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ABSTRACT

Gu, Pengfei, Approximate Set Union via Approximate Randomization . Master of Science (MS),

May, 2018, 70 pp., 2 figures, 26 references, 40 titles.

We develop an randomized approximation algorithm for the size of set union problem

|A1 ∪A2 ∪ ...∪Am|, which given a list of sets A1, ...,Am with approximate set size mi for Ai with

mi ∈ ((1−βL)|Ai|,(1+βR)|Ai|), and biased random generators with Prob(x=RandomElement(Ai))∈[
1−αL
|Ai| ,

1+αR
|Ai|

]
for each input set Ai and element x ∈ Ai, where i = 1,2, ...,m. The approximation

ratio for |A1∪A2∪ ...∪Am| is in the range [(1− ε)(1−αL)(1−βL),(1+ ε)(1+αR)(1+βR)] for

any ε ∈ (0,1), where αL,αR,βL,βR ∈ (0,1). The complexity of the algorithm is measured by both

time complexity and round complexity. The algorithm is allowed to make multiple membership

queries and get random elements from the input sets in one round. Our algorithm makes adaptive

accesses to input sets with multiple rounds. Our algorithm gives an approximation scheme with

O(m · (logm)O(1)) running time and O(logm) rounds, where m is the number of sets. We prove

that our algorithm runs sublinear in time under certain condition that each element in A1 ∪A2 ∪

...∪ Am belongs to ma for any fixed a > 0. A O
(
r(r+ l|λ |)3l3d4) running time dynamic pro-

gramming algorithm is proposed to deal with an interesting problem in number theory area that

is to count the number of lattice points in a d−dimensional ball Bd(r, p,d) of radius r with center

at p ∈ D(λ ,d, l), where D(λ ,d, l) = {(x1, · · · ,xd) : (x1, · · · ,xd) with xk = ik + jkλ for an inte-

ger jk ∈ [−l, l], and another arbitrary integer ik for k = 1,2, ...,d}. We prove that it is #P-hard to

count the number of lattice points in a set of balls, and we also show that there is no polynomial

time algorithm to approximate the number of lattice points in the intersection of n-dimensional

balls unless P=NP.
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CHAPTER I

INTRODUCTION

Computing the cardinality of set union is a basic algorithmic problem that has a simple

and natural definition. It is related to the following problem: given a list of sets A1, ...,Am with set

size |Ai|, and random generators RandomElement(Ai) for each input set Ai, where 1 = 1,2, ...,m,

compute |A1 ∪ A2 ∪ ...∪ Am|. This problem is #P-hard if each set is 0,1-lattice points in a high

dimensional cube [35]. Karp, Luby, and Madras [29] developed a (1+ ε) randomized approxima-

tion algorithm to improve the runnning time for approximating the number of distinct elements

in the union A1 ∪ ·· · ∪ Am to linear O((1 + ε)m/ε2) time. Their algorithm is based on the in-

put that provides the exact size of each set and a uniform random element generator of each set.

Bringmann and Friedrich [8] applied Karp, Luby, and Madras’ algorithm in deriving approxi-

mate algorithm for high dimensional geometric object with uniform random sampling. They also

proved that it is #P-hard to compute the volume of the intersection of high dimensional boxes,

and showed that there is no polynomial time 2d1−ε

-approximation unless NP=BPP. In the algo-

rithms mentioned above, some of them were based on random sampling, and some of them pro-

vided exact set sizes when approximating the cardinalities of multisets of data and some of them

dealt with two multiple sets. However, in realty, it is really hard to give an uniform sampling or

exact set size especially when deal with high dimensional problems.

A similar problem has been studied in the streaming model: given a list of elements with

multiplicity, count the number of distinct items in the list. This problem has a more general for-

mat to compute frequency moments Fk =
m
∑

i=1
nk

i , where ni denotes the number of occurrences

of i in the sequence. This problem has received a lot of attention in the field of streaming algo-

rithms [2, 4, 5, 7, 14, 15, 18, 19, 20, 21, 25, 28].
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Motivation: The existing approximate set union algorithm [29] needs each input set has

a uniform random generator. In order to have approximate set union algorithm with broad appli-

cation, it is essential to have algorithm with biased random generator for each input set, and see

how approximation ratio depends on the bias. In this paper, we propose a randomized approxima-

tion algorithm to approximate the size of set union problem by extending the model used in [29].

In order to show why approximate randomization method is useful, we generalize the algorithm

that was designed by Karp, Luby, and Madras [29] to an approximate randomization algorithm.

A natural problem that counting of lattice points in d-dimensional ball is discussed to support the

useful of approximate randomization algorithm. In our algorithm, each input set Ai is a black box

that can provide its size |Ai|, generate a random element RandomElement(Ai) of Ai, and answer

the membership query (x ∈ Ai?) in O(1) time. Our algorithm can handle input sets that can gen-

erate random elements with bias with Prob(x = RandomElement(Ai)) ∈
[

1−αL
|Ai| ,

1+αR
|Ai|

]
for each

input set Ai and approximate set size mi for Ai with mi ∈ [(1−βL)|Ai|,(1+βR)|Ai|].

As the communication complexity is becoming important in distributed environment, data

transmission among variant machines may be more time consuming than the computation inside

a single machine. Our algorithm complexity is also measured by the number of rounds. The al-

gorithm is allowed to make multiple membership queries and get random elements from the input

sets in one round. Our algorithm makes adaptive accesses to input sets with multiple rounds. The

round complexity is related a distributed computing complexity if input sets are stored in a dis-

tributed environment, and the number of rounds indicates the complexity of interactions between

a central server, which runs the algorithm to approximate the size of set union, and clients, which

save one set each.

Computation via bounded queries to another set has been well studied in the field of struc-

tural complexity theory. Polynomial time truth table reduction has a parallel way to access oracle

with all queries to be provided in one round [9]. Polynomial time Turing reduction has a sequen-

tial way to access oracle by providing a query and receiving an answer in one round [12]. The

constant-round truth table reduction (for example, see [16]) is between truth table reduction, and

2



Turing reduction. Our algorithm is similar to a bounded round truth table reduction to input sets

to approximate the size set union. Karp, Luby, and Madras [29]’s algorithm runs like a Turing re-

duction which has the number of adaptive queries proportional to the time.

We design approximation scheme for the number of lattice points in a d-dimensional ball

with its center at D(λ ,d, l), where D(λ ,d, l) to be the set points pd = (x1, · · · ,xd) with xi = i+ jλ

for an integer j ∈ [−l, l], another arbitrary integer i, and an arbitrary real number l. It returns an

approximation in the range [(1−β )C(r, p,d),(1+β )C(r, p,d)] in a time poly
(

d, 1
β
, |l|, |λ |

)
,

where C(r, p,d) is the number of lattice points in a d-dimensional ball with radius r and center

p ∈ D(λ ,d, l). We also show how to generate a random lattice point in a d-dimensional ball with

its center at D(λ ,d, l). It generates each lattice point inside the ball with a probability in
[

1−α

C(r,p,d) ,

1+ α

C(r,p,d) in a time poly
(
d, 1

α
, |l|, |λ |, logr

)
, where the d-dimensional ball has radius r

and center p ∈ D(λ ,d, l). Without the condition that a ball center is inside D(λ ,d, l), counting

the number of lattice points in a ball may have time time complexity that depends on dimension

number d exponentially even the radius is as small as d. Counting the number of lattice points

inside a four dimensional ball efficiently implies an efficient algorithm to factorize the product of

two prime numbers (n = pq) as C(
√

n,(0, ...,0),4)−C(
√

n−1,(0, ...,0),4) = 8(1+ pA+ q+ n)

(see [3, 27]). Therefore, a fast exact counting lattice points inside a four dimensional ball implies

a fast algorithm to crack RSA public key system.

This gives a natural example to apply our approximation scheme to the number of lattice

points in a list of balls. We prove that it is #P-hard to count the number of lattice points in a set

of balls, and we also show that there is no polynomial time algorithm to approximate the number

of lattice points in the intersection n-dimensional balls unless P=NP. We found that it is a elusive

problem to develop an poly
(
d, 1

ε

)
time (1+ ε)-approximation algorithm for the number of lattice

points of d-dimensional ball with a small radius. We are able to handle the case with ball centers

in D(λ ,d, l), which can approximate an arbitrary center by adjusting parameters λ and l. This is

our main technical contributions about lattice points in a high dimensional ball.

It is a classical problem in analytic number theory for counting the number of lattice points

3



in d-dimensional ball, and has been studied in a series of articles [1, 6, 10, 11, 13, 22, 23, 26, 30,

31, 33, 34, 36, 37, 38, 39, 40] in the field of number theory. Researchers are interested in both

upper bounds and lower bounds for the error term Ed(r) = Nd(r)− π
d
2 Γ(1

2d + 1)−1rd, where

Nd(r) = #{x ∈ Zd : |x| ≤ r} is the number of lattice points inside a sphere of radius r centered

at the origin and π
d
2 Γ(1

2d +1)−1rd (where Γ(.) is Leonhard Gamma Function) is the volume of a

d− dimensional sphere of radius r. When d = 2, the problem is called “Gauss Circle Problem";

Gauss proved that E2(r) ≤ r. Gauss’s bound was improved in a papers [13, 22, 26]. Walfisz[39]

showed that Ed(r) = Ω±(rd−2) and Ed(r) ≤ rd−2, where f (x) = Ω+(F(x))( f (x) = Ω−(F(x)))

as x→ ∞ if there exist a sequence {xn} → ∞ and a positive number C, such that for all n ≥ 1,

f (xn)>C|F(xn)| ( f (xn)<−C|F(xn)|). Most of the above results focus on the ball centered at the

origin, and few papers worked on variable centers but also consider fixed dimensions and radii

going to infinity[6, 10, 36, 40].

Our Contributions: We have the following contributions to approximate the size of set

union. 1. It has constant number of rounds to access the input sets. This reduces an important

complexity in a distributed environment where each set stays a different machine. It is in con-

trast to the existing algorithm that needs Ω(m) rounds in the worst case. 2. It handles the approxi-

mate input set sizes and biased random sources. The existing algorithms assume uniform random

source from each set. Our approximation ratio depends on the approximation ratio for the input

set sizes and bias of random generator of each input set. The approximate ratio for |A1 ∪ A2 ∪

·· · ∪Am| is controlled in the range in [(1− ε)(1−αL)(1−βL),(1+ ε)(1+αR)(1+βR)] for any

ε ∈ (0,1), where αL,αR,βL,βR ∈ (0,1). 3. It runs in sublinear time when each element belongs

to at least ma sets for any fixed a > 0. We have not seen any sublinear results about this problem.

4. We show a tradeoff between the number of rounds, and the time complexity. It takes a logm

rounds with time complexity O
(

m(logm)O(1)
)

, and takes O
(

1
ξ

)
rounds, with a time complexity

O
(

m1+ξ

)
. We still maintain the time complexity nearly linear time in the classical model. Our

algorithm is based on a new approach that is different from that in [29]. 5. We identify two addi-

tional parameters zmin and zmax that affect both the complexity of rounds and time, where zmin is

4



the least number of sets that an element belongs to, and zmax is the largest number of sets that an

element belongs to.

Our algorithm developed in the randomized model only accesses a small number of ele-

ments from the input sets. The algorithm developed in the streaming model algorithm accesses

all the elements from the input sets. Therefore, our algorithm is incomparable with the results in

the streaming model [2, 4, 5, 7, 14, 15, 18, 19, 20, 21, 25, 28].

The rest of paper is organized as follows. In Chapter 2, we define the computational model

and complexity. Chapter 3 presents some theorems that play an important role in accuracy anal-

ysis. In Chapter 4, we give a randomized approximation algorithm to approximate the size of set

union problem; time complexity and round complexity also analysis in Chapter 4. Chapter 5 dis-

cusses a natural problem that counting of lattice points in high dimensional balls to support the

useful of approximation randomized algorithm. A application of high dimensional balls in Maxi-

mal Coverage gives in Chapter 6. In Chapter 7, we generalize the algorithm that was designed by

Karp, Luby, and Madras [29] to an approximate randomization algorithm. Chapter 8 summaries

the conclusions.

5



CHAPTER II

MODEL OF RANDOMIZATION

In this section, we show our model of computation, and the definition of complexity. As-

sume that A1 and A2 are two sets. Their union A1 ∪A2 contains the elements in either A1 or A2.

Define A2 − A1 to be the set of elements in A2, but not in A1. Define their intersection A1 ∩ A2

to be the set of elements in both A1 and A2. For example, A1 = {3, 5} and A2 = {1, 3, 7}, then

A1∪A2 = {1, 3, 5, 7}, A2−A1 = {1, 7}, and A1∩A2 = {3}. For a finite set A, define |A| to be the

number of elements in A. A real number s is an (1+ ε)-approximation for |A| if (1− ε)|A| ≤ s ≤

(1+ ε)|A|. For a real number x, let dxe be the least integer y ≥ x, bxc be the largest integer z ≤ x

and [x] be the integer part of x. For examples, d3.3e = 4, b3.2c = 3, [3.2] = 3 and [3.8] = 3. Let

N= {0, 1, 2, · · ·} be the set of nonnegative integers, R=(−∞,+∞) be the set of all real numbers,

R+ = [0,+∞) be the set of all nonnegative real numbers and Z be the set of all integer numbers.

2.1 Model of Randomization

Definition 2.1.1. Let A be a set of elements.

• A α-biased random generator for set A is a generator that each element in A is generated

with probability in the range
[

1−α

|A| ,
1+α

|A|

]
.

• A (αL,αR)-biased random generator for set A is a generator that each element in A is gen-

erated with probability in the range
[

1−αL
|A| ,

1+αR
|A|

]
.

Definition 2.1.2. Let L be a list of sets A1, A2, · · · , Am such that each supports the following op-

erations:

• the size of Ai has an approximation mi ∈ [(1− βL)|Ai|, (1+ βR)|Ai|] for i = 1, 2, · · · , m.

6



Both M =
m
∑

i=1
mi and m are part of the input,

• function RandomElement(Ai) returns a (αL, αR)-biased approximate random element x

from Ai for i = 1, 2, · · · , m,

• function query(x, Ai) function returns 1 if x ∈ Ai, and 0 otherwise.

Definition 2.1.3. For a list L of sets A1, A2, · · · , Am and real numbers αL, αR, βL, βR ∈ [0, 1), it

is called ((αL, αR), (βL, βR))-list if each set Ai is associated with a number si with (1−βL)|Ai| ≤

mi ≤ (1 + βR)|Ai| for i = 1, 2, · · · , m, and the set Ai has a (αL, αR)-biased random generator

RandomElement(Ai).

