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ABSTRACT 

 

 

Vazquez, Janette, Analysis of Artificial Neural Networks in the Diagnosing of Breast Cancer 

using Fine Needle Aspirates.  Master of Science (MS), August, 2016, 47 pp, 6 tables, 8 figures, 

references, 21 titles. 

 This thesis examines how Artificial Neural Networks can be used to classify a set of 

samples from a fine needle aspirate dataset.  The dataset is composed of various different 

attributes, each of which are used to come to the conclusion as to whether a sample is benign or 

malignant.  A Feedforward Neural Network was trained with the dataset using a 

Backpropagation training method.  After training, the network performed a 10-fold cross 

validation to determine which model had the lowest error score.  The data was looped through 

the model and the trained network classified the samples as either benign or malignant.  Once 

classified, the overall accuracy, specificity and sensitivity were analyzed to measure 

performance.  Three other neural networks were compared to the Feedforward Network to see 

how they performed.  These three neural networks included a NEAT Neural Network, a Support 

Vector Machine, and a Radial Basis Function Neural Network. 
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CHAPTER I 

 

 

INTRODUCTION AND BACKGROUND 

 

 

Introduction 

 

Motivation 

 Breast cancer is a principle cause of death in women in developed countries – in fact, it is 

the second most fatal disease found in women worldwide.  The estimated new cases of breast 

cancer for 2015 alone have been approximately 231,000, with deaths related to breast cancer 

estimated at 40,000.  Current statistics show that 1 out of every 10 women will develop breast 

cancer in their lifetime, with the risk increasing as women age.  Early detection and treatment of 

breast cancer is important and a major public health issue, especially since 90% of patients can 

be saved by early diagnosis (“What are the Key...”, 2015).   

 Cancer, aside from being one of the major causes of mortality in the world, is a complex 

and heterogeneous disease and research in the diagnosis and treatment of it has become one of 

the most important issues in the science community.  In recent years, factors from different tests 

have been identified as possible indicators of disease progression in breast cancer and its 

prognosis but the analysis of this information by medical experts is prone to error or often cannot 

be analyzed fast enough.  Radiologists usually study various features to determine between the 

two types of tumors – benign, a non-cancerous tumor that will not spread, or malignant, a 

cancerous tumor.  Unfortunately, 10-30% of breast cancer lesions are usually misdiagnosed due 
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to the limitations of human observers (Mahjabeen et al., 2012).  False negatives result in 

malignant tumors that are misdiagnosed and later detection reduces the chance of survival.  A 

false positive is something to be avoided as well since it results in unnecessary and costly 

surgical procedures that would not have needed to be undertaken in the first place.  Identifying 

women at risk is an important strategy in reducing the number of women suffering from breast 

cancer and ensuring they get appropriate treatment early on. 

 Within the last decade, there have been major advancements in the methods that diagnose 

breast cancer that reduce the need of the human expert.  Neural network based clinical support 

systems are beginning to be sought after to provide medical experts with a second opinion and 

removing the need for a biopsy or an excision and reducing unnecessary expenditures for 

patients.  New innovations and methods in early detection as well as the prediction of recurrent 

cancer are all crucial for the survival of the patient.  Recent use of Artificial Neural Networks has 

given accurate results for the diagnosis of breast cancer and the stage of the tumor (Mahjabeen et 

al., 2012).  By continuing to improve on machine learning methods with higher accuracy rates 

for the diagnosis of breast cancer, these methods cannot only be implemented into diagnosing 

breast cancer, but can also expand into the diagnosis of other diseases.  

Central Issues and Questions 

 Over the years, scientists have used machine learning techniques to address the problem 

of diagnosing breast cancer and analyzing the data available, but the problem has been difficult 

to solve since the data set has been relatively small and noisy.  Detecting the probability of 

recurrence of cancer or identifying women at risk is important in getting treatment to women on 

time.   
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 Mammography and ultrasonography continue to remain as the principal breast imaging 

tests for early detection, but both have limitations, have high costs, and usually require an 

experienced pathologist to read the results (Naguib, 1998).  Mammography is sensitive but not 

specific at detecting breast cancer, resulting in close to 65% of cases being referred to surgical 

biopsy when they are actually benign.  Smarter systems are needed in order to get rid of false 

positives and false negatives in order to prevent these unnecessary surgical procedures and 

reduce the cost (Lo, 1999).   

 Computer aided diagnosis has, for the last decade, been proposed for medical diagnosis, 

with fuzzy logic and Artificial Neural Networks forming the basis of these intelligent systems.  

There are several studies and published papers in which artificial intelligence has been used in 

the diagnosis as well as the prognosis and even recurrence probability of breast cancer.  Different 

Artificial Neural Network architectures have been studied such as: Convolution Neural 

Networks, Radial Basis Networks, General Regression Neural Networks, Probabilistic Neural 

Networks, Backpropagation Neural Networks and hybrid with fuzzy logic (Mahjabeen et al., 

2012). 

