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ABSTRACT 

 Das, Sayantan, Modeling Instabilities of Electrically Driven Jets under Constant or Variable 

Applied Field and Non Zero Basic State Velocity. Master of Science (MS), August, 2011, 52pp., 

21 references, 5 titles. 

We investigate   the problem of instability of electrically forced axisymmetric jets with 

respect to temporally and spatially growing disturbances, within parameter regimes that affects 

the process of electrospinnning. Deriving a dispersion relation based on the relevant 

approximated versions of the equations of the electro-hydrodynamics for an electrically forced 

jet flow. For temporal   instability, we find in the non-zero basic state velocity, the growth rate of 

the unstable mode is unaffected by the value of the basic state velocity. But, the basic state 

velocity affects the period of the unstable mode in the sense that it decreases the period, and the 

rate of increase of the frequency with respect to axial wave number increases with the basic state 

velocity. For spatial instability, we find that the growth rate of the unstable mode is dominated 

by the basic state velocity. The basic state velocity also affects the period of the unstable mode.  
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CHAPTER I 

 

TEMPORAL INSTABILITY  

 

The investigation of electrically forced jets is gaining importance in applications such as 

those to electro spraying, Baily (1981) and electro spinning, Hohman et al. (2001a-b). Electro 

spraying uses electric field to produce and control sprays of very small drops that are uniform in 

size. Electro spinning process uses electric fields to produce and control thin, uniform, high 

quality fibers. In the absence of electrical effects, it is observed that temporal growing 

disturbances can destabilize the free shear flows which include the jet flows. Several authors 

Hohman et al. (2001a), Drazin (1981), Fridrikh (2003), have done theoretical studies on temporal 

instability of the electrically forced jets in the presence of electrical effects. Hohman et al. 

(2001a) developed a theoretical understanding of temporal instabilities for an electrically forced 

jet with a static charge density. The equations for the dependent variables of the disturbances 

were based on the long wavelength and asymptotic approximations of the governing electro-

hydrodynamic equations. They found that the dominance of the instabilities depends on the 

surface charge density and the radius of the jet. Saville (1971), studied interactions between 

electrical tractions at the interface of an electrically driven liquid jet and the linear temporal 

instability phenomena. It was found, in particular, that when viscous effects are small, 

sufficiently small strength of the electric fields tends to decrease the growth rate of a temporally 
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growing axisymmetric mode. However, when viscous effects predominate, then the only 

unstable disturbance is that due to the axisymmetric mode regardless of the magnitude of the 

field’s strength. Other investigations of electrically driven jets with applications in electro 

spinning of nano fiber are reported in Yarin(2000), Sun et al.(2003), Li(2004), and Yu et 

al.(2004). Spatial instability of aixsymmetric electrically forced jets with variable applied field 

under idealistic conditions of zero or infinite electrical conductivity was studied analytically by 

Riahi (2009). He reported two spatial modes of instability each of which was enhanced with 

increasing the strength of the externally applied electric field.  

1.1 Temporal Instability Case 

In this present study, we follow an approach similar to that of Hohman et al. (2001a) to 

obtain a mathematical model for the electrically driven jets. We consider the problem of 

instability of electrically forced axisymmetric jets with respect to temporally growing 

disturbances. We derive a dispersion relation based on the relevant approximated versions of the 

equations of the electro-hydrodynamics for an electrically forced jet flow. The approximations 

include the assumptions that the length scale along the axial direction of the jet is much larger 

than that in the radial direction of the jet and the disturbances are axisymmetric and infinitesimal 

in amplitude. This work is an extension of Hohman et al. (2001a) in the sense that our model 

incorporates non-zero basic velocity and non-zero surface charge density. We then determine the 

dispersion relation, which relates the growth rate of the spatially growing disturbances to the 

wave number in the axial direction, the frequency and the non-dimensional parameters of the 

model. We found a number of interesting results. In particular, the growth rate of the temporally 

growing disturbances is found to be independent of the basic state velocity, while the frequency 

and equivalently the period of the growing disturbances found to depend notably on the basic 
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state velocity.  It is also observed from numerical investigations that there are two modes of 

instability for small values of the wavenumber.  

 

1.2  Mathematical Formulation 

 

The present theoretical investigation for the mathematical modeling of the electrically 

driven jets is based on the original governing electro-hydrodynamic equations Melcher &G.I. 

Taylor (1969) for the mass conservation, momentum, charge conservation and the electric 

potential. The system is given by 

0.  u
Dt

D 



              (1a) 

 

                          EquP
Dt

uD 


  .                                                                    (1b)      

 

                         0.  EK
Dt

Dq 
                                                                                        (1c)     

  

                       E


                                                                                                   (1d)      

where 



 .u

tDt

D 
is the total derivative. Here u


 is the velocity vector, P is the pressure, E


  

is the electric field vector, is the electric potential, q is the free charge density, is the fluid 

density, is the dynamic viscosity, K  is electric conductivity and  t  is the time variable. The 

geometry we use is shown in figure 1.  
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Figure 1.  Electrospinning model 

 

The internal pressure in the jet can be found by taking into consideration the balances across the 

free boundary of the jet between the pressure, viscous forces, capillary forces and the electric 

energy density plus the radial self-repulsion of the free charges on the free boundary G.I Taylor 

(1969). Assuming the ambient air to be motionless and passive, this yield the following 

expression for the pressure P in the jet 

 

     ~/~/48/)~( 0

2  EP                                       (2)        

where is the surface tension, is twice the mean curvature of the interface, /(4) is the 

permittivity constant in the jet,   4/~  is the permittivity constant in the air and is the 

surface free charge. 

 

Following the previous investigation Hohman et al.(2001a), we consider a cylindrical 

fluid jet moving axially. The fluid of air is considered as the external fluid, and the internal fluid 
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of jet is assumed to be Newtonian and incompressible. We use the governing equations (1) in the 

cylindrical coordinate system with origin at the center of nozzle exit section, where the jet flow 

is emitted with axial z-axis along the axis of the jet. We consider the axisymmetric form of the 

dependent variables in the sense that the azimuthal velocity is zero and there are no variations of 

the dependent variables with respect to the azimuthal variable. Following approximations carried 

out in Hohman et al.(2001a)  for a long and slender jet in the axial direction, we consider length 

scale in the axial direction to be large in comparison to that in the radial direction and use a 

perturbation expansion in the small jet’ aspect ratio. We expand the dependent variables in a 

Taylor series in the radial variable r. Then such expansions are used in the full axisymmetric 

system and keep only the leading terms. These lead to relatively simple equations for the 

dependent variables as functions of t and z only. Following the method of approach in Hohman 

et al.(2001a) , we employ (1d) and Coulomb’s integral equation to arrive at an equation for the 

electric field, which is essentially as the one derived by Hohman et al.(2001a)  and will not be 

repeated here.  

