
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Theses and Dissertations - UTB/UTPA 

8-2011 

The First-Integral Method for Duffing-Van Der Pol-Type Oscillator The First-Integral Method for Duffing-Van Der Pol-Type Oscillator 

System System 

Xiaochuan Hu 
University of Texas-Pan American 

Follow this and additional works at: https://scholarworks.utrgv.edu/leg_etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Hu, Xiaochuan, "The First-Integral Method for Duffing-Van Der Pol-Type Oscillator System" (2011). Theses 
and Dissertations - UTB/UTPA. 271. 
https://scholarworks.utrgv.edu/leg_etd/271 

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for 
inclusion in Theses and Dissertations - UTB/UTPA by an authorized administrator of ScholarWorks @ UTRGV. For 
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/leg_etd
https://scholarworks.utrgv.edu/leg_etd?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/leg_etd/271?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


THE FIRST-INTEGRAL METHOD FOR

DUFFING–VAN DER POL–TYPE OSCILLATOR SYSTEM

A Thesis

by

XIAOCHUAN HU

Submitted to the Graduate School of the
University of Texas-Pan American

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2011

Major Subject: Mathematics





THE FIRST-INTEGRAL METHOD FOR

DUFFING–VAN DER POL–TYPE OSCILLATOR SYSTEM

A Thesis
by

XIAOCHUAN HU

COMMITTEE MEMBERS

Dr. Zhaosheng Feng

Chair of Committee

Dr. Bao-Feng Feng

Committee Member

Dr. Tim Huber

Committee Member

Dr. Constantin Onica

Committee Member

August 2011





Copyright 2011 Xiaochuan Hu

All Rights Reserved





ABSTRACT

Hu, Xiaochuan, The first-integral method for Duffing–van der Pol–type oscillator system. Master

of Science (MS), August, 2011, 30 pages, references, 40 titles.

In this thesis, we restrict our attention to nonlinear Duffing–van der Pol–type oscillator system

by means of the First-integral method. This system has physical relevance as a model in cer-

tain flow-induced structural vibration problems, which includes the van der Pol oscillator and the

damped Duffing oscillator etc as particular cases. Firstly we apply the Division Theorem for two

variables in the complex domain, which is based on the ring theory of commutative algebra, to

explore a quasi-polynomial first integral to an equivalent autonomous system. Then through a cer-

tain parametric condition, we derive a more general first integral of the Duffing–van der Pol–type

oscillator system.
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CHAPTER I

INTRODUCTION

In this paper, we consider a general Duffing-van der Pol-type oscillator system of the form

ü+(δ +βun)u̇−µu+αun+1 = 0, (1)

where an over-dot represents differentiation with respect to the independent variable ξ , and all

coefficients δ , β , µand α are real constants with δ · β · µ ·α 6= 0. It can also be regarded as a

general combination of the van der Pol oscillator and damped Duffing equation, since the choices

δ 6= 0, β 6= 0, µ 6= 0, α = 0 and n = 2 leads equation (1) to the van der Pol oscillator [1]

ü+(δ +βu2)u̇−µu = 0, (2)

which was proposed by the Dutch physicist Balthasar van der Pol, who pioneered the fields of

radio and telecommunications [2-7]. The choices δ 6= 0, µ 6= 0, α 6= 0, β = 0 and n = 2 leads

equation (1) to the damped Duffing equation [8, 9]

ü+δ u̇−µu+αu3 = 0, (3)

which is a nonlinear dynamical system. When we choose δ 6= 0, µ 6= 0, α 6= 0, β = 0 and n = 1,

equation (1) becomes the damped Helmholtz oscillator [11, 12]
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ü+δ u̇−µu+αu2 = 0. (4)

Furthermore, if we take δ 6= 0, µ 6= 0, α 6= 0, β 6= 0 and n = 2, equation (1) becomes the standard

form of the Duffing-van der Pol oscillator, whose autonomous version (force-free) takes the form

ü+(δ +βu2)u̇−µu+αu3 = 0. (5)

This non-linear differential equation (1) is used in physics, engineering, electronics, biology, neu-

rology and many other disciplines [9, 39, 14-21]. Therefore, it is one of the most intensively

studied systems in non-linear dynamics [9, 13-19]. It is well known that there are a great number

of theoretical works dealing with equations (2)-(5) [9, 20, 25, 26], and applications of these four

equations and related systems can be seen in quite a few scientific areas [11, 27, 28]. Much re-

search on Duffing-van der Pol system has been done [22-24]. In 1997, Holms and Rand made a

study of the local and global bifurcation of the Duffing-van der Pol system [20]. In 1998, Maccari

investigated the main resonance of the Duffing-van der Pol system using asymptotic perturbation

method and obtained the sufficient conditions for period-doubling motion of the system [29]. In

2006, Dong et al. investigated the local bifurcation of the Duffing-van der Pol system to multi-

frequency excitations[30]. It is well known that the Duffing-van der Pol system is a system with

multi-parameters.