 In one study, a supervised Artificial Neural Network was used to classify breast lesions 

into either being malignant or benign.  It processed computer cytology images, looking for four 

biomarkers and the relationships between them.  In this study, the four biomarkers that were 

looked at were DNA ploidy, phase fraction, cell cycle distribution, and the state of steroid 

receptors.  The accuracy of this trained neural network was 82.21%, higher than previously used 

methods such as logistic regression and establishing Artificial Neural Networks as a robust 

system for the diagnosis of breast cancer (Mahjabeen et al., 2012).   
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 Two neural network approaches were proposed in a different study aimed at breast cancer 

diagnosis.  The first approach was based off of evolutionary Artificial Neural Networks and 

involved a feed forward neural network evolved using an evolutionary programming algorithm.  

The weights and architectures were evolved in the same process, making the network either grow 

or shrink.  The second approach was based off of neural network ensembles, a number of 

Feedforward Neural Networks trained at the same time to solve the breast cancer diagnosis 

problem cooperatively using a divide-and-conquer method.  The evolutionary approach worked 

well for breast cancer, but has been found to be too computationally costly to turn these into 

larger neural networks using more data (Xin, 1999).   

 In another study that used Artificial Neural Networks as an aid for diagnosis, four models 

were implemented to aid in the diagnosis of the Wisconsin Breast Cancer Diagnosis (WBCD) 

Dataset.  These four models were: Backpropagation Algorithm, Radial Basis Function Network, 

Learning Vector Quantization and a Competitive Learning Network.  Although the Learning 

Vector appeared to show the best performance on the dataset used, the Backpropagation 

Algorithm showcased a higher generalizing capability (Janghel et al, 2010). 

In a similar project created by Brittany Wenger in 2012, an artificial neural network was 

created to see if it would optimize and improve the success of breast cancer diagnosis through 

the use of fine needle aspirates.  Wenger used three commercial neural networks along with the 

Wisconsin Breast Cancer Dataset (WBCD) and compared the results against her own custom 

neural network, which achieved a predictive success of 97.4% with a 99.1% sensitivity to 

malignancy (Wenger, 2012). 

 Based off of these studies, and various others it has been found that the use of Artificial 

Neural Networks increases the accuracy of most of the methods and reduces the need of a human 
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expert, who may not be available at all times.  A clinical support system based off of neural 

networks might aid in providing experts with a second opinion and reducing unnecessary 

expenditures for patients.  Artificial Neural Networks, though, must be optimized according to 

the specific problem (Mahjabeen et al., 2012). 

 In this thesis, I will use Artificial Neural Networks to diagnose breast cancer using 

instances taken from fine needle aspirates (FNA) of human breast tissue, each of which consist 

of nine measurements, and classify these samples as either benign or malignant in the hopes of 

achieving an accuracy rate higher than previous studies have achieved.  The dataset will come 

from the Wisconsin Breast Cancer Dataset (WBCD) database, created by Dr. William H. 

Wolberg. To set it apart from previous research using these similar methods, I will be using 

different functions for the Neural Network and will analyze the data to see if it can be optimized 

for analysis through the ANN.  The following questions are what I will focus on in my study.  

What is the best Neural Network approach for diagnosing breast cancer using fine 

needle aspirates?  In this paper I have decided that the use of a Multilayer Artificial Neural 

Network which uses the Backpropagation Algorithm to train weights will be used.  Based off of 

previous research, this seems like the likeliest Artificial Neural Network architecture to yield the 

highest accuracy rate. 

Are there other Neural Networks that may have better performance than a 

Feedforward Network?  After analyzing the data and results, I plan to implement three other 

machine learning methods to compare and see which attains a higher performance.  The other 

three machine learning methods I plan to implement include the Radial Basis Function, the 

NEAT Network, and a Support Vector Machine. 
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Background 

Artificial Neural Networks 

Artificial Neural Networks (ANNs) refer to learning models inspired by the biological 

neural networks of the brain.  The study of this machine learning technique stemmed from ‘a 

desire to understand the basic functionality of the human brain’ (“Introduction to...”, 2000).  

Artificial Neural Networks are often represented as a system of interconnected neurons with 

weights that are adjusted as the network is trained, which makes neural networks adaptive and 

gives them the ability to learn.  As shown in Figure 1, input values are inserted into an artificial 

neuron where they are multiplied by the weights and added to find out the weighted sum of the 

artificial neuron.  Depending on what function is being used, this weighted sum is then inserted 

into a function so that a value can be given to the neuron. 

 

Figure 1. Example of a simplified artificial neuron showcasing the input value, 

output value, and the weights. 

 

The drive behind developing an artificial neural network that simulates a biological 

neural network came about from a desire to understand how a human brain behaves.  The first 

attempt at modeling this behavior of neurons was in the 1940’s and was hardware based with the 

prediction, by researchers, that the digital computer would eventually become available and 

incorporated into their model (“Introduction to..”, 2000).   
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The Perceptron Algorithm was first introduced by Rosenblatt in 1962 in a book called 

Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Perceptrons 

served as a simplified network that incorporated weights as a memory mechanism that allowed 

them to learn responses to stimuli in various types of experiments (Widrow, 1990).   

In 1969, Marvin Minsky and Seymour Papert published a book titled Perceptrons that 

talked about the limitations of the perceptron Rosenblatt had previously developed.  This resulted 

in a reduction in the amount of research that went into neural networks for nearly a decade until 

John Hopfield published a paper in 1982 on an associative neural network, often referred to as 

the Hopfield Network that reintroduced Artificial Neural Networks and their potential for 

success and applications (“Introduction to..”, 2000).  Since then, the field of Artificial Neural 

Networks in machine learning began to expand. 

