
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations - UTB/UTPA

8-2011

Benchmarking Bottom-Up and Top-Down Strategies to Sparql-To-Benchmarking Bottom-Up and Top-Down Strategies to Sparql-To-

Sql Query Translation Sql Query Translation

Andrii Kashliev
University of Texas-Pan American

Follow this and additional works at: https://scholarworks.utrgv.edu/leg_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kashliev, Andrii, "Benchmarking Bottom-Up and Top-Down Strategies to Sparql-To-Sql Query Translation"
(2011). Theses and Dissertations - UTB/UTPA. 274.
https://scholarworks.utrgv.edu/leg_etd/274

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations - UTB/UTPA by an authorized administrator of ScholarWorks @ UTRGV. For
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/leg_etd
https://scholarworks.utrgv.edu/leg_etd?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/leg_etd/274?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

BENCHMARKING BOTTOM-UP AND TOP-DOWN STRATEGIES TO

SPARQL-TO-SQL QUERY TRANSLATION

A Thesis

by

ANDRII KASHLIEV

Submitted to the Graduate School of the

University of Texas - Pan American

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2011

Major Subject: Computer Science

BENCHMARKING BOTTOM-UP AND TOP-DOWN STRATEGIES TO

SPARQL-TO-SQL QUERY TRANSLATION

A Thesis

by

ANDRII KASHLIEV

COMMITTEE MEMBERS

Dr. Artem Chebotko

Chair of Committee

Dr. Zhixiang Chen

Committee Member

Dr. Pearl Brazier

Committee Member

Dr. Christine Reilly

Committee Member

August 2011

Copyright 2011 Andrii Kashliev

All Rights Reserved

iii

ABSTRACT

Kashliev, Andrii, Benchmarking Bottom-Up And Top-Down Strategies to SPARQL-to-SQL

Query Translation. Master of Science (MS), August, 2011, 40 pp., 2 tables, 7 illustrations,

references, 44 titles.

Many researchers have proposed using conventional relational databases to store and

query large Semantic Web datasets. The most complex component of this approach is SPARQL-

to-SQL query translation. Existing algorithms perform this translation using either bottom-up or

top-down strategy and result in semantically equivalent but syntactically different relational

queries. Do relational query optimizers always produce identical query execution plans for

semantically equivalent bottom-up and top-down queries? Which of the two strategies yields

faster SQL queries? To address these questions, this work studies bottom-up and top-down

translations of SPARQL queries with nested optional graph patterns. This work presents: (1) A

basic graph pattern translation algorithm that yields flat SQL queries, (2) A bottom-up nested

optional graph pattern translation algorithm, (3) A top-down nested optional graph pattern

translation algorithm, and (4) A performance study featuring SPARQL queries with nested

optional graph patterns over RDF databases created in Oracle, DB2, and PostgreSQL.

iv

DEDICATION

The completion of this thesis would not have been possible without the love and support

of my family. My mother, Olga Sheliakina, my father, Sergiy Kashlyev, and my sister, Anya,

wholeheartedly inspired, motivated and supported me by all means to accomplish this degree.

Thank you for your love and patience.

v

ACKNOWLEDGEMENTS

 First, I want to thank God for His love and kindness, for His guidance in this research,

and for the privilege He has bestowed upon me to work with Dr. Artem Chebotko. “Therefore I

will praise you among the nations, O LORD; I will sing praises to your name.” (Psalms 18:49).

Second, I want to thank my parents for their patience and support, both emotional and financial

throughout my study at UTPA. Third, I want to thank Dr. Artem Chebotko for allowing me to

work with him. Finally, I want to thank all the graduate students that worked with me for all their

help. Especially, I want to thank Tony Piazza for all the help and encouragement I received from

him during my first year at UTPA.

vi

TABLE OF CONTENTS

Page

ABSTRACT………………………………………………………………………….. iii

DEDICATION……………………………………………………………………….. iv

ACKNOWLEDGEMENTS………………………………………………………….. v

TABLE OF CONTENTS…………………………………………………………….. vi

LIST OF TABLES…………………………………………………………………… viii

LIST OF FIGURES…………………………………………………………………... ix

CHAPTER I. INTRODUCTION…………………………………………………….. 1

Research Motivation…………………………………………………………. 2

Research Contributions………………………………………………………. 3

Organization of this Document………………………………………………. 3

CHAPTER II. FOUNDATIONS OF RELATIONAL RDF DATABASE

MANAGEMENT SYSTEMS………………………………………………………... 4

Preliminaries: RDF and SPARQL……………………………………………. 4

Relational RDF Database Management System……………………………… 6

Logical Schema………………………………………………………………. 7

Physical Schema……………………………………………………………… 11

CHAPTER III. SPARQL-TO-SQL TRANSLATION ………………………………... 17

Basic Graph Pattern Translation……………………………………………… 17

vii

Bottom-Up Nested Optional Graph Pattern Translation……………………… 19

Top-Down Nested Optional Graph Pattern Translation………………………. 21

CHAPTER IV. PERFORMANCE STUDY…………………….…………………….. 23

Experimental Setup……...……………………………………………………. 23

Dataset and Test Queries……………………………………………………… 23

Bottom-Up and Top-Down Query Performance……………………………… 26

Summary……………………………………………………………………… 29

CHAPTER V. RELATED WORK……………………………………………………. 31

CHAPTER VI. CONCLUSION AND FUTURE WORK……………………………. 35

REFERENCES……………………………………………………………………….. 36

BIOGRAPHICAL SKETCH…………………………………………………………. 40

viii

LIST OF TABLES

Page

Table 1: Properties and Resources in WordNet 1.2………………………………... 24

Table 2: Test SPARQL Queries………………………………………………….. 25

ix

LIST OF FIGURES

Page

Figure 1: Sample RDF Graph………………………………………………………... 5

Figure 2: Function BGPtoFlatSQL ………………………………………………….. 18

Figure 3: Function NOGPtoSQL-BU ……………………………………………….. 20

Figure 4: Function NOGPtoSQL-TD……………………………….......................... 21

Figure 5: Classes and properties of the WordNet ontology …………………………. 24

Figure 6: Bottom-up and top-down query performance …………………………… 27

1

CHAPTER I

INTRODUCTION

 We live in a time when the amount of information published on the Web grows at an

unprecedented pace. One of the challenges imposed by this growth is that most of the data

available on the Web is machine-readable but not machine-understandable. That is, it lacks

semantics, or meaning, that could be interpreted by machines and automated agents. The World

Wide Web Consortium (W3C) has proposed standards that make it possible for data to be shared

and reused across application, enterprise, and community boundaries. These standards promote

the development of the next-generation Web, known as the Semantic Web.

The vast majority of information available on the Web today is published using the

HyperText Markup Language (HTML). HTML is a standard for describing the structure of

published information. Web browsers use this structural information to render the information in

a way that facilitates consumption by humans. Information published using HTML is not

intended for consumption by computers, which makes it difficult for them to make effective use

of the ever increasing volume of information available on the Web. To solve this problem, the

W3C has proposed new standards to enable computers to discern the meaning of available

information. XML (eXtensible Markup Language) is a W3C standard that provides a set of rules

for encoding information. Adoption of XML has now become widespread. Besides having a

standard way to encode information, there needs to be a standard way to express its meaning.

