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ABSTRACT 

 

 

Xiao, Pengcheng, Qualitative Analysis to A Nonlinear System. Master of Science (MS), August, 

2011, 30 pp., references, 24 titles.  

In this thesis, we first present a qualitative analysis to a nonlinear system under certain 

parametric conditions. Then for a special case, we make a series of variable transformation and 

apply the Prelle-Singer Method to find the first integrals of the simplified equations without 

complicated calculations. Through the inverse transformations we get the first integrals of the 

original equation. Finally, we use the same Prelle-Singer method to get the first integral for an 

extended nonlinear system. 
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CHAPTER I

INTRODUCTION

Many nonlinear differential equations arise in physical, chemical and biological contexts. In

the past few decades, qualitative analysis together with ingenious mathematical techniques for

handling some physical and biological systems has been studied extensively and a considerable

number of works have been devoted to qualitative study and solutions of the nonlinear oscillator

systems [1–3]. It also has been an interesting subject to find the innovative methods to solve

and analyze these equations in the field of differential equations and dynamical systems [1, 4].

For these problems, it is not always possible and sometimes not even advantageous to express

exact solutions of nonlinear differential equations explicitly in terms of elementary functions [20].

However, it is possible to find elementary functions that are constant on solutions curves and that is

the elementary first integrals. These first integrals allow us to occasionally deduce properties that

an explicit solutions would not necessary reveal [1]. In the pioneering work [5], Prelle and Singer

introduced a procedure to find the first integrals of the first-order ordinary differential equations

(ODEs) of the form y = P (x, y)/Q(x, y), with both P (x, y) and Q(x, y) polynomials whose

coefficients lie in the field of complex numbers C. Duarte et al. [5] extended this procedure

to second-order ordinary differential equations which is based on a conjecture that is the given

second-order ordinary differential equation has an elementary solution, then there exists at least

one elementary first integrals I(x, y, y′) whose derivatives are all rational functions of x, y and

y
′ . It is very important to understand physical, chemical and biological phenomena modelled

differential equations through special types of first integrals.
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In this thesis, we consider a more general nonlinear oscillator system of the form

ü+ (δ + βum)u̇+ u− µun = 0, (1)

where an over-dot represents differentiation with respect to the independent variable ξ, and all

coefficients δ,β and µ are real.

The organization of this thesis is as follows. In Chapter 2, making use of the qualitative theory

of planar systems, we demonstrate a qualitative analysis to a two-dimensional plane autonomous

system which is equivalent to equation (1). Some properties for the nonlinear oscillator system are

obtained for given parametric choices. In Chapter 3, we summarize the Prelle-Singer procedure

for the first-order ODEs and introduce the method developed by Duarte et al. [6] for constructing

the first integrals of second-order ODEs. In Chapter 4, we re-produce the first integral of equation

(1) under the condition n = m + 1. First we will simplify the equation (1) through a series of

nonlinear transformations, then by means of the Prelle-Singer method we derive the first integral

of the simplified equation without complicated calculations. After the inverse transformations we

will get the first integral of the original oscillator equation. In Chapter 5 ,we will use the Prelle-

Singer method to find a first integral for a extended nonlinear system ü+ (k1u
2 + k2u)u̇+

k21u
5

16
+

k1k2u4

6
+

k22u
3

9
= 0 . Chapter 6 is a brief conclusion.
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CHAPTER II

QUALITATIVE ANALYSIS

In this thesis, we study the free nonlinear oscillator equation

ü+ (δ + βum)u̇+ u− µun = 0, (2)

where an over-dot represents differentiation with respect to the independent variable ξ, and all

coefficients δ, β, and µ are real constants.

Following [22], Letting du
dξ
= v, then equation (1) is equivalent to the following two-dimensional

autonomous system


u̇ = P (u, v) = v,

v̇ = Q(u, v) = −(δ + βxm)v − u+ µun.