Definition 2.1.4. The model of randomized computation for our algorithm is defined below:

• the input is a list L defined in Definition 2.1.2,

• it allows all operations defined in Definition 2.1.2.

2.2 Round and Round Complexity

Our algorithm has several rounds to access input sets. We also measure the round com-

plexity, which is the number of rounds.

Our algorithm is considered as a client-server interaction. The algorithm is controlled by

the server side, and each set is a client. In one round, the server asks some questions to clients

which are selected.

The round complexity is the total number of rounds used in the algorithm. At each round,

the algorithm send multiple requests to random generators, and membership queries, and receives

the answers from them.

The parameters m,ε,γ may be used to determine the time complexity and round complex-

ity, where ε controls the accuracy of approximation, γ controls the failure probability, and m is

the number of sets.

7



CHAPTER III

PRELIMINARIES

During the accuracy analysis, Hoeffiding Inequality [24] and Chernoff Bound (see [32])

play an important role. They show how the number of samples determines the accuracy of ap-

proximation.

Theorem 3.0.1 ([24]). Let X1, . . . , Xm be m independent random variables in [0,1] and X =
m
∑

i=1
Xi.

i. If Xi takes 1 with probability at most p for i = 1, . . . , m, then for any ε > 0, Pr(X >

pm+ εm)< e−
ε2m

2 .

ii. If Xi takes 1 with probability at least p for i = 1, . . . , m, then for any ε > 0, Pr(X <

pm− εm)< e−
ε2m

2 .

Theorem 3.0.2. Let X1, . . . ,Xm be m independent random 0-1 variables, where Xi takes 1 with

probability at least p for i = 1, . . . ,m. Let X =
m
∑

i=1
Xi, and µ = E[X ]. Then for any δ > 0, Pr(X <

(1−δ )pm)< e−
1
2 δ 2 pm.

Theorem 3.0.3. Let X1, . . . ,Xm be m independent random 0-1 variables, where Xi takes 1 with

probability at most p for i = 1, . . . ,m. Let X =
m
∑

i=1
Xi. Then for any δ > 0, Pr(X > (1+ δ )pm) <[

eδ

(1+δ )(1+δ )

]pm
.

Define g1(δ ) = e−
1
2 δ 2

and g2(δ ) =
eδ

(1+δ )(1+δ ) . Define g(δ ) = max(g1(δ ), g2(δ )). We note

that g1(δ ) and g2(δ ) are always strictly less than 1 for all δ > 0. It is trivial for g1(δ ). For g2(δ ),

this can be verified by checking that the function f (x) = (1+ x) ln(1+ x)− x is increasing and

f (0) = 0. This is because f ′(x) = ln(1+ x) which is strictly greater than 0 for all x > 0.

We give a bound for eδ

(1+δ )(1+δ ) . Let u(x) = ex

(1+x)(1+x) . We consider the case x ∈ [0,1]. We

8



have

lnu(x) = x− (1+ x) ln(1+ x)≤ x− (1+ x)(x− x2

2
) = x− (x+

x2

2
− x3

3
)≤−x2

6
.

Therefore,

u(x)≤ e−
x2
6 (3.1)

for all x ∈ [0,1]. We let

g∗(x) = e−
x2
6 (3.2)

We have g(x)≤ g∗(x) for all x ∈ [0,1].

A well known fact, called union bound, in probability theory is the inequality

Pr(E1∪E2 . . .∪Em)≤ Pr(E1)+Pr(E2)+ . . .+Pr(Em),

where E1,E2, . . . ,Em are m events that may not be independent. In the analysis of our randomized

algorithm, there are multiple events such that the failure from any of them may fail the entire al-

gorithm. We often characterize the failure probability of each of those events, and use the above

inequality to show that the whole algorithm has a small chance to fail after showing that each of

them has a small chance to fail.

9



CHAPTER IV

ALGORITHM BASED ON ADAPTIVE RANDOM SAMPLINGS

In this section, we develop a randomized algorithm for the size of set union when the ap-

proximate set sizes and biased random generators are given for the input sets. We give some def-

initions before the presentation of the algorithm. The algorithm developed in this section has an

adaptive way to access the random generators from the input sets. All the random elements from

input sets are generated in the beginning of the algorithm, and the number of random samples is

known in the beginning of the algorithm. The results in this section show a tradeoff between the

time complexity and the round complexity.

Definition 4.0.1. Let L = A1,A2, · · · ,Am be a list of finite sets.

1. For an element x, define T (x,L) = |{i : 1≤ i≤ m and x ∈ Ai}|.

2. For an element x, and a subset of indices with multiplicity H of {1,2, · · · ,m}, define S(x,H)=

|{i : i ∈ H and x ∈ Ai}|.

3. Define minT hickness(L) = min{T (x,L) : x ∈ A1∪A2∪·· ·∪Am}.

4. Define maxT hickness(L) = max{T (x,L) : x ∈ A1∪A2∪·· ·∪Am}.

5. Let W be a subset with multiplicity of A1 ∪ ·· · ∪Am, define F(W,h,s) = s
h ∑

x∈W

1
T (x,L) , and

F ′(W ) = ∑
x∈W

1
T (x,L) =

h
s F(U,h,s).

6. For a δ ∈ (0,1), partition A1∪A2∪·· ·∪Am into A′1, · · · ,A′k such that A′i = {x : x ∈ A1∪A2∪

·· ·∪Am and T (x,L) ∈ [(1+δ )i−1,(1+δ )i)}. Define v(δ ,z1,z2,L) = k, which is the number

of sets in the partition under the condition that z1 ≤ T (x,L)≤ z2.
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4.1 Overview of Algorithm

We give an overview of the algorithm. For an list L of input sets A1, · · · ,Am, each set Ai

has an approximate size mi and a random generator. It is easy to see that |A1 ∪A2 ∪ ·· · ∪Am| =
m
∑

i=1
∑

x∈Ai

1
T (x,L) . The first phase of the algorithm generates a set R1 of sufficient random samples

from the list of input sets with m1+···+mm
|R1| · ∑

x∈R1

1
T (x,L) is close to

m
∑

i=1
∑

x∈Ai

1
T (x,L) . We will use the vari-

able sum with initial value zero to approximate it. Each stage i removes the set Vi of elements

from Ri that each element x ∈ Vi satisfies T (x,L) ∈
[

Ti
4 f5(m) ,Ti

]
, and all elements x ∈ Ri with

T (x,L) ∈
[

Ti
f5(m) ,Ti

]
are in Vi, where Ti = max{T (x,L) : x ∈ Ri} and f5(m) is a function at least

8, which will determine the number of rounds, and the trade off between the running time and

the number of rounds. In phase i, we choose a set Hi of ui (to be large enough) of indices from

1, · · · ,m, and use S(x,Hi)m
ui

to approximate T (x,L). It is accurate enough if ui is large enough. The

elements left in Ri −Vi will have smaller T (x,L). The set Ri+1 will be built for the next stage

i+ 1. When Ri−Vi is shrinked to Ri+1 by random sampling in Ri−Vi, each element in Ri+1 will

have its weight to be scaled by a factor |Ri−Vi|
hi+1

. When an element x is put into Vi, it is removed

from Ri, and an approximate value of 1
T (x,L) multiplied by its weight is added to sum. Finally, we

will prove that sum ·(m1+ · · ·+mm) is close to
m
∑

i=1
∑

x∈Ai

1
T (x,L) , which is equal to |A1∪A2∪·· ·∪Am|.

4.2 Algorithm Description

Before giving the algorithm, we define an operation that selects a set of random elements

from a list L of sets A1, · · · ,Am. We always assume m≥ 2 throughout the paper.

Definition 4.2.1. Let L be a list of m sets A1,A2, · · · ,Am with mi ∈ [(1−βL)|Ai|,(1+βR)|Ai|] and

(αL,αR)-biased random generator RandomElement(Ai) for i = 1,2, · · · ,m, and M = m1 +m2 +

· · ·+mm. A random choose of L is to get an element x via the following two steps:

• With probability mi
M , select a set Ai among A1, · · · ,Am.

• Get an element x via RandomElement(Ai).
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We give some definitions about the parameters and functions that affect our algorithm be-

low. We assume that ε ∈ (0,1) is used to control the accuracy of approximation, and γ ∈ (0,1)

is used to control the failure probability. Both parameters are from the input. In the following al-

gorithm, the parameters zmin and zmax with 1 ≤ zmin ≤ minT hickness(L) ≤ maxT hickness(L) ≤

zmax ≤ m can help speed up the computation. The algorithm is still correct if we use default case

with zmin = 1 and zmax = m.

• The following parameters are used to controlled the accuracy of approximation at different

stages of algorithm:

ε0 =
ε

9
,ε1 =

ε0

6(logm)
,ε2 =

ε1

4
,ε3 =

ε0

3
, (4.1)

δ =
ε2

2
. (4.2)

• The following parameters are used to control the failure probability at several stages of the

algorithm:

γ1 =
γ

3
,γ2 =

γ

6logm
. (4.3)

• Function f1(.) is used to control the number of rounds of the algorithm. Its growth rate is

mainly determined by the parameter c1 that will be determined later.

f1(m) = 8mc1 with c1 ≥ 0, . (4.4)

f2(m) =
2v(δ ,zmin,zmax,L)

ε3
+

2log m
zmin

ε3 log(1+δ )
, (4.5)

f3(m) =
f1(m)

2
·

log γ2
2

log 1
g∗(1)

, (4.6)

f4(m) =
f2(m) log m2

ε1

log 1
g∗(ε1)

+
f3(m)

ε2 f1(m)
(4.7)
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• Function f5(.) determine the number of random samples from the input sets in the begin-

ning of the algorithm.

f5(m) =
m f4(m)

zmin
. (4.8)

• The following parameter is also used to control failure probability in a stage of the algo-

rithm.

γ3 =
γ2

2 f5(m)
, and (4.9)

• Function f6(.) affects the number of random indices in the range {1,2, · · · ,m}. Those ran-

dom indices will be used to choose input sets to detect the approximate T (x,L) for those

random samples x.

f6(m) =
f3(m) f1(m)v(δ ,zmin,zmax,L)

ε2
. (4.10)
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Algorithm 1 ApproximateUnion(L,zmin,zmax,M,γ,ε)
Input : L is a list of m sets A1,A2, · · · ,Am with m ≥ 2, mi ∈ [(1− βL)|Ai|,(1 + βR)|Ai|] and

(αL,αR)-biased random generator RandomElement(Ai) for i = 1,2, · · · ,m, integers zmin and zmax

with 1 ≤ zmin ≤ minT hickness(L) ≤ maxT hickness(L) ≤ zmax ≤ m, parameter γ ∈ (0,1) to con-

trol the failure probability, parameter ε ∈ (0,1) to control the accuracy of approximation, and

M = m1 +m2 + · · ·+mm as the sum of sizes of input sets.

Output : sum ·M.

Let h1 = f5(m);

Let i = 1;

Let currentThickness1 = zmax ;

Let s1 =
m

currentT hickness1
;

Let s′1 = 1;

Let sum = 0;

Obtain a set R1 of h1 random chooses of L (see Definition 4.2.1);

Stage i

Let ui = si · f6(m);

Select ui random indices Hi = {k1, · · · ,kui} from {1,2, · · · ,m}.

Compute S(x,Hi) for each x ∈ Ri.

Let Vi be the subset of Ri with elements x satisfying S(x,Hi)≥ currentT hicknessi
2 f1(m)·m ·ui;

Let sum = sum+ s′i ∑
x∈Vi

ui
S(x,Hi)m

;

Let currentT hicknessi+1 =
currentT hicknessi

f1(m) ;

Let si+1 =
m

currentT hicknessi+1
;

Let hi+1 =
h1

si+1
;

If (|Ri|− |Vi|< hi+1)

Then

{

Let Ri+1 = Ri−Vi;

Let ai = 1;

} 14



Else

{

Let Ri+1 be a set of random hi+1 samples from Ri−Vi;

Let ai =
|Ri|−|Vi|

hi+1
;

}

Let s′i+1 = s′i ·ai;

Let i = i+1;

If (currentT hicknessi < zmin)

Return sum ·M and terminate the algorithm;

Else

Enter the next Stage i.

We let M = m1+m2+ · · ·+mm and zmin be part of the input of the algorithm. It makes the

algorithm be possible to run in a sublinear time when zmin ≥ ma for a fixed a > 0. Otherwise, the

algorithm has to spend Ω(m) time to compute M.

4.3 Proof of Algorithm Performance

The accuracy and complexity of algorithm ApproximateUnion(.) will be proven in the

following lemmas. Lemma 4.3.1 gives some basic properties of the algorithm. Lemma 4.3.3 shows

that R1 has random samples are used so that F(R1,h1,1)
(

m
∑

i=1
mi

)
is an accurate approximation

for
m
∑

i=1
∑

x∈Ai

1
T (x,L) .

Lemma 4.3.1. The algorithm ApproximateUnion(.) has the following properties:

1. g∗(ε1)
f4(m)
f2(m) ≤ ε1

m2 .

2. v(δ ,zmin,zmax,L) = O
(

log zmax
zmin
δ

)
.

3. 2v(δ ,zmin,zmax,L)
f2(m) ≤ ε3 and f2(m) = O

(
log m

zmin
δε3

)
,

4. Ri contains at most hi items, and
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5. f4(m) = O
(

1
ε4

(
log m

zmin

)
· log m

ε
· (logm)3 +

logm log 1
γ

ε

)
.

Proof. The statements are easily proven according to the setting in the algorithm.

Statement 1: It follows from equations (3.2) and (4.7).

Statement 2: By Definition 4.0.1, we need v(δ ,zmin,zmax,L) with zmin(1+δ )v(δ ,zmin,zmax,L)≥

zmax. Thus, we have v(δ ,zmin,zmax,L)≤ 2
(

log zmax
zmin

log(1+δ )

)
= O

(
log zmax

zmin
δ

)
since log(1+δ ) = Θ(δ ).

Statement 3: It is easy to see that log(1+ δ ) = Θ(δ ) and 1 ≤ zmax ≤ m. It follows from

equation (4.5), and Statement 2.

Statement 4: It follows from lines 19 to 5 in the algorithm.

