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ABSTRACT 

 

 

Kashliev, Andrii, Benchmarking Bottom-Up And Top-Down Strategies to SPARQL-to-SQL 

Query Translation. Master of Science (MS), August, 2011, 40 pp., 2 tables, 7 illustrations, 

references, 44 titles. 

Many researchers have proposed using conventional relational databases to store and 

query large Semantic Web datasets. The most complex component of this approach is SPARQL-

to-SQL query translation. Existing algorithms perform this translation using either bottom-up or 

top-down strategy and result in semantically equivalent but syntactically different relational 

queries. Do relational query optimizers always produce identical query execution plans for 

semantically equivalent bottom-up and top-down queries? Which of the two strategies yields 

faster SQL queries? To address these questions, this work studies bottom-up and top-down 

translations of SPARQL queries with nested optional graph patterns. This work presents: (1) A 

basic graph pattern translation algorithm that yields flat SQL queries, (2) A bottom-up nested 

optional graph pattern translation algorithm, (3) A top-down nested optional graph pattern 

translation algorithm, and (4) A performance study featuring SPARQL queries with nested 

optional graph patterns over RDF databases created in Oracle, DB2, and PostgreSQL. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 We live in a time when the amount of information published on the Web grows at an 

unprecedented pace. One of the challenges imposed by this growth is that most of the data 

available on the Web is machine-readable but not machine-understandable. That is, it lacks 

semantics, or meaning, that could be interpreted by machines and automated agents. The World 

Wide Web Consortium (W3C) has proposed standards that make it possible for data to be shared 

and reused across application, enterprise, and community boundaries. These standards promote 

the development of the next-generation Web, known as the Semantic Web. 

The vast majority of information available on the Web today is published using the 

HyperText Markup Language (HTML). HTML is a standard for describing the structure of 

published information. Web browsers use this structural information to render the information in 

a way that facilitates consumption by humans. Information published using HTML is not 

intended for consumption by computers, which makes it difficult for them to make effective use 

of the ever increasing volume of information available on the Web. To solve this problem, the 

W3C has proposed new standards to enable computers to discern the meaning of available 

information. XML (eXtensible Markup Language) is a W3C standard that provides a set of rules 

for encoding information. Adoption of XML has now become widespread. Besides having a 

standard way to encode information, there needs to be a standard way to express its meaning. 

That‟s the purpose of RDF (Resource Description Framework), a W3C standard that supports 
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modeling of information that is made available as web resources. RDF is based on the idea of 

making statements about web resources in the form of subject-predicate-object expressions, 

called triples. Triples can be encoded using several different W3C standard formats, including 

XML, N-Triples and N3. Triples are an intuitive way to describe most of the information being 

processed by computers today. 

Many researchers have proposed using conventional relational databases to store and 

query large Semantic Web datasets [1]. Emerged systems, called relational RDF 

databases, share a common design pattern that uses a schema mapping algorithm to generate a 

relational database schema, a data mapping algorithm to insert RDF data into 

the database, and a query mapping algorithm to translate RDF queries into equivalent SQL 

queries. SPARQL-to-SQL translation is not only the most complex mapping 

in a relational RDF database, but also very critical to overall querying performance. Existing 

algorithms translate SPARQL queries to SQL using either bottom-up or top-down strategy and 

result in semantically equivalent but syntactically different relational queries. 

Research Motivation 

 As the use of RDF becomes more widespread, so too will be the need for systems that 

support storing and querying of RDF data. These systems can be built using conventional 

relational databases to store and query large Semantic Web datasets. The most complex 

component of this approach is SPARQL-to-SQL query translation. Existing algorithms translate 

SPARQL queries to SQL using either bottom-up or top-down strategy and result in semantically 

equivalent but syntactically different relational queries. While it can be expected that relational 

query optimizers produce identical query execution plans for semantically equivalent bottom-up 

and top-down queries, is this usually the case in practice? And if not, which strategy yields faster 
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SQL queries? Our motivation is to answer these questions by studying bottom-up and top-down 

translations of SPARQL queries with nested optional graph patterns. 

Research Contributions 

 Our research contributions are: (1) a basic graph pattern translation algorithm that results 

in flat SQL, (2) a bottom-up nested optional graph pattern translation algorithm, (3) a top-down 

nested optional graph pattern translation algorithm, and (4) a performance study featuring 

SPARQL queries with nested optional graph patterns over RDF databases instantiated in Oracle, 

DB2, and PostgreSQL. 

 

Organization of this Document 

 

 

 The remaining chapters of this document are organized as follows: Chapter 2 lists a 

number of preliminary definitions, Chapter 3 presents our algorithms for basic graph pattern 

translation, bottom-up nested optional graph pattern translation and top-down nested optional 

graph pattern translation, Chapter 4 reports our performance study, Chapter 5 reviews related 

research, and Chapter 6 concludes the document and reviews some interesting research topics for 

future work. 
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CHAPTER II 

 

 

FOUNDATIONS OF RELATIONAL RDF  

DATABASE MANAGEMENT SYSTEMS 

 

 

 It may be helpful to review some of the fundamental definitions before delving into the 

more complex topics which depend on them. In this chapter we discuss some of the most 

important terms related to semantic web technology. 

Preliminaries: RDF and SPARQL 

 Let I, B, L, and V denote pairwise disjoint infinite sets of Internationalized Resource 

Identifiers (IRIs), blank nodes, literals, and variables, respectively. Let IB, IL, IV, IBL, and IVL 

denote I  B, I  L, I  V, I  B  L, and I  V  L, respectively. Elements of the set IBL are 

also called RDF terms. In the following, we formalize the notions of RDF triple, RDF graph, 

triple pattern, graph pattern, and SPARQL query. 