In the present paper, we study the nonlinear Duffing-van der Pol-type oscillator system (1) to

obtain its first integrals under certain parametric conditions by using the Division Theorem for

two variables in the complex domain based on the ring theory of commutative algebra, which

is currently called the first-integral method. The paper is organized into four chapters, with the

introduction as chapter one. In the next chapter, we construct a particular first-integral for equation

(1) by applying the first-integral method . In chapter III, we derive the general first integral of the

Duffing-van der Pol-type oscillator system (1). In chapter IV, we present a brief conclusion.

2



CHAPTER II

THE FIRST-INTEGRAL METHOD

In this chapter, we consider the Duffing-van der Pol-type oscillator (1) by appling the first-

integral method [31].

2.1 Preliminaries

2.1.1 Duffing-van der Pol-type oscillator

In order to make the paper well self-contained and present our results in a straightforward

manner, in this section we will focus our attention in reviewing the first-integral method for solving

second-order ODEs based on the ring theory of commutative algebra.

Consider the oscillator equation (1) in the following form:

ü =−(δ +βun)u̇+µu−αun+1 = F (ξ , u, u′), (6)

where u′ denotes differentiation with respect to ξ . To investigate the integrability of this equation,

the Division Theorem will be used. Let x = u, y = uξ , then equation (6) is equivalent to an

autonomous system: 
ẋ = y

ẏ =−(δ +βxn)y+µx−αxn+1.

(7)
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By the qualitative theory of ordinary differential equations [40], if we can find two first-

integrals to equation (7) under the same conditions, then the general solutions to equation (7)

can be expressed explicitly. However, generally, it is difficult for us to realize this, even for one

first-integral, because for a given plane autonomous system, there is no systematic theory that can

tell us how to find its first-integrals, nor is there a logical way to tell us what these first-integrals

are.

In this section, we apply the first-integral method to obtain a particular first-integral of equation

(1). That is , we will apply the Hilbert-Nullstellensatz Theorem to study and obtain a first-integral

to equation (7) which reduces equation (6) to a first-order integrable ordinary differential equation.

For convenience, let us first recall the Hilbert-Nullstellensatz Theorem [33-34].

2.1.2 Hilbert-Nullstellensatz Theorem

Hilbert-Nullstellensatz Theorem (Zero-locus-Theorem) is a theorem which makes a fundamen-

tal relationship between the geometric and algebraic aspects of algebraic geometry. The Hilbert-

Nullstellensatz Theorem relates algebraic sets to ideals in polynomial rings over algebraically

closed fields. The theorem was first proved by David Hilbert, whom it is named after.

Formulation of Hilbert-Nullstellensatz Theorem [10].

Let k be a field and L an algebraic closure of k.

(i) Every ideal γ of k [X1, X2, · · · , Xn] not containing 1 admits at least one zero in Ln.

(ii) Let x=(x1, x2, · · · xn), y=(y1, y2, · · · yn) be two elements of Ln; for the set of polynomials

of k [X1, X2, · · · , Xn] zero at x to be identical with the set of polynomials of k [X1, X2, · · · , Xn]

zero at y, it is necessary and sufficient that there exists a k-automorphism s of L such that yi = s(xi)

for 1≤ i≤ n.
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(iii) For an ideal α of k [X1, X2, · · · , Xn] to be maximal, it is necessary and sufficient that there

exists an x in Ln such that α is the set of polynomials of k [X1, X2, · · · , Xn] zero at x.

(iv) For a polynomial Q of k [X1, X2, · · · , Xn] to be zero on the set of zeros in Ln of an ideal

γ of k [X1, X2, · · · , Xn], it is necessary and sufficient that there exist an integral m > 0 such that

Qm ∈ γ .

2.1.3 Division Theorem

Following immediately from the Hilbert-Nullstellensatz Theorem, we obtain the Division The-

orem for two variables in the complex domain C.

Formulation of Division Theorem.