That‟s the purpose of RDF (Resource Description Framework), a W3C standard that supports

2

modeling of information that is made available as web resources. RDF is based on the idea of

making statements about web resources in the form of subject-predicate-object expressions,

called triples. Triples can be encoded using several different W3C standard formats, including

XML, N-Triples and N3. Triples are an intuitive way to describe most of the information being

processed by computers today.

Many researchers have proposed using conventional relational databases to store and

query large Semantic Web datasets [1]. Emerged systems, called relational RDF

databases, share a common design pattern that uses a schema mapping algorithm to generate a

relational database schema, a data mapping algorithm to insert RDF data into

the database, and a query mapping algorithm to translate RDF queries into equivalent SQL

queries. SPARQL-to-SQL translation is not only the most complex mapping

in a relational RDF database, but also very critical to overall querying performance. Existing

algorithms translate SPARQL queries to SQL using either bottom-up or top-down strategy and

result in semantically equivalent but syntactically different relational queries.

Research Motivation

 As the use of RDF becomes more widespread, so too will be the need for systems that

support storing and querying of RDF data. These systems can be built using conventional

relational databases to store and query large Semantic Web datasets. The most complex

component of this approach is SPARQL-to-SQL query translation. Existing algorithms translate

SPARQL queries to SQL using either bottom-up or top-down strategy and result in semantically

equivalent but syntactically different relational queries. While it can be expected that relational

query optimizers produce identical query execution plans for semantically equivalent bottom-up

and top-down queries, is this usually the case in practice? And if not, which strategy yields faster

3

SQL queries? Our motivation is to answer these questions by studying bottom-up and top-down

translations of SPARQL queries with nested optional graph patterns.

Research Contributions

 Our research contributions are: (1) a basic graph pattern translation algorithm that results

in flat SQL, (2) a bottom-up nested optional graph pattern translation algorithm, (3) a top-down

nested optional graph pattern translation algorithm, and (4) a performance study featuring

SPARQL queries with nested optional graph patterns over RDF databases instantiated in Oracle,

DB2, and PostgreSQL.

Organization of this Document

 The remaining chapters of this document are organized as follows: Chapter 2 lists a

number of preliminary definitions, Chapter 3 presents our algorithms for basic graph pattern

translation, bottom-up nested optional graph pattern translation and top-down nested optional

graph pattern translation, Chapter 4 reports our performance study, Chapter 5 reviews related

research, and Chapter 6 concludes the document and reviews some interesting research topics for

future work.

4

CHAPTER II

FOUNDATIONS OF RELATIONAL RDF

DATABASE MANAGEMENT SYSTEMS

 It may be helpful to review some of the fundamental definitions before delving into the

more complex topics which depend on them. In this chapter we discuss some of the most

important terms related to semantic web technology.

Preliminaries: RDF and SPARQL

 Let I, B, L, and V denote pairwise disjoint infinite sets of Internationalized Resource

Identifiers (IRIs), blank nodes, literals, and variables, respectively. Let IB, IL, IV, IBL, and IVL

denote I B, I L, I V, I B L, and I V L, respectively. Elements of the set IBL are

also called RDF terms. In the following, we formalize the notions of RDF triple, RDF graph,

triple pattern, graph pattern, and SPARQL query.

Definition 1 (RDF triple and RDF graph)

An RDF triple t is a tuple (s, p, o) (IB) × I × (IBL), where s, p, and o are a subject, predicate,

and object, respectively. An RDF graph G is a set of RDF triples. We define T and G as infinite

sets of all possible RDF triples and graphs, respectively.

 A sample RDF graph that we use for subsequent examples is shown in Figure 1. The RDF

graph is represented as a set of 11 triples, as well as a labeled graph, in which edges are directed

5

from subjects to objects and represent predicates, circles denote IRIs, and rectangles denote

literals.

We focus on the core fragment of SPARQL defined in the following.

Definition 2 (Triple pattern)

A triple pattern tp is a triple (sp, pp, op) (IVL) × (IV) × (IVL), where sp, pp, and op are a

subject pattern, predicate pattern, and object pattern, respectively. We define TP as an infinite set

of all possible triple patterns.

Definition 3 (Basic graph pattern)

A basic graph pattern bgp is a set of triple patterns {tp1, tp2, …, tpn-1, tpn}, also denoted as tp1

AND tp2 AND … AND tpn-1 AND tpn, where AND is a binary operator that corresponds to the

conjunction in SPARQL and n is the number of triple patterns in bgp.

Definition 4 (Nested optional graph pattern)

A nested optional graph pattern nogp has the form bgp1 OPT{ bgp2 OPT{ … {bgpn-1 OPT{

bgpn}} … }}, where OPT corresponds to the OPTIONAL construct in SPARQL, curly braces {}

Figure 1: Sample RDF Graph

6

denote nesting of graph patterns, and n ≥ 3 represents the number of basic graph patterns in

nogp.

Definition 5 (SPARQL query)

A SPARQL query sparql is defined as

sparql → SELECT varlist WHERE (gp)

where varlist = (v1, v2, ..., vn) is an ordered list of variables and varlist var(gp). We define Q as

an infinite set of all possible SPARQL queries that can be generated by the defined grammar.

Relational RDF Database Management System

 A Relational RDF Database Management System (RRDBMS) relies on a Relational

Database Management System (RDBMS) to store and query RDF datasets. RRDBMS provides a

collection of data structures and algorithms that map operations on RDF data to equivalent

operations on relational data in an RDBMS. In this section, we formalize the notion of RRDBMS

by giving its high-level definition first and defining its individual components afterwards.

Definition 6 (Relational RDF Database Management System)

A relational RDF database management system (RRDBMS) is a tuple (RDBMS, DB, LS, PS,

ALG), where

 RDBMS is a set of RDBMS backends that manage RDF data,

 DB is a set of relational databases implemented in the RDBMS backends to store RDF

data,

7

 LS is a set of logical schemas that specify how a new relational database (becomes an

element in DB) can be created,

 PS is a set of physical schemas that are extended instantiations of logical schemas, such

that each physical schema PS PS describes a relational database DB DB and is

derived from a logical schema LS LS, and

 ALG is a collection of algorithms that perform operations in the RRDBMS, such as

creation of a logical schema, creation of a physical schema and relational database

schema, mapping of RDF data to relational data, and SPARQL-to-SQL query translation.

 While the notions of RDBMS and relational database are well-understood, RRDBMS

logical schemas, physical schemas and algorithms require further explanation found in the

following subsections.

Logical Schema

 The purpose of a logical schema is to encode the structure of a relational database that

can be used for RDF storage, such that this structure can be later instantiated in one or more

RDBMSs. Therefore, the logical schema should record a set of relation names R and a set of

relational attribute names A, such that each a A is associated with one or many relations in R.

While attribute names (further “attributes” for simplicity) are represented by string literals,

relation names (further “relations” for simplicity) may be data-driven, i.e., they may depend on

values found in RDF data, and thus may have more complex structure. In addition, the logical

schema should capture the information about what triples each relation can store and what

attributes of the relation are used to store the components (subject, predicate, and object) of

triples. To achieve this, we introduce two mappings, called γ and δ.