. (3)

In this part, using the qualitative theory of differential equations, we will show a qualitative result

to the non-linear oscillator equation (1). Specifically, we show that under certain conditions

δ < 0, β < 0, µ > 0, (4)

Consider the two-dimensional autonomous system (3) in the Poincare phase plane. Under

condition (4) , n is a positive odd integer and greater than 1 and m is a positive even integer,

system (3) has three equilibrium points

E(−
(
1

µ

) 1
n−1

, 0), O(0, 0), Q(

(
1

µ

) 1
n−1

, 0). (5)
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The coefficient matrices of the linearizing systems with respect to E, O and Q are as follows,

respectively,

(1) Case of Equilibrium point E(−
(

1
µ

) 1
n−1

, 0) ,

ME =

 P
′
u(u, v) P

′
v(u, v)

Q
′
u(u, v) Q

′
v(u, v)

 |E (6)

=

 0, 1

−1 + n, −(δ + β

[
−
(

1
µ

) 1
n−1

]m
)


,

and the corresponding eigenvalues of ME are:

λ
1= 1

2

{
−(δ+β

[
−( 1

µ)
1

n−1

]m
)+

√
{δ+β

[
−( 1

µ)
1

n−1

]m
}2−4+4n

}
,

λ
2= 1

2

{
−(δ+β

[
−( 1

µ)
1

n−1

]m
)−

√
{δ+β

[
−( 1

µ)
1

n−1

]m
}2−4+4n

}
.

(2) Case of Equilibrium point O(0, 0),

MO =

 P
′
u(u, v) P

′
v(u, v)

Q
′
u(u, v) Q

′
v(u, v)

 |O (7)

=

 0, 1

−1, −δ

,

and the corresponding eigenvalues of MO are:

λ1 =
1

2

(
−δ +

√
δ2 − 4

)
,

4



λ2 =
1

2

(
−δ −

√
δ2 − 4

)
.

(3) Case of Equilibrium point Q(
(

1
µ

) 1
n−1

, 0) ,

MQ =

 P
′
u(u, v) P

′
v(u, v)

Q
′
u(u, v) Q

′
v(u, v)

 |Q (8)

=

 0, 1

−1 + n, −(δ + β

[(
1
µ

) 1
n−1

]m
)


.

and the corresponding eigenvalues of MQ are :

λ
1= 1

2

{
−(δ+β( 1

µ)
m
n−1 )+

√[
(δ+β( 1

µ)
m
n−1 )2−4+4n

]}
,

λ
2= 1

2

{
−(δ+β( 1

µ)
m
n−1 )−

√[
(δ+β( 1

µ)
m
n−1 )2−4+4n

]}
.

Now that when condition (4) holds, we can know that the equilibrium point O(0, 0) is

(i)a repeller if δ < −2,n is a positive odd integer and greater than 1,m is a positive even integer.

(ii)a spiral repeller if−2 < δ < 0 , n is a positive odd integer and greater than 1 andm is a posi-

tive even integer. Since the corresponding eigenvalues forO(0, 0) are λ1,2 = 1
2

(
−δ ± i

√
| δ2 − 4 |

)
.

The equilibrium points E(−
(

1
µ

) 1
n−1

, 0), Q(
(

1
µ

) 1
n−1

, 0) are all saddle points under condition

(4).

For

∂P (u, v)

∂u
+
∂Q(u, v)

∂v
= −(δ + βum),

we obtain the following proposition from the Bendiuson-Dulac criterion[17].

PROPOSITION:When δ + βum 6= 0, system(3) does not have any closed orbit or

5



singular closed orbit with finite singular points on the (u, v) phase plane.

Consequently, equation(2)has neither periodic travelling − wave solution nor bell

profile solitary − wave solution as δ + βum 6= 0.

From the above results, we will find that the v-coordinates of the points which lie on the orbits

except the equilibrium points and the orbits between them are unbounded, so are the corresponding

u-coordinates on the same orbits.

This can be seen by the way of contradiction , assume that there exists a positive number α

such that | u |< α as v → ∞. By the Mean-value theorem, dv
du

is unbounded.On the other hand,

since the slope of the tangent line to each orbit at the point (u, v)can be expressed

du

dv
= −(δ + βum) +

µun − u
v

(9)

Equation (9) implies that dv
du
→| δ + βδm | as v →∞.This yields a contradiction.

Letting Q(u, v) = 0, we have

v =
µun − u
δ + βum

, (10)

which is the trajectory on which each orbit points to the left or right.Under the condition (4),

expression (10) can be rewritten as

v =
µu(u

n−1
2 −

√
1
µ
)(u

n−1
2 +

√
1
µ
)

δ + βum
.