Suppose that P (w, z) and Q (w, z) are polynomials in C [w, z], and P (w, z) is irreducible in

C [w, z]. If Q (w, z) vanishes at all zero points of P (w, z), then there exists a polynomial G (w, z)

in C [w, z] such that

Q (w, z) = P (w, z) ·G (w, z). (8)

This is of some interest to ask whether the above Division Theorem can be proven by using

the complex theory. The answer is ’Yes’. Next, we would like to present a direct and simple proof

[31]:

<Proof> For convenience, we give the following lemmas:

Lemma (2.1) Suppose that U(ω,z) and V (ω,z) are polynomials in C[ω,z], and U(ω,z) is irre-

ducible in C[ω,z]. Suppose that R(ω,z) is a non-constant polynomial and a factor of U(ω,z) ·

V (ω,z), and degR(ω,z)< degU(ω,z) with respect to ω . Then R(ω,z)|V (ω,z).

Lemma (2.2) Suppose that P(ω,z) is an irreducible polynomial in C[ω,z] and that Pω(ω,z) is

the partial derivative with respect to ω . Then there exist two polynomials A(ω,z),B(ω,z), and a

nonzero polynomial D(z) in C[ω,z], such that
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A(ω,z) ·P(ω,z)+B(ω,z) ·Pω(ω,z) = D(z). (9)

The proofs of Lemma (2.1) and Lemma (2.2) can be seen in [13].

Notice that a polynomial P(ω,z) in C[ω,z] can be written as

P(ω,z) =
n

∑
k=o

pk(z)ωk, (10)

where pk(z) (k = 0,1, · · · ,n) are polynomials in z and pn(z) 6≡ 0. If P(ω,z) is an irreducible

polynomial in C[ω,z], then pk(z),(k = 0,1, · · · ,n) are all relatively prime. For any fixed z0 ∈ C,

P(ω,z0) is a polynomial in ω . By the Fundamental Theorem of Algebra, it has n zeros in C.

Definition (2.3) If z0 is a complex number such that the polynomial P(ω,z0) does not have n

distinct zeros in C, then z0 is called a Special Zero Point of the polynomial P(ω,z).

Lemma (2.4) If P(ω,z) is an irreducible polynomial in C[ω,z], then P(ω,z) has at most finitely

many Special Zero Points in C.

<Proof> Write P(ω,z) in equation (10) and consider the set

M = {z|z ∈C, pn(z) = 0, or D(z) = 0}.

By equation (9), it is easily noted that M is a finite set. Suppose that z∗ ∈ C \M, then the

polynomial P(ω,z∗) with respect to ω must have n distinct zeros. Hence, the set of Special Zero

Points of P(ω,z) is a subset of M. Therefore, P(ω,z) has at most finitely many Special Zero Points.

Next, we prove Division Theorem using the above lemmas. For any z ∈ C \ M, by Lemma

(2.4), the polynomial P(ω,z) with respect to ω must have n distinct roots ri(i = 1,2, · · · ,n). By

the hypothesis, ri (i = 1,2, · · · ,n) are also the roots of Q(ω,z). Hence the degree for polynomial
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Q(ω,z) with respect to ω is greater than or equal to n.

Assume that

Q(ω,z) =
m

∑
k=0

qk(z)ωk,

where qk(z) (k = 0,1, · · · ,m) are polynomials in z, qm(z) 6≡ 0, and m≥ n.

By the division theory for the polynomials in one variable, we have

Q(ω,z) = h(ω,z) ·P(ω,z), (11)

where 

h(ω,z) = ∑
m−n
k=0 hk(z)ωk

hm−n(z) = qm(z)/pn(z)

hm−n−1(z) = 1
pn(z)

[qm−1(z)− qm(z)pn−1(z)
pn(z)

] = qm−1∗(z)
p2

n(z)

· · · · · ·

hm−n−i(z) =
qm−i∗(z)
pi+1

n (z)

h0(z) =
qn∗(z)

pm−n−1
n (z)

.

(12)

Notice that the polynomials q∗m−i(z) could be obtained from qk(z) and pk(z) by applying the oper-

ations of addition, subtraction, multiplication and division. The denominators and numerators of

equation (12) may have common factors.