8

Definition 7 (Mapping γ)

Given a set of relations R and a set of triple patterns TP, a mapping γ is a many-to-many mapping

γ : R → TP, if given a relation R R, γ (R) is a set of triple patterns TPR = {tp1, tp2, ..., tpn} TP,

such that for any two distinct triple patterns tpi TPR and tpj TPR, tpi does not subsume tpj and

tpj does not subsume tpi.

 Mapping γ precisely defines what RDF triples can be stored in relation R R, such that if

triple t T matches triple pattern tp γ(R), then R is used to store t. As we mentioned earlier,

besides string literals, R R may include one or more special variables %sub%, %pre%, and

%obj%, that are interpolated using the corresponding values of a triple t = (s, p, o) T , such that

t matches a triple pattern tp γ (R). This provides support for data-driven relations, whose

names are derived only when RDF data is being inserted into an RRDBMS.

 Mapping δ defines what specific components of RDF triples, i.e., subject, predicate, and

object, relational attributes can store.

Definition 8 (Mapping δ)

Given a set of relations R, a set of relational attributes A, and a set P = {sub, pre, obj}, a mapping

δ is a many-to-one mapping δ : R × A → P, if given a relation R R and its attribute a A, δ(R,

a) returns a position pos P, such that for any two distinct attributes a1 and a2 of R, if pos1 =

δ(R, a1) and pos2 = δ(R, a2), then pos1 ≠ pos2.

 Mapping δ restricts a relational attribute to store subjects, predicates or objects, but not

the combination of those, i.e., the same attribute cannot store a subject of one triple and an object

of another triple. In addition, if one attribute of a relation stores triple subjects, no other attribute

9

can store subjects; the same is true for predicates and objects. Therefore, a relation can have at

most one attribute for each position.

 The last mapping that we need is denoted as τ and captures data types D of attributes A

found in relations R. To avoid dependence on data types in a particular RDBMS, we can use

generic data types, such as string, date, and double, defined in the XML Schema language.

Definition 9 (Mapping τ)

Given a set of relations R, a set of relational attributes A, and a set of XML Schema data types D,

a mapping τ is a many-to-one mapping τ : R × A → D, such that given a relation R R and its

attribute a A, τ(R, a) returns a data type d D.

 These three mappings constitute a logical schema.

Definition 10 (Logical Schema)

A logical schema LS is a tuple (lsid, γ, δ , τ), where lsid is a unique identifier of the schema, γ is a

mapping as in Definition 7, δ is a mapping as in Definition 8, and τ is a mapping as in Definition

9. The logical schema definition is very flexible, enabling encoding different types of relations

supported in schema-oblivious, schema-aware, data-driven, and hybrid relational RDF stores.

Moreover, γ and δ allow the design of new types of relations, resulting in a novel user-

customized approach to schema design. In the following example, we show a logical schema that

implements relations used by different approaches.

10

Example 11 (Logical Schema)

A database designer may specify the following logical schema that may be used for the sample

RDF graph in Figure 1.

lsid: 1

γ: Triple → {(?s, ?p, ?o)},

 Name → {(?s, name, ?o)},

 Class%obj% → {(?s, type, ?o)},

 Phone → {(?s, cell, ?o), (?s, phone, ?o)}.

δ: (Triple, s) → sub τ: (Triple, s) → xsd:string

 (Triple, p) → pre (Triple, p) → xsd:anyURI

 (Triple, o) → obj (Triple, o) → xsd:string

 (Name, s) → sub (Name, s) → xsd:anyURI

 (Name, o) → obj (Name, o) → xsd:string

 (Class%obj%, i) → sub (Class%obj%, i) → xsd:anyURI

 (Phone, s) → sub (Phone, s) → xsd:anyURI

 (Phone, p) → pre (Phone, p) → xsd:anyURI

 (Phone, o) → obj (Phone, o) → xsd:unsignedInt

 According to this schema, three relations with fixed names (Triple, Name, and Phone)

and one data-driven relation Class%obj% are defined. Triple can store all possible RDF triples as

specified by the triple pattern (?s, ?p, ?o) in three columns s, p, o that correspond to a subject,

predicate, and object, and have data types xsd:string, xsd:anyURI, and xsd:string, respectively.

Similarly, the structure of relations Name and Phone is defined as Name(s : xsd:anyURI, o :

xsd:string) and Phone(s : xsd:anyURI, p : xsd:anyURI , o : xsd:unsignedInt). Name is intended

to store subjects and objects of any RDF triple whose predicate is name, i.e., the triple matches

triple pattern (?s, name, ?o). More interestingly, Phone is allowed to store any RDF triple whose

predicate is cell or phone, i.e., the triple matches (?s, cell, ?o) or (?s, phone, ?o). Finally, the

actual name of relation Class%obj% is derived from a triple itself, such that special variable

11

%obj% is interpolated with the object value of a triple that matches triple pattern (?s, type, ?o).

For example, if triple (B1, type, Person) is in the graph, its subject is to be stored by relation

ClassPerson(i : xsd:anyURI).

 The four relations are representative of four different approaches to schema design,

namely schema-oblivious (Triple), schema-aware (Name), data-driven

(Class%obj%), and user-driven (Phone), resulting in a flexible hybrid design.

Physical Schema

 The logical schema serves as a template that can be applied to generate relational

database schemas in one or more RDBMS. Once a relational database schema is created in an

RDBMS, we derive a new set of mappings that describe the concrete storage structure. This set

of mappings is referred to as physical schema.

 In a physical schema, mappings γ and δ are initially inherited from the corresponding

logical schema. If data-driven relations are used, these mappings may be augmented with new

instances. Similarly, mapping τ is inherited from the corresponding logical schema with generic

data types mapped to RDBMS-specific data types. τ may also evolve when data-driven relations

are created.

 Next, while mappings γ and δ are good means to capture what data can be stored in

relations, they are not very straightforward to use for deciding how to insert new triples or match

SPARQL triple patterns over relations. One step towards this goal is defining reverse mappings

γ
−1

 : TP → R and δ
−1

 : P → R × A. The reverse mappings may not be easy to use, because γ
−1

 is

defined on a finite set of triple patterns that may subsume other triple patterns and δ
−1

 returns a

set for a given position. Therefore, to better support data mapping and query translation, we

introduce mappings α and β, deriving them from γ
−1

 and δ
−1

, respectively.

12

Definition 12 (Mapping α)

Given a set of all possible triple patterns TP = (IVL) × (IV) × (IVL) and a set of relations REL in a

relational RDF database, a mapping α is a many-to-many mapping α : TP → REL, if given a

triple pattern tp TP, α(tp) is a relation in which all the triples that may match tp are stored.

Definition 13 (Mapping β)

Given a set of all possible triple patterns TP = (IVL) × (IV) × (IVL), a set of triple POS = {sub,

pre,obj}, and a set of relational attributes ATR in a relational RDF database, a mapping β is a

many-to-one mapping β : TP × POS → ATR, if given a triple pattern tp TP and a position pos

 POS, β(tp, pos) is a relational attribute whose value may match tp at position pos.