We non dimensionalize the resulting equations using 0r  (radius of the cross sectional area 

of the nozzle exit at z=0), 
  0

0 ~ r
E






 ,  



 0

0

r
t  , 

0

0

t

r
  and 

0

~

r


 as scales for length, 

electric field, time, velocity and surface charge, respectively. The resulting non-dimensional 

equations are then 

 

                      022 








vh

z
h

t
                                                                                                 (3a) 

                        0
2

1 2 













KEh

z
hv

z
h

t
                                                                        (3b)               
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



































































 2
2

3

2

2

2

2
4

8
11




E

z

h

z

h

z

h

h

zz

v
v

t

v
        

                              



















z

v
h

zhh

E 2

2

32 




                                    (3c)     

 

                    
















 


 h

z
Eh

z
EzEb 4

2
)ln()( 2

2

2

                                (3d)                    

 

where v is the axial velocity, h(z, t) is the radius of the jet’ cross-section at the axial location z, 

 (z, t) is the surface charge, E(z, t) is the electric field, the conductivity K is assumed to be a 

function of z in the form K=K0K
~
(z), where K0 is a constant dimensional conductivity and K

~
(z) 

is a non-dimensional variable function. Also, non-dimensional conductivity is given by 

2

3

0

0 ~

r
KK   and   1~ 




 . Also 




 0

2

0 r
    is the non-dimensional viscosity 

parameter,  )(zEb  is an applied electric field and 


1
 is the local aspect ratio, which is assumed 

to be small.  
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    1.3 Perturbation Analysis 

 

Next, we determine the electrostatic equilibrium solution, which is referred to here as the 

basic state solution, to the equations (3a-3d). The basic state solutions for the dependent 

variables, which are designated with a subscript ‘b’, are given below 

                    000 ,,,1  bbbb Evvh  (1-z),                                            (4a-d) 

where both 00 ,v  and 0  are constant quantities, and =80/() is assumed to be a small 

parameter (<<1), under which the basic state solutions given by (4a-d) were found to satisfy the 

modeling equations , Riahi(2009). Here 0  is referred to as the background free charge density. 

We consider each dependent variable as sum of its basic state solution plus a small perturbation, 

which is assumed to be oscillatory in time and in axial variable. Thus, we write 

                       1111 ,,,,,,,,, EvhEvhEvh bbbb                                     (5a)  

where the perturbation quantities, designated by the subscript ‘1’, are given by 

                      ikzteEvhEvh  
~

,~,~,
~

,,, 1111                                                     (5b)  

Here  Evh
~

,~,~,
~

  are constants which are assumed to be small, i is the imaginary unit,  is the 

complex growth rate, and k is the axial wave number. Using (4)-(5) in (3), we linearize with 

respect to the amplitude of perturbation, consider a series expansion in powers of  for all the 

dependent variable and only retain the lowest leading order terms, and then divide each equation 

by the exponential function exp[ t+ikz]. We then obtain 4 linear algebraic equations for the 

unknown constants  Evh
~

,~,~,
~

 .  To obtain non-trivial (non-zero) values of these constants, the 

4x4 determinant of the coefficients of these unknowns must be zero, which yields the following 

dispersion relation. 
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    1.4 Dispersion Relation 

 

                             032

2

1

3  TTT                                                             (6) 

where  

                        









 K

ivkkT b

4
31                                                               (7) 








4
1

4
4

12

2

1
2

2
2

2

2




















 







b
b

EKk
kT  

       



















 










k

K
kiviv bb

8
63                                          (8) 

































2
12

4
42

14 2

222

3













k

EiEkKk
T bb

b

b  

   










 



























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1.5 Results and Discussion 

 

The dispersion relation (6) which presents the temporal behavior of the system is 

investigated for several parameters.  For all our computational purpose, we use       

 

Our aim here is to present the positive real part and the imaginary part of the solution   of the 

equation (6), which is called, respectively, the growth rate and the frequency of the unstable 

mode, and these contributes to our understanding of the temporal instability. From our 

computational results (see APPENDIX A), it is observed that the positive real part of   is 

independent of the basic state velocity bv , only the imaginary part depends on bv .  All the 

parameters we choose yielded negative imaginary part for nonzero basic state velocity.  

 

Figure 2 through 4 present results for constant applied field and for various values of .bE  

Here we consider four values 0.0, 0.97, 1.93 and 2.9.  Results in figure 2 are for infinite 

conductivity case, i.e., .K  other parameters chosen as .0,0,1  

bbv 
 

 

As can be seen from the figure 2, the instability is reduced with increasing the magnitude 

of the applied field. The results indicate presence of the electrically analog of the so-called 

Rayleigh mode of instability Drazin (1981). The results presented in the figure 2 are also in 

qualitative agreement with those reported in Hohman et al. (2001a) for a perfect conducting fluid 

case and zero basic state velocity.  

 



  

10 

 

Results for zero conductivity, i.e., ),0( K   and 3.19K  cases are presented in 

figure 3 and figure 4 respectively keeping other parameters same as in the figure 2.  

As in the case of perfect conducting fluid, the results for the perfect dielectric fluid cases shown 

in the figure 3 indicate that the flow instability is reduced with increasing the magnitude of the 

applied field, which is again a property of the Rayleigh type mode of jet instability. The results 

presented in the figure 4 for a finite conducting case are qualitatively similar to those presented 

in the figures 2-3 and indicate those results for Rayleigh type mode of instability. 

Figure 5 presents some results for the constant applied field and compares the positive 

real solutions for three different conductivity cases, namely, zero, infinite and finite (19.3) for 

0,0,9.2  

bbE   and 1bv .  It is noticed that the results are closed to each other for 

,3.19K and .K  it is seen from the figure 5 the stability effect due to conductivity of the 

fluid. 

The effect of  
  is shown in figure 6 for zero and finite conductivities. Other parameters 

used are 0,9.2  bbE   and 1bv . Again the case of constant applied field is considered 

here. It can be seen from the results presented in the figure 6 that both viscosity and conductivity 

reduce the instability of the unstable mode.   