Statement 5: We also have f3(m)
ε2 f1(m) =

1
2ε2
· log γ2

2
log 1

g∗(1)
. By equation (4.7), Statement 3 and

equations (4.1), we have

f4(m) =
f2(m) log m2

ε1

log 1
g∗(ε1)

+
f3(m)

ε2 f1(m)
(4.11)

≤

(
6 f2(m) · log

m2

ε1
·
(

logm
ε0

)2

+
f3(m)

ε2 f1(m)

)
(4.12)

≤

(
6 f2(m) · log

m2

ε2
1
·
(

logm
ε0

)2

+
1

2ε2
·

log γ2
2

log 1
g∗(1)

)
(4.13)

=

(
6

δε3ε2
0
(log

m
zmin

) · log
m
ε1
· (logm)2 +

12logm
ε0

·
log γ2

2

log 1
g∗(1)

)
(4.14)

= O

(
1
ε4

(
log

m
zmin

)
· log

m
ε
· (logm)3 +

logm log 1
γ

ε

)
. (4.15)

Lemma 4.3.2 gives an upper bound for the number of rounds for the algorithm. It shows

how round complexity depends on zmax,zmin and f1(.).

Lemma 4.3.2. The number of phases of the algorithm is O
(

log zmax
zmin

log f1(m)

)
.

Proof. By line 3 of the algorithm, we have currentThickness1 = zmax. Variable currentThicknessi

is reduced by a factor f1(m) each phase as currentThicknessi+1 =
currentThicknessi

f1(m) by line 14 of the
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algorithm. By the termination condition of line 8 of the algorithm, if y is the number of phases of

the algorithm, we have y≤ y′, where y′ is any integer with zmax
f1(m)y′ < zmin. Thus, y = O

(
log zmax

zmin
log f1(m)

)
.

Lemma 4.3.3 shows the random samples, which are saved in R1 in the beginning of the

algorithm, will be enough to approximate the size of set union via F(R1,h1,1)M. In the next a

few rounds, algorithm will approximate F(R1,h1,1).

Lemma 4.3.3. With probability at least 1− γ1, F(R1,h1,1)M ∈ [(1− ε0)(1−αL)(1−βL)|A1 ∪

·· ·∪Am|,(1+ ε0)(1+αR)(1+βR)(1+δ )|A1∪·· ·∪Am|].

Proof. Let A = |A1 ∪ ·· · ∪ Am| and U = |A1|+ |A2|+ · · ·+ |Am|. For an arbitrary set Ai in the

list L, and an arbitrary element x ∈ Ai, with at least the following probability x is selected via

RandomElement(Ai) at line 7 of Algorithm ApproximateUnion(.).

mi

m1 +m2 + · · ·+mm

1−αL

|Ai|
≥ (1−βL)|Ai|

M
1−αL

|Ai|

=
(1−βL)(1−αL)

M
.

Similarly, with at most the following probability x is chosen via RandomElement(Ai) at

line 7 of Algorithm ApproximateUnion(.).

mi

m1 +m2 + · · ·+mm

1+αR

|Ai|
≤ (1+βR)|Ai|

M
1+αR

|Ai|

=
(1+βR)(1+αR)

M
.

Define ρ1 = 1− (1−βL)(1−αL) and ρ2 = (1+βR)(1+αR)−1. Each element x in A1∪

A2∪·· ·∪Am is selected with probability in
[
(1−ρ1)T (x,L)

M , (1+ρ2)T (x,L)
M

]
.

Define T1 =
{

A′j : |A′j| ≤ A
f2(m)

}
, and T2 =

{
A′j : |A′j|> A

f2(m)

}
(see 6 of Definition (4.0.1)).

Let t j = min
{

T (x,L) : x ∈ A′j
}

. We discuss two cases:

Case 1: A′j ∈ T1. When one element x is chosen, the probability that x ∈ A′j is in the range
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[
(1−ρ1)t j|A′j|

M ,
(1+ρ2)(1+δ )t j|A′j|

M

]
. Let p j =

(1+ρ2)(1+δ )t j· A
f2(m)

M . Since zmin ≤ minT hickness(L), we

have zmin ≤ minT hickness(L)≤ t j. It is easy to see that mA≥U . We have

p jh1 =
(1+ρ2)(1+δ )t j · A

f2(m)

M
· m f4(m)

zmin
(4.16)

≥ (1+ρ2)(1+δ ) · f4(m)mA
f2(m)M

(4.17)

≥ (1+ρ2)(1+δ ) · f4(m)U
f2(m)M

(4.18)

≥ (1+ρ2)(1+δ ) · f4(m)

f2(m)(1+βR)
(4.19)

=
(1+αR)(1+δ ) · f4(m)

f2(m)
. (4.20)

Let ω1(m) = (1+αR)(1+δ )· f4(m)
f2(m) . Thus, p jh1 ≥ ω1(m).

Let Ri, j be the elements of Ri and also in A′j. By Theorem 3.0.3, with probability at most

Pj = g∗(1)p j·h1 ≤ g∗(1)ω1(m) ≤ γ1
2 (by equation (4.5), equation (4.7) and inequality (4.20)), there

are more than 2p jh1 =
2(1+ρ2)(1+δ )t j· A

f2(m)

M ·h1 elements to be chosen from A′j into R1. Thus,

F ′(R1, j)≤
2p jh1

t j
≤ 2(1+ρ2)(1+δ ) ·A

f2(m)M
·h1. (4.21)

with probability at most Pj to fail.

Case 2: A′j ∈ T2. When h1 elements are selected to R1, let v j be the number of elements

selected in A′j. When one element x is chosen, the probability that x ∈ A′j is in the range

[
(1−ρ1)t j|A′j|

M
,
(1+ρ2)(1+δ )t j|A′j|

M

]
.

Let p j,1 =
(1−ρ1)t j|A′j|

M and p j,2 =
(1+ρ2)(1+δ )t j|A′j|

M .
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We have

p j,1h1 =
(1−ρ1)t j|A′j|

M
·h1 (4.22)

>
(1−ρ1)t j

A
f2(m)

M
·h1 ≥

(1−ρ1)zminA ·h1

f2(m)M
=

(1−ρ1)zminA ·m f4(m)

zmin f2(m)M
(4.23)

≥ (1−ρ1) f4(m)

f2(m)(1+βR)
. (4.24)

We have

p j,2h1 =
(1+ρ2)(1+δ )t j|A′j|

M
·h1 (4.25)

>
(1+ρ2)(1+δ )t j · A

f2(m)

M
·h1 (4.26)

≥ (1+ρ2)(1+δ )zmin ·A
f2(m)M

·h1 (4.27)

=
(1+ρ2)(1+δ )zmin ·A

f2(m)M
· m f4(m)

zmin
(4.28)

≥ (1+ρ2)(1+δ ) · f4(m)

f2(m)(1+βR)
(4.29)

≥ (1+αR)(1+δ ) · f4(m)

f2(m)
. (4.30)

With probability at most g∗(ε3)
p j,1·h1 ≤ γ1

4 (by equation (4.5), equation (4.7) and inequality (4.24)),

v j <
(1− ε3)(1−ρ1)t j|A′j|

M
·h1 = (1− ε3)(1−ρ1)t jh1 ·

|A′j|
M

. (4.31)

With probability at most g∗(ε3)
p j,2·h1 ≤ γ1

4 (by equation (4.5), equation (4.7) and inequal-

ity (4.30)),

v j >
(1+ ε3)(1+ρ2)(1+δ )t j|A′j|

M
·h1 = (1+ ε3)(1+ρ2)(1+δ )t jh1 ·

|A′j|
M

. (4.32)
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Therefore, with probability at least 1− γ1/2, we have

v j ∈

[
(1− ε3)(1−ρ1)t jh1 ·

|A′j|
M

,(1+ ε3)(1+ρ2)(1+δ )t jh1 ·
|A′j|
M

]
. (4.33)

Thus, we have that there are sufficient elements of A′j to be selected with high probability, which

follows from Theorem 3.0.2 and Theorem 3.0.3.

In the rest of the proof, we assume that inequality (4.21) holds if the condition of Case 1

holds, and inequality (4.33) holds if the condition of Case 2 holds.
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Now we consider

F(R1,h1,1) =
1
h1

∑
x∈R1

1
T (x,L)

(4.34)

=
1
h1

 ∑
R1, j with A′j∈T1

∑
x∈R1, j

1
T (x,L)

+ ∑
R1, j with A′j∈T2

∑
x∈R1, j

1
T (x,L)

 (4.35)

≤ 1
h1

2(1+ρ2)(1+δ )v(δ ,zmin,zmax,L) ·A
f2(m)M

·h1 (4.36)

+
1
h1

∑
R1, j with A′j∈T2

∑
x∈R1, j

1
T (x,L)

(4.37)

=
1
h1

2(1+ρ2)(1+δ )v(δ ,zmin,zmax,L) ·A
f2(m)M

·h1 + ∑
R1, j with A′j∈T2

v j

t j

 (4.38)

≤ 1
h1

(
2(1+ρ2)(1+δ )v(δ ,zmin,zmax,L) ·A

f2(m)M
·h1

)
(4.39)

+
1
h1

 ∑
R1, j with A′j∈T2

(1+ ε3)(1+ρ2)(1+δ )h1 ·
|A′j|
M

 (4.40)

=
2(1+ρ2)(1+δ )v(δ ,zmin,zmax,L) ·A

f2(m)M
(4.41)

+ ∑
R1, j with A′j∈T2

(1+ ε3)(1+ρ2)(1+δ ) ·
|A′j|
M

(4.42)

≤
(

2(1+ρ2)(1+δ )v(δ ,zmin,zmax,L)
f2(m)

+(1+ ε3)(1+ρ2)(1+δ )

)
A
M

(4.43)

=

(
1+ ε3 +

2v(δ ,zmin,zmax,L)
f2(m)

)
(1+ρ2)(1+δ )

A
M

(4.44)

≤ (1+2ε3)(1+ρ2)(1+δ )
A
M

(4.45)

≤ (1+ ε0)(1+ρ2)(1+δ )
A
M
. (4.46)

The transition from (4.44) to (4.45) is by Statement 3 of Lemma 4.3.1. For the lower bound

part, we have the following inequalities:
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F(R1,h1,1) =
1
h1

∑
x∈R1

1
T (x,L)

(4.47)

≥ 1
h1

 ∑
R1, j with A′j∈T2

∑
x∈R1, j

1
T (x,L)

 (4.48)

=
1
h1

 ∑
R1, j with A′j∈T2

v j

t j

 (4.49)

≥ 1
h1

 ∑
R1, j with A′j∈T2

(1− ε3)(1−ρ1)h1 ·
|A′j|
M

 (4.50)

=
(1− ε3)(1−ρ1)

M

 ∑
R1, j with A′j∈T2

|A′j|

 (4.51)

=
(1− ε3)(1−ρ1)

M ∑
R1, j with A′j∈T1

|A′j|+ ∑
R1, j with A′j∈T2

|A′j| (4.52)

− (1− ε3)(1−ρ1)

M ∑
R1, j with A′j∈T1

|A′j| (4.53)

=
(1− ε3)(1−ρ1)

M

A− ∑
R1, j with A′j∈T1

|A′j|

 (4.54)

=
(1− ε3)(1−ρ1)

M

(
A− v(δ ,zmin,zmax,L)A

f2(m)

)
(4.55)

=

(
1− v(δ ,zmin,zmax,L)

f2(m)

)
(1− ε3)(1−ρ1)

A
M

(4.56)

≥ (1− ε3)(1− ε3)(1−ρ1)
A
M

(4.57)

≥ (1− ε0)(1−ρ1)
A
M
. (4.58)

The transition from (4.56) to (4.57) is by Statement 3 of Lemma 4.3.1. Therefore,

F(R1,h1,1)M ∈ [(1− ε0)(1−ρ1)A,(1+ ε0)(1+ρ2)(1+δ )A].

Lemma 4.3.4 shows that at stage i, it can approximate T (x,L) for all random samples with

highest T (x,L) in Ri. Those random elements with highest T (x,L) will be removed in stage i so

that the algorithm will look for random elements with smaller T (x,L) in the coming stages.
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Lemma 4.3.4. After the execution of Stage i, with probability at least 1− γ2, we have the follow-

ing three statements:

1. every element x ∈ Ri with T (x,L)≥ currentThicknessi
4 f1(m) has S(x,Hi) ∈[

(1− ε1)
T (x,L)

m ui,(1+ ε1)
T (x,L)

m ui

]
, and

2. every element x ∈Vi with T (x,L)≥ currentThicknessi
f1(m) , it satisfies the condition in line 12 of the

algorithm.

3. every element x∈Vi with T (x,L)< currentThicknessi
4 f1(m) , it does not satisfy the condition in line 12

of the algorithm.

Proof. It follows from Theorem 3.0.2 and Theorem 3.0.3. There are ui = si f6(m) indices are se-

lected among {1,2, · · · ,m}. Let p = T (x,L)
m .

Statment 1: We have pui =
T (x,L)

m · si f6(m)≥ currentThicknessi
4 f1(m) · 1

m · si f6(m) = currentThicknessi
4 f1(m) ·

1
m ·

m
currentThicknessi

· f6(m) = f6(m)
4 f1(m) .

With probability at most P1 = g∗(ε1)
pui ≤ γ3

2 (by equations (4.10), and (4.6)), S(x,Hi) <

(1− ε1)
T (x,L)

m ui. With probability at most P2 = g∗(ε1)
pui ≤ γ3

2 (by equations (4.10) and (4.6)),

S(x,Hi)> (1+ ε1)
T (x,L)

m ui.

There are at most hi elements in Ri by Statement 4 of Lemma 4.3.1. Therefore, with prob-

ability at most hi(P1 +P2)≤ h1(P1 +P2)≤ h1 · γ3 =
γ2
2 ,

S(x,Hi) 6∈
[
(1− ε1)

T (x,L)
m

ui,(1+ ε1)
T (x,L)

m
ui

]
.

Statement 2: This statement of the lemma follows from Statement 1.

Statement 3: This part of the lemma follows from Theorem 3.0.2 and Theorem 3.0.3. For

x ∈Vi with T (x,L)< currentThicknessi
4 f1(m) , let p = currentThicknessi

4 f1(m) . With probability at most g∗(1)pui ≤ γ2
2

(by equations (4.10), and (4.6)), we have S(x,Hi)≥ 2pui.

Lemma 4.3.5. Let x and y be positive real numbers with 1≤ y. Then we have

• 1− xy < (1− x)y,
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• If xy < 1, then (1+ x)y < 1+2xy, and

• If x1,x2 ∈ [0,1), then 1− x1− x2 ≤ (1− x1)(1− x2), and (1+ x1)(1+ x2)≤ 1+2x1 + x2.

Proof. By Taylor formula, we have (1− x)y = 1− xy+ y·(y−1)
2 θ 2 for some θ ∈ [0,x]. Thus, we

have (1− x)y ≥ 1− yx. Note that the function (1+ 1
z )

z is increasing, and limz→+∞(1+ 1
z )

z = e.