 Mappings γ, δ, τ, α, and β constitute a physical schema.

Definition 14 (Physical Schema)

A physical schema PS is a tuple (psid, lsid, rdbms, γ, δ, τ, α, β), where psid is a unique identifier

of the physical schema, lsid is a unique identifier of the corresponding logical schema, rdbms is a

reference to the corresponding RDBMS, γ is a mapping as in Definition 7, δ is a mapping as in

Definition 8, τ is a mapping as in Definition 9 with the generic data types substituted by data

types supported by rdbms, α is a mapping as in Definition 12, and β is a mapping as in Definition

13.

 A physical schema is required to perform operations in an RRDBMS, such as mapping of

RDF data to relational data, SPARQL-to-SQL query translation, and reconstruction of original

RDF data from relational data.

13

Example 15 (Physical Schema)

We can derive a physical schema based on the mappings in Example 11. The first step is to select

a specific RDBMS - we choose Oracle version 10g for this example and assume valid RDBMS

credentials (username and password) are provided. First, we describe the usage of a physical

schema for data mapping. In this situation we use a physical schema to insert triples into the

appropriate relational tables.

lsid:

1

γ: Triple → {(?s, ?p, ?o)},

 Name → {(?s, name, ?o)},

 Class%obj% → {(?s, type, ?o)},

 Phone → {(?s, cell, ?o), (?s, phone, ?o)}.

δ: (Triple, s) → sub τ: (Triple, s) → VARCHAR2(256)

 (Triple, p) → pre (Triple, p) → VARCHAR2(256)

 (Triple, o) → obj (Triple, o) → VARCHAR2(256)

 (Name, s) → sub (Name, s) → VARCHAR2(256)

 (Name, o) → obj (Name, o) → VARCHAR2(256)

 (Class%obj%, i) → sub (Class%obj%, i) → VARCHAR2(256)

 (Phone, s) → sub (Phone, s) → VARCHAR2(256)

 (Phone, p) → pre (Phone, p) → VARCHAR2(256)

 (Phone, o) → obj (Phone, o) → VARCHAR2(256)

 To store the following three triples, we determine which tables and attributes will be used.

α(B1, type, Person) = {Class%obj%, Triple},

β (Class%obj%, sub) = i,

β (Class%obj%, pre) = undef,

β (Class%obj%, obj) = undef,

β(Triple, sub) = s,

β(Triple, pre) = p,

β(Triple, obj) = o.

 For this triple (B1, type, Person), α returns a set containing two relations, Class%obj%

and Triple. This means that the triple must be stored in both relations. The first one, Class%obj%

represents a data-driven (or dynamic) relation. At runtime the name of the relation is derived

14

using the object of the specified triple; in this case, it would be ClassPerson. It is possible that

this relation may not exist at runtime. If necessary it can be created on-the-fly before the triple is

inserted. The triple must also be stored in the Triple relation. In this case the relation already

exists because it was created during schema mapping. Once we know which tables will store the

triple, β gives us the attributes that will be used to store the subject, predicate and object. Using β

we know that attribute i should be used to store the subject in the relation named ClassPerson.

When β returns undef, nothing is stored for the specified position. In this case it means that the

predicate and object are not stored in the ClassPerson relation. Using β we know that attributes s,

p, and o store the subject, predicate and object, respectively, in the relation named Triple.

α(B1, name, paul) = {Name, Triple},

β(Name, sub) = s,

β(Name, pre) = undef,

β(Name, obj) = o,

β(Triple, sub) = s,

β(Triple, pre) = p,

β(Triple, obj) = o.

 For this triple (B1, name, paul), α returns a set containing two relations Name and Triple.

Again, the triple must be stored in both relations. In this case, both relations already exist so the

next step is to determine where to store the subject, predicate and object of this triple. For the

Name relation, the subject is stored in attribute s and the object is stored in attribute o. The Triple

relation is handled in exactly the same way as the previous triple.

α(B1, phone, 111−1111) = {Phone, Triple},

β(Phone, sub) = s,

β(Phone, pre) = p,

β(Phone, obj) = o,

β(Triple, sub) = s,

β(Triple, pre) = p,

β(Triple, obj) = o.

 For this triple, (B1, phone, 111−1111), α returns a set containing two relations Phone and

15

Triple. For both of these relations, β returns s, p, and o to store the subject, predicate and object,

respectively.

 Next, we describe the usage of the physical schema for query translation. In this scenario,

SPARQL queries provide graph patterns to be matched. Consider the following graph patterns:

(?a ?b ?c) For this graph pattern, α returns a set containing one relation,

Triple. This relation will be used to satisfy this query.

(?a cell ?b) For this graph pattern, α returns a set containing two relations,

Phone and Triple. In this scenario, we have the choice of which

relation to execute the query against. Depending on the specifics

of the query mapping algorithms, there may be different reasons

for selecting one relation over another. In this example, the Phone

relation likely has fewer tuples and may therefore provide faster

query execution.

(?a type Person) For this graph pattern, α returns a set containing one relation,

Class%obj%. As described previously, the name of this relation is

derived at runtime. In this case, it would be ClassPerson. During

query translation, we must determine whether or not this relation

has actually been realized. If it has, it can be queried and the

results returned. If not, the query returns no results. From this

example we can see that the usage of α during query translation is

different from its use during data mapping.

 In addition, our translation uses three auxiliary functions: (1) a function alias that

16

generates a unique alias for a relation, (2) a function vars that returns a set of all variables in a

graph pattern, and (3) a function name that generates a unique name for a variable in V, such that

the generated name conforms to the SQL syntax for relational attribute names (e.g., a variable

can be “renamed” by simply removing initial „?‟ or‟$‟).

Finally, we assume that a basic graph pattern is comprised of at least one triple pattern

and contains at least one variable. [2] and [3] describe how these corner cases can be handled.

17

CHAPTER III

SPARQL-TO-SQL TRANSLATION

 In this chapter we present our basic graph pattern translation algorithm that yields flat

SQL queries as well as our bottom-up nested optional graph pattern translation algorithm, and

our top-down nested optional graph pattern translation algorithm.

Basic Graph Pattern Translation

 A basic graph pattern, which is a set of triple patterns, is the main building block of

SPARQL queries. While there exist both bottom-up and top-down strategies that generate

equivalent SQL queries with nested subqueries, this section presents a simple algorithm that

generates fully flat SQL queries. Therefore, with this algorithm in place, the order of translation

becomes unimportant, since only a naive query optimizer does not consider inner join reordering.

 Our basic graph pattern translation function BGPtoFlatSQL is shown in Figure 2. It

translates a SPARQL basic graph pattern bgp that consists of a set of triple patterns tp1, tp2, …,

tpn into an equivalent flat SQL query that can be executed by a relational database engine.

BGPtoFlatSQL constructs from, where, and select clauses of an SQL query as follows. For each

triple pattern tpi in bgp, a unique table alias ai is assigned and table α(tpi) with this alias is

appended to the from clause. The algorithm then computes an inverted index on all variables in

bgp, such that each distinct variable is associated with

18

attributes in the respective tables from the from clause. The corresponding attribute names for

variables are computed using mapping β. The where clause is first constructed to ensure that any

non-variables in bgp are restricted to their values (e.g., literals or identifiers). In particular, each

relational attribute that corresponds to a literal or IRI in bgp must contain this literal or IRI value.