The effect of surface charge is presented next. Figure 7 displays the effect of  b  for zero 

conductivity with  0,9.2  bE  and 1bv .  It is seen from the results shown in the figure 7 

that surface charge density enhances the instability of the unstable mode for the axial wave 

number not too close to zero; while the opposite is true if the wave number is sufficiently small. 
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Figure 8 presents results for variable applied field, finite and nonzero viscosity and 

conductivity and for different values of the strength of the applied field. It can be seen from the 

results shown in the figure 8 that the instability mode favors intermediate values of the axial 

wave number (not too close to zero or one values). 

 

It is observed from numerical investigations that there are two modes of instability for 

small values of k. The primary mode dominates the secondary mode. The secondary mode exists 

only for small values of k. The secondary mode also independent of basic state velocity, i.e., real 

part of    does not depend on the basic state velocity which is the case for primary mode also.  

The secondary modes are presented in figure 9 with ,1.0,0,3.19  

bK   1bv  for 

various .bE
 

 

A comparison of these two modes are shown in figure 10 for ,1.0,0,3.19  

bK   

1bv   and 9.2bE . For very small values of k, the secondary mode exists whereas for larger k, 

this mode does not exist. For larger values of k, only one mode (namely, primary mode) exists. 

Figure 11 through figure 13 presents the imaginary part of the frequency of the unstable mode 

versus the axial wave number for zero conductivity and finite conductivity. Other parameters 

varied are viscosity and basic state velocity. It can be seen from the figure 11 that the period of 

the unstable mode is smaller for larger value of the basic state velocity and decreases with 

increasing the axial wave number of the unstable mode. Also, rate of increase of the frequency of 

the unstable mode with respect to the axial wave number increases with the basic state velocity.   

It can be seen from the figure 12 that the imaginary part of   of the unstable mode for finite 

conductivity and zero viscosity case has sudden change in magnitude when k is close to 0.68.  
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Figure 13 presents the results for imaginary part of   with 

,1.0,333.0,3.19  

bK   and  9.2bE   for various basic state velocities. These is no 

unstable mode for k approximately bigger than 0.5.  

1.6 Temporal Instability Figures 

 

Figure 2. Positive real part of   as a function k with 

0,0, 0    bK  And 10  vvb   for various ).( 0bE  

 

 

 

 

Figure 3. Positive real part of   as a function k with 

0,0,0  

bK   And 1bv   for various .bE  



  

13 

 

 

 

 

Figure 4. Positive real part of   as a function k with 

0,0,3.19  

bK   And 1bv   for various .bE
 

 

 

 

 

Figure 5. Positive real part of   as a function k with 

0,0,9.2  

bbE   And 1bv   for various .K  
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Figure 6. Positive real solutions of   as a function k with 

 0b  And 1bv   for various . Kand  
 

 

 

 

 

 

 

 

Figure 7. Positive real solutions of   as a function k with 

9.2,0,0  

bEK   And 1bv   for various .b  
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Figure 8. Positive real solutions of   as a function k with 

1.0,333.0,3.19  

bK   And 1bv   for various .bE
 

 

 

 

 

 

 

 

 
Figure 9. Secondary mode: positive real solutions of   as a function k with 

,1.0,0,3.19  

bK   And 1bv   for various .bE  
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Figure 10. Primary and Second modes with  

,1.0,0,3.19  

bK   1bv   And  9.2bE
 

 

 

 

 

 

 

 

 

Figure 11. Imaginary part of   whose real part is positive  

with 9.2,1.0,0,0  

bb EK  .  
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Figure 12. Imaginary part of   whose real part is positive  

with  9.2,1.0,0.0,3.19  

bb EK 
 

 

 

 

 

 

 

 

 

Figure 13. Imaginary part of   whose real part is positive  

with 9.2,1.0,333.0,3.19  

bb EK  . 
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1.7 Concluding Remarks 

 

We conclude that in the realistic cases of the non-zero basic state velocity, the growth 

rate of the unstable mode is unaffected by the value of the basic state velocity. However, the 

non-zero value of the basic state velocity affects significantly the period of the unstable mode in 

the sense that it decreases the period, and the rate of increase of the frequency with respect to the 

axial wave number increases with the basic state velocity. In all the cases that we investigated we 

found that the presence of the variable applied field is destabilizing, while the finite values of 

either viscosity or conductivity are stabilizing. It is also noticed for the zero conductivity case 

that the imaginary part of   is zero if basic state velocity is zero and the imaginary part of   is 

nonzero if basic state velocity is nonzero.  It is also observed from numerical investigations that 

there are two modes of instability for small values of the wavenumber. The primary mode 

dominates the secondary mode. The secondary mode exists only for small values of k. The 

secondary mode also independent of basic state velocity, i.e., real part of    does not depend on 

the basic state velocity which is the case for primary mode also.   
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CHAPTER II 

 

 

        SPATIAL INSTABILITY 

 

This chapter considers the problem of spatial instability of a cylindrical viscous jet of fluid 

with zero and infinite electrical conductivity, a static charge density and in the presence of an 

external variable electric field. The investigations of electrically forced jets are important 

particularly in applications such as those to electro spraying, Baily (1981), and electro spinning, 

Hohman et al (2001a-b). Electro spinning is a technology that uses electric fields to produce and 

control small fibers. The aim is at producing non-woven materials that are unparalleled in their 

porosity, high surface area, and the fineness and uniformity of their fibers. Electro spraying is a 

technology that uses electric field to produce and control sprays of very small drops. The aim is 

at producing very small drops that are uniform in size and are of charged macromolecules in the 

gas phase. Without presence of electrical field effects, it is known for several decades that 

spatially growing disturbances are, in general, more appropriate and realized than the temporally 

growing counterparts for the jet flows and other types of free shear flows Drazin (1981). For 

example, Michalke (1965), studied instability of the free shear layers and found that theoretical 

results based on the spatial instability have better agreement with the corresponding experimental 

results. Later, additional investigations of spatial instability of free shear flows and jets were 

reported by a number of authors including those by Monkewitz (1982), Lie (1988), Tam (1993), 
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Soderberg (2003) and Healey (2008). Soderberg (2003)   showed, in particular, agreement 

between the linear spatial instability results and the corresponding experimental results. 

For the jet flows driven by the electric forces, temporal instability of such flows has been 

studied theoretically by several authors including Hohman et al.(2001a) , Reneker et al.(2000) , 

Shkadov (2001), Fridrikh et al.(2003) , Bhatta et al.(2010), Hohman et al.(2001a)  studied the 

linear temporal instability of an electrically forced jet with uniform applied field. The simplified 

equations for the dependent variables of the disturbances that they analyzed were based on the 

long wavelength and asymptotic approximations of the original electro-hydrodynamic equations. 

