.1145/2445196.2445326.

22. Reilly, C. F. and Tomai, E., "An examination of mathematics preparation for and progress

through three introductory computer science courses," Frontiers in Education Conference

(FIE), 2014 IEEE, Madrid, 2014, pp. 1-9. doi: 10.1109/FIE.2014.7044349.

23. Reilly, C. F.; D La Mora, N./ “The Impact of Real-World Topic Labs on Student

Performance in CS1.” Frontiers in Education Conference (FIE), 2012 pgs 1,6,3-6. Oct

2012. Doi: 10.1109/fie.2012.6462329.

24. Resnick, Mitchel; Maloney, John et al. “Scratch: Programming for All.” Communication of

the ACM Vol 52, No. 11, November 2009 Pgs 60-67. doi:10.1145/1592761.1592779.

25. Rios, David; Chebotko, Artem; Reilly, Christine; Tomai, Emmet, et al. “Improving STEM

Education in Research: Preliminary Report on the Development of a Computer-Assisted

Student-Mentor Research Community.” Creative Education. Vol 3, No. 5, pgs 612-618.

2012. DOI 10.1236/ce,2012.35090.

26. Strayhorn, Terrell L. “Work in Progress – Social Barriers and Supports to Underrepresented

Minorities’ Success in STEM Fields. 4oth ASEE/IEEE Frontiers in Education

Conference. 2010 Pages S1H-1 – S1H5.

27. Tangney, B.; Oldham, E.; Conneely, C.; Barrett, S.; Lawlor, J. “Pedagogy and Processes for

a Computer Programming Outreach Workshop—The Bridge to College Model.”

Education, IEEE Transactions on Year: 2010, Volume: 53, Issue: 1 Pages: 53 - 60, DOI:

10.1109/TE.2009.2023210.

28. Untch, Roland H. “Teaching Programming Using the Karel the Robot Paradigm Realized

with a Conventional Language.” On-line at:

http://www.mtsu.edu/˜untch/karel/karel90.pdf. Feb 28, 2016.

29. Varma, Roli. 2006. “Making computer science minority-friendly.” Commun. ACM 49, 2

(February 2006), 129-134. DOI=http://dx.doi.org/10.1145/1113034.1113041.

30. Werner, Linda; Denner, Jill; Campe, Shannon; Ortiz, Eloy; DeLay, Dawn; Hartl, Amy C. ;

and Laursen, Brett. 2013. “Pair programming for middle school students: does friendship

influence academic outcomes?” In Proceeding of the 44th ACM technical symposium on

Computer science education (SIGCSE '13). ACM, New York, NY, USA, 421-426.

DOI=http://dx.doi.org/10.1145/2445196.2445322.

31. White, Kent; Giguette, Ray. “A three Semester Introductory Computer Science Sequence.”

33rd ASEE/IEEE Frontiers in Education Conference. 2007 Pages T4C-6 – T4C-9.

33

32. Williams, L.; Layman, L.; Slaten, K.M.; Berenson, S.B.; Seaman, C. “On the Impact of a

Collaborative Pedagogy on African American Millennial Students in Software

Engineering.” Software Engineering, 2007. ICSE 2007. 29th International Conference on

Year: 2007 Pages: 677 - 687, DOI: 10.1109/ICSE.2007.58.

33. Woodman, M.; Griffiths, R.; Holland, S.; Robinson, H.; Macgregor, M. “Employing object

technology to expose fundamental object concepts.” Technology of Object-Oriented

Languages and Systems, 1999. Proceedings of Year: 1999 Pages: 371 - 383, DOI:

10.1109/TOOLS.1999.779081.

34. www.exploringcs.org/resources/cs-statistics Exploring Computer Science UCLA Graduate

School of Education and Information Studies. Feb 28, 2016.

35. Money.usnews.com/careers/ best-jobs/rankings/best-technology-jobs. Feb 22, 2016.

36. http://www.computerhope.com/jargon/b/basic.htm. April 14, 2016.

37. http://python-history.blogspot.com/2009/01/personal-history-part-1-cwi.html. April 14,

2016.

38. UTCRS School STEM Survey, UTRGV, 2016.

39. Wiebe, Eric, et al. "Computer science attitude survey." computer science 14.25 (2003): 0-86.

40. Cook, Charles E., Blue Pelican Java. Virtualbookworm.com. Refugio, TX 2005.

41. https://scratch.mit.edu/ 6/22/2017

42. Haden, Patricia. 2006. The incredible rainbow spitting chicken: teaching traditional

programming skills through games programming. In Proceedings of the 8th Australasian

Conference on Computing Education - Volume 52 (ACE '06), Denise Tolhurst and

Samuel Mann (Eds.), Vol. 52. Australian Computer Society, Inc., Darlinghurst, Australia,

Australia, 81-89.