We also have (1+ x)y ≤ (1+ x)
1
x ·xy ≤ exy ≤ 1+ xy+(xy)2 ≤ 1+2xy.

It is trivial to verify Statement 4.3.5. 1− x1− x2 ≤ (1− x1)(1− x2). Clearly, (1+ x1)(1+

x2) = 1+ x1 + x2 + x1x2 ≤ 1+2x1 + x2.

Lemma 4.3.6 shows that how to gradually approximate F(R1,h1,1)M via several rounds.

It shows that the left random samples stored in Ri+1 after stage i is enough to approximate F ′(Ri−

Vi).

Lemma 4.3.6. Let y be the number of stages. Let Vi be the set of elements removed from Ri in

Stage i. Then we have the following facts:

• With probability at least 1− γ2, aiF ′(Ri+1) ∈ [(1− ε1)F ′(Ri−Vi),(1+ ε1)F ′(Ri−Vi)], and

• With probability at least 1−2yγ2,
y
∑

i=1
s′iF
′(Vi) ∈ [(1− yε1)S,(1+2yε1)S],

where S = F(R1,h1,1).

Proof. Let h′i = hi−|Vi|. If an local is too small, it does not affect the global sum much. In Ri+1,

we deal with the elements x of T (x,L) < currentThicknessi
f1(m) . By Lemma 4.3.4, with probability at

least 1− γ2, Ri−Vi does not contain any x with T (x,L)≥ currentThicknessi
f1(m) .

Let ti, j be the number of elements of A′j in Ri with multiplicity. Let Bi, j be the set of ele-

ments in both Ri and A′j with multiplicity.

Statement 1: We discuss two cases:

Case 1: |Ri|− |Vi| < hi+1. This case is trivial since Ri+1 = Ri−Vi and ai = 1 according to

the algorithm.

In the following Case 2, we assume the condition of Case 1 is false. Thus, h′i ≥ hi+1.
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Case 2: |Ri|− |Vi| ≥ hi+1. We have

F ′(Ri−Vi) ≥
h′i

currentThicknessi
f1(m)

≥ hi+1
currentThicknessi

f1(m)

(4.59)

=

h1
si+1
· f1(m)

currentThicknessi
=

f4(m)

zmin
. (4.60)

Two subcases are discussed below.

Subcase 2.1: ti, j ≤ f3(m), in this case, Bi, j has a small impact for the global sum.

Let p = f3(m)
h′i

. By Theorem 3.0.2 and Theorem 3.0.3, with probability at least

1−g∗(1)phi+1 = 1−g∗(1)
f3(m)
f1(m) ≥ 1− γ2

2 (by equation (4.6)),

|Bi+1, j| ≤ 2phi+1 = 2 · f3(m)

h′i
· hi

f1(m)
=

2 f3(m)

f1(m)
· hi

h′i
≤ 2 f3(m)

f1(m)
· hi

hi+1
≤ 2 f3(m)

f1(m)2 . (4.61)

We assume |Bi+1, j| ≤ 2 f3(m)
f1(m)2 . We have F ′(Bi+1, j)≤

|Bi+1, j|
zmin

≤ 2 f3(m)
zmin f1(m)2 . Clearly, ai≤ f1(m).

Thus,

aiF ′(Bi+1, j) ≤ f1(m) · 2 f3(m)

zmin f1(m)2 =
2 f3(m)

zmin f1(m)
(4.62)

=
2 f3(m)

f4(m) f1(m)
· f4(m)

zmin
(4.63)

≤ 2 f3(m)

f1(m) f4(m)
·F ′(Ri−Vi) (4.64)

≤ 2ε2 ·F ′(Ri−Vi). (4.65)

The transition from (4.63) to (4.64) is by inequality (4.60). The transition from (4.64) to

(4.65) is by inequality (4.7).

Subcase 2.2: ti, j > f3(m) in Ri, in this case, B′j does not lose much accuracy. From Ri to

Ri+1, hi+1 =
hi

f1(m) elements are selected.
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Let q =
ti, j
h′i

. We have

qhi+1 =
ti, j
h′i
·hi+1 = ti, j ·

hi+1

h′i
≥ ti, j ·

hi+1

hi
≥ f3(m)

f1(m)
. (4.66)

With probability at most g∗(ε2)
qhi+1 ≤ γ2

2 (by inequality (4.66)), we have that |Bi+1, j| <

(1− ε2)qhi+1. With probability at most g∗(ε2)
qhi+1 ≤ γ2

2 , we have that |Bi+1, j| > (1+ ε2)qhi+1.

They follow from Theorem 3.0.2 and Theorem 3.0.3.

We assume |Bi+1, j| ∈ [(1− ε2)qhi+1,(1+ ε2)qhi+1]. Thus, aiF ′(Bi+1, j) ∈ [(1−ε2)ti, j,(1+

ε2)ti, j]. So, aiF ′(Bi+1, j) ∈
[
(1−ε2)F ′(Ri, j)

1+δ
,(1+ ε2)F ′(Ri, j)(1+δ )

]
.

We have

aiF ′(Ri+1) = ai

(
∑

j
F ′(Ri+1, j)

)
(4.67)

≤ (1+ ε2)(1+δ )F ′(Ri−Vi) (4.68)

+
2 f3(m)

f1(m) f4(m)
· v(δ ,zmin,zmax,L)F ′(Ri−Vi) (4.69)

= ((1+ ε2)(1+δ )+2ε2)F ′(Ri−Vi) (4.70)

≤ ((1+ ε2)(1+δ )+2ε2)F ′(Ri−Vi) (4.71)

≤ (1+4ε2)F ′(Ri−Vi) (4.72)

≤ (1+ ε1)F ′(Ri−Vi). (4.73)

The transition from (4.70) to (4.71) is based on equation (4.10). The transition from (4.71)

to (4.72) is based on equation (4.2). The transition from (4.72) to (4.73) is based on equations

(4.1).
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We have

aiF ′(Ri+1) = ai

(
∑

j
F ′(Ri+1, j)

)
(4.74)

≥ (1− ε2)F ′(Ri−Vi)

(1+δ )
− 2 f3(m)

f1(m) f4(m)
· v(δ ,zmin,zmax,L)F ′(Ri−Vi) (4.75)

≥
(
(1− ε2)

(1+δ )
−2ε2

)
F ′(Ri−Vi) (4.76)

≥
(
(1− ε2)

(1+δ )
−2ε2

)
F ′(Ri−Vi) (4.77)

≥ (1−4ε2)F ′(Ri−Vi) (4.78)

≥ (1− ε1)F ′(Ri−Vi). (4.79)

The transition from (4.76) to (4.77) is based on the equation (4.10). The transition from

(4.77) to (4.78) is based on equation (4.2). The transition from (4.78) to (4.79) is based on equa-

tions (4.1).

Statement 2: In the rest of the proof, we assume that if |Ri|− |Vi| ≥ hi+1, then F ′(Ri+1) =

F ′(Ri−Vi), and if |Ri|−|Vi|< hi+1, then f1(m)F ′(Ri+1)∈ [(1−ε1)F ′(Ri−Vi),(1+ε1)F ′(Ri−Vi)].

In order to prove Statement 4.3.6, we give an inductive proof that

s′k+1F ′(Rk+1)+
k

∑
i=1

s′iF
′(Vi) ∈ [(1− ε1)

kS,(1+ ε1)
kS].

It is trivial for k = 0. Assume that s′kF ′(Rk)+
k−1
∑

i=1
s′iF
′(Vi) ∈ [(1− ε1)

k−1S,(1+ ε1)
k−1S].

Since F ′(Rk) = F ′(Rk−Vk)+F ′(Vk), we have

akF ′(Rk+1)+F ′(Vk) ∈ [(1− ε1)F ′(Rk),(1+ ε1)F ′(Rk)].

.
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Thus, we have

s′k+1F ′(Rk+1)+
k

∑
i=1

s′iF
′(Vi) = s′k+1F ′(Rk+1)+ s′kF ′(Vk)+

k−1

∑
i=1

siF ′(Vi)

= s′k(akF ′(Rk+1)+F ′(Vk))+
k−1

∑
i=1

siF ′(Vi)

≤ (1+ ε1)s′kF ′(Rk)+
k−1

∑
i=1

siF ′(Vi)

≤ (1+ ε1)

(
s′kF ′(Rk)+

k−1

∑
i=1

siF ′(Vi)

)
≤ (1+ ε1)

kS.

Similarly, we have

s′k+1F ′(Rk+1)+
k

∑
i=1

s′iF
′(Vi) = s′k+1F ′(Rk+1)+ skF ′(Vk)+

k−1

∑
i=1

s′iF
′(Vi)

= s′k
(
akF ′(Rk+1)+F ′(Vk)

)
+

k−1

∑
i=1

s′iF
′(Vi)

≥ (1− ε1)s′kF ′(Rk)+
k−1

∑
i=1

s′iF
′(Vi)

≥ (1− ε1)

(
s′kF ′(Rk)+

k−1

∑
i=1

s′iF
′(Vi)

)
≥ (1− ε1)

kS.

Thus, we have s′k+1F ′(Rk+1)+
k
∑

i=1
s′iF
′(Vi) ∈ [(1− ε1)

kS,(1+ ε1)
kS].

Therefore, with probability at least 1− yγ2− yγ2,
y
∑

i=1
s′iF
′(Vi) ∈ [(1− ε1)

yS,(1+ ε1)
yS] ⊆

[(1− ε1y)S,(1+2ε1y)S] by Lemma 4.3.5.

Lemma 4.3.7 gives the time complexity of the algorithm. The running times depends on

several parameters.

Lemma 4.3.7. The algorithm ApproximateUnion(.) runs in O
(

m f4(m) f6(m)
zmin

·
(

log zmax
zmin

log f1(m)

))
time.
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Proof. Let y be the total number of stages. By Lemma 4.3.2, we have y = O
(

log zmax
zmin

log f1(m)

)
.

The time of each stage is ti = hi · ui = h1 f6(m) = m
zmin

f4(m) f6(m), which is mainly from

line 12 of the algorithm. Therefore, the total time is
y
∑

i=1
ti ≤ m

zmin
· f4(m) f6(m)y.

We have Theorem 4.3.8 to show the performance of the algorithm. The algorithm is sub-

linear if minT hickness(L) ≥ ma for a fixed a > 0, and has a zmin with minT hickness(L) ≥ zmin ≥

mb for a positive fixed b (b may not be equal to a) to be part of input to the algorithm.

Theorem 4.3.8. The algorithm ApproximateUnion(.) takes O
(

m f4(m) f6(m)
zmin

·
(

log zmax
zmin

log f1(m)

))
time

and O
(

log zmax
zmin

log f1(m)

)
rounds such that with probability at least 1− γ , it gives a

sum ·M ∈ [(1− ε)(1−αL)(1−βL) · |A1∪·· ·∪Am|,(1+ ε)(1+αR)(1+βR) · |A1∪·· ·∪Am|],

where zmin and zmax are parameters with 1≤ zmin ≤ minT hickness(L)≤ maxT hickness(L)

≤ zmax ≤ m, where functions f4(.) and f1(.) are defined in equations (4.4), and (4.7), re-

spectively.

Proof. Let y be the number of stages. By Lemma 4.3.3, with probability at least 1− γ1,

F(R1,h1,1)

(
m

∑
i=1

mi

)
∈ [ (1− ε0)(1−αL)(1−βL)|A1∪·· ·∪Am|,

(1+ ε0)(1+αR)(1+βR)(1+δ )|A1∪·· ·∪Am|].

By Lemma 4.3.4, with probability at least 1− yγ2, sum ∈ [(1− ε1)S′,(1+ ε1)S′], where

S′ =
y
∑

i=1
s′iF
′(Vi).

By Lemma 4.3.6, with probability at least 1−2yγ2,

sum ·M ∈ [ (1− yε1)(1− ε0)(1− ε1)(1−αL)(1−βL) · |A1∪·· ·∪Am|,

(1+2yε1)(1+ ε0)(1+ ε1)(1+αR)(1+βR)(1+δ )|A1∪·· ·∪Am|].
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Now assume

sum ·M ∈ [ (1− yε1)(1− ε0)(1− ε1)(1−αL)(1−βL) · |A1∪·· ·∪Am|,

(1+2yε1)(1+ ε0)(1+ ε1)(1+αR)(1+βR)(1+δ )|A1∪·· ·∪Am|].

By Statement 4.3.5 of Lemma 4.3.5, we have 1− ε ≤ 1− yε1− ε0− ε1 ≤ (1− yε1)(1−

ε0)(1− ε1), and (1+ 2yε1)(1+ ε0)(1+ ε1)(1+ δ ) ≤ (1+ 2yε1)(1+ 2ε0 + ε1)(1+ δ ) ≤ (1+

2yε1)(1+4ε0+2ε1+δ )≤ (1+8ε0+4ε1+2δ +2yε1)≤ (1+8ε0+4ε1+ε2+2yε1)≤ (1+8ε0+

ε0
3 + ε0

3 + ε0
3 )≤ 1+9ε0 ≤ 1+ ε . Therefore,

sum ·M ∈ [(1− ε)(1−αL)(1−βL) · |A1∪·· ·∪Am|,(1+ ε)(1+αR)(1+βR) · |A1∪·· ·∪Am|].

The algorithm may fail at the case after selecting R1, or one of the stages. By the union

bound, the failure probability is at most γ1 +2γ2 · logm≤ γ . We have that with probability at least

1− γ to output the sum that satisfies the accuracy described in the theorem. The running time and

the number of rounds of the algorithm follow from Lemma 4.3.7 and Lemma 4.3.2, respectively.

Since 1≤ zmin≤minT hickness(L)≤maxT hickness(L)≤ zmax≤m, we have the following

Corollary 4.3.8.1. Its running time is almost linear in the classical model.

Corollary 4.3.8.1. There is a O(poly(1
ε
, log 1

γ
) ·m · (logm)O(1)) time and O(logm) rounds algo-

rithm for |A1∪A2∪·· ·Am| such that with probability at least 1− γ , it gives

sum ·M ∈ [(1− ε)(1−αL)(1−βL) · |A1∪·· ·∪Am|,(1+ ε)(1+αR)(1+βR) · |A1∪·· ·∪Am|].

Proof. We let f1(m) = 8 with c1 = 0 in equation (4.4). Let zmin = 1 and zmax = m. It follows from

Theorem 4.3.8 and Statement 5 of Lemma 4.3.1.

Corollary 4.3.8.2. For each ξ > 0, there is a O(poly(1
ε
, log 1

γ
) ·m1+ξ

) time and O( 1
ξ
) rounds
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algorithm for |A1 ∪ A2 ∪ ·· ·Am| such that with probability at least 1− γ , it gives a sum ·M ∈

[(1− ε)(1−αL)(1−βL) · |A1∪·· ·∪Am|,(1+ ε)(1+αR)(1+βR) · |A1∪·· ·∪Am|].