For the axisymmetric jets, the authors detected, in particular, two temporal instability modes, 

independence of temporal instability on the basic state velocity, and also they discussed the 

properties of such instability modes in the various possible limits. Other investigations of the 

problems dealing with the electrically forced jets with applications in electro spinning of nano 

fiber are reported in several papers including Sun et al.(2003) , Li (2004) , Yu et al.(2004). 

Recently, Riahi (2009) considered electrically forced jets with variable applied field. He 

followed a modeling approach analog to that due to, Hohman et al. (2001a) and investigated 

analytically spatial instability of axisymmetric jets under idealistic conditions of either jet of zero 

electrical conductivity or jet of infinite electrical conductivity and subjected to certain 

restrictions on the frequency of the disturbances. He detected two spatial modes of instability 

each of which was enhanced with increasing the strength of the externally imposed applied 

electric field. These modes existed under certain restricted ranges of the axial wave number of 

disturbances, but, in particular, one of the modes did not exist if the axial wave number was 

sufficiently large.  
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     2.1 Spatial Instability Case 

 

In the present study we first use a method of approach similar to that employed by Riahi 

(2009) to arrive at a mathematical model for the non-idealistic (realistic) electrically driven 

viscous jets with zero and infinite conductivity. Next, we consider spatial instability of the jets 

for externally imposed variable applied field and non-zero basic state velocity. We then 

determine a rather lengthy dispersion relation, which relates the growth rate of the spatially 

growing disturbances to the wave number in the axial direction, the frequency and the non-

dimensional parameters of the model. We solve numerically the dispersion relation for the 

growth rate and frequency of the disturbances.  

 

 

2.2 Mathematical Formulation 

 

We use the original governing electro-hydrodynamic equations, Melcher J. R., and 

Taylor G. I. (1969) for the mathematical modeling of the electrically driven jets. The system is 

governed by, 

0.  u
Dt

D 



              (1a) 

 

                          EquP
Dt

uD 


  .                                                                    (1b)      

 

                         0.  EK
Dt

Dq 
                                                                                        (1c)     

  

                       E


                                                                                                   (1d)      
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where 



 .u

tDt

D 
is the total derivative. Here u


 is the velocity vector, P is the 

pressure, E


  is the electric field vector, is the electric potential, q is the free charge density, 

is the fluid density, is the dynamic viscosity, K  is electric conductivity and  t  is the time 

variable. The geometry we use is shown in figure 1.  

The internal pressure in the jet can be found by taking into consideration the balances across the 

free boundary of the jet between the pressure, viscous forces, capillary forces and the electric 

energy density plus the radial self-repulsion of the free charges on the free boundary G.I Taylor 

(1969). Assuming the ambient air to be motionless and passive, this yield the following 

expression for the pressure P in the jet 

 

     ~/~/48/)~( 0

2  EP                                       (2)        

where is the surface tension, is twice the mean curvature of the interface, /(4) is the 

permittivity constant in the jet,   4/~  is the permittivity constant in the air and is the 

surface free charge. 

 

Following the previous investigation Hohman et al. (2001a), we consider a cylindrical 

fluid jet moving axially. The fluid of air is considered as the external fluid, and the internal fluid 

of jet is assumed to be Newtonian and incompressible. We use the governing equations (1) in the 

cylindrical coordinate system with origin at the center of nozzle exit section, where the jet flow 

is emitted with axial z-axis along the axis of the jet. We consider the axisymmetric form of the 

dependent variables in the sense that the azimuthal velocity is zero and there are no variations of 

the dependent variables with respect to the azimuthal variable. Following approximations carried 

out in Hohman et al.(2001a)  for a long and slender jet in the axial direction, we consider length 

scale in the axial direction to be large in comparison to that in the radial direction and use a 
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perturbation expansion in the small jet’ aspect ratio. We expand the dependent variables in a 

Taylor series in the radial variable r. Then such expansions are used in the full axisymmetric 

system and keep only the leading terms. These lead to relatively simple equations for the 

dependent variables as functions of t and z only. Following the method of approach in Hohman 

et al.(2001a), we employ (1d) and Coulomb’s integral equation to arrive at an equation for the 

electric field, which is essentially as the one derived by Hohman et al.(2001a) and will not be 

repeated here.  

We non dimensionalize the resulting equations using 0r  (radius of the cross sectional area 

of the nozzle exit at z=0), 
  0

0 ~ r
E






 ,  



 0

0

r
t  , 

0

0

t

r
  and 

0

~

r


 as scales for length, 

electric field, time, velocity and surface charge, respectively. The resulting non-dimensional 

equations are then 

                      022 
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where v is the axial velocity, h (z, t) is the radius of the jet’ cross-section at the axial location z, 

 (z, t) is the surface charge, E (z, t) is the electric field, the conductivity K is assumed to be a 

function of z in the form K=K0K
~
 (z), where K0 is a constant dimensional conductivity and K

~
(z) 

is a non-dimensional variable function. Also, non-dimensional conductivity is given by 

2

3

0

0 ~

r
KK   and   1~ 




 . Also 




 0

2

0 r
    is the non-dimensional viscosity 

parameter,  )(zEb  is an applied electric field and 


1
 is the local aspect ratio, which is assumed 

to be small. 

 

2.3 Perturbation Analysis 

 

Next, we determine the electrostatic equilibrium solution, which is referred to here as the 

basic state solution, to the equations (3a-3d). The basic state solutions for the dependent 

variables, which are designated with a subscript ‘b’, are given below 

                    0,,,1  bbbb Evh  (1-z),                                                                  (4a-4d) 

Where  bbv ,  and 0  are constant quantities, and =8b/() is assumed to be a 

small parameter (<<1), under which the basic state solutions given by (4a-4d) were found to 

satisfy the modeling equations, Riahi(2009) . Here b  is referred to as the background free 

charge density. We consider each dependent variable as sum of its basic state solution plus a 

small perturbation, which is assumed to be oscillatory in time and in axial variable.  
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Thus, we write 

                       1111 ,,,,,,,,, EvhEvhEvh bbbb                                                         (5a)  

where , perturbation quantities are designated by the subscript ‘1’, are given by 

                      zikstieEvhEvh )(

1111

~
,~,~,

~
,,,                                                                       (5b)  

Here  Evh
~

,~,~,
~

  are constants which are assumed to be small, i the imaginary unit,   is the 

frequency and s is the real growth rate of the spatially growing disturbances, and k is the axial 

wave number.  