 

Figure 2. Example of a Feedforward Neural Network displaying the input layer, 

hidden layer, output layer, and the interconnectivity between the three layers. 

 

Feedforward networks were soon introduced.  These networks were termed as such since 

the input moves forward, or left to right, through the network towards the output layer, as shown 

in Figure 2.  The first major addition to feed forward networks beyond Madeline, one of the 

earliest trainable layered neural networks with adaptive elements, was introduced by Paul 

Werbos when he developed a backpropagation algorithm that was published as his doctoral 
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dissertation in 1974.  His work remained unknown until another researcher rediscovered and 

incorporated the backpropagation algorithm into a report published in 1986 (Widrow, 1990). 

Feedfoward networks today contain multiple layers, all of which are usually adaptive and 

adjust as a network is trained.  Backpropagation networks are the best examples of multilayer 

networks and are considered as one of the most influential techniques in the field of neural 

networks due to the simplicity of the concept.  Although many variations of the Feedforward 

algorithm are possible,  Rumelhart’s  backpropagation technique is often used since, aside from 

its simplicity, it has proven to be effective (Widrow, 1990).  The backpropagation technique 

differed from earlier architectures by using only differentiable functions on the elements and 

consists of a network of randomly assigned weights trained by propagating forward and 

generating outputs, which are then compared to target outputs to calculate error values at each 

node and adjust the weights in the network.  This process is repeated until the weights are trained 

to generate an output similar to the target value. 

The relationship between biological and artificial neurons has become more important, 

especially in recent years and, like other machine learning methods, Artificial Neural Networks 

can be used to solve a wide variety of tasks that may be harder to solve via other means 

(“Introduction to..”, 2000). 

Multilayer Neural Networks and Backpropagation Algorithm 

 In this project, Multilayer Neural Networks, such as Feedforward Neural Networks, will 

be used with a Backpropagation Algorithm for learning purposes.  Multilayer networks are often 

used to learn tasks with a learning algorithm, such as backpropagation.  There are many 

functions available that can be used as the activation function for calculating values at nodes in 

the layers but in this project, sigmoid functions will be used due to their similarities to the 
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functions in perceptron units and differentiable properties. The activation function must be 

differentiable in order for the backpropagation algorithm to work correctly. 

 Functions in the nodes, or neurons, take the weights between nodes, often noted as𝑤𝑖𝑗, 

the weight between node i and node j, and add the weights of the nodes connected to it. 

𝜎(𝑆) =  
1

1 + 𝑒−𝑆
 

The sigmoid function, as shown above, calculates the value of the weighted sum, S, and 

when the output values of the sigmoid function are plotted, the curve resembles a step function.  

The output values of this function will range between 0 and 1, each respectively symbolizing a 

neuron either firing or not firing (Colton, 2004). 

Since the output for this network flows in only one direction, as shown in Figure 2, this 

type of network is referred to as a Feedforward Network.  As explained before, weights are set 

on the connections between the nodes and sigmoid units exist in both the hidden layers and the 

output layer, which are found by using a sigmoid function on the weighted sums.  The weighted 

sums are calculated by multiplying the weights (w) by the inputs (x), adding the different values 

that go into a node, 𝑆 = ∑ 𝑥𝑖𝑛 𝑤𝑖𝑗, and using that value in the sigmoid function to find the node’s 

output.  Those nodes that are fired will result in a value closer to 1 while those not fired are 

usually closer to 0.  Based off of these calculations, the nodes fired can be found and can be 

added and used as inputs to the next layer until the output layer is reached. 

The Backpropagation Algorithm is then used to train the weights.  As had been 

previously mentioned, 𝑤𝑖𝑗 is used to specify the weight between unit i and unit j.  The change in 

weight, ∆𝑖𝑗, is then calculated and added on to each weight after an example has been tried.  To 

calculate the weight change, ∆𝑖𝑗, target values must be specified that each output node should 
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ideally produce.  The input is sent through the network and the observed values can be recorded 

and compared to the target values.  For each output unit, the error term is calculated using: 

𝛿𝑂𝑘 =  𝑂𝑘(𝐸)(1 −  𝑂𝑘(𝐸))(𝑡𝑘(𝐸) − 𝑂𝑘(𝐸)) 

where 𝑂𝑘 is the observed value of the output node and 𝑡𝑘is the target value. 

The error terms for the output units are used to calculate the error terms for the hidden 

units, whose values are also written down since the weighted sum of each of the nodes in these 

layers also goes through the sigmoid function to obtain a value (Colton, 2004). 

𝛿𝑂𝑘 =  ℎ𝑘(𝐸)(1 −  ℎ𝑘(𝐸)) ∑ 𝑤𝑘𝑖

𝑖 ∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝛿𝑜𝑖 

The error term for every output unit is taken and multiplied by the weight of the hidden 

unit, ℎ𝑘.  These are then added and multiplied by the sum.  Once all the error values are known, 

the weight changes, ∆𝑖𝑗, can be calculated (Colton, 2004). 