Proof. We let f1(m) = 8mξ/2 with c1 =
ξ

2 in equation (4.4). Let zmin = 1 and zmax = m. It follows

from Theorem 4.3.8 and Statement 5 of Lemma 4.3.1.

An interesting open problem is to find an O(m) time and O(logm) rounds approximation

scheme for |A1∪A2∪ ·· ·Am| with a similar accuracy performance as Corollary 4.3.8.1. We were

not able to adapt the method from Karp, Luby, and Madras [29] to solve this problem.
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CHAPTER V

APPROXIMATE RANDOM SAMPLING FOR LATTICE POINTS IN HIGH DIMENSIONAL

BALL

In this section, we propose algorithms to approximate the numebr of lattice points in high

dimensional ball, and we also develop algorithms to generate a random lattice point inside a high

dimensional ball.

Before present the algorithms, some definitions are given below.

Definition 5.0.1. Let integer d > 0 be a dimensional number, Rd be the d−dimensional Eu-

clidean Space

• For two points p, q ∈ Rd, define ||p−q|| to be Euclidean Distance.

• A point p ∈ Rd is a lattice point if p = (y1, ...,yd) with yi ∈ Z for i = 1,2, ...,d.

• Let p ∈ Rd , and r > 0. Define Bd(r, p,d) be a d−dimensional ball of radius r with center at

p.

• For q = (µ1,µ2, ...,µd) ∈ Rd with µi be real number for i = 1,2, ...,d. Define Bd(r,q,k) =

{(z1,z2, ...,zd) ∈ Rd : z1 = µ1, ...,zd−k = µd−k and
d
∑

i=1
(µi− zi)

2 ≤ r2}.

• Let p∈Rd , and r > 0. Define C(r, p,d) be the number of lattice points in the d−dimensional

ball of radius r with the center at p.

• Let λ , l be real numbers. Define D(λ ,d, l) = {(x1, · · · ,xd) : (x1, · · · ,xd) with xk = ik + jkλ

for an integer jk ∈ [−l, l], and another arbitrary integer ik for k = 1,2, ...,d.}
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• Let λ , l be real numbers. Define D∗(λ ,d, l) = {(x1, · · · ,xd) : (x1, · · · ,xd) with xk = jkλ for

an integer jk ∈ [−l, l] with k = 1,2, ...,d.}

• Let λ = a−m, where a and m are integer and a ≥ 2. Define D∗∗(λ ,d) = {(x1, · · · ,xd) :

(x1, · · · ,xd) with xk = ik + jkλ for an integer jk ∈ [−λ−1 + 1,λ−1− 1], and another ar-

bitrary integer ik for k = 1,2, ...,d.}

5.1 Randomized Algorithm for Approximating Lattice Points for High Dimensional Ball

In this section, we develop algorithms to approximate the number of lattice points in a d-

dimensional ball Bd(r, p,d). Two subsubsections are discussed below.

5.1.1 Counting Lattice Points of High Dimensional Ball with Small Radius

In this section, we develop a dynamic programming algorithm to count the number of lat-

tice points in d−dimensional ball Bd(r, p,d). Some definitions and lemmas that is used to prove

the performance of algorithm are given before present the algorithm.

Definition 5.1.1. Let p be a point in Rd, and p ∈ D(λ ,d,L). Define E(r′, p,h,k) be the set of

k−dimensional balls Bd(r′,q,k) of radii r′ with center at q = (y1,y2, ...,yh,xh+1, ...,xd) where

h = d− k is the number of initial integers of the center q and yt ∈ Z for t = 1,2, ...,h.

Lemma 5.1.1 shows that for any two balls with same dimensional number, if their radii

equal and the number of initial integers of their center also equal, then they have same number of

lattice points.

Lemma 5.1.1. For two k−dimensional balls Bd(r,q,k) and Bd(r,q′,k), if Bd(r,q,k) ∈ E(r, p,h,k)

and Bd(r,q′,k) ∈ E(r, p,h,k), then C(r,q,k) =C(r,q′,k).

Proof. In order to prove that C(r,q,k) = C(r,q′,k), we need to show that the set of lattice points

inside ball Bd(r,q,k) is one-one mapping to the set of lattice points inside ball Bd(r,q′,k), where

q = (y1,y2, ...,yh,xh+1, ...,xd) and q′ = (y′1,y
′
2, ...,y

′
h,xh+1, ...,xd) with y′t ,yt ∈ Z for t = 1,2, ...,h.

Statement 1: ∀ q1 = (z1,z2, ...,zd) ∈ Bd(r,q,k), where zt ∈ Z for t = 1,2, ...,d.
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we have

(z1− y1)
2 + · · ·+(zh− yh)

2 +(zh+1− xh+1)
2 + · · ·+(zd− xd)

2 ≤ r2

then

(z1 + y′1− y1− y′1)
2 + · · ·+(zh + y′h− yh− y′h)

2 +(zh+1− xh+1)
2 + · · ·+(zd− xd)

2 ≤ r2.

Therefore, there exists a lattice point (z1+y′1−y1, ...,zh+y′h−yh,zh+1, ...,zd)∈ Bd(r,q′,k)

correspoding to q1.

Statement 2: ∀ q′1 = (z′1,z
′
2, ...,z

′
d) ∈ Bd(r,q′,k), where z′t ∈ Z for t = 1,2, ...,d.

we have

(z′1− y′1)
2 + · · ·+(z′h− y′h)

2 +(z′h+1− xh+1)
2 + · · ·+(z′d− xd)

2 ≤ r2

and

(z′1− y′1 + y1− y1)
2 + · · ·+(z′h− y′h + yh− yh)

2 +(z′h+1− xh+1)
2 + · · ·+(z′d− xd)

2 ≤ r2.

Therefore, there exists a lattice point (z′1− y′1 + y1, ...,z′h− y′h + yh,z′h+1, ...,z
′
d) ∈ Bd(r,q,k)

correspoding to q′1.

Based on above two statements, there exists a one-one mapping between the set of lattice

points inside ball Bd(r,q,k) and the set of lattice points inside ball Bd(r,q′,k).

Therefore, C(r,q,k) =C(r,q′,k).

Lemma 5.1.2 shows that we can move ball Bd(r,q,k) by an integer units in every dimen-

sion without changing the number of lattice points in the ball.

Lemma 5.1.2. Let λ be a real number. For two k−dimensional balls Bd(r,q1,k) and Bd(r,q2,k),

where q1 = (y1,y2, ...,yd−k,xd−k+1, ...,xd), q2 = (y′1,y
′
2, ...,y

′
d−k,x

′
d−k+1, ...,x

′
d) with yt ,y′t ∈ Z,
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t = 1,2, ...,d− k, and xt ′ = it ′ + jt ′λ , it ′ is an integer and jt ′ ∈ [−l, l] for t ′ = d− k+ 1, ...,d,. If

x′t ′ = jt ′λ , then we have C(r,q1,k) =C(r,q2,k).

Proof. Since Bd(r,q1,k) ∈ E(r, p,h,k) and Bd(r,q2,k) ∈ E(r, p,h,k) with h = d− k, we have

C(r,q1,k) =C(r,q2,k)

via Lemma 5.1.1.

We define R(r, p,d) contains the set of radii r′ for the balls generated by the intersection

of Bd(r, p,d) wiht hyper-plane x1 = y1, ..., xk = yk, ..., xd = yd.

Definition 5.1.2. For a d−dimensional ball Bd(r, p,d) of radius r with center at p=(x1,x2, ...,xd)

• Define R(r, p,d) = {r′ : r′2 = r2−
k
∑

i=1
(yi− xi)

2 with yi ∈ Z and
k
∑

i=1
(yi− xi)

2 ≤ r2 f or some

integer k∈ [1, d]}.

Lemma 5.1.3 shows that we can reduce the cardinality of R(r, p,d) from exponentional to

polynomial when setting the element of the ball’s center has same type (i.e. p ∈ D(λ ,d, l).)

Lemma 5.1.3. Let Bd(r, p,d) be a d−dimensional ball of radius r with center at p, where p ∈

D∗(λ ,d, l). Then |R(r, p,d)| ≤ 4(r+l|λ |)3l3d3 and R(r, p,d) can be generated in O
(
(r+ l|λ |)3l3d3)

time.

Proof. Since r′2 = r2−
k
∑

i=1
(yi− xi)

2 for 0≤ k ≤ d, we have r′ as:

r′2 = r2− (y1− j1λ )2−·· ·− (yd− jdλ )2

= r2− [y2
1−2y1 j1λ + j2

1λ
2]−·· ·− [y2

d−2yd jdλ + j2
dλ

2]

= r2−{y2
1 + y2

2 + · · ·+ y2
d}

+{2y1 j1 +2y2 j2 + · · ·+2yd jd}λ

−{ j2
1 + j2

2 + j2
3 + · · ·+ j2

d}λ 2.
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Let R′ = {r′|r′2 = r2− (x+ yλ + zλ 2) with x, y, and z is nonnegative integer}, it is easy

to see that r′ ∈ R′ then R⊆ R′.

Let
X = {x′|x′ = y2

1 + y2
2 + ...+ y2

d with yi ∈ [r− l|λ |,r+ l|λ |], 0≤ i≤ d};

Y = {y′|y′ = 2y1 j1 +2y2 j2 + ...+2yd jd with yi ji ∈ [I(r− l|λ |), I(r+ l|λ |)], 0≤ i≤ d};

Z = {z′|z′ = j2
1 + j2

2 + j2
3 + ...+ j2

d with ji ∈ [−l, l], 0≤ i≤ d,},

then we have: 
|Z| ≤ dl2;

|Y | ≤ 4d(r+ l|λ |)l;

|X | ≤ d(r+ l|λ |)2.

(5.1)

For each r′ ∈ R, we have r′2 = r2− (x+yλ + zλ 2) with x ∈ X , y ∈Y , and z ∈ Z. Therefore,

|R| ≤ dl2 · 4d(r+ l|λ |)l · d(r+ l|λ |)2 = 4(r+ l|λ |)3l3d3 via inequality (5.1). Then R(r, p,d) can

be generated in O
(
(r+ l|λ |)3l3d3) time.

Lemma 5.1.4 is a spacial case of Lemma 5.1.3. It shows that there at most (r2 + 1)a2m

cases of the radii when the elements of the center are the type like fractions in base a. For exam-

ple, p = (3.891,5.436, ...,5.743) ∈ Rd.

Lemma 5.1.4. Let λ = a−m where a is a interger with a ≥ 2. Let Bd(r, p,d) be a d−dimensional

ball of radius r with center at p ∈ D∗∗(λ ,d). Then |R(r, p,d)| ≤ (r2 +1)a2m and R(r, p,d) can be

generated in O
(
(r2 +1)a2m) time.

36



Proof. We have

r′2 = r2− (y1− j1λ )2−·· ·− (yd− jdλ )2

= r2− [y2
1−2y1 j1λ + j2

1λ
2]−·· ·− [y2

d−2yd jdλ + j2
dλ

2]

= r2−{y2
1 + y2

2 + · · ·+ y2
d}

+{2y1 j1 +2y2 j2 + · · ·+2yd jd}λ

−{ j2
1 + j2

2 + j2
3 + · · ·+ j2

d}λ 2.

via Lemma 5.1.3.

For each r′2, it can be transformed into r′2 = r2− (x+ yλ + zλ 2) with x,y and z are inte-

gers,

and 
|z| ≤ am;

|y| ≤ am;

|x| ≤ (r2 +1).

(5.2)

Therefore, |R| ≤ (r2 + 1)a2m via inequality (5.2). Then R(r, p,d) can be generated in

O
(
(r2 +1)a2m) time.

Definition 5.1.3. For a d−dimensional ball Bd(r, p,d) of radius r with center at p=(x1,x2, ...,xd)

• Define p[k] = (0, ...,0,xk+1, ...,xd) for some integer k ∈ [1,d].

• Define Z(r,x, t) with Z(r,x, t)2 = r2− (t− x)2 if |t− x| ≤ r, where t is a integer and x ∈ R.

We give a dynamic programming algorithm to count the number of lattice points in a d−

dimensional ball Bd(r, p,d).
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Algorithm 2 CountLatticePoint(r, p, d)
Input : p = (x1,x2, ...,xd) where xk = ik + jkλ for an integer jk ∈ [−l, l], and another arbitrary

integer ik for k = 1,2, ...,d. r is radius and d is dimensional numbers.

Output : The number of lattice points of the d−dimensional ball Bd(r, p,d).

1: Let r0 = r;

2: For k = d−1 to 0

3: for each rk ∈ R(r, p,d)

4: let C(rk, p[k],d− k) = ∑
t∈Z and t∈[−rk+xk+1, rk+xk+1]

C(z(rk,xk+1, t), p[k+ 1],d−

(k+1));

5: save C(rk, p[k],d− k) to the look up table;

6: Return C(r0, p[0],d).

We note that if d− (k+ 1) = 0 then C(z(rk,xk+1, t), p[k+ 1],d− (k+ 1)) = 1, otherwise

z(rk,xk+1, t) is in R(r, p,d) (i.e. C(z(rk,xk+1, t), p[k+1],d− (k+1)) is avaiable in the table).

Theorem 5.1.5. Assume λ be a real number and p∈D(λ ,d, l). Then there is a O(r(r+l|λ |)3l3d4)

time algorithm to count C(r, p,d).

Proof. Line 2 has d iterations, Line 3 takes 4(r+ l|λ |)3l3d3 to compute rk via Lemma 5.1.3, and

Line 4 has at most 2brc+1 items to add up.

Therefore, the algorithm CountLatticePoints(.) takes O(r(r+ l|λ |)3l3d4) running time.

Remark: When λ = 1
π
, this is a specail case of Theorem 5.1.5, and the running time of

the algorithm is O(r(r + l|λ |)3l3d4). The algorithm can count the lattice points of high dimen-

sional ball if the element of the center of the ball has same type like i + jλ even though λ is a

irrational number.

Theorem 5.1.6 shows that the algorithm can count the number of lattice points of high di-

mensional ball if the element of the center of the ball has same type like fractions in base a.
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Theorem 5.1.6. Assume λ = a−m and p ∈ D∗∗(λ ,d), where m and a are integers with a ≥ 2.

Then there is a O(r3a2md) time algorithm to count C(r, p,d).

Proof. Line 2 has d iterations, Line 3 takes (r2+1)a2m to compute rk via Lemma 5.1.4, and Line 4

has at most 2brc+1 items to add up.