 

 

 

     

 

2.4 Dispersion Relation  

 

Using equations (4)-(5) in (3), we linearize with respect to the amplitude of perturbation, 

consider a series expansion in powers of  for all the dependent variable and only retain the 

lowest leading order terms, and then divide each equation by the exponential function exp [i

t+(s+ik) z]. We then obtain four linear algebraic equations for the unknown constants

 Evh
~

,~,~,
~

 .  To obtain non-trivial (non-zero) values of these constants, the 4x4 determinant of 

the coefficients of these unknowns must be zero, which yields the following dispersion relation: 

                             043

2

2

3

1  iTTiTT                                                                          (6) 

 

where, 
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2.5 Results and Discussion 

 

The dispersion relation (6) which presents the spatial behavior of the system is 

investigated as function of several parameters.  For all our computational (see Appendix B) 

purpose, we use various parameters from (6e) used by Hohman et al. (2001a) Our aim here is to 

present the positive real part of s and the real part of the solution   of the equation (6), which is 

respectively called as the spatial growth rate and the frequency of the unstable mode and these 

contributes to the spatial instability. We solve the dispersion relation numerically. 

Figures 14 through 16 present results for constant applied field and for various values of 

.bE  Here we consider four values 0.0, 1.0, 1.5 and 2.0.  Results in figure 2 are for zero 

conductivity case, i.e. K*=0, other parameters chosen as .0,0,3  

bbv 
 

As can be seen from the figure 14, the instability is reduced with increasing the 

magnitude of the applied field. The results indicate presence of the electrically analog of the so-

called Rayleigh mode of instability, Drazin (1981). The results presented in the figure 14 are also 

in qualitative agreement with those reported in, Hohman et al. (2001a) for a perfect conducting 

fluid case and zero basic state velocity.  Results for zero conductivity, i.e., ),0( K   and 

different bv  cases are presented in figure 15 keeping other parameters same as in the figure 14.                                    

As in the case of perfect conducting fluid, the results for the perfect dielectric fluid cases 

shown in the figure 15 indicate that the flow instability is reduced with increasing the magnitude 

of the basic state velocity, which appears to be due to the effect of non-zero basic state velocity 

of the jet with zero conductivity. In this case, higher value of the basic state velocity makes the 

jet more stable versus the spatially growing perturbation.  
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The results presented in the figure 16 for a zero conducting case are in agreement with 

those in the figure 15 for the stabilizing effect of the basic state velocity in the sense that the 

period of the unstable mode increases with basic state velocity. In addition, as can be seen in this 

figure and all the rest of our generated data for the frequency of the unstable mode, the frequency 

is negative which indicates that the spatially growing perturbation moves axially in the positive 

direction with increasing value of the axial variable.  

Figure 17 presents some results for the variable applied field and compares the positive 

real growth rates for infinite conductivity case with 01.0,3333.0,0.1  

bbE   and various  

bv  . It is seen from the figure 17 the instability increases due to increase in basic state velocity, 

and it is also seen that basic state velocity dominates the effect of other parameters. Thus, basic 

state velocity can enhance perturbation growth when the jet’s conductivity is sufficiently high. 

The effect of    is shown in figure 6 for jets with infinite conductivities and variable 

applied field. Other parameters used are 01.0,0.1  bbE   and 1bv . It can be seen from the 

results presented in the figure 18 that viscosity reduces the stability of the unstable mode. This is 

a consequence of spatially growing jets with non-zero basic state velocity in agreement with the 

non-electric free shear layer , Drazin (1981 ), where viscous instability modes were found to be 

more unstable than the corresponding in viscid modes Lie (1988).    

The effect of dominance of basic state velocity is presented next. Figure 7 displays the 

effect of  for infinite conductivity with 0.1bE  and 0bv .  Comparing the results shown in 

the figure 19& Figure 18 it is clear that viscosity is stabilizing when bv  is absent but when bv is 

present, it clearly dominates over the viscosity effect and enhances the instability of the unstable 

mode.  
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Figure 8 presents results for variable applied field, finite and nonzero viscosity and 

background free charge density and for different values of the strength of the applied field. It can 

be seen from the results shown in the figure 20 that the instability mode decreases with increase 

in applied field, the basic state velocity being small in magnitude. We refer to the mode of 

instability here as the secondary one since the value of the corresponding growth rates are small 

as compared to those for primary mode presented in the next figure. 

Now, we will see the presence of new type of mode, refers to here as the primary one, 

which is more significant than the secondary one since it exhibits relatively larger growth rates 

and in the presence of non-zero basic state velocity. Figure 21 presents the contrasting results for 

variable applied field, finite and nonzero viscosity and background free charge density and for 

different values of the strength of the applied field with non-zero value of the basic state 

velocity. It can be compared from the results shown in the figures 20 and 21 that clearly the 

primary instability mode is weaker than the corresponding secondary one.  

Thus, as is observed from the numerical investigations described above, there can be two 

modes of instability. The primary mode dominates over the secondary mode. The two modes are 

presented in figure 22 with ,01.0,333.0,  

bK   1bv  for 0bE .  

For very small values of k, only the primary mode exists whereas for larger k, both modes of 

instability can operate, even though the primary mode is the most dangerous one. Figure 23 

presents the magnitude of the frequency of the unstable mode versus the axial wave number for 

infinite conductivity. Other parameter varied is the basic state velocity.  It can be seen from the 

figure 23 that the period of the unstable mode is smaller for larger value of the basic state 

velocity and decreases with increasing the axial wave number of the unstable mode. Also, rate of 
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increase of the frequency of the unstable mode with respect to the axial wave number increases 

with the basic state velocity.   

From the figure 24 it is observed that the maximum growth rate corresponds to value of 

the perturbation’s period which is relatively not too large and not too small.  