For weights 𝑤𝑖𝑗 between the input unit and hidden unit, and for the weight between the 

hidden unit and output unit, we add on:  

∆𝑖𝑗= 𝑛𝛿𝐻𝑗𝑥𝑖, for the weight between the input unit and hidden unit and 

∆𝑖𝑗= 𝑛𝛿𝑂𝑗ℎ𝑖(𝐸), for the weight between the hidden unit and output unit. 

The change in weights ∆𝑖𝑗is added to the previous weights and the new weights are then 

kept and, in the next iteration are tweaked even further.  As the network runs through all of the 

training examples, often referred to as epochs, the weights are trained and the values change until 

a network is achieved that, when tested, produces ideal results based off the data that is being 

analyzed. 
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CHAPTER II 

 

 

METHODS 
 

Experimental Setup 
 

 This project was inspired by previous experiments that dealt with Artificial Neural 

Networks and how effective they were in the diagnosis of breast cancer.  In these experiments, 

researchers either created their own Artificial Neural Networks and compared them against 

currently available neural network software (Wenger, 2012) or compared different various 

machine learning methods against each other to see which would be the best at classifying the 

dataset used (Osareh, 2010).   

 In a study by Osarch and Shadgar, two datasets, one of fine needle aspirate breast lesions 

and another comprised of gene microarrays, were used to compare three supervised learning 

algorithms: k-Nearest Neighbors algorithm, Support Vector Machine and Probabilistic Neural 

Network (Osareh, 2010).  The three machine learning algorithms were applied to diagnose breast 

cancer using the top three ranked features of dataset the fine needle aspirate dataset and to 

evaluate the prognosis of breast cancer in the second dataset.  The performance of these three 

classifiers were then evaluated into three separate categories - sensitivity, specificity, and overall 

accuracy - and compared to see which of the three produced the best overall accuracies (Osareh, 

2010).  I will be conducting a similar experiment but with a focus on a Feedforward Neural 

Network with Backpropagation training methods.  Using this machine learning method, I will 

see how well it can classify the fine needle aspirate dataset as well as compare it against three 
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other machine learning techniques: Radial Basis Function Networks, NEAT Networks, and 

Support Vector Machines. 

Encog 

For this experiment I will be using Encog, a machine learning framework made available 

for Java, .Net and C++.  Encog supports a variety of machine learning methods, advanced 

algorithms, and includes classes that aid in normalizing and processing data.  The first version of 

Encog was created by Jeff Heaton in 2008 and has since grown due to an active community that 

has provided improvements and fixes to the libraries (Heaton, 2015). 

 One of the main goals of Encog, and reasons as to why I chose to use it, was to allow 

users to switch between different neural networks with ease. Different machine learning models, 

algorithms and training methods were created to be interchangeable.  This allows for a 

programmer to experiment with various machine learning models and creates a good way to 

allow for finding a model that best fits the data to be classified or predicted (Heaton, 2015).  

Structure   

Encog uses the same structure as a typical neural network, with an input pattern that gets 

accepted and an output pattern that is then returned.  The input layer is the first layer in the 

neural network and contains a specific amount of neurons (usually one neuron for every attribute 

the neural network will use, though some attributes may need more than one neuron).   

The output layer is the final layer of the neural network and is provided after all the 

previous layers are processed.  Hidden layers are inserted between the input and the output layers 

and can take on more complex structures, depending on the type of neural network that will be 
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used.  Hidden layers are used to provide a layer of neurons that can apply a function to try and 

produce the expected output of a certain input at a better accuracy.   

Neural network programming in Encog is the same as in any other program - first, the 

input and output must be defined and the amount of neurons must be specified.  Hidden layers 

are defined once the programming problem has been figured out, though the challenge is to avoid 

creating a hidden structure that becomes either too complex or too simple.  A structure that is too 

complex will take too long to train and a hidden layer that is too simple will not help the problem 

(Heaton, 2015). 

In the Feedforward network I used, the hidden layer had neurons equal to the amount of 

input and output neurons times 1.5.  A good starting point, as described by Heaton, is a single 

hidden layer with a number of neurons equal to twice the input layer, with the amount of neurons 

in the hidden layer either increasing or decreasing depending on the performance of the network 

(Heaton, 2015).  The amount of hidden layers has also been one of much debate, though research 

has so far shown that a second hidden layer (or more) are rarely any help to the overall network.   

Data   

Encog provides a variety of classes for analyzing, normalizing and importing datasets 

since, as previously stated, its main function is to be able to fit various machine learning 

methods.  Among these, MLData, MLDataPair and MLDataSet are included, which were used in 

the neural network code of my program.  MLDataSet is used to create new datasets while the 

MLData class is used to define array-like data that will be used by the Encog software.  The 

BasicMLData class implements the MLData interface and provides a memory-based data holder 

for the neural network data that is returned from the network’s output layer once the input has 
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been processed by the network and which is deleted at the end of the training and testing.  These 

classes take both arrays and .CSV files which must then be normalized depending on the 

activation function to be used (Heaton, 2015).   

Normalizing Data  

Encog’s neural networks accept floating point numbers as their inputs, within the range 

of -1 to +1 or 0 to +1, depending on the choice of activation function since some activation 

functions have only a positive range while others have both a positive and negative range. 