Note that the graph of equation (10) is symmetric about the origin and the derivative of (10) is

v
′
=
δ(nµun−1 − 1) + β(m− 1)um + µβ(n−m)um+n−1

(δ + βum)2
. (11)

Construct two lines l1and l2. l1 is the tangent line of the curve of equation (10) at the origin,

that is v = −1
δ
u. And l2 passes through Q(u1, 0) with the slope

6



K =
−δ +

√
δ2 + 16µ2

1

4
,

i.e.,

l2 : v =
−δ +

√
δ2 + 16µ2

1

4
(u− u1). (12)

Denote the intersection point of l1and l2 by T ,and the u−coordinate of T by uT . Immediately

we have the following

uT =
−δ2 + δ

√
δ2 + 16u21

4− δ2 + δ
√
δ2 + 16u21

u1. (13)

In addition, at the each point of the line segment OT , we have

dv

du
|(u,v)∈OT= −(δ + βum) +

µun − u(
−1
δ
u
) |(u,v)∈OT

= −βum − δµun−1

LetG(u) = −βum − δµun−1, then G(u)
′
= −mβum−1 − (n − 1)δµun−2. If we want to

prove that all orbits at each point on the line segment OT point outward. Then we must have

G(u)
′
> 0,so we can get G(u) > −1

δ
.

Since m is a positive integer and under condition (4), so we have the term −mβum−1 >

0.Similarly we can get the term (n− 1)δµun−2 < 0.So G(u)′ > 0, we can get

−mβum−1 > (1− n)δµun−2

−mβ
(1− n)δµ

> un−m−1 (14)

7



Also we have the condition for u−coordinate of each point on the line segment OT ,that is

0 < u < uT =
−δ2 + δ

√
δ2 + 16u21

4− δ2 + δ
√
δ2 + 16u21

u1,

where u1 =
(

1
µ

) 1
n−1

.

Similarly, on the line segment QT ,using (9), we have

du

dv
|(u,v)∈l2= −(δ + βum) +

µun − u
v

|(u,v)∈QT

= −(δ + βum) +
µun − u

−δ+
√
δ2+16µ21
4

(u− u1)
|(u,v)∈QT

= −δ − βum +
4(µun − u)

(−δ +
√
δ2 + 16µ2

1)(u− u1)
|(u,v)∈QT

Since uT ≤ u ≤ u1, we can get that

du

dv
|(u,v)∈QT> K.

This implies that except at Q, all orbits at each point of line segment QT point outward.

8



CHAPTER III

PRELLE-SINGER PROCEDURE

3.1 Prelle-Singer Procedure for First-Order ODEs

There are many methods to solve nonlinear differential equations, but most of them only work

for a limited class. Despite its effectiveness in solving FOODEs, the Prelle-Singer (PS) procedure

is not very well known outside mathematical circles. This is probably due to its non-standard

approach, coupled with the fact that a computer is almost essential to realize its full efficiency.

Hence we present a brief overview of the main ideas of the Prelle-Singer procedure [5–14].

Consider the autonomous system of ODEs [5]:

ẋ = Q(x, y), ẏ = P (x, y), P, Q ∈ C[x, y],

where an overdot represents a derivative with respect to the independent variable t. This system is

equivalent to the class of FOODEs which can be written as

y′ =
dy

dx
=
P (x, y)

Q(x, y)
, (15)

in other words those FOODEs which can be isolated in y′, leaving a rational function of x and y

on the right-hand side.

Prelle and Singer [5] showed that, if an elementary first integral of (15) exists, there exists an

integrating factor R with Rn ∈ C[x, y] for some integer n, such that

∂RQ

∂x
+
∂RP

∂y
= 0. (16)

9



The key to the success of the PS procedure is that, given the particular form of the FOODE, we

know the most general form that the integrating factor can take. We can then realize a computer-

assisted exhaustive search for the correct integrating factor. With the integrating factor determined,

the ODE can be solved by quadrature. From (16) we see that

Q
∂R

∂x
+R

∂Q

∂x
+ P

∂R

∂y
+R

∂P

∂y
= 0. (17)

Thus, defining the differential operator

D ≡ Q
∂

∂x
+ P

∂

∂y
, (18)

we have that
D[R]

R
= −

(
∂Q

∂x
+
∂P

∂y

)
. (19)

Now let R =
∏

i f
ni
i where fi are monic irreducible polynomials and ni are non-zero rational

numbers [5].