The inverted index is then used to append join conditions into the where clause, such that all

attributes that correspond to the same variable must be equal. Finally, the select clause is

generated to include attributes that correspond to every distinct variable in bgp, with attributes

being renamed using auxiliary function name(). A flat SQL query constructed with computed

Figure 2: Function BGPtoFlatSQL

19

select, from, and where clauses is returned.

This algorithm is used by our bottom-up and top-down translation algorithms for nested

optional graph patterns described in the following sections.

Bottom-Up Nested Optional Graph Pattern Translation

The bottom-up approach to SPARQL-to-SQL query translation is well-studied in the

literature [2] and implemented in many relational RDF databases. This section presents an

algorithm that implements one of our translation rules described in [2]. It should be noted that,

while this work assumes that nested OPTIONAL clauses contain basic graph patterns, which is

sufficient for our study, in the general case, other graph patterns, such as sequential optional

graph patterns and alternative graph patterns, are possible. The algorithm uses the translation rule

for the general case with an additional simplification that eliminates the call of the Coalesce

function for some attributes in projection lists. The use of Coalesce is redundant with only

basic graph patterns assumed in OPTIONAL clauses; however, other simplifications on join

conditions are not applied.

Our bottom-up translation function NOGPtoSQL-BU is shown in Figure 3. It visits each

basic graph pattern in a SPARQL nested optional graph pattern nogp starting from bgpn and

going up to bgp1. Each basic graph pattern is translated to SQL using function BGPtoFlatSQL

producing a flat SQL query. During the first loop iteration, the translation of bgpn is assigned to

variable sql and the translation of bgpn-1 is assigned to variables sqli. A new SQL query that

computes a left outer join between virtual relations

20

sqli and sql is constructed. This query contains: “ ($sqli) $a1 Left Outer Join ($sql)

$a2” in its From clause, where a1 and a2 are unique aliases; a join condition “$a1.$ra = $a2.$ra

Or $a1.$ra Is Null Or $a2.$ra Is Null” in its On clause, which requires common

relational attributes in a1 and a2 to be equal or one of them to be Null; and a projection list in its

Select clause of all attributes in a1 and all other unique attributes in a2. This newly constructed

query is assigned to variable sql, overwriting its previous value. The following loop iteration

repeats the procedure but with a new value of sql as previously described and a new value of sqli

that now holds the translation of bgpn-2. After the final iteration, a value of sql represents a fully

generated query and is returned.

Figure 3: Function NOGPtoSQL-BU

21

Top-Down Nested Optional Graph Pattern Translation

 One of the first top-down SPARQL-to-SQL query translations found in the literature is

described in our unpublished report [3]. This section summarizes our solution for the case when

only basic graph patterns are used in OPTIONAL clauses.

 Our top-down translation function NOGPtoSQL-TD is shown in Figure 4.

The logic of this algorithm is similar to the logic described for NOGPtoSQL-BU. One obvious

difference is that function NOGPtoSQL-TD visits each basic graph pattern in a SPARQL nested

optional graph pattern nogp starting from bgp1 and going down to bgpn.

Figure 4: Function NOGPtoSQL-TD

22

The other difference lies in how a join condition is generated. It encodes the following

semantics: before a nested optional graph pattern can succeed, all containing optional graph

patterns must have succeeded. Therefore, a join condition must check that a basic graph pattern

in a containing OPTIONAL clause has a solution. This is achieved via a Not Null check on a

relational attribute with special properties: this attribute must appear in the Select clause of

sql, since the translation of the containing graph pattern is part of sql, and it must correspond to a

variable that first occurred in a basic graph pattern of the containing OPTIONAL clause and not

in any preceding basic graph pattern. If such an attribute is not readily available, a new attribute

for a “dummy” variable can be introduced in a basic graph pattern to perform the check. Further

details on this solution can be found in [3].

23

CHAPTER IV

PERFORMANCE STUDY

 This chapter reports our query performance study conducted using the WordNet dataset

and test SPARQL queries that were translated to SQL using the proposed bottom-up and top-

down query translation algorithms and evaluated in three relational database management

systems.

Experimental Setup

 The experiments were conducted on a server with two 2GHz Intel Xeon E5504 Nehalem

CPUs, 32GB RAM and 6TB disk array running Ubuntu 9.02 Jaunty x64. Three different

database management systems, namely Oracle 10.2 Express Edition, DB2 9.7 Express-C and

PostgreSQL 8.3.12, were installed on the server.

 Our algorithms were implemented in Java 6 within the S2ST system; generic schema and

data mapping algorithms supported by S2ST were used to generate identical database schemas in

Oracle, DB2 and PostgreSQL, and to store the RDF dataset into the databases, respectively.

Dataset and Test Queries

 The OWL representation of WordNet was chosen for our experiments. WordNet is a

lexical database for the English language, which organizes English words into synonym sets

according to part of speech (e.g. noun, verb, etc.) and enumerates linguistic relations between

24

these sets. In the WordNet.OWL, each part of speech is modeled as an owl:Class, and each

linguistic relation is modeled as an owl:ObjectProperty, owl:DatatypeProperty,

owl:TransitiveProperty, or owl:SymmetricProperty. The simplified WordNet ontology is

illustrated in Figure 5.

The figure does not include some classes (e.g., wn:Nouns_and_Verbs) and properties (e.g.,

wn:mMeronym) that are not essential for the understanding of the dataset and the experiments.

The relevant statistics for the WordNet dataset is shown in Table I. For example, WordNet.OWL

contains 251,726 triples involving rdf:type as the predicate, and 140,470 of them have

Figure 5: Classes and properties of the WordNet ontology

25

wn:WordObject as the object.

 Table II shows 22 SPARQL queries over the WordNet dataset that were carefully selected

for our experiments.

In the table, W stands for WHERE and O stands for OPTIONAL; the SPARQL SELECT clause is

omitted for brevity, and the projection includes all distinct variables of a query. Queries Q1-Q6

are constructed as all possible permutations of the three triple patterns occurring outside and

inside OPTIONAL clauses. These queries have one nested OPTIONAL clause. Queries Q1’-Q6’

and Q1”-Q6” are obtained from respective queries Q1-Q6 by restricting variable values in the

first and second triple patterns, respectively. The rationale for such restrictions is to reduce

cardinalities of intermediate relations resulting from first left outer joins in the queries. In

particular, in terms of the intermediate relation size, Q1’-Q6’ favor the top-down approach and

..

26

Q1”-Q6” favor the bottom-up approach. We chose not to restrict variable values in the third

triple pattern of the nested OPTIONAL clause in any of queries Q1-Q6 because the relation that

results after matching the third triple pattern is always used as the right operand of a left outer

join and therefore can only marginally influence the join result for the given dataset and queries.

Finally, queries Q7, Q8, Q7’, and Q8’ are interesting because they only include triple patterns

of the same form with same predicate and variables as subject and object patterns. From the

viewpoint of bottom-up and top-down translations, these queries are “symmetric”.