The sigmoid activation function only has a range of positive numbers, while the 

hyperbolic tangent activation function has a range of positive and negative numbers.  Although 

the most common case is the hyperbolic tangent activation function for Encog, for my 

experiment I decided to use the sigmoid activation function (Heaton, 2015). 

Encog provides built in classes to both normalize and denormalize data as it is trained 

and tested.  Encog also has an Analyst class that can be used to normalize data already stored in a 

csv file and denormalize it before the output is shown, as well as provide some statistical 

information such as the mean, standard deviation and low and high numbers of a dataset. 

Activation Sigmoid 

For my experiment, the activation sigmoid function will be used which means the output 

expected is a positive number and the inputs will be normalized to fall between the ranges of 0 to 

+1.  The equation for the activation sigmoid function can be seen in the following equation.  

𝑓(𝑥)  =  
1

1 + 𝑒−𝑥
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If negative numbers were to be found in the input, the activation sigmoid function would 

move the negative numbers into the positive range.  This can be seen in Figure 3 which shows 

the graph of a sigmoid function.  

 

Figure 3.  Graph of a sigmoid function. 

Propagation Training 

The propagation training algorithm to be used in Encog uses supervised training, which 

means that a training set of inputs and ideal outputs is given to the training algorithm.  The 

training algorithm then goes through various iterations to improve the neural network’s error 

rate, the difference between the actual output from the neural network and the ideal output in the 

training data.  Each iteration loops through the same training data and a change to the weights is 

calculated.  At the end of each iteration, Encog updates the weight matrix values.  For each 

training iteration, a two pass process is executed: a forward pass and a backward pass – that are 

then looped over all of the training elements (Heaton, 2015).  

The forward pass presents the data to the neural network as it would if no training had 

occurred and the algorithm calculates the error between the output and the ideal output.  The 



16 
 

backward pass then starts from the output layer and works its way back towards the input layer.  

It examines the differences between the ideal and actual outputs from each of the neurons, 

changing the weights as it goes at each neuron. 

Machine Learning Methods  

Machine learning methods in Encog descend from the MLMethod class.  The three most 

important are MLRegression, MLClassification and MLClustering, though for the purposes of 

my experiment I will be focused on classification.   

To train a neural network in Encog, the MLDataSet object is constructed with the inputs 

and expected outputs.  The data is called from a CSV file and then normalized so that it can be 

used by the activation function.  Encog will automatically detect which the correct normalization 

type based on the activation function is chosen in the last step.  For model validation, 30% of the 

data is specified to be held back and 70% is used for training.  The training type and machine 

learning type is then selected, and a 10-fold cross validated technique is used to choose the 

model with the best validation score before a test is run with the chosen model.   More detail on 

the Encog program will be described in the code section. 

Dataset 

For this project, I used a publicly available dataset, the Breast Cancer Wisconsin (BCW) 

dataset from the UCI Machine Learning Repository.  The dataset consists of fine needle aspirates 

of breast lesions and contains 699 specimens, with samples arriving periodically over three 

years.  The dataset grew out of a desire by Dr. William H Wolberg to accurately diagnose masses 

based solely on Fine Needle Aspiration (FNA) samples and was originally obtained from the 

University of Wisconsin Hospitals, Madison (Wolberg, 1992).  



17 
 

He identified nine visually assessed nuclear features of an FNA sample (Figure 4) 

considered relevant to diagnosis and gave each attribute a value between 1 and 10 depending on 

the state, 1 corresponding to a normal state and 10 to an anaplastic state.  The following 

attributes were the ones identified: clump thickness, uniformity of cell size, uniformity of cell 

shape, marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal 

nucleoli, and mitoses.  Analysis showed that the nine characteristics differed significantly 

between benign and malignant samples.  The sample code number was removed when running 

the data since it does not have an effect on the outcome.  Sixteen instances of missing values 

occur, but were able to be replaced using Encog. 

 

Figure 4. Fine Needle Aspirate sample analyzed and given attributes for BCW dataset 

(Wolberg, 1992) 

The dataset contains 241 positive samples (malignant) and 458 negative samples 

(benign).  For analysis purposes, the dataset was converted into a .CSV file to be read by the 

program.  The first column of ID’s was removed, since it was irrelevant.  The rows with missing 

values were also removed to get more accurate results. 
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Classification Methods   

The main focus of this experiment were Artificial Neural Networks using Feedforward 

learning methods with Backpropagation training on a dataset of fine needle aspirate samples, 

classifying them into either benign or malignant depending on their attributes.  Three other 

classification methods were also used in this experiment solely to compare how Feedforward 

Networks stacked up against them.  These include Support Vector Machines, a NEAT Neural 

Network, and a Radial Basis Function Network. 

Support Vector Machines  

Support vector machines (SVM) were proposed by Vapnik et al., based on a statistical 

learning theory which was effectively used as an algorithm to deal with classification and 

regression problems (Osareh, 2010).  The SVM method is essentially a discriminative classifier 

defined by a separating hyper plane.  This method relies on labeled training data, since it is a 

supervised learning method, which is preprocessed to represent patterns.  These patterns are then 

separated by the hyper plane to categorize new examples.  The goal of training a SVM is to find 

the optimal separating hyper plane that maximizes the margin of the training data, as shown in 

Figure 5.  The larger the margin the better the generalization of the classifier is usually expected 

to be.  
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Figure 5.  Optimal hyper plane at the maximum distance from both training 

patterns that a Support Vector Machine aims to achieve. 