Suppose that u(z) is a polynomial with the least degree such that u(z) ·h(ω,z) is a polynomial

in C[ω,z]. That is

u(z)h(ω,z) = G1(ω,z), (13)
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where u(z) and G1(ω,z) are polynomials in C[ω,z]. Note that there is no nontrivial common

factor between u(z) and G1(ω,z). By equations (11) and (13), we get

u(z) ·Q(ω,z) = G1(ω,z) ·P(ω,z). (14)

If u(z) is a nonzero constant, then we obtain the desired result. If u(z) is a non-constant poly-

nomial, then since P(ω,z) is irreducible, Lemma (2.1) implies that u(z) must divide G1(ω,z). This

yields a contradiction with the above assumption that u(z) and G1(ω,z) have no nontrivial com-

mon factor in C[ω,z]. Therefore, u(z) must be nonzero constant. Letting G(ω,z) = [ 1
u(z) ] ·G1(ω,z),

from equation (14) we obtain equation (8). So the proof of Division Theorem is complete.

In the next section, we are going to apply the Division Theorem to seek the first-integral to

system (7).

2.2 Application of Division Theorem for Duffing-van der Pol-type oscillator

Suppose that x = x(ξ ) and y = y(ξ ) are the nontrivial solutions to equation (7), and p(x, y) =

∑
i=m
i=0 ai(x)yi is an irreducible polynomial in C [x, y] such that

p [x(ξ ), y(ξ )] =
m

∑
i=0

ai(x)yi = 0, (15)

where ai(x) (i = 0, 1, · · · , m) are polynomials of x and are all relatively prime in C [x, y], and

am(x) 6= 0. Equation (15) is also called the first-integral to equation (7). We start our study by

assuming m = 2 in equation (15), that is, p(x, y) = a0(x)+a1(x)y+a2(x)y2.
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Note that d p
dξ

is a polynomial in x and y, and p[x(ξ ), y(ξ )] = 0 implies d p
dξ

= 0. By the Division

Theorem, there exists a polynomial H (x, y) = ρ(x)+η(x)y in C [x, y] such that

d p
dξ

= H (x,y) · p(x,y)

= [ρ(x)+η(x)y] ·
[
a0(x)+a1(x)y+a2(x)y2]

= [ρ(x) ·a0(x)]+ [ρ(x) ·a1(x)+η(x) ·a0(x)]y

+[ρ(x) ·a2(x)+η(x) ·a1(x)]y2 +[η(x) ·a2(x)]y3.

(16)

Moreover, it is clear that we can obtain

d p
dξ

=
(

∂ p
∂x ·

∂x
∂ξ

+ ∂ p
∂y ·

∂y
∂ξ

)

= a1(x)(µx−αxn+1)

+
{

2a2(x)(µx−αxn+1)−a1(x) [δ +βxn]+a′0(x)
}

y

+{a′1(x)−2a2(x) [δ +βxn]}y2 +a′2(x)y
3.

(17)

On equating the coefficients of yion both sides of above equations (16) and (17), we have


a′(x) = A(x) ·a(x)

[
0, αxn+1−µx, ρ(x)

]
·a(x) = 0,

(18)
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where

a(x) =


a2(x)

a1(x)

a0(x)

 , (19)

and

A(x) =


η(x) 0 0

2βxn +2δ +ρ(x) η(x) 0

2(αxn+1−µx) βxn +δ +ρ(x) η(x)

 . (20)

Since ai(x) are polynomials, from equation (18), we deduce that a2(x) is a constant and η(x) =

0. For simplification, we take a2(x) = 1 and solve equation (18). We have

a(x) =


1

´
[2βxn +2δ +ρ(x)]dx

´ [
βxna1(x)+δa1(x)+ρ(x) ·a1(x)+2(αxn+1−µx)

]
dx

 . (21)

We can determine the degree of polynomials ρ(x) and a1(x) through equations (18) and (21).

1. If deg ρ(x) = k > n > 0 ⇒ deg a1(x) = k+1 and deg a0(x) = 2k+2. From (18)

deg
[
(αxn+1−µx)a1(x)

]
= k+n+2 but deg [ρ(x) ·a0(x)] = 3k+2 ⇒ k+n+2= 3k+2 ⇒

k = n
2 ⇒

n
2 > n > 0 (contradiction).

2. If deg ρ(x) = k and n > k > 0 ⇒ deg a1(x) = n+1 and deg a0(x) = 2n+2. From

(18) deg
[
(αxn+1−µx)a1(x)

]
= 2n+2 but deg [ρ(x) ·a0(x)] = 2n+ k+2 ⇒ k = 0 but

k > 0 (contradiction).

3. If deg ρ(x) = k = 0 ⇒ deg a1(x) = n+1.

10



Thus, let us assume

a1(x) = B2xn+1 +B1x+B0. (22)

Through equation (21), we find

a1(x) =
´
[2βxn +2δ +ρ(x)]dx

= 2β

n+1xn+1 +(2δ +ρ(x))x+B0.