From (18) we have

D[R]

R
=
D[
∏

i f
ni
i ]∏

k f
nk
k

=

∑
i f

ni−1
i niD[fi]

∏
j 6=i f

nj
j∏

k f
nk
k

,

=
∑
i

fni−1i niD[fi]

fnii
=
∑
i

niD[fi]

fi
.

(20)

From (16), plus the fact that P and Q are polynomials, we conclude that D[R]/R is a polyno-

mial. Therefore, from (20), we see that fi|D[fi]. Written in the form

D[fi] = figi, (21)

for some polynomial gi, we see that the equation for the fi has aspects similar to an eigenvalue

equation, and for that reason fi are sometimes called eigenpolynomials. However current usage

seems to prefer the term Darboux polynomials, and we shall refer to the fi as such in this paper.

10



Given an upper bound, B, on the degree of the Darboux polynomials, fi, we thus have a criterion

for finding them. We can, for example, construct all possible polynomials of degree up to B with

monic leading term and arbitrary complex coefficients, construct equation (21) and see if there are

non-trivial solutions for the arbitrary coefficients. With this in mind the PS procedure works as

follows [5]:

(1) Set the current degree bound, N = 1.

(2) Find all Darboux polynomials fi such that deg fi ≤ N and fi|D[fi].

(3) Let D[fi] = figi. If there exist constants ni, not all zero, such that

m∑
i=1

nigi = 0, (22)

then from (16) D[R]/R = 0 and the ODE is exact. The solution is w = c, where c is an arbitrary

constant and
∏m

i=1 f
ni
i .If (22) has no solution then

(4) if there exist constants ni, not all zero, such that

m∑
i=1

nigi = −
(
∂Q

∂x
+
∂P

∂y

)
, (23)

then return the solution w = c, where c is an arbitrary constant and w is either of

∫
RPdx−

∫ (
RQ+

d

dy

∫
RPdx

)
dy,

or

−
∫
RQdy +

∫ (
RP +

d

dx

∫
RQdy

)
dx.

(5) Set N = N + 1. If N > B then exit with no result. Else go to 2.

11



3.2 Prelle-Singer Procedure for Second-Order ODEs

In this section, we follow [5-14] to modify the techniques developed by Prelle and Singer and

apply them to second-order ODEs (SOODEs) with the following rational form. This modified

technique was also developed by Chandrasekar et al. [7-9].

Consider the second-order ODE:

y′′ =
P (x, y, y′)

Q(x, y, y′)
, P, Q ∈ C[x, y, y′]. (24)

We restrict ourselves for the time being to SOODEs which have elementary solutions, i.e. which

can be written in the form

f(x, y) = 0,

where f is an arbitrary combination of exponentials, logarithms and polynomials in its arguments.

Since we are working over a complex field, this includes standard trigonometric functions. Our

goal is to find elementary first integrals of (24) when such elementary first integrals exist. We

believe, given the conditions above, that these first integrals have a very particular form, described

later, which permits us to construct a semi-decision procedure analogous to the PS method to find

them. Once such a first integral is found, if y′ can be isolated, then the PS method (or any other

solution method for FOODEs) can then be applied to obtain the full solution.

In this section, in order to present our results in a straightforward way, we start our study by

briefly reviewing the Prelle–Singer procedure for solving second-order ODEs developed by Duarte

et al. [6] and Chandrasekar et al. [7-9].