The hyper plane is constructed as (Osareh, 2010): 

𝑓(𝑥)  = < 𝑤, 𝑥 >  +𝑏  

 where x is the feature vector, w is the vector that is perpendicular to the hyper plane and 

b specifies the offset from the beginning of the coordinate system. SVM’s tend to be less prone 

to overfitting than other methods (Duda, 2001).   

         A simple method of training a SVM is based on a modification of the perceptron training 

rule, which requires updating the weight vector by an amount proportional to any misclassified 

pattern (“Introduction to Support..”, 2016).  

Radial Basis Function Network 

A Radial Basis Function (RBF) network is an artificial neural network that uses radial 

basis functions as activation functions.  RBF networks were first formulated by Broomhead and 

Lowe in 1988 (Orr, 1996).   RBF networks can be used for function approximation, time series 

prediction, system control, and classification (Orr, 1996). 
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         Radial Basis Function networks usually have three layers: an input layer, a hidden layer 

with an RBF function, and an output layer.  Functions that end on the distance from a center 

vector are radially symmetric about that vector, hence the name radial basis function.  In the 

basic form, all inputs are connected to each hidden neuron (Bullinaria, 2004).   

 RBF Networks are essentially a two-layer Feedforward networks with hidden nodes that 

implement a set of radial basis functions, such as a Gaussian Function, a Multi-Quadratic 

Function, or even a Cubic or Linear Function.  The output nodes implement a linear summation 

function similar as the Multilayer Perceptron.   

RBF networks are typically trained using a two-step algorithm.  In the first step, the 

center vectors of the RBF function in the hidden layer are chosen, which means the weights from 

the input layer to the hidden layer are determined, and then the weights from the hidden to the 

output layer are determined in the second step (Bullinaria, 2004).   
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Figure 6. Shows a traditional radial basis function network.  Each of the components of 

vector x feed towards the m basis functions, whose outputs are linearly combined with 

weights into the network output f(x) (Bullinaria, 2004). 

 

NEAT Network   

The NeuroEvolution of Augmenting Topologies (NEAT) is a genetic algorithm 

developed in 2002 by Ken Stanley at the University of Texas at Austin.  NEAT works by altering 

the weight parameters and structures of the networks in an attempt to find a balance between the 

fitness of evolved solutions and their diversity.  In other words, it relieves the neural network 

programmer of trying to find the optimal structure of a neural network’s hidden layer (Heaton, 

2015).  By tracking genes with history markers to allow crossover among topologies, applying 

speciation to preserve innovations, and developing topologies incrementally from simple initial 
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structures it arrives at an effective network more quickly than other neuro-evolutionary 

techniques and reinforcement learning methods (Stanley, 2002). 

         A NEAT neural network has input neurons and output neurons, much like a perceptron-

like feed-forward network.  A NEAT network begins with one input and output layer, as can be 

seen in Figure 7, and, as evolution progresses through discrete steps, the complexity of the 

network grows, either by inserting new neurons into a connection path or by creating a new 

connection between unconnected neurons, as can be seen in Figure 8.  These connections inside 

of the NEAT neural network can be feedforward, recurrent, or self-connected (Heaton, 2015). 

 

Figure 7. Shows the NEAT network before evolution. 

 

Figure 8. Shows how a NEAT network grows the complexity of its network by inserting a 

new neuron and creating new connections. 
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There is very little difference between the code needed to use the NEAT Neural Network 

and Feedforward Network in Encog since, as was stated previously, the core objective of Encog 

is to allow interchangeability between different machine learning methods. 

Experimental Design 

For this experiment, I decided to utilize the Netbeans IDE and Java language to write the 

neural network program using the Encog libraries.  The libraries were imported as a .jar file into 

the project folder, and the main application was then coded using the different libraries available 

by calling the different methods and classes.  

Libraries  

The following are the Encog libraries that were imported and called in the java neural 

network project. 

import org.encog.ConsoleStatusReportable;  

import org.encog.Encog; 

import org.encog.ml.MLRegression;  

import org.encog.ml.data.MLData;  

import org.encog.ml.data.versatile.NormalizationHelper;  

import org.encog.ml.data.versatile.VersatileMLDataSet;  

import 

org.encog.ml.data.versatile.columns.ColumnDefinition;  

import org.encog.ml.data.versatile.columns.ColumnType;  

import org.encog.ml.data.versatile.sources.CSVDataSource;  

import 

org.encog.ml.data.versatile.sources.VersatileDataSource;  
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import org.encog.ml.factory.MLMethodFactory;  

import org.encog.ml.model.EncogModel;  

import org.encog.util.csv.CSVFormat; 

import org.encog.util.csv.ReadCSV;  

import org.encog.util.simple.EncogUtility;  

 All of the files imported were used in the java program and were called in order to ensure 

functionality.  For example the ConsoleStatusReportable() class was imported to allow the 

output reports to go to the console (Heaton, 2015). 