(23)

So from equations (22) and (23) we can immediately obtain


B1 = 2δ +ρ(x)

B2 =
2β

n+1 .

(24)

From equations (21), (22) and (24), we can also deduce

a0(x) =
´
[βxna1(x)+δa1(x)+ρ(x) ·a1(x)+2(αxn+1−µx)]dx

=
´
[βB2x2n+1 +(B1β +B2δ +(B1−2δ )B2 +2α)xn+1 +βB0xn

+(B1δ +(B1−2δ )B1−2µ)x+B0(B1−2δ )+B0δ ]dx

= βB2
2(n+1) · x

2n+2 + (2α+βB1+B2(B1−δ ))
n+2 · xn+2 + βB0

n+1 · x
n+1

+(B1(B1−δ )
2 −µ)x2 +B0(B1−δ )x+D,

(25)

where D is an arbitrary integration constant.

11



Substituting equations (22) and (24) into equation (18) that is (αxn+1−µx)a1(x)+ρ(x)a0(x)=

0, where ρ(x) = B1−2δ , we have

(αxn+1−µx) · (B2xn+1 +B1x+B0)

+(B1−2δ ) · ( βB2
2(n+1) · x

2n+2 + (2α+βB1+B2(B1−δ ))
n+2 · xn+2

+βB0
n+1 · x

n+1 +(B1(B1−δ )
2 −µ)x2 +B0(B1−δ )x+D) = 0

(26)

⇐⇒
(αB2 +

βB1B2
2(n+1) −

βδB2
n+1 ) · x2n+2 +(αB1−µB2 +

B2
1B2

n+2

−4αδ

n+2 +
2αB1
n+2 +

βB2
1

n+2 +
2δ 2B2
n+2 −

2βδB1
n+2 −

3δB1B2
n+2 ) · xn+2

+(αB0− 2βδB0
n+1 + βB0B1

n+1 ) · xn+1

+(
B3

1
2 +2δ µ−2µB1−

3δB2
1

2 +δ 2B1) · x2

+(2δ 2B0 +B2
1B0−µB0−3δB1B0) · x

+(B1D−2δD) = 0.

(27)

Setting all coefficients of xi (i = 2n+2, n+2, n+1, 2, 1, 0) to be zero, we have



αB2 +
βB1B2
2(n+1) −

βδB2
n+1 = 0 · · ·(I)

αB1−µB2 +
B2

1B2
n+2 −

4αδ

n+2 +
2αB1
n+2 +

βB2
1

n+2 +
2δ 2B2
n+2 −

2βδB1
n+2 −

3δB1B2
n+2 = 0 · · ·(II)

αB0− 2βδB0
n+1 + βB0B1

n+1 = 0 · · ·(III)

B3
1

2 +2δ µ−2µB1−
3δB2

1
2 +δ 2B1 = 0 · · ·(IV )

2δ 2B0 +B2
1B0−µB0−3δB1B0 = 0 · · ·(V )

(B1−2δ )D = 0 · · ·(V I).

(28)

Let us take the integration constant D = 0.

Also from (I) , we can deduce B1 = 2δ − 2α(n+1)
β

.

From(III), we can deduce B0 = 0 or B1 = 2δ − α(n+1)
β

.
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From(IV ), we can deduce B1 = δ or B1 = δ ±
√

δ 2 +4µ .

From (V ), we can deduce B0 = 0 or B1 =
3δ±
√

δ 2+4µ

2 .

Consider the case B0 = 0.

2.2.1 Case I

Then, we assume

B1 = 2δ − 2α(n+1)
β

= δ +
√

δ 2 +4µ, (29)

or

B1 = 2δ − 2α(n+1)
β

= δ −
√

δ 2 +4µ. (30)

We can deduce
2δ − 2α(n+1)

β
= δ +

√
δ 2 +4µ ⇒ µ = (α(n+1)

β
)2−δ (α(n+1)

β
)

2δ − 2α(n+1)
β

= δ −
√

δ 2 +4µ ⇒ µ = (α(n+1)
β

)2−δ (α(n+1)
β

),

(31)

or

β
2
µ = α

2(n+1)2−αβδ (n+1). (32)

Plugging B1 = 2δ − 2α(n+1)
β

back into equation (II) of equation system (28), we give

B2 =
2α2β (n+1)(n−2)−2αβ 2δn

−4α2(n+1)2 +2αβδ (n+1)+β 2µ(n+2)
. (33)
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Using equation (32) to simplify B2, we obtain

B2 = 2α2β (n+1)(n−2)−2αβ 2δn
α2(n+1)2(n−2)−αβδ (n+1)n

= 2β

n+1 .