 

 

 

 

 

 

 

 

 
 2.6 Spatial Instability Figures 

 

 

 

 
Figure 14. Positive real part of s as a function k  with 

0,0,0  

bK   and 3bv   for various .bE  
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Figure 15. Positive real part of s as a function k  with 

0,0,0  

bK   , 5.1bE
 
and various .bv

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16.   as a function k  for various bv

 
with 

0,0,0  

bK   and 5.1bE  .  
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              Figure 17. Positive real part of s as a function k  with K , 

01.0,333.0,0.1  

bbE   for various .bv
 

 

 

 

 

 

 

 

 
Figure 18. Positive real solutions of s as a function k with 

 01.0b , 0.1bE ,  1bv   for various . Kand  
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Figure 19. Positive real solutions of s as a function k  with 

0.1,2.1,&333.0,  

bEK   and 0bv   for  01.0b  
 

 

 

 

 
 

Figure 20. Secondary mode: positive real solutions of s as a function k with 

01.0,333.0,  

bK   and 1bv   for various .bE
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Figure 21.  Primary mode: positive real solutions of s as a function k with 

01.0,333.0,  

bK   and 1bv   for various .bE
   

 

 

 

 

 

 

 
Figure 22. Primary and secondary modes with 

,01.0,333.0,  

bK   and 1bv   for  0bE  
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Figure 23. Real part of   as a function of k  with 

0.1,01.0,333.0,  

bb EK   for various  

.bv
 

 

 

 

  

Figure 24. Growth rate s versus   with  

     
01.0,333.0,  

bK   For various .bE   
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2.7 Concluding Remarks 

 

A dispersion relation for the problem of linear spatial instability of electrically driven 

viscous jets in the presence of an applied electric field and non-zero basic state velocity is 

derived. Two cases, namely, zero and infinite conductivity cases are considered.  From our 

numerical results, we detected two modes of instability for the infinite conductivity jets. The 

instability modes were found to move along positive axial direction. The basic state velocity is 

found to be stabilizing for zero conductivity case, but destabilizing for infinite conductivity case. 

The most dangerous disturbances were found to be intrinsically viscous in nature only for the 

non-zero basic state velocity but in viscid for the zero value of the basic state velocity. 
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APPENDIX A 

 

     DETAILED COMPUTATIONAL PROCESS FOR TEMPORAL INSTABILTY 

 We find the zeroes of the Dispersion Relation (DR), Equation (6), Pg 8. 

 We solve the DR by using MATLAB Library function ROOTS 

 ROOTS find all the zeroes of the complex equation. 

Its algorithm is based on calculating all the Eigen Values of the companion 

matrices  

 We separate the real and imaginary part of the zeroes to get the growth rate (ωr) 

and frequency (ωi) of the system. 

 We collected computational data for the figures based on the zero of the  DR that 

give max growth rate ωr ,  & for frequency plot we used the data for ωi with  

various k (*) 

 

(*) EXAMPLE OF MATRICES WE FORM AFTER SOLVING FOR ZEROES 

 

 

 k    ωr                  ωi      ωr                  ωi      ωr                  ωi     

0.01 (0.010047 -0.020431) (-0.008594 -0.080702) (-0.495019 -0.048867)  

0.02 (0.016272 -0.066198) (-0.016196 -0.134488) (-1.615025 -0.099314)  

0.03 (0.021657 -0.11303) (-0.022321 -0.187501) (-3.083021 -0.149469)  

0.04 (0.026377 -0.1605) (-0.027829 -0.239957) (-4.710988 -0.199543)  

0.05 (0.030628 -0.208443) (-0.033015 -0.291975) (-6.371063 -0.249583)  

0.06 (0.034531 -0.256761) (-0.038031 -0.343634) (-7.982455 -0.299605)  

0.07 (0.038168 -0.305385) (-0.042966 -0.394997) (-9.499135 -0.349617)  

0.08 (0.04159 -0.354266) (-0.047879 -0.446111) (-10.898871 -0.399623)  

0.09 (0.044834 -0.403362) (-0.052807 -0.497014) (-12.17464 -0.449624)  
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0.10 (0.047924 -0.452643) (-0.057778 -0.547735) (-13.328485 -0.499623)  

0.11 (0.050878 -0.502081) (-0.062809 -0.5983) (-14.367406 -0.549619)  

0.12 (0.053709 -0.551654) (-0.067913 -0.648732) (-15.300767 -0.599614)  

0.13 (0.056424 -0.601345) (-0.073098 -0.699047) (-16.138716 -0.649608)  

0.14 (0.059029 -0.651137) (-0.078371 -0.749262) (-16.891289 -0.699601)  

0.15 (0.061527 -0.701016) (-0.083734 -0.799391) (-17.56793 -0.749593)  

0.16 (0.063919 -0.750971) (-0.089188 -0.849444) (-18.177268 -0.799585)  

0.17 (0.066205 -0.800993) (-0.094735 -0.899431) (-18.727046 -0.849577)  

0.18 (0.068386 -0.851071) (-0.100373 -0.949361) (-19.224132 -0.899568)  

0.19 (0.070458 -0.9012) (-0.106101 -0.999241) (-19.674571 -0.94956)  

0.20 (0.07242 -0.951372) (-0.111916 -1.049077) (-20.083665 -0.999551)  

0.21 (0.07427 -1.001583) (-0.117816 -1.098874) (-20.456051 -1.049543)  

0.22 (0.076004 -1.051829) (-0.123799 -1.148637) (-20.795781 -1.099534)  

0.23 (0.07762 -1.102105) (-0.129861 -1.198368) (-21.106394 -1.149526)  

0.24 (0.079114 -1.152409) (-0.136 -1.248073) (-21.390986 -1.199518)  

0.25 (0.080484 -1.202738) (-0.142211 -1.297751) (-21.652267 -1.249511)  

0.26 (0.081725 -1.25309) (-0.148492 -1.347407) (-21.892612 -1.299503)  

0.27 (0.082836 -1.303463) (-0.15484 -1.397041) (-22.114107 -1.349496)  

0.28 (0.083812 -1.353856) (-0.161251 -1.446654) (-22.31859 -1.39949)  

0.29 (0.08465 -1.404269) (-0.167722 -1.496248) (-22.50768 -1.449483)  

0.30 (0.085347 -1.454699) (-0.174249 -1.545823) (-22.682806 -1.499478)  

0.31 (0.085899 -1.505148) (-0.18083 -1.59538) (-22.845237 -1.549472)  

0.32 (0.086304 -1.555615) (-0.187461 -1.644918) (-22.996097 -1.599467)  

0.33 (0.086558 -1.606099) (-0.194138 -1.694438) (-23.136385 -1.649463)  

0.34 (0.086657 -1.656601) (-0.200858 -1.74394) (-23.266993 -1.699459)  

0.35 (0.086598 -1.707122) (-0.207618 -1.793423) (-23.388716 -1.749456)  

0.36 (0.086379 -1.757661) (-0.214415 -1.842886) (-23.502266 -1.799453)  

0.37 (0.085994 -1.80822) (-0.221245 -1.892329) (-23.608281 -1.849451)  

0.38 (0.085442 -1.858799) (-0.228105 -1.941751) (-23.707332 -1.89945)  

0.39 (0.084719 -1.9094) (-0.234991 -1.991151) (-23.799936 -1.949449)  