Consider the second-order ODE of the rational form

d2y

dx2
= φ(x, y, y′) =

P (x, y, y′)

Q(x, y, y′)
, P, Q ∈ C[x, y, y′], (25)

where y′ denotes differentiation with respect to x, P and Q are polynomials in x, y and y′ with

coefficients in the complex field. Suppose that equation (25) admits a first integral I(x, y, y′) = C,

12



with C constant on the solutions, so we have the total differential

dI = Ixdx+ Iydy + Iy′dy
′ = 0, (26)

where the subscript denotes partial differentiation with respect to the corresponding variable. On

the solution, since y′dx = dy and equation (25) is equivalent to P
Q
dx = dy′, adding a null term

S(x, y, y′)y′dx− S(x, y, y′)dy to both sides yields

(
P

Q
+ Sy′

)
dx− Sdy − dy′ = 0. (27)

Comparing (26) and (27), one can see that on the solutions, the corresponding coefficients of (26)

and (27) should be proportional. There exists an integrating factor R(x, y, y′) for (27), such that

on the solutions

dI = R(φ+ Sy′)dx− SRdy −Rdy′ = 0. (28)

From (26) and (28), we have

Ix = R(φ+ Sy′), Iy = −SR, Iy′ = −R, (29)

and the compatibility conditions Ixy = Iyx, Ixy′ = Iy′x and Iyy′ = Iy′y, which are equivalent to

D[S] = −φy + Sφy′ + S2, D[R] = −R(S + φy′), Ry = Ry′S + Sy′R, (30)

where D is an differential operator

D =
∂

∂x
+ y′

∂

∂y
+ φ

∂

∂y′
.

For the given expression of φ, one can solve the first equation of (30) for S. Substituting S into

the second equation of (30) one can get an explicit form for R by solving it. Once a compatible

13



solution R and S satisfying the extra constraint (the third equation of (30)) is derived, integrating

(29), from (26) one may obtain a first integral of motion as follows [6-9]:

I(x, y, y′) =

∫
R(φ+ Sy′)dx−

∫ [
RS +

∂

∂y

∫
R(φ+ Sy′)dx

]
dy

−
∫ {

R +
∂

∂y′

(∫
R(φ+ Sy′)dx−

∫ [
RS +

∂

∂y

∫
R(φ+ Sy′)dx

]
dy

)}
dy′.
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CHAPTER IV

FIRST INTEGRAL OF NONLINEAR SYSTEM

4.1 Nonlinear Transformations

In this subsection, we use the transform method and the Prelle-Singer Procedure to re-produce

the first integrals of the Duffing-van de Pol equation which have been presented in [23, 24].

We will make a series of nonlinear transformations to equation

ü+ (δ + βum)u̇+ u− µun = 0, (31)

where an over-dot denotes differentiation with respect to ξ.

First we make the natural logarithm transformation:

ξ = −1

δ
ln τ, (32)

that is
∂τ

∂ξ
= −δe−ξδ = −δτ. (33)

After substituting the following two derivatives into equation (31):

∂u

∂ξ
=
∂u

∂τ
· ∂τ
∂ξ

= −δτ ∂u
∂τ
,

∂2u

∂ξ2
= δ2τ

∂u

∂τ
+ δ2τ 2

∂2u

∂τ 2
,

15



then it becomes

δ2τ 2
∂2u

∂τ 2
− βδτum∂u

∂τ
+ u− µun = 0. (34)

Furthermore, we take the variable transformation as:

q = τ k, u = τ−
1
2
(κ−1)H(q), (35)

then a direction calculation gives

∂u

∂τ
= −1

2
(κ− 1)q−

κ+1
2κ H(q) + κq

κ−1
2κ
∂H

∂q
,

∂2u

∂τ 2
=

1

4
(κ2 − 1)q−

κ+3
2κ H(q) + κ2q

3(κ−1)
2κ

∂2H

∂q2
.

Then substitute the above equations into the equation (34), we can get

1

4
δ2τ 2(κ2 − 1)q−

κ+3
2κ H + δ2τ 2κ2q

3(κ−1)
2κ

∂2H

∂q2
+

1

2
βδ(κ− 1)τ−

m(κ−1)
2

+1q−
κ+1
2κ Hm+1

−βδκτ−
m(κ−1)

2
+1q

κ− 1

2κ

∂H

∂q
+ τ−

1
2
(κ−1)H − µτ−

n(κ−1)
2 Hn = 0. (36)

After careful observation, we find that in the equation (36), the two terms involved with H can

be eliminated when

1

4
δ2τ 2(κ2 − 1)q−

κ+3
2κ + τ−

1
2
(κ−1) = 0. (37)

Then we can simplify equation (37) and get the condition

κ2 = − 4

δ2
+ 1. (38)