Bottom-Up and Top-Down Query Performance

 The S2ST system was used to generate database schemas with property relations [2] and

load WordNet.OWL into Oracle, DB2 and PostgreSQL. The test SPARQL queries were translated

to SQL using algorithms NOGPtoSQL-BU and NOGPtoSQL-TD. The resulting SQL queries

were evaluated by RDBMSs. To prevent an unintentional comparison of the three RDBMSs,

Figure 6 reports the ratio of a bottom-up query evaluation time to a top-down query evaluation

time for each test query. In the figure, if ratio > 1, a top-down query was faster; if ratio < 1, a

bottom-up query was faster; and if ratio = 1, both top-down and bottom-up queries showed the

same execution time.

 Our first observation was that bottom-up and top-down queries generally showed

different execution times. This observation gave the definite “No” answer to question “While it

can be expected that relational query optimizers produce identical query execution plans for

semantically equivalent bottom-up and top-down queries, is this usually the case in practice?” in

the case of SPARQL queries with nested optional graph patterns.

27

 Our second observation was that different database management systems showed quite

different and sometimes even “contradicting” query evaluation ratios. For example, Oracle

showed much less contrast between bottom-up and top-down approaches than DB2 and

PostgreSQL. Some queries, such as Q1”, Q3, Q4, Q5”, and Q6”, showed different classes of

ratios (> 1, < 1, and = 1) in different databases. For example, for Q6”, the bottom-up approach

Figure 6: Bottom-up and top-down query performance

28

was slower than the top-down approach in Oracle, equivalent to the top-down approach in DB2,

and faster than the top-down approach in PostgreSQL.

 Our third observation was that selectivities of participating triple patterns and their

occurrence in a SPARQL query had a significant impact on which SPARQL-to-SQL translation

strategy won, which could be explained by a similar effect of cardinalities of join participating

relations and intermediate relations on corresponding top-down and bottom-up SQL queries. In

particular, top-down queries Q1 and Q2 were consistently faster in all experiments, given that the

first triple pattern ?a rdf:type :Adjective yielded the smallest result set of 7,345 triples (the other

two triple patterns yielded over 10 times larger results), and therefore the intermediate relation in

the top-down queries was also small and over 10 times smaller than the intermediate relation in

the corresponding bottom-up queries. When ?a rdf:type :Adjective occurred in the first

OPTIONAL clause of Q3 and Q4, the situation was opposite: the intermediate relation in the

bottom-up queries was over 10 times smaller than the intermediate relation in the corresponding

top-down queries. However, while all three systems showed that the ratios decreased when

compared to Q1 and Q2, only Oracle showed the advantage of the bottom-up approach, and DB2

and PostgreSQL still ran top-down queries faster. Moving ?a rdf:type :Adective to the nested

OPTIONAL clause in Q5 and Q6 did not favor one or the other translation strategy since the last

triple pattern did not influence the size of an intermediate relation. Top-down queries Q5 and Q6

were consistently faster in all experiments. Next, restricting selectivities of the first triple pattern

in Q1’-Q6’ to 1 or 2 triples, which was favorable for the top-down approach, showed that the

top-down queries were faster or as fast as the corresponding bottom-up queries. Interestingly,

Oracle showed identical performance for both top-down and bottom-up queries Q1’-Q6’.

Finally, Q1”-Q6”, which restricted selectivites of the second triple pattern and favored the

29

bottom-up approach, showed a consistent performance pattern only for PostgreSQL, where

bottom-up queries were faster. For Oracle and DB2, some queries showed a similar pattern: top-

down queries Q1” and Q5” were faster and bottom-up queries Q3” and Q4” were faster; in

addition, both bottom-up and top-down Q6” showed identical times in DB2, top-down Q6” was

faster in Oracle, bottom-up query Q2” was significantly faster (the smallest ratio in our

experiments) in Oracle but as fast as top-down query Q2” in DB2.

 Our fourth observation was that “symmetric” queries Q7 and Q8 (and similarly Q7’ and

Q8’), which are neutral to both top-down and bottom-up translation strategies, showed better

performance of the top-down queries. The ratios were significantly larger for DB2 and

PostgreSQL, while only from 1.19 to 2.12 times larger in Oracle. These “symmetric” queries

showed that, in a general (with no particular bias towards one or the other translation strategy)

case, the top-down approach is superior to the bottom-up approach.

 Our last, fifth observation was that a choice of a translation strategy could have a

tremendous impact on a resulting query performance. In one case of Q2” for Oracle, the bottom-

up query was over 600 times faster than the top-down query. In 12 other cases (all occurred in

experiments with DB2 and PostgreSQL), the ratios were greater than 1,000 in the favor of top-

down queries.

Summary

 The performance study gives the answers to the two questions raised in this work. For the

first question, our results imply that, in a general case, a relational RDF database designer cannot

rely on a relational query optimizer to produce identical or close to identical query execution

plans for semantically equivalent SQL queries resulted from bottom-up and top-down

30

translations of SPARQL queries. To answer the second question, neither of the two approaches is

universally better than its sibling. The performance of queries produced by the bottom-up and

top-down translation strategies depends on many factors, including selectivities of triple patterns,

their order and location in a SPARQL query, and even a relational engine that evaluates

translated queries. A number of important observations are made that suggest directions for

choosing the best translation strategy for a particular query by a SPARQL query optimizer; the

choice can have a tremendous impact on query performance.

31

CHAPTER V

RELATED WORK

 There has been considerable research done in the area of Semantic Web data. In this

chapter, we review the research that is most closely related to the work we have done here. In

recent years, several RDBMS-based RDF stores (see [4] for a survey) have been developed to

support large-scale Semantic Web applications. The conflict between the graph RDF [5,6] data

model and the target relational data model of such systems requires providing a way to deal with

various mappings between the two data models, such as schema mapping, data mapping, and

query mapping (a.k.a. query translation). Schema mapping is used to generate a relational

database schema that can store RDF data. Schema mapping strategies employed by existing RDF

stores fall into four categories:

Schema-oblivious (also called generic or vertical): A single relation, e.g., Triple(s,p,o), is

used to store RDF triples, such that attribute s stores the subject of a triple, p stores its

predicate, and o stores its object. Schema-oblivious RDF stores include Jena [7, 8],

Sesame [9], 3store [10,11], KAON [12], RStar [13], and OpenLink Virtuoso [14]. This

approach has no concerns of RDF schema or ontology evolution, since it employs a

generic database representation.

32

Schema-aware (also called specific or binary): This approach usually employs an RDF schema

or ontology to generate so called property relations and class relations. A property relation, e.g.,

Property(s, o), is created for each property in an ontology and stores subjects s and objects o

related by this property. A class relation, e.g., Class(i), is created for each class in an ontology

and stores instances i of this class. An extension to the idea of property relations is a clustered

property relation [15], e.g., Clustered(s, o1, o2, ... , on), which stores subjects s and objects o1, o2,

..., on related by n distinct properties (e.g.,

< s p1 o1 >, < s p2 o2 >, etc.). In [16], along with property and class relations, class-subject

and class-object relations are introduced. A class-subject relation, e.g., ClassSubject(i, p,

o) stores triples whose subjects are instances of a particular class in an ontology.