43. Felden, Maria, Clua Osvaldo. “Work in Progress: Cultural Borders in CS1.” 36th

ASEE/IEEE Frontiers in Education Conference M3E-21. San Diego, CA. October 28,

2006. DOI:1-4244-0257-3/06.

44. D. C. Cliburn, "Experiences with the LEGO Mindstorms throughout the Undergraduate

Computer Science Curriculum," Proceedings. Frontiers in Education. 36th Annual

Conference, San Diego, CA, 2006, pp. 1-6.

doi: 10.1109/FIE.2006.322315

45. Scott Leutenegger and Jeffrey Edgington. 2007. A games first approach to teaching

introductory programming. SIGCSE Bull. 39, 1 (March 2007), 115-118. DOI:

https://doi.org/10.1145/1227504.1227352

https://scratch.mit.edu/
https://doi.org/10.1145/1227504.1227352

34

46. Backer, Patricia R. Wei, B. and Sundrud, J. "Increasing Hispanic Engagement in Computing

Through Service Learning" (2011) San Jose State University.

Available at: http://works.bepress.com/patricia_backer/27/

47. Harris, James, Vladan Jovanovic. 2010. "Introductory Programming Course Using

Games." Issues in Information Systems. source: http://iacis.org/iis/2010/104-

113_LV2010_1444.pdf

48. Law, Kris MY, Victor CS Lee, and Yuen-Tak Yu. "Learning motivation in e-learning

facilitated computer programming courses." Computers & Education 55.1 (2010): 218-

228.

49. Whitton, Nicola. "Motivation and computer game based learning." Proceedings of the

Australian Society for Computers in Learning in Tertiary Education, Singapore (2007).

50. Katrin Becker. 2001. Teaching with games: the Minesweeper and Asteroids experience. J.

Comput. Sci. Coll. 17, 2 (December 2001), 23-33.

35

APPENDIX

36

OUTLINE OF MY PLAN

37

Letter to Principal for Permission and Plan

Mr. Saenz

 As you know, I want to teach computer programming. As I’m working very hard

to complete my master’s this year (I will have 6 credits each semester), I don’t have a

lot of time. However, after thinking through several ideas to complete my thesis on the

pedagogy of computer science, my advisor and I are interested in trying to form an after

school computer club that meets a couple of times a week.

 I do want to get my feet wet in teaching these skills; however, it won’t be quite as

structured as a class. I know any, who join the class will have to sign some papers

giving me permission to use surveys for my thesis. I also know the club would be

competing with many other after school activities. Because there would be no required

attendance, the lessons I would teach would have to be self-contained projects.

 I would hope that I could recruit between 12 and 20 students. We would need a

computer lab. As tutorials are supposed to start soon, transportation would be taken

care of. I would need a lab and I could work with Ernie to install the free programs

needed to program in Java (the Texas standard for high school.) My time would be

free.

 I would follow the plan for the 1st semester of the programming class. 1st I would

introduce them to jKarel so they can see immediate feedback of sending commands,

and at the same time learning algorithms, conditional and loop commands. Then we

would build from that to writing simple code using text to discover remarks, variables,

input/ output, String manipulation, and errors. We would end each unit by making a

game from what we’ve learned. Other topics the students will cover is debugging,

arrays, and using classes.

 At the beginning of the club, and then at its end, I would give them a pre and post

test and a survey. I will complete an IRB through the University to make sure the

students’ involvement will follow established guidelines.

Sincerely,

Rodger Irish

38

RECRUITING POSTER

39

Charter and Bylaws of the Computer Club

The Computer Club of Rio Grande City

Bylaws

Article 1. Club Name

The name of the computer club is Rio HS Computer Club or Rio Programmer’s Club, hereafter

referred to as the club.

Article 2. Purpose of the Club

a. Teach programming to any who come to the meetings and promote creative use of those

programming skills.

b. Increase awareness in the latest developments in the area of technology including career

options in a diverse economy.

c. Provide a positive forum in which students can be creative, innovative, and marketable in

their prospective area of interests.

d. Provide a "user friendly" place for students, faculty, staff, and visitors to learn and use the

latest computer technology.

e. Promote Rio Grande City CISD through the effective use of a website and community

projects.

f. Form a competitive team that can go to various programming events such as UIL

competitions.

g. Enhance student knowledge by providing a forum of Questions and Answers and Internet

resources through the effective use of a Website and newsletter (optional).