(34)

Hence, under the parametric condition:

β
2
µ = α

2(n+1)2−αβδ (n+1), (35)

equation (28) has solution as 

B1 = 2δ − 2α(n+1)
β

B2 = 2β

n+1

B0 = 0

D = 0.

(36)

Using equation (35) to rewrite equation (22), we have

a1(x) =
2β

n+1
· xn+1 +(2δ − 2α(n+1)

β
) · x. (37)

14



Substituting equation (36) into equation (25), and simplifying by equation (35), we get

a0(x) = βB2
2(n+1) · x

2n+2 + (2α+βB1+B2(B1−δ ))
n+2 · xn+2 + βB0

n+1 · x
n+1

+(B1(B1−δ )
2 −µ)x2 +B0(B1−δ )x+D

= β 2

(n+1)2 · x2n+2 +(
2α+2βδ−2α(n+1)+ 2β

n+1 (δ−
2α(n+1)

β
)

n+2 ) · xn+2

+(
(2δ− 2α(n+1)

β
)·(δ− 2α(n+1)

β
)

2 −µ) · x2

= β 2

(n+1)2 · x2n+2 +(2βδ

n+1 −2α) · xn+2

+(δ 2 +µ− αδ (n+1)
β

) · x2.

(38)

Substituting a0(x), a1(x) and a2(x) = 1 into p(x,y) = a0(x)+a1(x)y+a2(x)y2 and setting

p(x,y) = 0, we get

y2 +( 2β

n+1 · x
n+1 +(2δ − 2α(n+1)

β
) · x) · y

+
[

β 2

(n+1)2 · x2n+2 +(2βδ

n+1 −2α) · xn+2

+ (δ 2 +µ− αδ (n+1)
β

) · x2
]

= 0.

(39)

From equation (39), y can be expressed in terms of x under the parametric condition (35), i.e.

y = 1
2 ·
[
−2β

n+1 · x
n+1− (2δ − 2α(n+1)

β
) · x
]

±1
2

√
( 2β

n+1 · xn+1 +(2δ − 2α(n+1)
β

) · x)2−4( β 2

(n+1)2 · x2n+2 +(2βδ

n+1 −2α) · xn+2 +(δ 2 +µ− αδ (n+1)
β

) · x2)

=⇒
y = 1

2 ·
[
−2β

n+1 · x
n+1− (2δ − 2α(n+1)

β
) · x
]

=
(

α(n+1)
β
−δ

)
· x− β

n+1 · x
n+1.

(40)
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2.2.2 Case II

Choose

B1 = 2δ − 2α(n+1)
β

= δ , (41)

the we have

2δ − 2α(n+1)
β

= δ ⇒ δ =
2α(n+1)

β
. (42)

Plugging B1 = 2δ − 2α(n+1)
β

back into equation (II) of equation (28), we get

B2 =
2α2β (n+1)(n−2)−2αβ 2δn

−4α2(n+1)2 +2αβδ (n+1)+β 2µ(n+2)
. (43)

Then, simplifying B2 by equation (42), we have

B2 =−
2α2(n+1)

β µ
. (44)

From (24) and equation (44), we get

2β

n+1 = −2α2(n+1)
β µ

⇒

µ =− α2(n+1)2

β 2 .

(45)

So under the parametric condition


µ = −α2(n+1)2

β 2

δ = 2α(n+1)
β

,

(46)
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equation (28) has the following solution:



B1 = 2δ − 2α(n+1)
β

B2 = 2β

n+1

B0 = 0

D = 0.

(47)

Plugging equation (47) back into equation (22), we get

a1(x) =
2β

n+1
· xn+1 +(2δ − 2α(n+1)

β
) · x. (48)

Plugging equation (47) back into equation (25) and simplifying by equation (46), we can obtain

a0(x) = βB2
2(n+1) · x

2n+2 + (2α+βB1+B2(B1−δ ))
n+2 · xn+2 + βB0

n+1 · x
n+1

+(B1(B1−δ )
2 −µ)x2 +B0(B1−δ )x+D

= β 2

(n+1)2 · x2n+2 +(
2α+2βδ−2α(n+1)+ 2β

n+1 (δ−
2α(n+1)

β
)

n+2 ) · xn+2

+(
(2δ− 2α(n+1)

β
)·(δ− 2α(n+1)

β
)

2 −µ) · x2

= β 2

(n+1)2 · x2n+2 +(2βδ

n+1 −2α) · xn+2−µ · x2.