Definition 1 (RDF triple and RDF graph) 

An RDF triple t is a tuple (s, p, o)  (IB) × I × (IBL), where s, p, and o are a subject, predicate, 

and object, respectively. An RDF graph G is a set of RDF triples. We define T and G as infinite 

sets of all possible RDF triples and graphs, respectively. 

 A sample RDF graph that we use for subsequent examples is shown in Figure 1. The RDF 

graph is represented as a set of 11 triples, as well as a labeled graph, in which edges are directed 
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from subjects to objects and represent predicates, circles denote IRIs, and rectangles denote 

literals. 

 

 

  

 

 

 

We focus on the core fragment of SPARQL defined in the following. 

Definition 2 (Triple pattern) 

A triple pattern tp is a triple (sp, pp, op)  (IVL) × (IV) × (IVL), where sp, pp, and op are a 

subject pattern, predicate pattern, and object pattern, respectively. We define TP as an infinite set 

of all possible triple patterns. 

Definition 3 (Basic graph pattern) 

A basic graph pattern bgp is a set of triple patterns {tp1, tp2, …, tpn-1, tpn}, also denoted as tp1 

AND tp2 AND … AND tpn-1 AND tpn, where AND is a binary operator that corresponds to the 

conjunction in SPARQL and n is the number of triple patterns in bgp. 

Definition 4 (Nested optional graph pattern) 

A nested optional graph pattern nogp has the form bgp1 OPT{ bgp2 OPT{ … {bgpn-1 OPT{ 

bgpn}} … }}, where OPT corresponds to the OPTIONAL construct in SPARQL, curly braces {} 

 

Figure 1: Sample RDF Graph 
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denote nesting of graph patterns, and n ≥ 3 represents the number of basic graph patterns in 

nogp. 

Definition 5 (SPARQL query) 

A SPARQL query sparql is defined as 

sparql → SELECT varlist WHERE (gp) 

 

where varlist = (v1, v2, ..., vn) is an ordered list of variables and varlist  var(gp). We define Q as 

an infinite set of all possible SPARQL queries that can be generated by the defined grammar. 

Relational RDF Database Management System 

 A Relational RDF Database Management System (RRDBMS) relies on a Relational 

Database Management System (RDBMS) to store and query RDF datasets. RRDBMS provides a 

collection of data structures and algorithms that map operations on RDF data to equivalent 

operations on relational data in an RDBMS. In this section, we formalize the notion of RRDBMS 

by giving its high-level definition first and defining its individual components afterwards. 

Definition 6 (Relational RDF Database Management System) 

A relational RDF database management system (RRDBMS) is a tuple (RDBMS, DB, LS, PS, 

ALG), where 

 RDBMS is a set of RDBMS backends that manage RDF data, 

 DB is a set of relational databases implemented in the RDBMS backends to store RDF 

data, 
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 LS is a set of logical schemas that specify how a new relational database (becomes an 

element in DB) can be created, 

 PS is a set of physical schemas that are extended instantiations of logical schemas, such 

that each physical schema PS  PS describes a relational database DB  DB and is 

derived from a logical schema LS  LS, and 

 ALG is a collection of algorithms that perform operations in the RRDBMS, such as 

creation of a logical schema, creation of a physical schema and relational database 

schema, mapping of RDF data to relational data, and SPARQL-to-SQL query translation. 

 

 While the notions of RDBMS and relational database are well-understood, RRDBMS 

logical schemas, physical schemas and algorithms require further explanation found in the 

following subsections. 

Logical Schema 

 The purpose of a logical schema is to encode the structure of a relational database that 

can be used for RDF storage, such that this structure can be later instantiated in one or more 

RDBMSs. Therefore, the logical schema should record a set of relation names R and a set of 

relational attribute names A, such that each a  A is associated with one or many relations in R. 

While attribute names (further “attributes” for simplicity) are represented by string literals, 

relation names (further “relations” for simplicity) may be data-driven, i.e., they may depend on 

values found in RDF data, and thus may have more complex structure. In addition, the logical 

schema should capture the information about what triples each relation can store and what 

attributes of the relation are used to store the components (subject, predicate, and object) of 

triples. To achieve this, we introduce two mappings, called γ and δ. 
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Definition 7 (Mapping γ) 

Given a set of relations R and a set of triple patterns TP, a mapping γ is a many-to-many mapping 

γ : R → TP, if given a relation R  R, γ (R) is a set of triple patterns TPR = {tp1, tp2, ..., tpn}  TP, 

such that for any two distinct triple patterns tpi  TPR and tpj  TPR, tpi does not subsume tpj and 

tpj does not subsume tpi. 

 Mapping γ precisely defines what RDF triples can be stored in relation R  R, such that if 

triple t  T matches triple pattern tp  γ(R), then R is used to store t. As we mentioned earlier, 

besides string literals, R  R may include one or more special variables %sub%, %pre%, and 

%obj%, that are interpolated using the corresponding values of a triple t = (s, p, o)  T , such that 

t matches a triple pattern tp  γ (R). This provides support for data-driven relations, whose 

names are derived only when RDF data is being inserted into an RRDBMS. 

 Mapping δ defines what specific components of RDF triples, i.e., subject, predicate, and 

object, relational attributes can store. 