Therefore, the algorithm CountLatticePoints(.) takes O(rd(r2 +1)a2m) running time.

Corollary 5.1.6.1. Assume λ = 10−m and p ∈ D∗∗(λ ,d), where m is a integer. Then there is a

O(r3102md) time algorithm to count C(r, p,d).

5.1.2 Approximating Lattice Points in High Dimensional Ball with Large Radius

In this section, we present an (1+ β )-approximation algorithm to approximate the num-

ber of lattice points in a d−dimensional ball Bd(r, p,d) of large radius with an arbitrary center p,

where β is used to control the accuracy of approximation.

Some definitions are presented before prove theorems.

Definition 5.1.4. For each lattice point q = (y1,y2, ...,yd) ∈ Rd with yi ∈ Z for i = 1,2, ...,d

• define Cube(q) to be the d−dimensional unit cube with center at
(
y1 +

1
2 , ...,yd +

1
2

)
,

• define I(Bd(r, p,d)) = {q |Cube(q)⊂ Bd(r, p,d)},

• defien E(Bd(r, p,d)) = {q |Cube(q) /∈ I(Bd(r, p,d)) and Cube(q)∩Bd(r, p,d) 6= /0}.

Theorem 5.1.7 gives an (1+β )−approximation with running time O(d) algorithm to ap-

proximate the number of lattice point C(r, p,d) with p is an arbitrary center and r > 2d
3
2

β
.

Theorem 5.1.7. For an arbitrary β ∈ (0,1), there is a (1+β )−approximation algorithm to com-

pute C(r, p,d) of d−dimensional ball Bd(r, p,d) with running time O(d) for an arbitrary center p

when r > 2d
3
2

β
.
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Proof. Let |I(Bd(r, p,d))| is the number of lattice points q ∈ I(Bd(r, p,d)), |E(Bd(r, p,d))| be the

number of lattice points q ∈ E(Bd(r, p,d)), and Vd(r) be the volume of a d−dimensional ball with

radius r.

Now consider two d−dimensional balls Bd(r−
√

d, p,d) and Bd(r +
√

d, p,d) that have

the same center as ball Bd(r, p,d). Since every lattice point q corresponds to a Cube(q) via Def-

inition 5.1.4, and the volume of the ball equals the sum of Cube(q) that is contained by the ball,

then we have:  Vd(r−
√

d)≤ |I(Bd(r, p,d))| ≤Vd(r)

0≤ |E(Bd(r, p,d))| ≤Vd(r+
√

d)−Vd(r).

Therefore,

Vd(r−
√

d)≤C(r, p,d) = |I(Bd(r, p,d))|+ |E(Bd(r, p,d))| ≤Vd(r+
√

d).

Then the bias is |I(Bd(r,p,d))|+|E(Bd(r,p,d))|
Vd(r)

when using Vd(r) to approximate C(r, p,d).

The volume formula for a d−dimensional ball of raduis r is

Vd(r) = f (d) · rd

where f (d) = π
d
2 Γ
(1

2d +1
)−1

and Γ(.) is Leonhard Euler’s gamma function. Then

|I(Bd(r, p,d))|+ |E(Bd(r, p,d))|
Vd(r)

≤ Vd(r+
√

d)
Vd(r)

=
f (d) · (r+

√
d)d

f (d) · rd

=

(
1+

√
d

r

)d

≤ e
d

3
2
r

≤ 1+
2d

3
2

r
.
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Similarly, we have:

|I(Bd(r, p,d))|+ |E(Bd(r, p,d))|
Vd(r)

≥ Vd(r−
√

d)
Vd(r)

=
f (d) · (r−

√
d)d

f (d) · rd

=

(
1−
√

d
r

)d

≥ 1− d
3
2

r

≥ 1− 2d
3
2

r

From above two inequalities, we have:

(
1− 2d

3
2

r

)
·Vd(r)≤C(r, p,d)≤

(
1+

2d
3
2

r

)
·Vd(r),

then we have:
1

1+ 2d
3
2

r

·C(r, p,d)≤Vd(r)≤
1

1− 2d
3
2

r

·C(r, p,d).

Simplify the above inequality, we have

(
1− 2d

3
2

r−2d
3
2

)
C(r, p,d)≤Vd(r)≤

(
1+

2d
3
2

r−2d
3
2

)
C(r, p,d).

Thus, we have

(1−β )C(r, p,d)≤Vd(r)≤ (1+β )C(r, p,d) (5.3)

with β > 2d
3
2

r−2d
3
2
.

It takes O(d) to compute Vd(r) = f (d) · rd , since it takes O(d) to compute f (d) where

f (d) = π
d
2 Γ
(1

2d +1
)−1

. Thus, the algorithm takes O(d) running time to approximate C(r, p,d).

becasue of Equation (5.3).

Theorem 5.1.8. There is an (1+β )-approximation algorithm with running time O(d) to approx-
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imate C(r, p,d) of Bd(r, p,d) with an arbitrry center p when r > 2d
3
2

β
; and there is an dynamic

programming algorithm with running time O

(
1
β

d
11
2 l3
(

2d
3
2

β
+ l|λ |

)3
)

to count C(r, p,d) with

center p ∈ D(λ ,d, l) when r ≤ 2d
3
2

β
.

Proof. We discuss two cases based the radius of the d-dimensional ball.

Case 1: When counting the number of lattice points of a d-dimensional ball with center

p ∈ D(λ ,d, l) for r ≤ 2d
3
2

β
, apply Theorem 5.1.5,

Case 2: When approximating the number of lattice points of a d-dimensional ball with an

arbitrary center p for r > 2d
3
2

β
, apply Theorem 5.1.7.

Corollary 5.1.8.1. There is a dynamic programming algorithm to count C(r, p,d) of Bd(r, p,d)

with running time O

(
1
β

d
11
2 l3
(

2d
3
2

β
+ l|λ |

)3
)

for p ∈ D(λ ,d, l) when r ≤ 2d
3
2

β
.

5.2 A Randomized Algorithm for Generating Random Lattice Point of High Dimensional

Ball

In this section, we propose algorithms to generate a random lattice point inside a high di-

mensional ball. Two subsubsections are discussed below.

5.2.1 Generating a Random Lattice Point inside High Dimensional Ball with Small Radius

In this section, we develop a recursive algorithm to generate a random lattice point inside

a d−dimensional ball Bd(r, p,d) of small radius with center p ∈ D(λ ,d, l).

The purpose of the algorithm RecursiveSmallBallRandomLatticePoint(r, p, t,d) is to re-

cursively generate a random lattice point in the ball Bd(r, p, t).
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Algorithm 3 RecursiveSmallBallRandomLatticePoint(r, p, t, d)
Input : p = (y1,y2, ...,yd−t ,xd−t+1, ...,xd) where xk = ik + jkλ with arbitrary integer ik, integer

jk ∈ [−l, l], and yi ∈ Z, i = 1,2, ...,d− t, t is a dimension number with 0≤ t ≤ d.

Output : Generate a random lattice point inside t−dimensional ball.

1: Save C(rk, p[k],d − k) into look up table C-Table by using Algorithm

CountLatticePoint(r, p,d) for k = 0,1, ...,d−1.

2: If t = 0

3: Return lattice point (y1,y2, ...,yd).

4: Else

5: Return RecursiveSmallBallRandomLatticePoint(r′,q, t − 1,d) with probabil-

ity C(r′,q,t−1)
C(r,p,t) , where q = (y1,y2, ...,yd−t ,yd−t+1,xd−t+2, ...,xd) with yd−t+1 ∈ [xd−t+1 −

r,xd−t+1 + r] satisfying ||p−q||2 ≤ r2, and r′2 = r2−||p−q||2;

We note that C(., ., .) is available at C-Table in O(1) step and the implementation of line 5

of the algorithm is formally defined below: Partition I = [1, C(r, p, t)]∩Z into I1, · · · , Iw, where Ii

is uniquely corresponds to an integer yd−t+1 ∈ [xd−t+1− r,xd−t+1 + r] satisfying

q = (y1,y2, ...,yd−t ,yd−t+1,xd−t+2, ...,xd), ||p−q||2 ≤ r2, and |Ii|=C(r′,q, t−1). Gener-

ate a random number z ∈ I. If z ∈ Ii (Ii is mapped to yd−t+1), then it returns RecursiveSmallBall-

RandomLatticePoint (r′,q, t−1,d) with q = (y1, ...,yd−t+1,xd−t+2, ...,xd).

The algorithm RandomSmallBallLatticePoint(r, p,d) is to generate a random lattice point

in the ball Bd(r, p,d). It calls the function RecursiveSmallBallRandomLatticePoint(.).

Algorithm 4 RandomSmallBallLatticePoint(r, p, d)
Input : p = (x1,x2, ...,xd) where xk = ik + jkλ with arbitrary integer ik, integer jk ∈ [−l, l] for

k = 1,2, · · · ,d.

Output : Generate a random lattice point inside d−dimensional ball.

1: Return RecursiveSmallBallRandomLatticePoint(r, p,d,d)

Theorem 5.2.1. For an arbitrary β ∈ (0,1). Assume λ be a real number and p ∈ D(λ ,d, l).
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Then there is a O

(
1
β

d
11
2 l3
(

2d
3
2

β
+ l|λ |

)3
)

time algorithm to generate a lattice point inside a

d−dimensional ball Bd(r, p,d).

Proof. By algorithm RandomSmallBallLatticePoint(.), we can generate a random lattice point

inside d−dimensional ball Bd(r, p,d) with probability C(r′,q,d−1)
C(r,p,d) ·

C(r′′,q′,d−2)
C(r′,q,d−1) · ... ·

1
C(r(d−1),q(d−1),0)

=

1
C(r,p,d) .

It takes O

(
1
β

d
11
2 l3
(

2d
3
2

β
+ l|λ |

)3
)

to compute C(r, p,d) via Theorem 5.1.8, then algo-

rithm SmallBallRandomLatticePoint(.) takes O

(
1
β

d
11
2 l3
(

2d
3
2

β
+ l|λ |

)3
)
+O(d) running time.

Thus, the algorithm takes O

(
1
β

d
11
2 l3
(

2d
3
2

β
+ l|λ |

)3
)

running time.

5.2.2 Generating a Random Lattice Point of High Dimensional Ball with Large Radius

In this section, we develop an (1+α)−approximation algorithm to generate a random lat-

tice point inside a d−dimensional ball Bd(r, p,d) of large radius r with arbitrary center p, where

α is used to control the accuracy of approximation.

We first propose an approximation algorithm RecursiveBigBallRandomLatticePoint(.)

to generate a random lattice point inside a d−dimensional ball Bd(r, p,d) of radius r with lat-

tice point center p, then we apply algorithm RecursiveBigBallRandomLatticePoint(.) to design

algorithm BigBallRandomLatticePoint(.) to generate an approximate random lattice point in a

d−dimensional ball Bd(r′, p,d) of radius r′ with arbitrary center p.

Before present the algorithms, we give some definition and lemmas that is used to analy-

sis algorithm RecursiveBigBallRandomLatticePoint(.).

Definition 5.2.1. For an arbitrary β ∈ (0,1). Let Bd(r,q,k) be k−dimensional ball of radius r

with arbitrary center q. Define P(r,q,k) as

P(r,q,k) =

 C(r,q,k) r ≤ 2d
3
2

β

Vk(r) otherwise,
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where C(r,q,k) is the number of lattice point of k−dimensional ball Bd(r,q,k) and Vk(r) is the

volume of ball Bd(r,q,k).

Lemma 5.2.2 shows that we can use P(r,q,k) to approximate C(r,q,k) for k−dimensional

ball Bd(r,q,k) no matter how much the radius r it is.

Lemma 5.2.2. For an arbitrary β ∈ (0,1). Let Bd(r,q,k) be k−dimensional ball of radius r with

arbitrary center q, then (1−β )C(r,q,k)≤ P(r,q,k)≤ (1+β )C(r,q,k).

Proof. Two cases are considered.

Case 1: If r ≤ 2d
3
2

β
, we have P(r,q,k) =C(r,q,k) via Definition 5.2.1.

Case 2: If r > 2d
3
2

β
, we have:

(1−β ) ·C(r,q,k)≤Vk(r)≤ (1+β ) ·C(r,q,k)

via Theorem 5.1.7, where Vk(r) be the volume of k−dimensional ball Bd(r,q,k) with radius r.

Therefore, we have

(1−β ) ·C(r,q,k)≤ P(r,q,k)≤ (1+β ) ·C(r,q,k),

because P(r,q,k) =Vk(r) via Definition 5.2.1.

Combined the above two cases, we conclude that:

(1−β )C(r,q,k)≤ P(r,q,k)≤ (1+β )C(r,q,k).

Lemma 5.2.3 shows that for two k−dimensional balls, if their radius almost equal, then

the number of their lattice points also almost equal, we can use ε5 to control the radii, and use

β ,ε5 to control the number of lattice points.
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Lemma 5.2.3. For an arbitrary β ∈ (0,1) and a real number δ . Let Bd(r′,q,k) be a k−dimensional

ball of radius r′ with lattice center at q and Bd(r′′,q,k) be a k−dimensional ball of radius r′′ >

2d
3
2

β
with lattice center at q, where q = (y1,y2, ...,yd) with yt ∈ Z and t = 1,2, ...,d. If r′′ ≤ r′ ≤

(1+δ )r′′, then C(r′′,q,k)≤C(r′,q,k)≤ 1+β

1−β
(1+δ )k C(r′′,q,k).

Proof. Let Vd(r) be the volume of d−dimensional ball of radius r. Since the volume formula for

a d−dimensional ball of raduis r is

Vd(r) = f (d) · rd

where f (d) = π
d
2 Γ
(1

2d +1
)−1

and Γ(.) is Euler’s gamma function. Then, we have the following

as:

Vk(r′′)≤Vk(r′)≤Vk(r′′) · (1+δ )k .

Since r′′ > 2d
3
2

β
, r′ ≥ r′′ > 2d

3
2

β
, then we have


1

1+β
Vk(r′)≤C(r′,q,k)≤ 1

1−β
Vk(r′)

1
1+β

Vk(r′′)≤C(r′′,q,k)≤ 1
1−β

Vk(r′′)
(5.4)

via Theorem 5.1.7,

Plugging inequality (5.4) to above inequality, then we have:

C(r′,q,k) ≤ 1
1−β

Vk(r′)

≤ 1
1−β

Vk(r′′) · (1+δ )k

=
(1+β )

(1−β )

1
(1+β )

Vk(r′′) · (1+δ )k

≤ (1+β )

(1−β )
· (1+δ )k C(r′′,q,k)

and we also have:

C(r′,q,k)≥C(r′′,q,k).
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Therefore:

C(r′′,q,k)≤C(r′,q,k)≤ 1+β

1−β
(1+δ )k C(r′′,q,k).