(49)

Substituting a0(x), a1(x) and a2(x) = 1 into p(x,y) = a0(x)+a1(x)y+a2(x)y2 and setting

p(x,y) = 0, we have

y2 +( 2β

n+1 · x
n+1 +(2δ − 2α(n+1)

β
) · x) · y+

+
[

β 2

(n+1)2 · x2n+2 +(2βδ

n+1 −2α) · xn+2−µ · x2
]

= 0.
(50)
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From the above equation, y can be expressed in terms of x under parametric condition (46), i.e

y = 1
2 ·
[
−2β

n+1 · x
n+1− (2δ − 2α(n+1)

β
) · x
]

±1
2

√
(

2β

n+1
· xn+1 +(2δ − 2α(n+1)

β
) · x)2−4(

β 2

(n+1)2 · x
2n+2 +(

2βδ

n+1
−2α) · xn+2−µ · x2)

=⇒
y = 1

2 ·
[
−2β

n+1 · x
n+1− (2δ − 2α(n+1)

β
) · x
]

=
(

α(n+1)
β
−δ

)
· x− β

n+1 · x
n+1.

(51)

Let us consider the case B0 = 1.

2.2.3 Case III

From equation (I), (III) and (V ) of equation system (28), we can get

B1 = 2δ − 2α(n+1)
β

= 2δ − α(n+1)
β

=
3δ ±

√
δ 2 +4µ

2
. (52)

Note that

2δ − 2α(n+1)
β

6= 2δ − α(n+1)
β

. (53)

It is a contradiction and B0 6= 1.

Since α 6= 0. Hence, equation system (28) has only one solution, which is



B1 = 2δ − 2α(n+1)
β

B2 = 2β

n+1

B0 = 0

D = 0.

(54)
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2.2.4 Conclusion

From the previous works, we find

y =
(

α(n+1)
β

−δ

)
· x− β

n+1
· xn+1, (55)

under the parametric conditions of case I and case II. It is clear by equation (7) that equation

(55) is a first-integral of the Duffing-van der Pol-type oscillator. Comparing the two parametric

conditions between case I [equation (35)] and case II [equation (46)], we obtain that under certain

transformations, equation (46) is equivalent to equation (35). Hence, we can conclude that the only

one parametric condition is

β
2
µ = α

2(n+1)2−αβδ (n+1). (56)

So far, we have derived one particular first-integral of the Duffing-van der Pol-type oscillator

under certain parametric condition (56). In the next chapter, we are going to look for a more

general first-integral of the Duffing-van der Pol-type oscillator.
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CHAPTER III

THE GENERAL FIRST INTEGRAL

In this chapter, we concentrate on obtaining a more general first integral of the Duffing-van der

Pol-type oscillator (1).

3.1 Preparation

From the previous works, we know

d p
dξ

= H (x,y) · p(x,y), (57)

where H (x, y) = ρ(x)+η(x)y is a polynomial in C [x, y]. It is clear we can deduce

η(x) = 0, (58)

which was mentioned on page 9, from equation (18). Furthermore, equation (24) indicates

ρ(x) = B1−2δ . (59)

Through equation (54), we find

B1 = 2δ − 2α(n+1)
β

, (60)
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which gives

ρ(x) =−2α(n+1)
β

(61)

by equation (59).

Substituting equations (58) and (61) into H (x, y) = ρ(x)+η(x)y, we derive

H (x, y) =−2α(n+1)
β

. (62)

Thus, equation (57) will be rewritten as

d p
dξ

=

[
−2α(n+1)

β

]
· p(x,y), (63)

where −2α(n+1)
β

is a constant. The solution is given by p(x,y) = C · e
[
− 2α(n+1)

β

]
·ξ with arbitrary

number C.

As we know,

p(x, y) = a0(x)+a1(x)y+a2(x)y2, (64)

which indicates

a0(x)+a1(x)y+a2(x)y2 =C · e
[
− 2α(n+1)

β

]
·ξ
. (65)

3.2 The general first integral

Let us discuss equation (65) with two cases. Additionally, as we have mentioned on page 10,

we take a2(x) = 1 for simplification.
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1. Under the parametric condition (35), equations (37) and (38) give


a1(x) = 2β

n+1 · x
n+1 +(2δ − 2α(n+1)

β
) · x

a0(x) = β 2

(n+1)2 · x2n+2 +(2βδ

n+1 −2α) · xn+2 +(δ 2 +µ− αδ (n+1)
β

) · x2.