Definition 8 (Mapping δ) 

Given a set of relations R, a set of relational attributes A, and a set P = {sub, pre, obj}, a mapping 

δ is a many-to-one mapping δ : R × A → P, if given a relation R  R and its attribute a  A, δ(R, 

a) returns a position pos  P, such that for any two distinct attributes a1 and a2 of R, if pos1 = 

δ(R, a1) and pos2 = δ(R, a2), then pos1 ≠ pos2. 

 Mapping δ restricts a relational attribute to store subjects, predicates or objects, but not 

the combination of those, i.e., the same attribute cannot store a subject of one triple and an object 

of another triple. In addition, if one attribute of a relation stores triple subjects, no other attribute 
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can store subjects; the same is true for predicates and objects. Therefore, a relation can have at 

most one attribute for each position. 

 The last mapping that we need is denoted as τ and captures data types D of attributes A 

found in relations R. To avoid dependence on data types in a particular RDBMS, we can use 

generic data types, such as string, date, and double, defined in the XML Schema language. 

Definition 9 (Mapping τ) 

Given a set of relations R, a set of relational attributes A, and a set of XML Schema data types D, 

a mapping τ is a many-to-one mapping τ : R × A → D, such that given a relation R  R and its 

attribute a  A, τ(R, a) returns a data type d  D. 

 These three mappings constitute a logical schema. 

 

Definition 10 (Logical Schema) 

A logical schema LS is a tuple (lsid, γ, δ , τ), where lsid is a unique identifier of the schema, γ is a 

mapping as in Definition 7, δ is a mapping as in Definition 8, and τ is a mapping as in Definition 

9. The logical schema definition is very flexible, enabling encoding different types of relations 

supported in schema-oblivious, schema-aware, data-driven, and hybrid relational RDF stores. 

Moreover, γ and δ allow the design of new types of relations, resulting in a novel user-

customized approach to schema design. In the following example, we show a logical schema that 

implements relations used by different approaches. 
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Example 11 (Logical Schema) 

A database designer may specify the following logical schema that may be used for the sample 

RDF graph in Figure 1. 

 

lsid:  1        

          

γ:  Triple → {(?s, ?p, ?o)}, 

  Name → {(?s, name, ?o)}, 

  Class%obj% → {(?s, type, ?o)}, 

  Phone → {(?s, cell, ?o), (?s, phone, ?o)}. 

          

δ:  (Triple, s) → sub τ:  (Triple, s) → xsd:string 

  (Triple, p) → pre   (Triple, p) → xsd:anyURI 

  (Triple, o) → obj   (Triple, o) → xsd:string 

  (Name, s) → sub   (Name, s) → xsd:anyURI 

  (Name, o) → obj   (Name, o) → xsd:string 

  (Class%obj%, i) → sub   (Class%obj%, i) → xsd:anyURI 

  (Phone, s) → sub   (Phone, s) → xsd:anyURI 

  (Phone, p) → pre   (Phone, p) → xsd:anyURI 

  (Phone, o) → obj   (Phone, o) → xsd:unsignedInt 

 

 According to this schema, three relations with fixed names (Triple, Name, and Phone) 

and one data-driven relation Class%obj% are defined. Triple can store all possible RDF triples as 

specified by the triple pattern (?s, ?p, ?o) in three columns s, p, o that correspond to a subject, 

predicate, and object, and have data types xsd:string, xsd:anyURI, and xsd:string, respectively. 

Similarly, the structure of relations Name and Phone is defined as Name(s : xsd:anyURI, o : 

xsd:string) and Phone(s : xsd:anyURI, p : xsd:anyURI , o : xsd:unsignedInt). Name is intended 

to store subjects and objects of any RDF triple whose predicate is name, i.e., the triple matches 

triple pattern (?s, name, ?o). More interestingly, Phone is allowed to store any RDF triple whose 

predicate is cell or phone, i.e., the triple matches (?s, cell, ?o) or (?s, phone, ?o). Finally, the 

actual name of relation Class%obj% is derived from a triple itself, such that special variable 
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%obj% is interpolated with the object value of a triple that matches triple pattern (?s, type, ?o). 

For example, if triple (B1, type, Person) is in the graph, its subject is to be stored by relation 

ClassPerson(i : xsd:anyURI). 

 The four relations are representative of four different approaches to schema design, 

namely schema-oblivious (Triple), schema-aware (Name), data-driven  

(Class%obj%), and user-driven (Phone), resulting in a flexible hybrid design. 

Physical Schema 

 The logical schema serves as a template that can be applied to generate relational 

database schemas in one or more RDBMS. Once a relational database schema is created in an 

RDBMS, we derive a new set of mappings that describe the concrete storage structure. This set 

of mappings is referred to as physical schema. 

 In a physical schema, mappings γ and δ are initially inherited from the corresponding 

logical schema. If data-driven relations are used, these mappings may be augmented with new 

instances. Similarly, mapping τ is inherited from the corresponding logical schema with generic 

data types mapped to RDBMS-specific data types. τ may also evolve when data-driven relations 

are created. 

 Next, while mappings γ and δ are good means to capture what data can be stored in 

relations, they are not very straightforward to use for deciding how to insert new triples or match 

SPARQL triple patterns over relations. One step towards this goal is defining reverse mappings 

γ
−1

 : TP → R and δ
−1

 : P → R × A. The reverse mappings may not be easy to use, because γ
−1

 is 

defined on a finite set of triple patterns that may subsume other triple patterns and δ
−1

 returns a 

set for a given position. Therefore, to better support data mapping and query translation, we 

introduce mappings α and β, deriving them from γ
−1

 and δ
−1

, respectively. 
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Definition 12 (Mapping α) 

Given a set of all possible triple patterns TP = (IVL) × (IV) × (IVL) and a set of relations REL in a 

relational RDF database, a mapping α is a many-to-many mapping α : TP → REL, if given a 

triple pattern tp  TP, α(tp) is a relation in which all the triples that may match tp are stored. 