Definition 5.2.2. For an integer interval [a,b], c ∈ Z, r > 0, and δ ∈ (0,1), an (r,c,1 + δ )-

partition for [a,b] is to divide [a,b] into [a1,b1], [a2,b2], · · · , [aw,bw] that satisfies the following

conditions:

• a1 = a,ai+1 = bi +1 for i = 1, · · · ,w−1.

• for any x,y ∈ {ai,bi}, r2− (x− c)2 ≤ (1+ δ )2(r2− (y− c)2) and r2− (y− c)2 ≤ (1+

δ )2(r2− (x− c)2).

• for any x ∈ {ai,bi} and y ∈ {ai+1,bi+1}, r2− (x−c)2 > (1+δ )2(r2−y2) or r2− (y−c)2 >

(1+δ )2(r2− x2).

The purpose of the algorithm RecursiveBigBallRandomLatticePoint(.) is to recursivly

generate a random lattice point inside the d−dimensional ball Bd(r, p,d) of radius r with lattice

point center p.
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Algorithm 5 RecursiveBigBallRandomLatticePoint(r, p, t, d)
Input : p = (z1,z2, ...,zd−t ,yd−t+1, ...,yd) where zi ∈ Z with 1≤ i≤ d− t, and yi ∈ Z with d− t +

1≤ i≤ d, α ∈ (0,1) is a parameter to control the bias, r is radius, and t is dimensional number.

Output : Z = {z1, ...,zd}.

1: If t = 0

2: Return (z1,z2, ...,zd).

3: Let I1 = [a1,b1], · · · , Iw = [aw,bw] be the union of intervals via
(

r,yd−t+1,1+
ε4

g(d)

)
-

partitions for [dyd−t+1− re,yd−t+1]∩Z and [yd−t+1 + 1,byd−t+1 + rc]∩Z, where ε4 ∈ (0,1)

and g(d) is a function of d.

4: Let M =
w
∑

i=1
(bi−ai +1)P(ri, pi, t−1), where pi = (z1,z2, ...,zd−t ,bi,yd−t+2, ...,yd), and

r2
i = r2− (bi− yd−t+1)

2;

5: Return RecursiveBigBallRandomLatticePoint(r′i, p′i, t−1,d) with probability P(ri,pi,t−1)
M ,

where zd−t+1 = bi, pi = (z1,z2, ...,zd−t ,zd−t+1,yd−t+2, ...,yd), and r2
i = r2 − (zd−t+1 −

yd−t+1)
2, p′i = (z1,z2, ...,zd−t ,z′d−t+1,yd−t+2, ...,yd), and r′2i = r2− (z′d−t+1− yd−t+1)

2 and

a random integer z′d−t+1 ∈ [ai,bi];

We note that the implementation of
(

r,yd−t+1,1+
ε4

g(d)

)
-partitions in line 3 is as the fol-

lowing pictures:
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Figure 5.1: Example of
(

r,yd−t+1,1+
ε4

g(d)

)
-Partitions in 2D

Figure 5.2: Example of
(

r,yd−t+1,1+
ε4

g(d)

)
-Partitions in 3D

We have the following algorithm that can generate an approximate random lattice point in
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a large ball with an arbitrary center, which may not be a lattice point.

Definition 5.2.3. Let integer d > 0 be a dimensional number, Rd be the d−dimensional Eu-

clidean Space

• A point q = (x′1,x
′
2, ...,x

′
d) ∈ Rd is the nearest lattice point of p = (x1, ...,xd) ∈ Rd if it satis-

fies x′i =

 bxic xi− [xi]≤ 1
2

dxie xi− [xi]>
1
2 ,

for xi ≥ 0 or x′i =

 dxie |xi|− [|xi|]≤ 1
2

bxic |xi|− [|xi|]< 1
2 ,

for xi < 0,

where i = 1,2, ...,d.

Algorithm 6 BigBallRandomLatticePoint(r, p, d)
Input : p = (x1, · · · , ...,xd) where xi ∈ R with 1 ≤ i ≤ d, α ∈ (0,1) is a parameter to control the

bias, r is radius, and k is dimensional number.

Output : Generate a random lattice point inside d−dimensional ball.

1: Let q be the nearest lattice point of p in Rd;

2: Repeat

3: Let s =RecursiveBigBallRandomLatticePoint(r+
√

d,q,d);

4: Until s ∈ Bd(r, p,d);

5: Return s;

Theorem 5.2.4. For an arbitrary α ∈ (0,1), there is an algorithm with runing time O
(

d3 logr
α

)
and (1+α)−bias for a d−dimensional ball Bd(r,q,d) to generate a random lattice point with

radius r > 2d3

α
that centered at q = (y1,y2, ...,yd) with yt ∈ Z, t = 1,2, ...,d.

Proof. In line 5 of algorithm RecursiveBigBallRandomLatticePoint(.), define

r′2i =

 r2− (yd−t+1−ai)
2 i f ai ≤ yd−t+1

r2− (yd−t+1−bi)
2 otherwise,

,

p′i =

 (z1,z2, ...,zd−t ,ai,yd−t+2, ...,yd) i f ai ≤ yd−t+1

(z1,z2, ...,zd−t ,bi,yd−t+2, ...,yd) otherwise,
and
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r2
i =

 r2− (yd−t+1−bi)
2 i f bi ≤ yd−t+1

r2− (yd−t+1−ai)
2 otherwise,

pi =

 (z1,z2, ...,zd−t ,bi,yd−t+2, ...,yd) i f bi ≤ yd−t+1

(z1,z2, ...,zd−t ,ai,yd−t+2, ...,yd) otherwise,

let v(i) = (bi−ai +1), and r′i =
ri

1+ ε4
g(d)

.

Then we have:

∑
i

C(r′i, p′i, t−1)v(i)≤C(ri, pi, t)≤∑
i

C(ri, pi, t−1)v(i).

Since r′i =
ri

1+ ε4
g(d)

, then

1−β

1+β

(
1+

ε4

g(d)

)−(t−1)

∑
i

C(ri, pi, t−1)v(i)≤C(ri, pi, t)

and

C(ri, pi, t)≤∑
i

C(ri, pi, t−1)v(i)

via Lemma 5.2.3, where δ = 1+ ε4
g(d) .

Via Lemma 5.2.2 we have:

(
1−β

1+β

)2(
1+

ε4

g(d)

)−(t−1)

∑
i

P(ri, pi, t−1)v(i)≤ P(ri, pi, t)

and

P(ri, pi, t)≤
1+β

1−β
∑

i
P(ri, pi, t−1)v(i).

Thus, we have:

(
1−β

1+β

)2(
1+

ε4

g(d)

)−(t−1)

≤ P(ri, pi, t)
∑
i

P(ri, pi, t−1)v(i)
≤ 1+β

1−β
.
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From above inequality, we have:

(
1−β

1+β

)2(
1+

ε4

g(d)

)−(t−1) 1
P(ri, pi, t)

≤ 1
∑
i

P(ri, pi, t−1)v(i)
≤ 1+β

1−β

1
P(ri, pi, t)

.

Via Lemma 5.2.2 we have:

(1−β )2

(1+β )3

(
1+

ε4

g(d)

)−(t−1) 1
C(ri, pi, t)

≤ 1
∑
i

P(ri, pi, t−1)v(i)
≤ 1+β

(1−β )2
1

C(ri, pi, t)
.

Let g(d) = d2, ε4 =
α

4 and β = α

α+16d+16 . Since Algorithm RecursiveBigBallRandomLat-

ticePoint(.) has d iteration, we can generate a random lattice point with bias of probability as:

P(ri, pi,d−1)
∑
i

P(ri, pi,d−2)v(i)
· P(ri, pi,d−2)

∑
i

P(ri, pi,d−1)v(i)
· · · P(ri, pi,0)

∑
i

P(ri, pi,0)v(i)

≤ 1+β

(1−β )2
1

C(r, p,d)
·
(

1+β

1−β

)d−1

·P(ri, pi,0)

≤ 1
1−β

1
C(r, p,d)

·
(

1+β

1−β

)d

· (1+β )C(ri, pi,0)

=

(
1+β

1−β

)d+1 1
C(r, p,d)

=

(
1+

2β

1−β

)d+1 1
C(r, p,d)

≤ e
2β

1−β
(d+1) 1

C(r, p,d)

≤
(

1+
4β

1−β
(d +1)

)
1

C(r, p,d)

≤ (1+α)
1

C(r, p,d)
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and

P(ri, pi,d−1)
∑
i

P(ri, pi,d−2)v(i)
· P(ri, pi,d−2)

∑
i

P(ri, pi,d−1)v(i)
· · · P(ri, pi,0)

∑
i

P(ri, pi,0)v(i)

≥ (1−β )2

(1+β )3

(
1+

ε4

g(d)

)−(d−1) 1
C(r, p,d)

(
1−β

1+β

)2(d−1)(
1+

ε4

g(d)

)−(d−1)(d−2)
2

(1−β )C(ri, pi,0)

=

(
1−β

1+β

)2d+1(
1+

ε4

g(d)

)−(d−1)d
2 1

C(r, p,d)

≥
(

1− 2β

1+β

)2d+1(
1+

ε4

g(d)

)−d2
2 1

C(r, p,d)

≥
(

1− 2β

1+β

)2d(
1+

ε4

g(d)

)−d2
1

C(r, p,d)

≥
(

1− 4βd
1+β

)(
1− ε4d2

g(d)

)
1

C(r, p,d)

≥
(

1− 4βd
1+β

)
(1− ε4)

1
C(r, p,d)

≥
(

1− 4βd
1+β

− ε4

)
1

C(r, p,d)

≥
(

1− 4βd
1+β

)
(1− ε4)

1
C(r, p,d)

≥ (1−α)
1

C(r, p,d)

Therefore, we can generate a random lattice point with probability between:

[
(1−α)

1
C(r, p,d)

, (1+α)
1

C(r, p,d)

]
.

The algorithm RecursiveBigBallRandomLatticePoint(.) forms a
(

r,yd−t+1,1+
ε4

g(d)

)
-

partition I1, · · · , Iw In line 3 for [dyd−t+1− re,byd−t+1 + rc]∩Z and [yd−t+1 +1,byd−t+1 + rc]∩Z.

Then, there are at most w number of ai, where w such that r(
1+ ε4

g(d)

)w ≤ 1. Solving w, we have

w≥ g(d) logr
ε4

. And there are d iterations in algorithm RecursiveBigBallRandomLatticePoint(.).

Thus, the running time of the algorithm is O
(

g(d) logr
ε4
·d
)
=O(d3 logr

ε4
) =O

(
d3 logr

α

)
.

Remark : We note that there are at most one (t − 1)−dimensional ball of radius r < 2d3

α
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with center at a lattice point, where t = 1,2, ...,d. For this case, we can apply Theorem 5.2.1 with

β = 0.

Theorem 5.2.5. For arbitrary α ∈ (0,1), and α ′ ∈ (0,1), there is an (1+α ′)−bias algorithm

with runing time O
(

d3 log(r+
√

d)
α

)
for a d−dimensional ball Bd(r,q,d) to generate a random lat-

tice point of radius r > 2d
3
2

α
with an arbitrary center.

Proof. Consider another ball Bd(r′,q,d) of radius r′ with lattice center q = (y1,y2, ...,yd) that

contains ball Bd(r, p,d) , where r′ = r +
√

d. Let Vd(r) be the volume of a d−dimensional ball

with radius r, then probability that a lattice point in Bd(r′,q,d) belongs to Bd(r, p,d) is at least

(1−α) C(r,p,d)
C(r′,p,d) .

Via Theorem 5.1.7, we have


1

1+β
Vd(r)≤C(r, p,d)≤ 1

1−β
Vd(r)

1
1+β

Vd(r+
√

d)≤C(r′,q,d)≤ 1
1−β

Vd(r+
√

d),

then we have
1−β

1+β

Vd(r)
Vd(r+

√
d)
≤ C(r, p,d)

C(r′, p,d)
≤ 1+β

1−β

Vd(r)
Vd(r+

√
d)

.

The formula for a d−dimensional ball of raduis r is

Vd(r) = f (d) · rd
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where f (d) = π
d
2 Γ
(1

2d +1
)−1

and Γ(.) is Euler’s gamma function. Let β = α

8+α
and α > 2d

3
2

r+
√

d
,

(1−α)
C(r, p,d)
C(r′, p,d)

≥ (1−α)
1−β

1+β

f (d) · rd

f (d) ·
(

r+
√

d
)d

= (1−α)
1−β

1+β

(
1−

√
d

r+
√

d

)d

≥ (1−α)
1−β

1+β

(
1− d

3
2

r+
√

d

)

≥ (1−α)

(
1− 2β

1−β

)(
1− d

3
2

r+
√

d

)

≥

(
1−α− 2β

1−β
− d

3
2

r+
√

d

)

Therefore, the probability a lattice point in Bd(r′,q,d) belongs to Bd(r, p,d) fails is at most(
α + 2β

1−β
+ d

3
2

r+
√

d

)
, where

(
α + 2β

1−β
+ d

3
2

r+
√

d

)
< 1, which means the algorithm Big-

BallRandomLatticePoint(.) fails with small possibility.

The probability to generate a random lattic point in ball Bd(r′,q,d) is in range of

[
(1−α)

1
C(r′,q,d)

,(1+α)
1

C(r′,q,d)

]

via Theorem 5.2.4. Then the bias that to generate a random lattic point in ball Bd(r, p,d) is Pr(pi)
∑i Pr(pi)

,

where Pr(pi) ∈
[
(1−α) 1

C(r′,q,d) ,(1+α) 1
C(r′,q,d)

]
.
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Then, we have

Pr(pi)

∑i Pr(pi)
≤

(1+α) 1
C(r′,q,d)

(1−α) 1
C(r′,q,d)C(r, p,d)

=
1+α

1−α

1
C(r, p,d)

=

(
1+

2α

1−α

)
1

C(r, p,d)
,

and

Pr(pi)

∑i Pr(pi)
≥

(1−α) 1
C(r′,q,d)

(1+α) 1
C(r′,q,d)C(r, p,d)

=
1−α

1+α

1
C(r, p,d)

=

(
1− 2α

1+α

)
1

C(r, p,d)

≥
(

1− 2α

1−α

)
1

C(r, p,d)
.

Therefore, the probability to generate a random lattice point in Bd(r, p,d) is range of

[
(1−α

′)
1

C(r, p,d)
,(1+α

′)
1

C(r, p,d)

]
,

where α ′ = 2α

1−α
.