0.40 (0.083821 -1.960023) (-0.2419 -2.040528) (-23.886555 -1.999449)  

0.41 (0.082745 -2.01067) (-0.248829 -2.08988) (-23.967608 -2.04945)  

0.42 (0.081486 -2.061342) (-0.255773 -2.139206) (-24.043472 -2.099452)  

0.43 (-0.262728 -2.188505) (0.080042 -2.112041) (-24.114489 -2.149454)  

0.44 (-0.269692 -2.237773) (0.078409 -2.162769) (-24.180967 -2.199458)  

0.45 (-0.276661 -2.287011) (0.076582 -2.213527) (-24.243186 -2.249462)  

0.46 (-0.283629 -2.336214) (0.074558 -2.264318) (-24.3014 -2.299468)  

0.47 (-0.290593 -2.385381) (0.072333 -2.315145) (-24.355837 -2.349474)  

0.48 (-0.29755 -2.434509) (0.069902 -2.366009) (-24.406706 -2.399482)  

0.49 (-0.304494 -2.483595) (0.067262 -2.416915) (-24.454195 -2.449491)  

0.50 (-0.31142 -2.532635) (0.064406 -2.467864) (-24.498475 -2.499501)  

0.51 (-0.318325 -2.581626) (0.061332 -2.518862) (-24.539701 -2.549512)  

0.52 (-0.325204 -2.630564) (0.058034 -2.569911) (-24.578011 -2.599525)  

0.53 (-0.33205 -2.679445) (0.054506 -2.621017) (-24.613532 -2.649539)  

0.54 (-0.33886 -2.728263) (0.050745 -2.672183) (-24.646376 -2.699554)  

0.55 (-0.345627 -2.777013) (0.046744 -2.723416) (-24.676644 -2.749571)  

0.56 (-0.352347 -2.825689) (0.042497 -2.774721) (-24.704426 -2.79959)  

0.57 (-0.359012 -2.874284) (0.038 -2.826106) (-24.729802 -2.849611)  

0.58 (-0.365617 -2.92279) (0.033245 -2.877576) (-24.75284 -2.899633)  

0.59 (-0.372155 -2.9712) (0.028226 -2.929142) (-24.773601 -2.949658)  

0.60 (-0.378621 -3.019504) (0.022938 -2.980812) (-24.792136 -2.999684)  

0.61 (-0.385006 -3.067691) (0.017372 -3.032596) (-24.808488 -3.049713)  

0.62 (-0.391304 -3.115749) (0.011523 -3.084507) (-24.82269 -3.099745)  

0.63 (-0.397509 -3.163664) (0.005383 -3.136558) (-24.834768 -3.149778)  
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0.64 (-0.403612 -3.211421) (-0.001055 -3.188764) (-24.844739 -3.199815)  

0.65 (-0.409607 -3.259003) (-0.007797 -3.241142) (-24.852612 -3.249854)  

0.66 (-0.415488 -3.30639) (-0.014852 -3.293713) (-24.858388 -3.299897)  

0.67 (-0.421246 -3.353558) (-0.022224 -3.346499) (-24.86206 -3.349943)  

0.68 (-0.426878 -3.400483) (-0.029919 -3.399525) (-24.863611 -3.399992)  

0.69 (-0.432379 -3.447133) (-0.037942 -3.452822) (-24.863015 -3.450046)  

0.70 (-0.437746 -3.493475) (-0.046295 -3.506422) (-24.860238 -3.500103)  

0.71 (-0.44298 -3.53947) (-0.054976 -3.560365) (-24.855235 -3.550165)  

0.72 (-0.448087 -3.585074) (-0.063981 -3.614695) (-24.847949 -3.600231)  

0.73 (-0.453076 -3.630237) (-0.0733 -3.66946) (-24.838315 -3.650303)  

0.74 (-0.457966 -3.674902) (-0.082913 -3.724717) (-24.826251 -3.70038)  

0.75 (-0.462787 -3.719011) (-0.092791 -3.780525) (-24.811666 -3.750464)  

0.76 (-0.46758 -3.7625) (-0.102891 -3.836946) (-24.79445 -3.800554)  

0.77 (-0.472406 -3.805304) (-0.113154 -3.894045) (-24.774479 -3.850651)  

0.78 (-0.477343 -3.847365) (-0.1235 -3.951879) (-24.75161 -3.900756)  

0.79 (-0.482488 -3.888637) (-0.133833 -4.010493) (-24.725677 -3.95087)  

0.80 (-0.487955 -3.929093) (-0.144038 -4.069914) (-24.696495 -4.000993)  

0.81 (-0.493868 -3.968731) (-0.153991 -4.130142) (-24.663847 -4.051127)  

0.82 (-0.500348 -4.007583) (-0.16357 -4.191145) (-24.62749 -4.101272)  

0.83 (-0.507503 -4.045704) (-0.172666 -4.252866) (-24.587144 -4.15143)  

0.84 (-0.515418 -4.08317) (-0.181196 -4.315227) (-24.542488 -4.201603)  

0.85 (-0.524148 -4.120061) (-0.189101 -4.378148) (-24.493155 -4.251791)  

0.86 (-0.533727 -4.156453) (-0.196349 -4.441549) (-24.438722 -4.301998)  

0.87 (-0.544165 -4.192406) (-0.202928 -4.50537) (-24.378703 -4.352224)  

0.88 (-0.555466 -4.22796) (-0.208834 -4.569566) (-24.312534 -4.402474)  

0.89 (-0.567627 -4.263134) (-0.214067 -4.634116) (-24.23956 -4.45275)  

0.90 (-0.580654 -4.297927) (-0.218621 -4.699017) (-24.159014 -4.503056)  

0.91 (-0.594556 -4.33232) (-0.222485 -4.764284) (-24.07 -4.553396)  

0.92 (-0.609359 -4.366274) (-0.225633 -4.829949) (-23.971457 -4.603777)  

0.93 (-0.625098 -4.399736) (-0.228024 -4.896059) (-23.862125 -4.654205)  

0.94 (-0.641831 -4.432633) (-0.2296 -4.962679) (-23.740497 -4.704688)  

0.95 (-0.659631 -4.464873) (-0.230283 -5.02989) (-23.604757 -4.755237)  

0.96 (-0.678599 -4.496338) (-0.229969 -5.097795) (-23.452692 -4.805866)  

0.97 (-0.698862 -4.526885) (-0.228524 -5.166523) (-23.281585 -4.856592)  

0.98 (-0.720586 -4.556329) (-0.225775 -5.236233) (-23.088063 -4.907438)  

0.99 (-0.743984 -4.584438) (-0.2215 -5.307128) (-22.867883 -4.958434)  

 

Here r--temporal growth rates and ωi –frequency for given k-axial wave number. 