Definition 13 (Mapping β) 

Given a set of all possible triple patterns TP = (IVL) × (IV) × (IVL), a set of triple POS = {sub, 

pre,obj}, and a set of relational attributes ATR in a relational RDF database, a mapping β is a 

many-to-one mapping β : TP × POS → ATR, if given a triple pattern tp  TP and a position pos 

 POS, β(tp, pos) is a relational attribute whose value may match tp at position pos. 

 Mappings γ, δ, τ, α, and β constitute a physical schema. 

Definition 14 (Physical Schema) 

A physical schema PS is a tuple (psid, lsid, rdbms, γ, δ, τ, α, β), where psid is a unique identifier 

of the physical schema, lsid is a unique identifier of the corresponding logical schema, rdbms is a 

reference to the corresponding RDBMS, γ is a mapping as in Definition 7, δ is a mapping as in 

Definition 8, τ is a mapping as in Definition 9 with the generic data types substituted by data 

types supported by rdbms, α is a mapping as in Definition 12, and β is a mapping as in Definition 

13. 

 A physical schema is required to perform operations in an RRDBMS, such as mapping of 

RDF data to relational data, SPARQL-to-SQL query translation, and reconstruction of original 

RDF data from relational data. 



 

13 

 

Example 15 (Physical Schema) 

We can derive a physical schema based on the mappings in Example 11. The first step is to select 

a specific RDBMS - we choose Oracle version 10g for this example and assume valid RDBMS 

credentials (username and password) are provided. First, we describe the usage of a physical 

schema for data mapping. In this situation we use a physical schema to insert triples into the 

appropriate relational tables. 

 

lsid: 

  

1 

       

          

γ:  Triple → {(?s, ?p, ?o)}, 

  Name → {(?s, name, ?o)}, 

  Class%obj% → {(?s, type, ?o)}, 

  Phone → {(?s, cell, ?o), (?s, phone, ?o)}. 

          

δ:  (Triple, s) → sub τ:  (Triple, s) → VARCHAR2(256) 

  (Triple, p) → pre   (Triple, p) → VARCHAR2(256) 

  (Triple, o) → obj   (Triple, o) → VARCHAR2(256) 

  (Name, s) → sub   (Name, s) → VARCHAR2(256) 

  (Name, o) → obj   (Name, o) → VARCHAR2(256) 

  (Class%obj%, i) → sub   (Class%obj%, i) → VARCHAR2(256) 

  (Phone, s) → sub   (Phone, s) → VARCHAR2(256) 

  (Phone, p) → pre   (Phone, p) → VARCHAR2(256) 

  (Phone, o) → obj   (Phone, o) → VARCHAR2(256) 

 

 To store the following three triples, we determine which tables and attributes will be used. 

α(B1, type, Person) = {Class%obj%, Triple}, 

β (Class%obj%, sub) = i, 

β (Class%obj%, pre) = undef, 

β (Class%obj%, obj) = undef, 

β(Triple, sub) = s, 

β(Triple, pre) = p, 

β(Triple, obj) = o. 

 

 For this triple (B1, type, Person), α returns a set containing two relations, Class%obj% 

and Triple. This means that the triple must be stored in both relations. The first one, Class%obj% 

represents a data-driven (or dynamic) relation. At runtime the name of the relation is derived 
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using the object of the specified triple; in this case, it would be ClassPerson. It is possible that 

this relation may not exist at runtime. If necessary it can be created on-the-fly before the triple is 

inserted. The triple must also be stored in the Triple relation. In this case the relation already 

exists because it was created during schema mapping. Once we know which tables will store the 

triple, β gives us the attributes that will be used to store the subject, predicate and object. Using β 

we know that attribute i should be used to store the subject in the relation named ClassPerson. 

When β returns undef, nothing is stored for the specified position. In this case it means that the 

predicate and object are not stored in the ClassPerson relation. Using β we know that attributes s, 

p, and o store the subject, predicate and object, respectively, in the relation named Triple. 

α(B1, name, paul) = {Name, Triple}, 

β(Name, sub) = s, 

β(Name, pre) = undef, 

β(Name, obj) = o, 

β(Triple, sub) = s, 

β(Triple, pre) = p, 

β(Triple, obj) = o. 

 

 For this triple (B1, name, paul), α returns a set containing two relations Name and Triple. 

Again, the triple must be stored in both relations. In this case, both relations already exist so the 

next step is to determine where to store the subject, predicate and object of this triple. For the 

Name relation, the subject is stored in attribute s and the object is stored in attribute o. The Triple 

relation is handled in exactly the same way as the previous triple. 

 

α(B1, phone, 111−1111) = {Phone, Triple}, 

β(Phone, sub) = s, 

β(Phone, pre) = p, 

β(Phone, obj) = o, 

β(Triple, sub) = s, 

β(Triple, pre) = p, 

β(Triple, obj) = o. 

 

 For this triple, (B1, phone, 111−1111), α returns a set containing two relations Phone and 
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Triple. For both of these relations, β returns s, p, and o to store the subject, predicate and object, 

respectively. 

 Next, we describe the usage of the physical schema for query translation. In this scenario, 

SPARQL queries provide graph patterns to be matched. Consider the following graph patterns: 

(?a ?b ?c) For this graph pattern, α returns a set containing one relation, 

Triple. This relation will be used to satisfy this query. 