16



Therefore, in the condition (38), equation (36) becomes

δτ 2κ2q
3(κ−1)

2κ
∂2H

∂q2
+

1

2
βδ(κ− 1)τ−

m(κ−1)
2

+1q−
κ+1
2κ Hm+1

−βδκτ−
m(κ−1)

2
+1q

κ− 1

2κ

∂H

∂q
− µτ−

n(κ−1)
2 Hn = 0. (39)

From equation (39), we can get

∂2H

∂q2
=
βτ−

m(κ−1)
2
−1q−

κ−1
κ

δκ
Hm∂H

∂q
+
µτ−

n(κ−1)
2
−2

δ2κ2q
3(κ−1)

2κ

Hn

−β(κ− 1)τ−
m(κ−1)

2
−1q−

(κ+1)
2κ
− 3(κ−1)

2κ

2δκ2
Hm+1, (40)

Also from equation (35), we know that q = τ k. Through this equation , we can simplify

equation (40) into

∂2H

∂q2
=

β

δκ
q
m− κ(m+ 2)

2κ
Hm∂H

∂q
+

µ

δ2κ2
q
−(n+3)(κ−1)−4

2κ Hn

−1

2

β(κ− 1)

δκ2
q
m−κ(m+4)

2κ Hm+1, (41)

with the condition (38).

4.2 Special Case: When n = m+ 1

In this subsection, we use the Prelle-Singer method to find the first integral for the oscillator

equation in the case of n = m+ 1,that is

ü+ (δ + βum)u̇+ u− µum+1 = 0, (42)

where an over-dot denotes differentiation with respect to ξ. Note that when n = m + 1, equation

17



(41) will be simplified into the form

∂2H

∂q2
=

β

δκ
qpHm∂H

∂q
+ (

µ

δ2κ2
− β(κ− 1)

2δκ2
)qp−1Hm+1, (43)

where

p =
m− κ(m+ 2)

2κ
.

For the notational convenience, we donote that

A =
β

δκ
, B =

µ

δ2κ2
− β(κ− 1)

2δκ2
,

then equation (43) becomes

Ḧ = AqpHmḢ +BHm+1qp−1. (44)

Choosing φ(q,H,H ′) = AqpHmḢ + BHm+1qp−1and following the procedure in Section 2,

we obtain three determining equations:

Sq + ḢSH + φSḢ = −mAqpHm−1Ḣ + (ASqp −B(m+ 1)qp−1)Hm + S2, (45)

Rq +RHḢ + φRḢ = −RS −RAqpHm, (46)

RH = RḢS + SḢR. (47)

In general, it is not easy to solve system (30) and get exact solutions (S, R) in the explicit

forms. But in our case of (45)-(47) we may seek an ansatz for S and R of the forms as suggested

in the Duarte et al [6]. and Chandrasekar et al [7-9] paper:

18



S =
a(q,H) + b(q,H)Ḣ

c(q,H) + d(q,H)Ḣ
, R = e(q,H) + f(q,H)Ḣ, (48)

where a,b,c,d and e,f are functions of q, H to be determined. Substituting S into equation (45) ,

we can get the equation system:

[
Ḣ
]0

: −(m+ 1)Bc2Hmqp−1 +AacqpHm + a2 = aqc− acq + bcBHm+1qp−1 − adBHm+1qp−1,

[
Ḣ
]1

: −mAc2qpHm−1 − 2(m+ 1)BcdHmqp−1 + AadqpHm + AqpHmbc+ 2ab

= aqd+ bqc− adq − bcq + aHc− acH + bcAqpHm − adAqpHm, (49)

[
Ḣ
]2

: −2mAcdqpHm−1−(m+1)Bd2Hmqp−1+AbdqpHm+b2 = bqd−bdq+aHd+bHc−adH−bch,

[
Ḣ
]3

: −mAd2qpHm−1 = bHd− bdH .

Substituting S and R into equation (46), we can get another equation system:

[
Ḣ
]0

: eqc+BcfHm+1qp−1 = −ae− AceqpHm,

[
Ḣ
]1

: fqc+ eHc+ 2AfcqpHm + eqd+BfdHm+1qp−1 = −be− AdeqpHm − af,

19



[
Ḣ
]2

: fHc+ fqd+ eHd+ 2AfdqpHm = −bf, (50)

[
Ḣ
]3

: fHd = 0

We solve the above two nonlinear system (49) and (50) for a nontrivial solution with the aid of

the Mathematica, we can first find that b = 0, d = 0 and f = 0.