For corresponding values of Vb=5, Conductivity of 19.3, v
*
=0.33 and Eb=1.93, with 
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        DETAILED COMPUTATIONAL PROCESS FOR SPATIAL INSTABILTY 

       We find the zeroes of the Dispersion Relation (DR) by following steps 

 First while deriving the dispersion relation we separate the Real and Imaginary part of the 

dispersion relation by expanding the equation to the  simplest form(*) 

 We get two separate equations, where we have two unknown’s, s (growth rate) and ω 

(frequency), with varying k (wavenumber). 

 The important part is to get the right guess in order to follow the Iterative method to 

calculate the actual zeroes. 

 We program  to carry out findings of the initial guess in MATHEMATICA using 

NSOLVE (an inbuilt MATHEMATICA  library function)(**) 

 Using the initial guess we use Iterative method to carry out finding the actual zeroes. 

(***) 

 We use this data to plot the figures 
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(*)THE DR AFTER EXPANDING THE IMAG & REAL PART TO ITS SIMPLEST FORM 

 

                                      Imaginary Part of DISPERSION RELATION: 
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                                             Real part of DISPERSION RELATION: 
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(**) AN EXAMPLE OF INTIAL GUESS FINDING USING MATHEMATICA 

 

Below is an example of finding the  real values of max(s) and corresponding (ω), which 

we use in finding the respective zeroes by using Iterative  Method to solve the two(Real and 

Imaginary) equations with two unknowns s and ω. 

Zero Conductivity case with k = 0.03Eb= 2, vb = 0.1, v*=0, σ=0. 

{{{s0. -0.708508 ,ω-0.0738508},{s0. +0.708508 , ω-0.0738508}, {s0. -0.642751 , 

ω0.0666735},{s0. +0.642751 , ω0.0666735}, {s0. -0.638146 , ω0.0608146},{s0. 

+0.638146 ,ω0.0608146},{s0.194618,ω-0.0733889},{s-0.0979184-0.0411591 

,ω0.029127 +0.0612244 },{s-0.0979184+0.0411591 ,ω0.029127 -0.0612244 

},{s0.0739401 -0.0631433 ,ω-0.0377694+0.0491172 },{s0.0739401 +0.0631433 

,ω-0.0377694-0.0491172 },{s0.130908 -0.0270205 ,ω-0.00570205-0.0130908 

},{s0.130908 +0.0270205 ,ω-0.00570205+0.0130908 },{s-0.130908-0.0270205 ,ω-

0.00570205+0.0130908 },{s-0.130908+0.0270205 ,ω-0.00570205-0.0130908 },{s-

0.194618,ω-0.0733889},{s0.0979184 +0.0411591 ,ω0.029127 +0.0612244 

},{s0.0979184 -0.0411591 ,ω0.029127 -0.0612244 },{s0.00784607 -0.0277988 ,ω-

0.00577988-0.000784607 },{s0.00784607 +0.0277988 ,ω-0.00577988+0.000784607 

},{s-0.00784607-0.0277988 ,ω-0.00577988+0.000784607 },{s-
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0.00784607+0.0277988 ,ω-0.00577988-0.000784607 },{s-0.0739401+0.0631433 ,ω-

0.0377694+0.0491172 },{s-0.0739401-0.0631433 ,ω-0.0377694-0.0491172 }}} 

 

Given above is a particular case of zero conductivity case, similarly we use for infinite 

conductivity cases and various other parameters. 

In this particular case, we found out the max of Real s, in BOLD.  

Here is the imaginary unit 

NOTE: Other values that this example shows are the possible imaginary zeroes of the two 

equations, we solved, which we ignore for our case. 

 

 

 

(***)AN EXAMPLE OF A MATRIX WE GET AFTER SOLVING THE EQUATIONS BY 

ITERATIVE METHOD 

k       s                 w 

0.010 6.026066111114 18.520672978476 

0.030 6.066284556886 18.825374998796 

0.050 6.106631867229 19.133683186524 

0.070 6.147105508764 19.445613793353 

0.090 6.187702991798 19.761176366428 

0.110 6.228421874667 20.080378922421 

0.130 6.269259764377 20.403228792190 

0.150 6.310214316418 20.729732878688 

0.170 6.351283234286 21.059897763029 

0.190 6.392464268869 21.393729757665 

0.210 6.433755217761 21.731234937402 

0.230 6.475153924537 22.072419159857 

0.250 6.516658277991 22.417288080369 

0.270 6.558266211370 22.765847163730 

0.290 6.599975701577 23.118101694003 

0.310 6.641784768381 23.474056783089 

0.330 6.683691473609 23.833717378457 

0.350 6.725693920336 24.197088270279 

0.370 6.767790252077 24.564174098136 

0.390 6.809978651966 24.934979357408 
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0.410 6.852257341944 25.309508405422 

0.430 6.894624581941 25.687765467445 

0.450 6.937078669051 26.069754642557 

0.470 6.979617936713 26.455479909476 

0.490 7.022240753885 26.844945132391 

0.510 7.064945524208 27.238154066854 

0.530 7.107730685172 27.635110365819 

0.550 7.150594707257 28.035817585909 

0.570 7.193536093075 28.440279194006 

0.590 7.236553376470 28.848498574333 

0.610 7.279645121605 29.260479036160 

0.630 7.322809921995 29.676223822403 

0.650 7.366046399484 30.095736119390 

0.670 7.409353203149 30.519019068223 

0.690 7.452729008088 30.946075778280 

0.710 7.496172514066 31.376909343628 

0.730 7.539682443953 31.811522863436 

0.750 7.583257541881 32.249919467918 

0.770 7.626896570987 32.692102352053 

0.790 7.670598310596 33.138074820373 

0.810 7.714361552544 33.587840347836 

0.830 7.758185096272 34.041402664464 

0.850 7.802067742018 34.498765875986 

0.870 7.846008281070 34.959934640405 

0.890 7.890005481317 35.424914434042 

0.910 7.934058064986 35.893711965786 

0.930 7.978164672928 36.366335846768 

0.950 8.022323804592 36.842797721529 

0.970 8.066533711504 37.323114281386 

0.990 8.110792195555 37.807311084627 

 

 

Here -frequency and s-spatial growth rates for given k-axial wave numer. 

The pair  and s correspond to values of vb=3, of Infinite Conductivity, v
*
=0.33, Eb=1.5 with 


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