 

(?a cell ?b) For this graph pattern, α returns a set containing two relations, 

Phone and Triple. In this scenario, we have the choice of which 

relation to execute the query against. Depending on the specifics 

of the query mapping algorithms, there may be different reasons 

for selecting one relation over another. In this example, the Phone 

relation likely has fewer tuples and may therefore provide faster 

query execution. 

 

(?a type Person) For this graph pattern, α returns a set containing one relation, 

Class%obj%. As described previously, the name of this relation is 

derived at runtime. In this case, it would be ClassPerson. During 

query translation, we must determine whether or not this relation 

has actually been realized. If it has, it can be queried and the 

results returned. If not, the query returns no results. From this 

example we can see that the usage of α during query translation is 

different from its use during data mapping. 

 

 In addition, our translation uses three auxiliary functions: (1) a function alias that 
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generates a unique alias for a relation, (2) a function vars that returns a set of all variables in a 

graph pattern, and (3) a function name that generates a unique name for a variable in V, such that 

the generated name conforms to the SQL syntax for relational attribute names (e.g., a variable 

can be “renamed” by simply removing initial „?‟ or‟$‟). 

Finally, we assume that a basic graph pattern is comprised of at least one triple pattern 

and contains at least one variable. [2] and [3] describe how these corner cases can be handled. 
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CHAPTER III 

 

 

SPARQL-TO-SQL TRANSLATION 

 

 

 In this chapter we present our basic graph pattern translation algorithm that yields flat 

SQL queries as well as our bottom-up nested optional graph pattern translation algorithm, and 

our top-down nested optional graph pattern translation algorithm.  

Basic Graph Pattern Translation 

 A basic graph pattern, which is a set of triple patterns, is the main building block of 

SPARQL queries. While there exist both bottom-up and top-down strategies that generate 

equivalent SQL queries with nested subqueries, this section presents a simple algorithm that 

generates fully flat SQL queries. Therefore, with this algorithm in place, the order of translation 

becomes unimportant, since only a naive query optimizer does not consider inner join reordering. 

 Our basic graph pattern translation function BGPtoFlatSQL is shown in Figure 2. It 

translates a SPARQL basic graph pattern bgp that consists of a set of triple patterns tp1, tp2, …, 

tpn into an equivalent flat SQL query that can be executed by a relational database engine. 

BGPtoFlatSQL constructs from, where, and select clauses of an SQL query as follows. For each 

triple pattern tpi in bgp, a unique table alias ai is assigned and table α(tpi) with this alias is 

appended to the from clause. The algorithm then computes an inverted index on all variables in 

bgp, such that each distinct variable is associated with  
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attributes in the respective tables from the from clause. The corresponding attribute names for 

variables are computed using mapping β. The where clause is first constructed to ensure that any 

non-variables in bgp are restricted to their values (e.g., literals or identifiers). In particular, each 

relational attribute that corresponds to a literal or IRI in bgp must contain this literal or IRI value. 

The inverted index is then used to append join conditions into the where clause, such that all 

attributes that correspond to the same variable must be equal. Finally, the select clause is 

generated to include attributes that correspond to every distinct variable in bgp, with attributes 

being renamed using auxiliary function name(). A flat SQL query constructed with computed 

Figure 2: Function BGPtoFlatSQL 
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select, from, and where clauses is returned. 

This algorithm is used by our bottom-up and top-down translation algorithms for nested 

optional graph patterns described in the following sections. 

Bottom-Up Nested Optional Graph Pattern Translation 

The bottom-up approach to SPARQL-to-SQL query translation is well-studied in the 

literature [2] and implemented in many relational RDF databases. This section presents an 

algorithm that implements one of our translation rules described in [2]. It should be noted that, 

while this work assumes that nested OPTIONAL clauses contain basic graph patterns, which is 

sufficient for our study, in the general case, other graph patterns, such as sequential optional 

graph patterns and alternative graph patterns, are possible. The algorithm uses the translation rule 

for the general case with an additional simplification that eliminates the call of the Coalesce 

function for some attributes in projection lists. The use of Coalesce is redundant with only 

basic graph patterns assumed in OPTIONAL clauses; however, other simplifications on join 

conditions are not applied. 

Our bottom-up translation function NOGPtoSQL-BU is shown in Figure 3. It visits each 

basic graph pattern in a SPARQL nested optional graph pattern nogp starting from bgpn and 

going up to bgp1. Each basic graph pattern is translated to SQL using function BGPtoFlatSQL 

producing a flat SQL query. During the first loop iteration, the translation of bgpn is assigned to 

variable sql and the translation of bgpn-1 is assigned to variables sqli. A new SQL query that 

computes a left outer join between virtual relations  
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sqli and sql is constructed. This query contains: “ ($sqli) $a1 Left Outer Join ($sql)   

$a2” in its From clause, where a1 and a2 are unique aliases; a join condition “$a1.$ra = $a2.$ra 

Or $a1.$ra Is Null Or $a2.$ra Is Null” in its On clause, which requires common 

relational attributes in a1 and a2 to be equal or one of them to be Null; and a projection list in its 

Select clause of all attributes in a1 and all other unique attributes in a2. This newly constructed 

query is assigned to variable sql, overwriting its previous value. The following loop iteration 

repeats the procedure but with a new value of sql as previously described and a new value of sqli 

that now holds the translation of bgpn-2. After the final iteration, a value of sql represents a fully 

generated query and is returned. 