Article 3. Membership

a. Membership is open to any currently enrolled Rio Grande City High School student who

has completed an entry exam and survey.

b. Membership is open to any current faculty and staff at Rio Grande City High School.

c. Only currently enrolled students are allowed to run for club offices.

d. Current members may bring up new business during the open floor session of regularly

scheduled meetings.

Article 4. Officer Positions

a. The officers of this club shall be President, Vice President, Secretary, Treasurer,

Webmaster, and Editor. Officer positions may be deleted or established by a majority

vote of the club. All officer positions except President and Secretary are optional.

b. Officers will be elected for one year by a vote of the club at the beginning of each term

year.

c. Officers must be currently enrolled Rio Grande City High School sophomores, juniors,

and/or seniors and are current on annual dues (except for the first year).

d. Officers cannot miss more than two meetings per month.

e. An officer may be removed from office by a 3/4 vote at a club meeting.

40

f. If an officer position is becomes vacant for any reason, the club shall hold elections at the

next club meeting.

Article 5. Officer Duties

a. President - principal officer and is responsible for leading the club in meetings and

activities in accordance with guidance established by the Rio Grande City Consolidated

School District and these bylaws.

b. Vice President - shall assist the president in club management, shall preside over club

meetings in the absence of the president, and shall perform other duties assigned by the

president.

c. Secretary - shall keep minutes of club meetings, maintain club membership records, and

shall perform other duties assigned by the president. The secretary shall maintain an

attendance roster for the club records.

d. Treasurer - shall maintain all of the financial holdings of the club including maintaining a

current balance sheet. The treasurer shall make a financial report to the club on a semi-

annual basis or whenever the faculty sponsor or president deems necessary. The treasurer

shall make a financial report to the club before the election of a new treasurer or in the

event the treasurer leaves office before regular elections.

e. Webmaster - shall create and maintain a dynamic website for the club.

f. Editor - shall be responsible for the editing of the monthly newsletter before the final

draft is printed and distributed.

Article 6. Faculty Sponsors

a. There may be a group of faculty sponsors.

b. At least one sponsor shall be a full-time instructor at Rio Grande City High School. Part-

time instructors are permitted to be club sponsors.

c. Faculty sponsors are not required to pay annual membership dues.

d. Sponsors may vote in meetings and participate in all club activities.

e. A sponsor must be present at all club meetings.

f. A sponsor will be responsible for supervising elections and maintaining order within the

club.

g. A sponsor will work closely with the club officers in business matters of the club,

including maintenance of the club website.

h. A sponsor will teach programming lessons after the regular business.

Article 7. Executive Committee

a. The executive committee will be composed of all club officers and faculty sponsors.

b. The executive committee will meet as required to make club decisions that do not need a

majority vote of all club members.

c. Meetings will be called as necessary.

d. This committee may recommend the creation of other committees. The additional

committees will be created by vote of the club.

Article 8. Voting

a. Each member in good standing may vote.

41

b. All proposed changes (amendments) to these bylaws must be approved by a majority of

the club.

Article 9. Dues

a. The Club Treasurer will collect annual membership dues. The dues are $5.00 for annual

membership and are to be paid in advance except for the first year where there will be no

dues.

b. Dues may be changed by a majority of the club.

c. Dues paid are non-refundable.

d. The dues will go toward expenses not covered by the funds raised by the club (e.g., food

and beverages at meetings).

e. Dues will be deposited into the club's school account.

Article 10. General Fund

a. The club will provide an annual budget designated for startup costs, equipment, activities,

events, student travel, guest speakers, and certifications. This fund may cover other costs

incurred by the club but cannot be used for the purchase of food and beverages.

b. This fund will be managed by the club and placed into the club's school account.

Article 11. Meetings

a. General meetings will be held biweekly. Meeting locations and times are subject to

change by a decision of the sponsor or principal.

b. At least one sponsor is required to attend each meeting.

Article 12. Activities

a. Fundraisers - proceeds from fundraisers will be deposited into the club's school

accountant will go toward expenses not covered by the funds provided to the club by club

member dues (e.g., food and beverages at meetings).

b. Competitions and Fairs

c. Site Visits

d. Certifications

e. Equipment

f. Software

Article 13. Newsletter (optional)

a. A monthly newsletter will be generated and distributed to all students.

b. The content of the newsletter may include, but is not limited to; club activities, meeting

schedule, technology articles, technology help, school activities, etc.

c. The newsletter will also be published on the club website.

d. The newsletter will contain factual information and will not contain personal opinions

(e.g., political).