(66)

Substituting a2(x) = 1 and equation (66) into equation (65), we have

y2 +( 2β

n+1 · x
n+1 +(2δ − 2α(n+1)

β
) · x) · y

+
[

β 2

(n+1)2 · x2n+2 +(2βδ

n+1 −2α) · xn+2

+ (δ 2 +µ− αδ (n+1)
β

) · x2
]

= C · e
[
− 2α(n+1)

β

]
·ξ
.

(67)

After applying the parametric condition (35), the L.H.S. of equation (67) can be factored

into a perfect square, then we derive

(
y+
(

δ − α (n+1)
β

)
x+

β

n+1
xn+1

)2

=C · e
[
− 2α(n+1)

β

]
·ξ
, (68)

which implies

(
y+
(

δ − α (n+1)
β

)
x+

β

n+1
xn+1

)
· e
[

α(n+1)
β

]
·ξ
= I, (69)

where I =C
1
2 ∈ C.

2. Under the parametric condition (46), equations (48) and (49) give


a1(x) = 2β

n+1 · x
n+1 +(2δ − 2α(n+1)

β
) · x

a0(x) = β 2

(n+1)2 · x2n+2 +(2βδ

n+1 −2α) · xn+2−µ · x2.

(70)
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Substituting a2(x) = 1 and equation (70) into equation (65), we have

y2 +( 2β

n+1 · x
n+1 +(2δ − 2α(n+1)

β
) · x) · y+

+
[

β 2

(n+1)2 · x2n+2 +(2βδ

n+1 −2α) · xn+2−µ · x2
]

= C · e
[
− 2α(n+1)

β

]
·ξ
.

(71)

After applying the parametric condition (46), the L.H.S. of equation (71) can be factored

into a perfect square, then we obtain

(
y+
(

δ − α (n+1)
β

)
x+

β

n+1
xn+1

)2

=C · e
[
− 2α(n+1)

β

]
·ξ
, (72)

which implies

(
y+
(

δ − α (n+1)
β

)
x+

β

n+1
xn+1

)
· e
[

α(n+1)
β

]
·ξ
= I, (73)

where I =C
1
2 ∈ C.

Since the parametric condition (46) is a particular case of parametric condition (35). Hence,

we can conclude that under the parametric condition

β
2
µ = α

2(n+1)2−αβδ (n+1),

the nonlinear Duffing-van der Pol-type oscillator system (1) has only one general first integral,

which is (
y+
(

δ − α (n+1)
β

)
x+

β

n+1
xn+1

)
· e
[

α(n+1)
β

]
·ξ
= I,

where I =C
1
2 ∈ C.
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CHAPTER IV

CONCLUSION

The first-integral method used in this paper was first proposed by Dr. Feng [31] in solving

Burgers-Kvd equation which is based on the ring theory of commutative algebra. It is a very

useful method for nonlinear dynamical equations[31, 35]. Recently, this method has been widely

used by many mathematicians, such as in [36-38] and by the references therein. The method

described herein is not only efficient, but also has the merit of being widely applicable. We can

apply this technique to many nonlinear equations, such as the nonlinear Schrödinger equation, the

generalized Klein-Gordon equation, and the higher order KdV-like equation. We believe that this

method will be advantageous for a rather diverse group of scientists.

In this paper, the first-integral method was applied successfully for solving the nonlinear Duffing-

van der Pol-type oscillator system. The first-integrals of the Duffing-van der Pol-type oscillator

system with four parameters have been studied and established in the previous chapters. During

chapter II, we applied the first-integral method to obtain one particular first integral of the Duffing-

van der Pol-type oscillator (1) under certain parametric conditions. We obtained the parametric

conditions by solving equation system (28). It has been discussed for three cases, which are para-

metric conditions (35), (46) and (52). However, after further examining the parametric condition

(46) we found that under certain transformations, the parametric condition (46) can be transferred

into parametric condition (35). Moreover, the parametric condition (52) of case III is in contra-

diction to equation (53). Hence, we can conclude that there is only one parametric condition of

equation system (28), which is the parametric condition (56). Afterward, we applied the solution
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of equation system (28) to obtain a particular first integral of the Duffing-van der Pol-type

oscillator by setting p(x,y) = 0. Finally, in order to complete this paper, we achieved the general

first integral of the Duffing-van der Pol-type oscillator (1) under the only parametric condition

(56) in chapter III.
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