 

Figure 3: Function NOGPtoSQL-BU 
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Top-Down Nested Optional Graph Pattern Translation 

 One of the first top-down SPARQL-to-SQL query translations found in the literature is 

described in our unpublished report [3]. This section summarizes our solution for the case when 

only basic graph patterns are used in OPTIONAL clauses. 

 Our top-down translation function NOGPtoSQL-TD is shown in Figure 4. 

The logic of this algorithm is similar to the logic described for NOGPtoSQL-BU. One obvious 

difference is that function NOGPtoSQL-TD visits each basic graph pattern in a SPARQL nested 

optional graph pattern nogp starting from bgp1 and going down to bgpn.  

 

 

Figure 4: Function NOGPtoSQL-TD 
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The other difference lies in how a join condition is generated. It encodes the following 

semantics: before a nested optional graph pattern can succeed, all containing optional graph 

patterns must have succeeded. Therefore, a join condition must check that a basic graph pattern 

in a containing OPTIONAL clause has a solution. This is achieved via a Not Null check on a 

relational attribute with special properties: this attribute must appear in the Select clause of 

sql, since the translation of the containing graph pattern is part of sql, and it must correspond to a 

variable that first occurred in a basic graph pattern of the containing OPTIONAL clause and not 

in any preceding basic graph pattern. If such an attribute is not readily available, a new attribute 

for a “dummy” variable can be introduced in a basic graph pattern to perform the check. Further 

details on this solution can be found in [3]. 
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CHAPTER IV 

 

 

PERFORMANCE STUDY 

 

 

 This chapter reports our query performance study conducted using the WordNet dataset 

and test SPARQL queries that were translated to SQL using the proposed bottom-up and top-

down query translation algorithms and evaluated in three relational database management 

systems. 

Experimental Setup 

 The experiments were conducted on a server with two 2GHz Intel Xeon E5504 Nehalem 

CPUs, 32GB RAM and 6TB disk array running Ubuntu 9.02 Jaunty x64. Three different 

database management systems, namely Oracle 10.2 Express Edition, DB2 9.7 Express-C and 

PostgreSQL 8.3.12, were installed on the server. 

 Our algorithms were implemented in Java 6 within the S2ST system; generic schema and 

data mapping algorithms supported by S2ST were used to generate identical database schemas in 

Oracle, DB2 and PostgreSQL, and to store the RDF dataset into the databases, respectively. 

Dataset and Test Queries 

 The OWL representation of WordNet was chosen for our experiments. WordNet is a 

lexical database for the English language, which organizes English words into synonym sets 

according to part of speech (e.g. noun, verb, etc.) and enumerates linguistic relations between 
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these sets. In the WordNet.OWL, each part of speech is modeled as an owl:Class, and each 

linguistic relation is modeled as an owl:ObjectProperty, owl:DatatypeProperty, 

owl:TransitiveProperty, or owl:SymmetricProperty. The simplified WordNet ontology is 

illustrated in Figure 5. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

The figure does not include some classes (e.g., wn:Nouns_and_Verbs) and properties (e.g., 

wn:mMeronym) that are not essential for the understanding of the dataset and the experiments. 

The relevant statistics for the WordNet dataset is shown in Table I. For example, WordNet.OWL 

contains 251,726 triples involving rdf:type as the predicate, and 140,470 of them have 

Figure 5: Classes and properties of the WordNet ontology 
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wn:WordObject as the object. 

 Table II shows 22 SPARQL queries over the WordNet dataset that were carefully selected 

for our experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

In the table, W stands for WHERE and O stands for OPTIONAL; the SPARQL SELECT clause is 

omitted for brevity, and the projection includes all distinct variables of a query. Queries Q1-Q6 

are constructed as all possible permutations of the three triple patterns occurring outside and 

inside OPTIONAL clauses. These queries have one nested OPTIONAL clause. Queries Q1’-Q6’ 

and Q1”-Q6” are obtained from respective queries Q1-Q6 by restricting variable values in the 

first and second triple patterns, respectively. The rationale for such restrictions is to reduce 

cardinalities of intermediate relations resulting from first left outer joins in the queries. In 

particular, in terms of the intermediate relation size, Q1’-Q6’ favor the top-down approach and 

 

.. 

 

 

 



 

26 

 

Q1”-Q6” favor the bottom-up approach. We chose not to restrict variable values in the third 

triple pattern of the nested OPTIONAL clause in any of queries Q1-Q6 because the relation that 

results after matching the third triple pattern is always used as the right operand of a left outer 

join and therefore can only marginally influence the join result for the given dataset and queries. 

Finally, queries Q7, Q8, Q7’, and Q8’ are interesting because they only include triple patterns 

of the same form with same predicate and variables as subject and object patterns. From the 

viewpoint of bottom-up and top-down translations, these queries are “symmetric”. 

Bottom-Up and Top-Down Query Performance 

 The S2ST system was used to generate database schemas with property relations [2] and 

load WordNet.OWL into Oracle, DB2 and PostgreSQL. The test SPARQL queries were translated 

to SQL using algorithms NOGPtoSQL-BU and NOGPtoSQL-TD. The resulting SQL queries 

were evaluated by RDBMSs. To prevent an unintentional comparison of the three RDBMSs, 

Figure 6 reports the ratio of a bottom-up query evaluation time to a top-down query evaluation 

time for each test query. In the figure, if ratio > 1, a top-down query was faster; if ratio < 1, a 

bottom-up query was faster; and if ratio = 1, both top-down and bottom-up queries showed the 

same execution time. 