Article 14. Website (optional)

42

a. The content of the website may include, but is not limited to:

o Discussion

o Q&A

o Links

o Tutorials

o Downloads

o Articles

o Schedule

o RGC HS program information

o Newsletter

b. Items and links on the website will adhere to all Rio Grande City CISD policies.

Article 15. Code of Ethics

a. All members will be responsible for their actions and respect the genius of others’ work

and property.

b. Software piracy is not allowed.

c. Members shall abide by the student code of conduct published by Rio Grande City CISD.

d. The club shall operate under current school policy.

Article 16. Changes to Bylaws

a. Articles in this set of bylaws may be deleted or modified as deemed necessary by a

majority of the club.

b. Changes to the bylaws will be done as amendments.

c. A majority vote is required to make any changes to the club's bylaws.

43

PRE AND POST SURVEY

1. What is your best guess as to how you did in all of your classes this past year? (Mark one)

 Mostly A’s Mostly A’s and B’s Mostly B’s

 Mostly B’s and C’s Mostly C’s Mostly below C’s

 A mix of A’s, B’s and C’s

2. What is your best guess as to your grade in your math this past year? (Mark one)

 A B C Below C I did not take math last year

3. What is your best guess as to your grade in your science class this past year? (Mark one)

 A B C Below C I did not take a science class last year

4. For your math and science classes, how often did you (this past year): (Mark one)

 Always
Most of

the time
Sometimes Never

No opportunity to

do this

Do the homework for class

Do work for extra credit

Participate in class discussions

Ask questions in class

Feel bored in class

5. Have you asked any of the following people for help in your science and math classes this past

year? (Mark one in each row)

Students who are doing well in the class Yes No

My close friends Yes No

Parent(s)/Other adults at home Yes No

Brother(s)/Sister(s) Yes No

My science and/or math teacher Yes No

Other teacher(s) or adult(s) at school Yes No

6. How much have your teachers, guidance counselors, and/or other adults at school encourage

or discourage you to:

Strongly

encourage

Somewhat

encourage

Somewhat

discourage

Strongly

discourage

We never talk

about this.

Go to college

Think about majoring in

computer science in

college

44

7. How much do you want to go to college?

Very much Somewhat Only a little

Not at all I don’t know

8. Have the following people in your family attended college? (Mark one in each row)

Mother, stepmother or both Yes No I’m not sure Don’t have either

Father, stepfather or both Yes No I’m not sure Don’t have either

One or more older brother(s) Yes No I’m not sure Don’t have either

One or more older sister(s) Yes No I’m not sure Don’t have either

One or more other adults in my family

(legal guardian, grandparent, aunt,

uncle, etc.)

Yes No I’m not sure Don’t have either

9. Do the following people in your family have a science, math, technology, or engineering

related job?

Mother, stepmother or both Yes No I’m not sure
 Don’t have

either

Father, stepfather or both Yes No I’m not sure
 Don’t have

either

One or more older brother(s) Yes No I’m not sure
 Don’t have

either

One or more older sister(s) Yes No I’m not sure
 Don’t have

either

One or more other adults in my family (legal

guardian, grandparent, aunt, uncle, etc.)
Yes No I’m not sure

 Don’t have

either

*taken from UTCRSS School Survey, UTRGV, 2016.

Statement
Strongly

Agree

Somewhat

Agree

Somewhat

Disagree
Strongly Disagree

1. I plan to major in computer science. 4 3 2 1

2. I am sure that I can learn programming. 4 3 2 1

3. I study programming because I know

how useful it is.
4 3 2 1

4. When a programming problem arises

that I can't immediately solve, I stick with

it until I have the solution.

4 3 2 1

5. Understanding computer science will

benefit me in my career.
4 3 2 1

6. It would make me happy to be

recognized as an excellent student in

computer science.