Similarly, a class-object relation, e.g., ClassObject(s, p, i), stores triples whose objects are

instances of a particular class. Such relations are useful for queries that retrieve all

information about an instance (subject or object) of a particular class. Representatives of

schema-aware RDF stores are Jena [17–19], DLDB [20], RDFSuite [21,22], DBOWL

[23], PARKA [24], and RDFPROV [25,26]. Schema evolution for this approach is quite

straightforward: the addition or deletion of a class/property in an ontology requires the

addition or deletion of a relation (or relational tuples) in the database. More information

on ontology evolution can be found in [27] and [28]. The schema-aware approach is in

general yields better query performance than the schema oblivious approach as has been

shown in several experimental studies [29, 21, 16, 22]. In addition, the use of a column-

oriented DBMS, in conjunction with vertical partitioning of relations, has shown further

improvements in query performance [30].

Data-driven: This approach uses RDF data to generate database schema. For example, in

33

[31], a database schema is generated based on patterns found in RDF data using data

mining techniques. RDF store RDFBroker [32] implements signature relations, which are

conceptually similar to clustered property relations, but are generated based on RDF data

rather than RDF Schema information. In general, relations generated by the schema-

aware approach can also be supported by the data-driven approach (e.g., property

relations in Sesame [9] are created when their instances are first seen in an RDF

document during data mapping). RDFBroker [32] reports improved in-memory query

performance over Sesame and Jena for some test queries. Schema evolution for the data-

driven approach, if supported, might be expensive.

Hybrid: This approach uses the mix of features of the previous approaches. An example

of the hybrid database schema (resulted from schema-oblivious and schema-aware

approaches) is presented in [22], where a schema-oblivious database representation, e.g.,

Triple(s, p, o), is partitioned into multiple relations based on the data type of object o, and

a binary relation, e.g., Class(i, c), is introduced to store instances i of classes c. [22]

reports comparable query performance of the hybrid and schema-aware approaches.

 Data mapping is used to shred RDF triples into relational tuples and insert them into the

database. Data mapping algorithms employed by existing RDF stores are usually fairly

straightforward, such that RDF triples are inserted into a single relation as in the schema-

oblivious approach, or into one or multiple relations as in the other approaches. Several data

mapping strategies and algorithms are presented in [16].

 One of the most complex mappings in relational RDF databases is the SPARQL-to-SQL

query mapping or translation [2], [33], [34], [3], [35], [36]. Existing algorithms translate

34

SPARQL queries to SQL using either bottom-up or top-down strategy and result in semantically

equivalent but syntactically different relational queries. To our best knowledge, this work is the

first to compare bottom-up and top-down query translations in the context of complex nested

optional graph patterns. The importance of such a comparison is twofold: it gives insights to the

query optimization problem of choosing a “good” translation strategy for a particular query and

motivates future research on a potentially hubrid translation strategy where both bottom-up and

top-down approaches are employed. While we present this work in the context of relational RDF

databases, its insights are also beneficial for query optimization in non-relational RDF databases,

such as emerging Hadoop and HBase based RDF data management systems in the cloud

environment [37], [38].

 Other related works on RDF query optimization that are complementary to our research

include containment and minimization of RDF/S query patterns [39]. SPARQL query rewriting

[40], and various RDF data indexing techniques [41], [42], [43], [44].

35

CHAPTER VI

CONCLUSION AND FUTURE WORK

 In this thesis, we studied the bottom-up and top-down SPARQL-to-SQL translation

strategies and compared them empirically in the context of SPARQL queries with nested optional

graph patterns. We presented a basic graph pattern translation algorithm that results in flat SQL

queries, making the case that the order of translation is not important for such graph patterns. We

proposed bottom-up and top-down nested graph pattern translation algorithms and compared

their resulting SQL queries in Oracle, DB2, and PostgreSQL. Our performance study suggested

that the choice between bottom-up and top-down translation algorithms can have dramatic

performance implications on the resulting SQL queries. This choice is dependant on many

factors, including selectivities of triple patterns, their order and location in a SPARQL query, and

even a relational engine that evaluates translated queries. In the future, we will research a formal

framework for optimizing SPARQL queries and defining heuristics for choosing a “good”

translation strategy for a SPARQL query.

36

REFERENCES

[1] A. Chebotko and S. Lu, Querying the Semantic Web: An Efficient Approach Using

Relational Databases. LAP Lambert Academic Publishing, 2009.

[2] Chebotko, S. Lu, and F. Fotouhi. Semantics preserving SPARQL-to-SQL translation.

Data & Knowledge Engineering (DKE), 68(10):973–1000, 2009.

[3] A. Chebotko, S. Lu, H.M. Jamil, and F. Fotouhi, “Semantics preserving SPARQL-to-

SQL query translation for optional graph patterns,” Wayne State University, Tech.

Rep. TR-DB-052006-CLJF, May 2006, available from

http://www.cs.wayne.edu/~artem/main/research/TR-DB-052006-CLJF.pdf.

[4] D. Beckett and J. Grant. SWAD-Europe Deliverable 10.2: Mapping SemanticWeb

data with RDBMSs. Technical report, 2003. Available from

http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mapping_report.

[5] W3C. RDF Primer.W3C Recommendation, 10 February 2004. F. Manola and E.

Miller (Eds.). 2004. Available from http://www.w3.org/TR/rdf-primer/.

[6] W3C. Resource Description Framework (RDF): Concepts and Abstract Syntax. W3C

Recommendation, 10 February 2004. G. Klyne, J. J. Carroll, and B. McBride (Eds.).

2004. Available from http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

[7] K.Wilkinson, C. Sayers, H. Kuno, and D. Reynolds. Efficient RDF storage and

retrieval in Jena2. In Proc. of the International Workshop on Semantic Web and

Databases (SWDB), pages 131–150, 2003.

[8] K. Wilkinson, C. Sayers, H. A. Kuno, D. Reynolds, and L. Ding. Supporting scalable,

persistent Semantic Web applications. IEEE Data Eng. Bull., 26(4):33–39, 2003.

[9] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architecture for

storing and querying RDF and RDF Schema. In Proc. of the International Semantic

Web Conference (ISWC), pages 54–68, 2002.

[10] S. Harris and N. Gibbins. 3store: Efficient bulk RDF storage. In Proc. of the

International Workshop on Practical and Scalable Semantic Systems (PSSS), pages

1–15, 2003.

http://www.w3.org/TR/rdf-primer/

37

[11] S. Harris and N. Shadbolt. SPARQL query processing with conventional relational

database systems. In Proc. of the International Workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS), pages 235–244, 2005.

[12] R. Volz, D. Oberle, B. Motik, and S. Staab. KAON SERVER - a Semantic Web

management system. In Proc. of the International World Wide Web Conference

(WWW), Alternate Tracks - Practice and Experience, 2003.

[13] L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu. RStar: an RDF storage and query system

for enterprise resource management. In Proc. of the International Conference on

Information and Knowledge Management (CIKM), pages 484–491, 2004.