 Our first observation was that bottom-up and top-down queries generally showed 

different execution times. This observation gave the definite “No” answer to question “While it 

can be expected that relational query optimizers produce identical query execution plans for 

semantically equivalent bottom-up and top-down queries, is this usually the case in practice?” in 

the case of SPARQL queries with nested optional graph patterns. 

 



 

27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Our second observation was that different database management systems showed quite 

different and sometimes even “contradicting” query evaluation ratios. For example, Oracle 

showed much less contrast between bottom-up and top-down approaches than DB2 and 

PostgreSQL. Some queries, such as Q1”, Q3, Q4, Q5”, and Q6”, showed different classes of 

ratios (> 1, < 1, and = 1) in different databases. For example, for Q6”, the bottom-up approach 

 

Figure 6: Bottom-up and top-down query performance 
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was slower than the top-down approach in Oracle, equivalent to the top-down approach in DB2, 

and faster than the top-down approach in PostgreSQL. 

 Our third observation was that selectivities of participating triple patterns and their 

occurrence in a SPARQL query had a significant impact on which SPARQL-to-SQL translation 

strategy won, which could be explained by a similar effect of cardinalities of join participating 

relations and intermediate relations on corresponding top-down and bottom-up SQL queries. In 

particular, top-down queries Q1 and Q2 were consistently faster in all experiments, given that the 

first triple pattern ?a rdf:type :Adjective yielded the smallest result set of 7,345 triples (the other 

two triple patterns yielded over 10 times larger results), and therefore the intermediate relation in 

the top-down queries was also small and over 10 times smaller than the intermediate relation in 

the corresponding bottom-up queries. When ?a rdf:type :Adjective occurred in the first 

OPTIONAL clause of Q3 and Q4, the situation was opposite: the intermediate relation in the 

bottom-up queries was over 10 times smaller than the intermediate relation in the corresponding 

top-down queries. However, while all three systems showed that the ratios decreased when 

compared to Q1 and Q2, only Oracle showed the advantage of the bottom-up approach, and DB2 

and PostgreSQL still ran top-down queries faster. Moving ?a rdf:type :Adective to the nested 

OPTIONAL clause in Q5 and Q6 did not favor one or the other translation strategy since the last 

triple pattern did not influence the size of an intermediate relation. Top-down queries Q5 and Q6 

were consistently faster in all experiments. Next, restricting selectivities of the first triple pattern 

in Q1’-Q6’ to 1 or 2 triples, which was favorable for the top-down approach, showed that the 

top-down queries were faster or as fast as the corresponding bottom-up queries. Interestingly, 

Oracle showed identical performance for both top-down and bottom-up queries Q1’-Q6’. 

Finally, Q1”-Q6”, which restricted selectivites of the second triple pattern and favored the 
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bottom-up approach, showed a consistent performance pattern only for PostgreSQL, where 

bottom-up queries were faster. For Oracle and DB2, some queries showed a similar pattern: top-

down queries Q1” and Q5” were faster and bottom-up queries Q3” and Q4” were faster; in 

addition, both bottom-up and top-down Q6” showed identical times in DB2, top-down Q6” was 

faster in Oracle, bottom-up query Q2” was significantly faster (the smallest ratio in our 

experiments) in Oracle but as fast as top-down query Q2” in DB2. 

 Our fourth observation was that “symmetric” queries Q7 and Q8 (and similarly Q7’ and 

Q8’), which are neutral to both top-down and bottom-up translation strategies, showed better 

performance of the top-down queries. The ratios were significantly larger for DB2 and 

PostgreSQL, while only from 1.19 to 2.12 times larger in Oracle. These “symmetric” queries 

showed that, in a general (with no particular bias towards one or the other translation strategy) 

case, the top-down approach is superior to the bottom-up approach. 

 Our last, fifth observation was that a choice of a translation strategy could have a 

tremendous impact on a resulting query performance. In one case of Q2” for Oracle, the bottom-

up query was over 600 times faster than the top-down query. In 12 other cases (all occurred in 

experiments with DB2 and PostgreSQL), the ratios were greater than 1,000 in the favor of top-

down queries. 

Summary 

 The performance study gives the answers to the two questions raised in this work. For the 

first question, our results imply that, in a general case, a relational RDF database designer cannot 

rely on a relational query optimizer to produce identical or close to identical query execution 

plans for semantically equivalent SQL queries resulted from bottom-up and top-down 
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translations of SPARQL queries. To answer the second question, neither of the two approaches is 

universally better than its sibling. The performance of queries produced by the bottom-up and 

top-down translation strategies depends on many factors, including selectivities of triple patterns, 

their order and location in a SPARQL query, and even a relational engine that evaluates 

translated queries. A number of important observations are made that suggest directions for 

choosing the best translation strategy for a particular query by a SPARQL query optimizer; the 

choice can have a tremendous impact on query performance. 
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CHAPTER V 

 

 

RELATED WORK 

 

 

 There has been considerable research done in the area of Semantic Web data. In this 

chapter, we review the research that is most closely related to the work we have done here. In 

recent years, several RDBMS-based RDF stores (see [4] for a survey) have been developed to 

support large-scale Semantic Web applications. The conflict between the graph RDF [5,6] data 

model and the target relational data model of such systems requires providing a way to deal with 

various mappings between the two data models, such as schema mapping, data mapping, and 

query mapping (a.k.a. query translation). Schema mapping is used to generate a relational 

database schema that can store RDF data. Schema mapping strategies employed by existing RDF 

stores fall into four categories: 