4 3 2 1

7. Knowing programming will help me

earn a living.
4 3 2 1

8. Once I start trying to work on a

program, I find it hard to stop.
4 3 2 1

9. I am confident I will do well on

programming labs and projects.
4 3 2 1

45

Statement
Strongly

Agree

Somewhat

Agree

Somewhat

Disagree
Strongly Disagree

10. Being regarded as smart in computer

science would be a great thing.
4 3 2 1

11. Computer science is a worthwhile and

necessary subject.
4 3 2 1

12. I believe I can master computer science

knowledge and skills.
4 3 2 1

13. I can get good grades in computer

science.
4 3 2 1

14. I'd be proud to be the outstanding

student in computer science.
4 3 2 1

15. I'll need a firm mastery of

programming for my future work.
4 3 2 1

16. I am challenged by programming

problems I can't understand immediately.
4 3 2 1

17. I am curious about discoveries in

computer science.
4 3 2 1

18. Programming will not be important to

me in my life's work.
4 3 2 1

19. The challenge of programming

problems does not appeal to me.
4 3 2 1

20. I believe I can earn a grade of “A” in

computer science.
4 3 2 1

21. In terms of my adult life it is not

important for me to do well in computer

science in college.

4 3 2 1

22. Programming is boring. 4 3 2 1

23. I enjoy learning programming. 4 3 2 1

24. Programming is enjoyable and

stimulating to me.
4 3 2 1

25. I'd be happy to get top grades in

computer science.
4 3 2 1

26. I will use programming in many ways

throughout my life.
4 3 2 1

27. I don't understand how some people

can spend so such time on writing

programs and seem to enjoy it.

4 3 2 1

28. I like to do better than other students

on a programming project.
4 3 2 1

29. Learning to program is interesting. 4 3 2 1

30. I put enough effort into learning

programming.
4 3 2 1

31. Learning computer science makes my

life more meaningful.
4 3 2 1

32. I spend a lot of time learning

programming.
4 3 2 1

46

Statement
Strongly

Agree

Somewhat

Agree

Somewhat

Disagree
Strongly Disagree

33. For some reason even though I work

hard at it, programming seems unusually

hard for me.

4 3 2 1

34. It would be really great to win a prize

in computer science.
4 3 2 1

35. Programming is of no relevance to my

life.
4 3 2 1

36. Taking computer science courses is a

waste of time.
4 3 2 1

37. I like writing computer programs. 4 3 2 1

38. I would rather have someone give me

the solution to a difficult programming

problem than to have to work it out for

myself.

4 3 2 1

39. Programming I learn is relevant to my

life.
4 3 2 1

40. My career will involve programming. 4 3 2 1

 **Taken from Wiebe, Eric, et al. "Computer science attitude survey." computer science 14.25

(2003): 0-86.

47

COMPILED BACKGROUND DATA

 background info

 Question 1 2 3 4 5 6 7 8 9

PTCS01 Post 3 5 5 3.5 1 5 5 2 1

PTCS01 Pre 4 4 5 4 1 5 5 2 0

 difference -1 1 0 -0.5 0 0 0 0 1

PTCS02 Post 6 5 5 4.5 1.5 3 3 3.5 1.5

PTCS02 Pre 7 5 5 4.5 1.5 4.5 4 3.5 1.5

 difference -1 0 0 0 0 -1.5 -1 0 0

PTCS03 Post 5 4 4 4 1 4.5 1 1 1

PTCS03 Pre 6 4 4 3 1 4.5 1 1 1

 difference -1 0 0 1 0 0 0 0 0

48

BIOGRAPHICAL SKETCH

 Rodger Irish grew up in Flint, Michigan. Upon graduation, he attended Pensacola

Christian College, Cornerstone University, and a couple of others before earning his Bachelors

of Arts in 1999. Part of his undergraduate work was done in Ecuador where he learned Spanish.

His BA is from the University of Texas-Pan American in history with a minor in mathematics.

He earned his MS in Computer Science in July 2017 from University of Texas-Rio Grande

Valley.

 With his degree and passing the state exams, he became a math teacher and taught in

Texas for four years before moving back to Michigan with his bride. In Michigan he became

certified in both history and math and taught in an adult program funded by General Motors until

the Great Recession.

 It was at this time, through a Michigan initiative to retrain workers, that he rediscovered

his love of programming. He took classes at a community college before taking a teaching job in

Puerto Rico. After a couple of years there, he and his family relocated back to the Rio Grande

Valley of Texas and took a job teaching math. This was so that it would be possible to study for

his Masters in Computer Science. With this thesis, he will complete my degree and enter my

second career.

 My hope is to use my degree to be able to teach computer science in community colleges.

Otherwise, I will apply to jobs within the industry. My current email is rodgerirish@gmail.com.

	Using Pedagogical Tools to Help Hispanics be Successful in Computer Science
	Recommended Citation

	tmp.1681140512.pdf.cFUJ8