The MLData() class is used to define an array of data and the NormalizationHelper() 

class is used to perform the normalizations on methods trained as a versatile dataset, which is 

why the VersatileMLDataSet() is used.  This class supports several advanced features, such as 

reading and normalizing directly from a CSV file and is also necessary if the EncogModel() class 

is used.  The CSVDataSource() class allows for a CSV file to serve as a source for the 

VersatileDataSet(), while the ColumnDefinition() and ColumnType() classes serve to define 

which column and what type of data is in the column.  The CSVFormat() class is used to 

distinguish between the separator, whether it is a decimal comma or a decimal point, while the 

ReadCSV() class reads and parses a CSV file (Heaton, 2015).   

 The MLMethodFactory() class is used to easily interchange between various machine 

learning such as Bayesian Neural Networks, Feedforward Neural Networks, Neat Neural 

Networks, Probabilistic Neural Networks, Radial Basis Function Neural Networks, and Support 

Vector Machines.  The EncogModel() class is what allows the interchange between different 

neural networks to occur and also aids in normalizing the data, depending on the activation 

function that corresponds to a particular neural network (Heaton, 2015). 
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Importing the Dataset   

The following code starts off the program by importing the CSV file and setting it as our 

source. 

public class BCClassification {     

    public void run(String[] args)  

     try { 

     File dbcFile = new File ("dbcdata2.csv") 

VersatileDataSource source = new 

CSVDataSource(dbcFile, false, 

CSVFormat.DECIMAL_POINT); 

VersatileMLDataSet bcdata = new 

VersatileMLDataSet(source);  

 As can be seen from the code, the project starts off by importing the csv file and making 

sure the program reads it using the VersatileDataSource() class.  This class indicates the name of 

the file, whether there are any boolean headers, and the csv format.  The VersatileMLDataSet() 

object is defined and used to load our dataset and make it available for the MLMethodFactory() 

class to use later on. 

Specifying the Dataset 

bcdata.defineSourceColumn("clump thickness", 0, 

ColumnType.continuous; 

bcdata.defineSourceColumn("uniformity of cell size", 1, 

ColumnType.continuous); 

bcdata.defineSourceColumn("uniformity of cell shape", 2, 

ColumnType.continuous); 
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bcdata.defineSourceColumn("marginal adhesion", 3, 

ColumnType.continuous); 

bcdata.defineSourceColumn("single epithelial cell size", 4, 

ColumnType.continuous); 

bcdata.defineSourceColumn("bare nuclei", 5, 

ColumnType.continuous); 

bcdata.defineSourceColumn("bland chromatin", 6, 

ColumnType.continuous); 

bcdata.defineSourceColumn("normal nucleoli", 7, 

ColumnType.continuous); 

bcdata.defineSourceColumn("mitoses", 8, 

ColumnType.continuous); 

ColumnDefinition outputC = 

bcdata.defineSourceColumn("classification", 9, 

ColumnType.nominal); 

In this next part, each column in the dataset is given a name and index, since they did not 

have a column header in the CSV file.  As can be seen, we start off the index at 0.  The 

defineSourceColumn() contains the name to be given to the column, the index of the column, 

and the column type. Four variations exist that could be assigned to our column type: continuous, 

ignore, nominal, or ordinal.  For this code, continuous was chosen since it is used for continuous 

non-discrete values, similar to a double value in Java, and nominal for our output column, which 

specifies a discrete nominal and is used to specify a class. 
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Analyzing the Dataset  

The analyze() method reads the entire file and determines the minimum, maximum, mean 

and standard deviations for each column.  These statistics can be useful for both normalization 

and for replacing missing values. 

bcdata.analyze(); 

 

Declaring the Machine Learning Method 

bcdata.defineSingleOutputOthersInput(outputC); 

 EncogModel network = new EncogModel(bcdata); 

network.selectMethod(bcdata, 

MLMethodFactory.TYPE_FEEDFORWARD);  

 network.setReport(new ConsoleStatusReportable()); 

This next part specifies the model type that is to be used.  It starts by specifying what the 

output column is, hence why the output column earlier was distinguished in the code when the 

columns were defined.  EncogModel() is designed to allow the interchange between different 

model types and automatically normalizes data.  It is designed to work with 

VersatileMLDataSet() only.  The selectMethod() class specifies what the data is and is followed 

by what type of machine learning type we plan on using.  Different types are available to switch 

between, such as NEAT Neural Network (TYPE_NEAT), Probabilistic Neural Networks 

(TYPE_PNN), Support Vector Machines (TYPE_SVM), and RBF Neural Networks 

(TYPE_RBF).  ConsoleStatusReportable() sends any output to the console and reports on current 

status of the method (Heaton, 2015). 
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Normalizing the Data 

The following line normalizes the data and allocates the memory to hold the normalized 

data.  Due to the sigmoid function, the data should fall between 0 and +1.   

bcdata.normalize(); 

network.holdBackValidation(0.3, true, 1001); 

The next line holds back some of the data in our CSV file for final validation.  It shows 

that 30% of our data is being held for testing, while the other 70% is used for training.  The ‘true’ 

stands for boolean shuffle, and the last number indicates the seed for random generation. 