[14] O. Erling. Implementing a SPARQL compliant RDF triple store using a SQL-

ORDBMS. Technical report, OpenLink Software Virtuoso, 2001. Available from

http://virtuoso.openlinksw.com/wiki/main/Main/VOSRDFWP.

[15] K. Wilkinson. Jena property table implementation. In Proc. of the International

Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS), 2006.

[16] Chebotko, X. Fei, S. Lu, and F. Fotouhi. Scientific workflow provenance metadata

management using an RDBMS-based RDF store. Technical Report TR-DB-092007-

CFLF, Wayne State University, September 2007. Available from

http://www.cs.wayne.edu/˜artem/main/research/TR-DB-092007-CFLF.pdf.

[17] K. Wilkinson. Jena property table implementation. In Proc. of the International

Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS), 2006.

[18] K.Wilkinson, C. Sayers, H. Kuno, and D. Reynolds. Efficient RDF storage and

retrieval in Jena2. In Proc. of the International Workshop on Semantic Web and

Databases (SWDB), pages 131–150, 2003.

[19] K. Wilkinson, C. Sayers, H. A. Kuno, D. Reynolds, and L. Ding. Supporting scalable,

persistent Semantic Web applications. IEEE Data Eng. Bull., 26(4):33–39, 2003.

[20] Z. Pan and J. Heflin. DLDB: Extending relational databases to support Semantic Web

queries. In Proc. of the International Workshop on Practical and Scalable Semantic

Web Systems (PSSS), pages 109–113, 2003.

[21] S. Alexaki, V. Christophides, G. Karvounarakis, and D. Plexousakis. On storing

voluminous RDF descriptions: The case of Web portal catalogs. In Proc. of the

International Workshop on the Web and Databases (WebDB), pages 43–48, 2001.

[22] Y. Theoharis, V. Christophides, and G. Karvounarakis. Benchmarking database

representations of RDF/S stores. In Proc. of the International Semantic Web

Conference (ISWC), pages 685–701, 2005.

38

[23] S. Narayanan, T. M. Kurc, and J. H. Saltz. DBOWL: Towards extensional queries on

a billion statements using relational databases. Technical Report OSUBMI TR 2006

n03, Ohio State University, 2006. Available from

http://bmi.osu.edu/resources/techreports/osubmi.tr.2006.n3.pdf.

[24] K. Stoffel, M. G. Taylor, and J. A. Hendler. Efficient management of very large

ontologies. In Proc. of the American Association for Artificial Intelligence Conference

(AAAI), pages 442–447, 1997.

[25] Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi. Storing and querying scientific

workflow provenance metadata using an RDBMS. In Proc. of the IEEE International

Workshop on Scientific Workflows and Business Workflow Standards in e-Science,

pages 611–618, 2007.

[26] Chebotko, X. Fei, S. Lu, and F. Fotouhi. Scientific workflow provenance metadata

management using an RDBMS-based RDF store. Technical Report TR-DB-092007-

CFLF, Wayne State University, September 2007. Available from

http://www.cs.wayne.edu/~artem/main/research/TR-DB-092007-CFLF.pdf.

[27] L. Stojanovic. Methods and Tools for Ontology Evolution. Ph.D. Dissertation,

University of Karlsruhe, Germany, 2004. Available from http://digbib.ubka.uni-

karlsruhe.de/volltexte/documents/1241.

[28] G. Flouris, D.Manakanatas, H. Kondylakis, D. Plexousakis, and G. Antoniou.

Ontology change: classification and survey. Knowledge Engineering Review, 23(2),

2008.

[29] R. Agrawal, A. Somani, and Y. Xu. Storage and querying of e-commerce data. In

Proc. of the Internatonal Conference on Very Large Data Bases (VLDB), pages 149–

158, 2001.

[30] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable Semantic Web

data management using vertical partitioning. In Proc. of the International Conference

on Very Large Data Bases (VLDB), pages 411–422, 2007.

[31] L. Ding, K. Wilkinson, C. Sayers, and H. Kuno. Application specific schema design

for storing large RDF datasets. In Proc. of the International Workshop on Practical

and Scalable Semantic Systems (PSSS), 2003.

[32] M. Sintek and M. Kiesel. RDFBroker: A signature-based high-performance RDF

store. In Proc. of the European Semantic Web Conference (ESWC), pages 363–377,

2006.

[33] J. Perez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL. ACM

Transactions on Database Systems (TODS), pages 16:1-16:45, 2009.

39

[34] R. Cyganiak. A relational algebra for SPARQL. Hewlett-Packard Laboratories, Tech.

Rep. HPL-2005-170, 2005, available from

http://www.hpl.hp.com/techreports/2004/HPL-2005-170.html.

[35] F. Zemke. Converting SPARQL to SQL. Tech. Rep., October 2006, available from

http://lists.w3.org/Archives/Public/public-rdf-dawg/2006OctDec/att-0058/sparql-to-

sql.pdf

[36] S. Harris and N. Shadbolt. SPARQL query processing with conventional relational

database systems. In Proc. of SSWS, pages 235-244, 2005.

[37] M. F. Husain, L. Khan, M. Kantarcioglu, and B. M. Thuraisingham. Data intensive

query processing for large RDF graphs using cloud computing tools. In Proc. of

CLOUD, pages 1-10, 2010.

[38] C. Franke, S. Moring, A. Chebotko, J. Abraham, and P. Brazier. Distributed Semantic

Web data management in HBase and MySQL Cluster. In Proc. of CLOUD, 2011.

[39] G. Serfiotis, I. Koffina, V. Christophides, and V. Tannen. Containment and

minimization of RDF/S query patterns. In Proc. of ISWC, pages 607-623, 2005.

[40] O. Hartig and R. Heese. The SPARQL query graph model for query optimization. In

Proc. of ESWC, pages 564-578, 2007.

[41] A. Harth and S. Decker. Optimized index structures for querying RDF from the Web.

In Proc. of LA-WEB, pages 71-80, 2005.

[42] O. Udrea, A. Pugliese, and V. S. Subrahmanian. GRIN: A graph based RDF index. In

Proc. of AAAI, pages 1465-1470, 2007.

[43] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for Semantic Web

data management. Proc. of PVLDB, pages 1008-1019, 2008.

[44] G. H. L. Fletcher and P. W. Beck. Scalable indexing of RDF graphs for efficient join

processing. In Proc. of CIKM, pages 1513-1516, 2009.

http://www.hpl.hp.com/techreports/2004/HPL-2005-170.html
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006OctDec/att-0058/sparql-to-sql.pdf
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006OctDec/att-0058/sparql-to-sql.pdf

40

BIOGRAPHICAL SKETCH

Andrii Kashliev earned a Master of Science in Computer Science from the University of

Texas – Pan American in August 2011. He earned a Bachelor of Science and a Master of Science

in Electrical Engineering from Kyiv Polytechnic Institute in 2007 and 2009 respectively. His

permanent mailing address is Bakinskaja 37, Apt. 373, Kyiv 04086 Ukraine.

	Benchmarking Bottom-Up and Top-Down Strategies to Sparql-To-Sql Query Translation
	Recommended Citation

	BENCHMARKING BOTTOM-UP AND TOP-DOWN STRATEGIES TO SPARQL-TO-SQL QUERY TRANSLATION