Then from the first equation of system (49) we can get

−(m+ 1)Bc2qp−1Hm + AacqpHm + a2 = aqc− acq,

that is

Sq =
aqc− acq

c2
= −(m+ 1)Bqp−1Hm + ASqpHm + S2. (51)

From the second equation of system (49) we can get

−mAc2qpHm−1 = aHc− acH ,

that is

SH =
aHc− acH

c2
= −mAqpHm−1. (52)

Thus , from equation (52) we can get

S = −AqpHm + F (q). (53)

where F (q) is a function of q to be determined.

Next we plug equation (53) in to equation (51) , we can get

−(m+ 1)Bqp−1Hm + A(−AqpHm + F (q))qpHm
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+(A2q2pH2m + F 2(q)− 2AqpHmF (q)) = −Apqp−1Hm + Fq(q). (54)

From equation (54) we can get the equation system:

[Hm]0 : F 2(q) = Fq(q),

[Hm]1 : −(m+ 1)Bqp−1 − AqpF (q) = −Aqp−1. (55)

Through the two equations we can get

F (q) = −1

q
. (56)

Based on the above results , we can obtain that under the parametric conditions

m =
4βδκ

2µ− δβ(κ− 1)
− 1, κ2 = − 4

δ2
+ 1, (57)

the three determining equations (45)-(47) have the solutions of the form

S = − β

δκ
q
m−κ(m+2)

2κ Hm − 1

q
, R = q. (58)

After substitution of the solution set (57) into formula

I(x, y, y′) =

∫
R(φ+ Sy′)dx−

∫ [
RS +

∂

∂y

∫
R(φ+ Sy′)dx

]
dy

−
∫ {

R +
∂

∂y′

(∫
R(φ+ Sy′)dx−

∫ [
RS +

∂

∂y

∫
R(φ+ Sy′)dx

]
dy

)}
dy′,

we derive the first integral of equation (42) as follows

δκH − δκqḢ +
2µ− δβ(κ− 1)

4δκ
q

(1−κ)m
2κ Hm+1 = I, (59)
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where I is an arbitrary integration constant. By virtue of inverse transformations (32) and (35),

and changing to the original variables, we obtain the followings under parametric condition (57):

H = uq
κ−1
2κ

Ḣ =
∂u

∂q
q
κ−1
2κ + u

κ− 1

2κ
q
−1−κ
2κ =

∂u

∂ξ

∂ξ

∂q
q
κ−1
2κ + u

κ− 1

2κ
q
−1−κ
2κ

= −u̇ 1

δκq
q
κ−1
2κ + u

κ− 1

2κ
q
−1−κ
2κ . (60)

Then plug equation (60) into equation (59) , we can get the nonlinear oscillator equation (42)

has the first integral of the form

[u̇+
δ(κ+ 1)

2
u+

2µ− δβ(κ− 1)

4δκ
um+1]e

1
2
δξ(1−κ) = I2. (61)
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CHAPTER V

FIRST INTEGRAL FOR AN EXTENDED NONLINEAR SYSTEM

Now we want use the same Prelle-Singer method to find the first integral for an extended

nonlinear equation

ü+ (k1u
2 + k2u)u̇+

k21u
5

16
+
k1k2u

2

6
+
k22u

3

9
= 0, (62)

where an over-dot denotes differentiation with respect to ξ. k1 and k2 are arbitrary parameters.

From the PS method showed in section 2, we know that

φ = −(k1u2 + k2u)u̇− (
k21u

5

16
+
k1k2u

2

6
+
k22u

3

9
). (63)

Since

u̇dξ = du,

we add a null term S(ξ, u, u̇)u̇dξ−S(ξ, u, u̇)du,then we will get the equation(φ+Su̇)dξ−Sdu−

du̇ = 0.