It takes O
(

d3 log(r+
√

d)
α

)
running time to generate a random lattice point inside of d− di-

mensional ball Bd(r +
√

d, p,d) with a lattice point center via Theorem 5.2.4. Thus, the algo-

rithm BigBallRandomLatticePoint(.) takes O
(

d3 log(r+
√

d)
α

)
running time to generate a random

lattice.

Theorem 5.2.6. For an arbitrary α ∈ (0,1), there is an algorithm with runing time O
(

d3 log(r+
√

d)
α

)
and (1+α)−bias for a d−dimensional ball Bd(r,q,d) to generate a random lattice pointo f ra-
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dius r > 2d
3
2

α
with a arbitrary center; and there is a O

(
1
β

d
11
2 l3
(

2d
3
2

β
+ l|λ |

)3
)

time algorithm

to generate a lattice point inside a d−dimensional ball Bd(r, p,d) of radius r ≤ 2d
3
2

α
with center

p ∈ D(λ ,d, l).

Proof. We discuss two cases based the radius of the d-dimensional ball.

Case 1: When generate a random lattice point inside a d-dimensional ball of radius r >

2d
3
2

α
with center arbitrary center p, apply Theorem 5.2.5.

Case 2: When generate a random lattice point inside a d-dimensional ball of radius r ≤
2d

3
2

α
with center p ∈ D(λ ,d, l), apply Theorem 5.2.1.

5.3 Count Lattice Point in the Union of High Dimensional Balls

In this section, we apply the algorithm developed in Section IV to count the total number

of lattice point in the union of high dimensional balls.

Theorem 5.3.1. There is a O
(

poly
(

1
ε
, log 1

γ

)
·m · (logm)O(1)

)
time and O(logm) rounds algo-

rithm for the number of lattice points in B1∪B2∪·· ·∪Bm such that with probability at least 1−γ ,

it gives a sum ·M ∈ [(1− ε)(1−αL)(1−βL) · |B1 ∪ ·· · ∪ Bm|,(1+ ε)(1+αR)(1+βR) · |B1 ∪

·· ·∪Bm|], where each ball Bi satisfy that either its radius r > 2d
3
2

β
or its center p ∈ D(λ ,d, l) and

|B1∪·· ·∪Bm| is the total number of lattice point of union of m high dimensional balls.

Proof. Apply Theorem 5.1.8 and Theorem 5.2.6, we have mi for each ball Bi with

mi ∈ ((1−βL)Ci(ri, pi, t),(1+βR)Ci(ri, pi, t)) ,

and biased random generators with

Prob(x = RandomElement(Bi)) ∈
[

1−αL

Ci(ri, pi, t)
,

1+αR

Ci(ri, pi, t)

]

for each input ball Bi, where Ci(ri, pi, t) is the number of lattice point of t−dimensional ball Bi of

radius ri for i = 1,2, ...,m. Then apply Theorem 4.3.8.
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5.3.1 Hardness to Count Lattice Points in a Set of Balls

In this section, we show that it is #P-hard to count the number of lattice points in a set of

balls.

Theorem 5.3.2. It is #P-hard to count the number of lattice points in a set of d-dimensional balls

even the centers are of the format (x1, · · · ,xd) ∈ Rd that has each xi to be either 1 or
√

h
2 for some

integer h≤ d.

Proof. We derive a polynomial time reduction from DNF problem to it. For each set of lattice

points in a h-dimensional cube {0,1}h, we design a ball with radius r =
√

h
2 and center at C =

(
√

h
2 , · · · ,

√
h

2 ). It is easy to see that this ball only covers the lattice points in {0,1}h. Every 0,1-

lattice point in 0,1 has distance to the center C equal to r. For every lattice point P ∈ Rh that is

not in {0,1}h has distance d with d2 ≥ r2 +(1+ 1
2)

2− (1
2)

2 = r2 +2.

Definition 5.3.1. For a center c = (c1, · · · ,cd) and an even number k > 0 and a real r > 0, a d-

dimensional k-degree ball Bk(c,r) is {(x1, · · · ,xd) : (x1, · · · ,xd) ∈ Rd and
d
∑

i=1
(xi− ci)

k ≤ r}.

Theorem 5.3.3. Let k be an even number at least 2. Then we have

1. There is no polynomial time algorithm to approximate the number of lattice points in the

intersection n-dimensional k-degree balls unless P=NP, and.

2. It is #P-hard to count the number of lattice points in the intersection n-dimensional k-degree

balls.

Proof. We derive a polynomial time reduction from 3SAT problem to it. For each clause C =

(x∗i ∨ x∗j ∨ x∗k), we can get a ball to contain all lattice points in the 0-1-cube to satisfy C, each x∗i

is a literal to be either xi or its negation x̄i.

Without loss of generality, let C = (x1∨ x2∨ x3). Let δ = 0.30. Let center

DC = (d1,d2,d3,d4,d5, · · · ,dn) = (1− δ ,1− δ ,1− δ , 1
2 ,

1
2 , · · · ,

1
2), which has value 1− δ

in the first three positions, and 1
2 in the rest. For 0,1 assignment (a1,a2, · · · ,an) of n variables, if
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it satisfies C if and only if
n
∑

i=1
(ai−di)

k ≤ 2(1−δ )k +δ k +(n−3) · (1
2)

k. Therefore, we can select

radius rC that satisfies rk
C = 2(1−δ )k +δ k +(n−3) · (1

2)
k. We have the following inequalities:

 (2−δ )2 > (1+δ )k > 2(1−δ )k +δ k

(1+ 1
2)

k > 2(1−δ )k +δ k +(1
2)

k.
(5.5)

This is because we have the following equalities:



(1+δ )2 = 1.69,

2(1−δ )2 +δ 2 = 2×0.49+0.09 = 1.07,

2(1−δ )2 +δ 2 +(1
2)

2 = 1.07+0.25 = 1.32,

(1+ 1
2)

2 = 2.25.

(5.6)

If Y = (y1,y2, · · · ,yn) is not a 0,1-lattice point, we discuss two cases:

• Case 1. yi 6∈ {0,1} for some i with 1≤ i≤ 3.

In this case we know that dist(Y,DC)
2 > r2

C by inequality (5.6).

• Case 2. yi 6∈ {0,1} for some i with 3 < i≤ n.

In this case we know that dist(Y,DC)
2 > r2

C by inequality (5.6).

If Y = (y1,y2, · · · ,yn) is a 0,1-lattice point, we discuss two cases:

• Case 1. Y satisfies C.

In this case we know that dist(Y,DC)
2 ≤ r2

C.

• Case 2. Y does not satisfy C.

In this case we know that dist(Y,DC)
2 > r2

C by inequality (1−δ )2 > δ 2.

The ball BC with center at DC and radius rC contains exactly those 0,1-lattice points that

satisfy clause C. This proves the first part of the theorem.
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If there were any factor c-approximation to the intersection of balls, it would be able to

test if the intersection is empty. This would bring a polynomial time solution to 3SAT.

It is well known that #3SAT is #P-hard. Therefore, It is #P-hard to count the number of

lattice points in the intersection n-dimensional balls. This proves the second part of the theorem.

Another interesting open problem is if there is any polynomial time algorithm to count the

number of lattice points in a n-dimensional ball with arbitrary center. For a ball with an arbitrary

center, we do not have the recursion as we used.
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CHAPTER VI

APPROXIMATION FOR THE MAXIMAL COVERAGE WITH BALLS

We apply the technology developed in this paper to the maximal coverage problem when

each set is a set of lattice points in a ball with center in D(λ ,d, l).

The classical maximum coverage is that given a list of sets A1, · · · ,Am and an integer k,

find k sets from A1,A2, · · · ,Am to maximize the size of the union of the selected sets in the com-

putational model defined in Definition 2.1.2. For real number a ∈ [0,1], an approximation algo-

rithm is a (1− a)-approximation for the maximum coverage problem that has input of integer

parameter k and a list of sets A1, · · · ,Am if it outputs a sublist of sets Ai1,Ai2, · · · ,Aik such that

|Ai1 ∪Ai2 ∪ ·· · ∪Aik | ≥ (1− a)|A j1 ∪A j2 ∪ ·· · ∪A jk |, where A j1,A j2, · · · ,A jk is a solution with

maximum size of union.

Theorem 6.0.1. [17] Let ρ be a constant in (0,1). For parameters ξ ,γ ∈ (0,1) and αL,αR,δL,

δR ∈ [0,1− ρ], there is an algorithm to give a
(

1− (1− β

k )
k−ξ

)
-approximation for the max-

imum cover problem, such that given a ((αl,αr),(δL,δR))-list L of finite sets A1, · · · ,Am and an

integer k, with probability at least 1− γ , it returns an integer z and a subset H ⊆ {1,2, · · · ,m}

that satisfy

1. |∪ j∈H A j| ≥
(

1− (1− β

k )
k−ξ

)
C∗(L,k) and |H|= k,

2. ((1−αL)(1−δL)−ξ )|∪ j∈H A j| ≤ z≤ ((1+αR)(1+δR)+ξ )|∪ j∈H A j|, and

3. Its complexity is (T (ξ ,γ,k,m),R(ξ ,γ,k,m),Q(ξ ,γ,k,m)) with

T (ξ ,γ,k,m) = O

(
k3

ξ 2

(
k log

(
3m
k

)
+ log

1
γ

)
m
)
,

61



where β = (1−αL)(1−δL)
(1+αR)(1+δR)

and C∗(L,k) is the number of elements to be covered in an optimal

solution.

We need Lemma 6.0.2 to transform the approximation ratio given by Theorem 6.0.1 to

constant (1− 1
e ) to match the classical ratio for the maximum coverage problem.

Lemma 6.0.2. For each integer k ≥ 2, and real b ∈ [0,1], we have

1. (1− b
k )

k ≤ 1
e −

η

e (b+
b
2k −1), and

2. If ξ ≤ η

e (b+
b
2k −1), then 1− (1− b

k )
k−ξ > 1− 1

e , where η = e−
1
4 .

Proof. Let function f (x) = 1− ηx− e−x. We have f (0) = 0. Taking differentiation, we get
d f (x)

dx =−η + e−x > 0 for all x ∈ (0, 1
4).

Therefore, for all x ∈ (0, 1
4),

e−x ≤ 1−ηx. (6.1)

The following Taylor expansion can be found in standard calculus textbooks. For all x ∈ (0,1),

ln(1− x) =−x− x2

2
− x3

3
−·· · .

Therefore, we have

(1− b
k
)k = ek ln(1− b

k ) = ek(− b
k−

b2

2k2−
b3

3k3−···) = e−b− b2
2k−

b3

3k2−···

≤ e−b− b
2k = e−1 · e1−b− b

2k (6.2)

≤ e−1 · (1−η · (b+ b
2k
−1))≤ 1

e
− η

e
(b+

b
2k
−1). (6.3)

Note that the transition from (6.2) to (6.3) is based on inequality (6.1).

The part 2 follows from part 1. This is because 1− (1− b
k )

k−ξ ≥ 1− 1
e +

η

e (b+
b
2k −1)−

ξ ≥ 1− 1
e .
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Theorem 6.0.3. There is a poly(λ ,d, l,k,m) time (1− 1
e )-approximation algorithm for maximal

coverage problem when each set is the set of lattice points in a ball with center in D(λ ,d, l).

Sketch. Let α = αL = αR = δL = δR = 1
ck with c = 100, and b = β = 1−αL)(1−δL)

(1+αR)(1+δR)
. It is easy to see

(b+ b
2k − 1) ≥ 1

4k . Let ξ = η

e (b+
b
2k − 1) = Θ(1

k ). It follows from Theorem 6.0.1, Lemma 6.0.2,

Theorem 5.1.8 and Theorem 5.2.6.

63



CHAPTER VII

SELF-ADJUSTING COVERAGE ALGORITHM FOR SET UNION PROBLEM UNDER

MODEL OF RANDOMIZATION

In this section, we generalize the algorithm that was designed by Karp, Luby, and Madras

[29] to approximate the union set |A1∪ ·· · ∪Am| to a randomized approximation algorithm under

model of randomization.

The union of set problem is that given a list of sets A1, ..,Am to compute the |A1 ∪ ·· · ∪

Am|.

In [29], the Self-Adjusting Coverage Algorithm was designed under the below model:

• The size of Ai (i.e. |Ai|) is part of input.

• It generates an random element x ∈ |A1 ∪ ·· · ∪Am| with probability 1
|Ai| for some integer

i ∈ [1,m].

• Given any s ∈ |A1 ∪ ·· · ∪Am|, it is easy to decide whether or not x ∈ Ai for some integer

i ∈ [1,m]∩Z.

We generalize the the Self-Adjusting Coverage Algorithm to a randomized approximation

algorithm under model of randomization that defined below:

• It provides an approximate set size mi of Ai with mi ∈ [(1− βL)|Ai|,(1+ βR)|Ai|] for i =

1,2, ...,d.

• It generates an random element x ∈ |A1∪ ·· · ∪Am| with probability in range of in the range[
1−αL
|Ai| ,

1+αR
|Ai|

]
for some integer i ∈ [1,m].
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• Given any s ∈ |A1 ∪ ·· · ∪Am|, it is easy to decide whether or not x ∈ Ai for some integer

i ∈ [1,m]∩Z.

The running time of the algorithm Self-Adjusting Coverage Algorithm under the model of

randomization is O
(

1+ε

ε2 log 2
γ

(1+α)(1−βR)
1−βL

m
)

with probability in range [(1− ε)(1−α) 1−βL
1+βR

,(1+

ε)(1+α) 1+βL
1−βR

], where ε controls the accuracy of approximation, and γ controls the failure prob-

ability.

We can not obtain O(logm) rounds under model of randomization for round complexity.

An interesting open problem is to find an O(m) time and O(logm) rounds approximation

scheme for |A1∪A2∪·· ·Am|.
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CHAPTER VIII

CONCLUSIONS

We introduce an almost linear bounded rounds randomized approximation algorithm for

the size of set union problem |A1 ∪ A2 ∪ ...∪ Am|, which given a list of sets A1, ...,Am with ap-

proximate set size and biased random generators. The definition of round is introduced. We prove

that our algorithm runs sublinear in time under certain condition. A polynomial time approxima-

tion scheme is proposed to approximae the number of lattice points in the union of d-dimensional

ball if each ball center satisfy D(λ ,d, l). We prove that it is #P-hard to count the number of lattice

points in a set of balls, and we also show that there is no polynomial time algorithm to approxi-

mate the number of lattice points in the intersection of n-dimenisonal k-degree balls unless P=NP.
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