Schema-oblivious (also called generic or vertical): A single relation, e.g., Triple(s,p,o), is 

used to store RDF triples, such that attribute s stores the subject of a triple, p stores its 

predicate, and o stores its object. Schema-oblivious RDF stores include Jena [7, 8], 

Sesame [9], 3store [10,11], KAON [12], RStar [13], and OpenLink Virtuoso [14]. This 

approach has no concerns of RDF schema or ontology evolution, since it employs a 

generic database representation. 
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Schema-aware (also called specific or binary): This approach usually employs an RDF schema 

or ontology to generate so called property relations and class relations. A property relation, e.g., 

Property(s, o), is created for each property in an ontology and stores subjects s and objects o 

related by this property. A class relation, e.g., Class(i),  is created for each class in an ontology 

and stores instances i of this class. An extension to the idea of property relations is a clustered 

property relation [15], e.g., Clustered(s, o1, o2, ... , on), which stores subjects s and objects o1, o2, 

..., on related by n distinct properties (e.g.,  

< s p1 o1 >, < s p2 o2 >, etc.). In [16], along with property and class relations, class-subject 

and class-object relations are introduced. A class-subject relation, e.g., ClassSubject(i, p, 

o) stores triples whose subjects are instances of a particular class in an ontology. 

Similarly, a class-object relation, e.g., ClassObject(s, p, i), stores triples whose objects are 

instances of a particular class. Such relations are useful for queries that retrieve all 

information about an instance (subject or object) of a particular class. Representatives of 

schema-aware RDF stores are Jena [17–19], DLDB [20], RDFSuite [21,22], DBOWL 

[23], PARKA [24], and RDFPROV [25,26]. Schema evolution for this approach is quite 

straightforward: the addition or deletion of a class/property in an ontology requires the 

addition or deletion of a relation (or relational tuples) in the database. More information 

on ontology evolution can be found in [27] and [28]. The schema-aware approach is in 

general yields better query performance than the schema oblivious approach as has been 

shown in several experimental studies [29, 21, 16, 22]. In addition, the use of a column-

oriented DBMS, in conjunction with vertical partitioning of relations, has shown further 

improvements in query performance [30]. 

 

Data-driven: This approach uses RDF data to generate database schema. For example, in 
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[31], a database schema is generated based on patterns found in RDF data using data 

mining techniques. RDF store RDFBroker [32] implements signature relations, which are 

conceptually similar to clustered property relations, but are generated based on RDF data 

rather than RDF Schema information. In general, relations generated by the schema-

aware approach can also be supported by the data-driven approach (e.g., property 

relations in Sesame [9] are created when their instances are first seen in an RDF 

document during data mapping). RDFBroker [32] reports improved in-memory query 

performance over Sesame and Jena for some test queries. Schema evolution for the data-

driven approach, if supported, might be expensive. 

 

Hybrid: This approach uses the mix of features of the previous approaches. An example 

of the hybrid database schema (resulted from schema-oblivious and schema-aware 

approaches) is presented in [22], where a schema-oblivious database representation, e.g., 

Triple(s, p, o), is partitioned into multiple relations based on the data type of object o, and 

a binary relation, e.g., Class(i, c), is introduced to store instances i of classes c. [22] 

reports comparable query performance of the hybrid and schema-aware approaches. 

 

 Data mapping is used to shred RDF triples into relational tuples and insert them into the 

database. Data mapping algorithms employed by existing RDF stores are usually fairly 

straightforward, such that RDF triples are inserted into a single relation as in the schema-

oblivious approach, or into one or multiple relations as in the other approaches. Several data 

mapping strategies and algorithms are presented in [16]. 

 One of the most complex mappings in relational RDF databases is the SPARQL-to-SQL 

query mapping or translation [2], [33], [34], [3], [35], [36]. Existing algorithms translate 
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SPARQL queries to SQL using either bottom-up or top-down strategy and result in semantically 

equivalent but syntactically different relational queries. To our best knowledge, this work is the 

first to compare bottom-up and top-down query translations in the context of complex nested 

optional graph patterns. The importance of such a comparison is twofold: it gives insights to the 

query optimization problem of choosing a “good” translation strategy for a particular query and 

motivates future research on a potentially hubrid translation strategy where both bottom-up and 

top-down approaches are employed. While we present this work in the context of relational RDF 

databases, its insights are also beneficial for query optimization in non-relational RDF databases, 

such as emerging Hadoop and HBase based RDF data management systems in the cloud 

environment [37], [38]. 

 Other related works on RDF query optimization that are complementary to our research 

include containment and minimization of RDF/S query patterns [39]. SPARQL query rewriting 

[40], and various RDF data indexing techniques [41], [42], [43], [44]. 
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CHAPTER VI 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 In this thesis, we studied the bottom-up and top-down SPARQL-to-SQL translation 

strategies and compared them empirically in the context of SPARQL queries with nested optional 

graph patterns. We presented a basic graph pattern translation algorithm that results in flat SQL 

queries, making the case that the order of translation is not important for such graph patterns. We 

proposed bottom-up and top-down nested graph pattern translation algorithms and compared 

their resulting SQL queries in Oracle, DB2, and PostgreSQL. Our performance study suggested 

that the choice between bottom-up and top-down translation algorithms can have dramatic 

performance implications on the resulting SQL queries. This choice is dependant on many 

factors, including selectivities of triple patterns, their order and location in a SPARQL query, and 

even a relational engine that evaluates translated queries. In the future, we will research a formal 

framework for optimizing SPARQL queries and defining heuristics for choosing a “good” 

translation strategy for a SPARQL query. 
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