Define the differential operator

D ≡ ∂

∂ξ
+ u̇

∂

∂u
+ φ

∂

∂u̇
,

then we can get

Sξ + u̇Su + φSu̇ = −φu + Sφu̇ + S2, (64)
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Rξ + u̇Ru + φRu̇ = −R(S + φu̇), (65)

Ru = Ru̇S + Su̇R. (66)

Also we know that

φu = −(2k1u+ k2)u̇− (
5k21u

4

16
+

4k1k2u
3

6
+

3k22u
2

9
),

φu̇ = −(k1u2 + k2u).

Assume that

S =
a(ξ, u) + b(ξ, u)u̇

c(ξ, u) + d(ξ, u)u̇
, R = e(ξ, u) + f(ξ, u)u̇,

where a, b, c, d, e and f are functions of (ξ, u) to be determined.

Put S into equation (64), we can get

(aξ + bξu̇)(c+ du̇)− (cξ + dξu̇)(a+ bu̇)

(c+ du̇)2
+ u̇

(au + buu̇)(c+ du̇)− (cu + duu̇)(a+ bu̇)

(c+ du̇)2

−[(k1u2 + k2u)u̇+ (
k21u

5

16
+
k1k2u

4

6
+
k22u

3

9
)]
b(c+ du̇)− d(a+ bu̇)

(c+ du̇)2

= (2k1u+ k2)u̇+ (
5k21u

4

16
+

4k1k2u
3

6
+

3k22u
2

9
)− a+ bu̇

c+ du̇
(k1u

2 + k2u) +
(a+ bu̇)

2

(c+ du̇)2
.

After simplifying we can get the equation system:
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˙[u]0 : (aξc− acξ)− (
k21u

5

16
+
k1k2u

4

6
+
k22u

3

9
)(bc− da)

= (
5k21u

4

16
+

4k1k2u
3

6
+

3k22u
2

9
)c2 − ac(k1u2 + k2u) + a2,

[u̇]1 : (aξd− adξ + bξc− bcξ) + (auc− acu)− (bc− da)(k1u2 + k2u)

= (2k1u+ k2)c
2 + 2cd(

5k21u
4

16
+

4k1k2u
3

6
+

3k22u
2

9
)− (ad+ bc)(k1u

2 + k2u) + 2ab, (67)

[u̇]2 : (bξd− bdξ) + (aud+ buc− adu − bcu)

= 2cd(2k1u+ k2) + (
5k21u

4

16
+

4k1k2u
3

6
+

3k22u
2

9
)d2 − bd(k1u2 + k2u) + b2,

[u̇]3 : (bud− dub) = (2k1u+ k2)d
2.

Then put R and S into equation (65), we can get

eξ + fξu̇+ (eu + fuu̇)u̇− [(k1u
2 + k2u)u̇+ (

k21u
5

16
+
k1k2u

2

6
+
k22u

3

9
)]f

= −(e+ fu̇)[
a+ bu̇

c+ du̇
− (k1u

2 + k2u)].

then we can get the equation system as follows:

[u̇]0 : eξc− (
5k21u

4

16
+

4k1k2u
3

6
+

3k22u
2

9
)fc = −ea+ ec(k1u

2 + k2u),

25



[u̇]1 : (eξd+ fξc) + euc− (k1u
2 + k2u)fc− (

5k21u
4

16
+

4k1k2u
3

6
+

3k22u
2

9
)fd

= −(eb+ fa) + (k1u
2 + k2u)(ed+ fc), (68)

[u̇]2 : fξd+ eud+ fuc− (k1u
2 + k2u)fd = −fb+ (k1u

2 + k2u)fd,

[u̇]3 : fud = 0.

With the help of Mathematica, we find the formulas of R and S. After substitution of the

solution set R and S into the formula showed in Prelle-Singer Procedure. We derive the first

integral of the equation and get the results as follows:

u̇+ k1u3

4
+ k2u2

3

ξ(u̇+ k1u3

4
+ k2u2

3
)− u

= I3. (69)
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CHAPTER VI

CONCLUSION

Through the qualitative analysis to the nonlinear system, we find that equation (1) has a

bounded non-trivial solution under certain parametric conditions. By using the Prelle-Singer

method, we re-produce the first integral for the nonlinear system in the case of n = m + 1 un-

der some parametric conditions. Also we find the first integral for an extended nonlinear system

through the same method.

In the future , we want to analyze the property of proper solutions by using the obtained first

integrals.
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