Cross-validating Data 

network.selectTrainingType(bcdata); 

MLRegression chooseBest = 

(MLRegression)network.crossvalidate(10, true); 

This part of the code uses a ten fold cross-validated training and returns the best method 

found out of the ten.  The ‘10’ indicates the amount of folds, and ‘true’ means that shuffling will 

occur.  Cross validation is a model validation technique for assessing results of statistical 

analysis.  It is primarily used in prediction with the goal of defining a dataset to ‘test’ the model 

in the training phase and limit problems of overfitting.  The original sample is randomly 

partitioned into different sized samples.  Of the different subsamples, only a single subsample is 

retained as validation data for testing the model.  The cross validation process is then repeated k 

times with each of the k subsamples used exactly once as the validation data.  10 fold is 

commonly used but in general k remains an unfixed parameter. 
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System.out.println("Training error: " + 

EncogUtility.calculateRegressionError(chooseBest, 

network.getTrainingDataset())); 

System.out.println("Validation error: " + 

EncogUtility.calculateRegressionError(chooseBest, 

network.getValidationDataset())); 

NormalizationHelper normdata = bcdata.getNormHelper(); 

System.out.println(normdata.toString()); 

This is used to call the normalization parameters and display them to the console.  

Although not necessary, the mean, standard deviation, and highs and lows could be useful when 

analyzing the dataset.  The validation error and training error are also displayed onto the console 

window.   

Training and Testing 

ReadCSV csv = new ReadCSV(dbcFile, false, 

CSVFormat.DECIMAL_POINT); 

String[] line = new String[9]; 

MLData input = normdata.allocateInputVector();   

int count=0; 

int correct=0; 

int ben=0; 

int mal=0; 

int totalben=0; 

int totalmal=0; 

   while(csv.next()) { 

StringBuilder results = new StringBuilder();  

line[0] = csv.get(0); 
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line[1] = csv.get(1); 

line[2] = csv.get(2); 

line[3] = csv.get(3); 

line[4] = csv.get(4); 

line[5] = csv.get(5); 

line[6] = csv.get(6); 

line[7] = csv.get(7); 

line[8] = csv.get(8); 

String correctOutput = csv.get(9); 

normdata.normalizeInputVector(line,input.getData(),fal

se); 

MLData output = chooseBest.compute(input); 

String predictedOutput= 

normdata.denormalizeOutputVectorToString(output)[0]; 

results.append(Arrays.toString(line)); 

results.append(" -> predicted: "); 

results.append(predictedOutput); 

results.append("(correct: "); 

results.append(correctOutput); 

results.append(")\r"); 

System.out.println(results.toString()); 

Count++; 

int m = Integer.parseInt(correctOutput); 

int b = Integer.parseInt(predictedOutput);  

if (b == m){ 

correct++; 
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} 

if (4==m && b==m){ 

mal++; 

} 

if (2==m && b==m){ 

ben++; 

} 

if (4==b){ 

totalmal++; 

} 

if (2==b){ 

totalben++; 

} 

double percentage = 

((double)correct/(double)count)*100; 

System.out.println("Total Tested: "+count); 

System.out.println("Total Correct: "+correct); 

System.out.println("Overall accuracy: 

"+percentage+"%"); 

System.out.println("Sensitivity:"+(double)mal/(do

uble)totalmal* 100+"%"); 

System.out.println("Specificity:"+(double)ben/(do

uble)totalben*100+"%"); 
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    This next part opens the CSV file and loops through the data, predicting the output of 

each sample and using the best model and normalization helper.  The normalization helper 

allows to normalize and denormalize the data as it loops through so the dataset values viewed on 

the console are not the normalized ones but the ones from the original data file.  The total 

number of rows (or loops) tested is then displayed in the console (under Total Tested) along with 

whether the data produced the correct result or not.  Overall accuracy of the classification, 

sensitivity, and specificity are also shown and were placed into the program to easily grab the 

data.  Sensitivity, in this case, refers to the total amount of correctly classified malignant (4) 

samples over the total amount of malignant samples there actually were.  Specificity refers to the 

total amount of samples classified as benign samples (2) over the actual amount of benign 

samples that existed within the dataset. 

      dbcFile.delete(); 

      Encog.getInstance().shutdown(); 

Finally, the program deletes the dbcdata file that had been saved to memory (the 

normalized data and denormalized data) and shuts down.   

Neural Network Architecture   

The architecture of the Feedforward Network used in this program can be found in the 

FeedForwardConfig.java file.  From here, I changed the activation function from TANH 

(indicating the hyperbolic tangent activation function) to SIGMOID (for the sigmoid activation 

function), and the normalization numbers to go from 0 to 1.  Other possibilities included 

changing the amount of hidden neurons as well as layers, though I decided to leave the amount 

of hidden neurons at the suggested number of the sum of output and input neurons multiplied by 

1.5.  Previous tests showed that too low an amount of neurons did not aid in obtaining a higher 
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accuracy for classification and a higher amount of neurons made the network too slow to 

perform well, resulting in more iterations than were needed.  Momentum was already set at 0.7.  

The training method was changed as well from resilient propagation to backpropagation training 

method.   

public String suggestModelArchitecture(VersatileMLDataSet 

dataset) { 

     int inputColumns = 

dataset.getNormHelper().getInputColumns().size(); 

     int outputColumns = 

dataset.getNormHelper().getOutputColumns().size(); 

     int hiddenCount = (int) 

((double)(inputColumns+outputColumns) * 1.5); 

     StringBuilder result = new StringBuilder(); 

     result.append("?:B->SIGMOID->"); 

     result.append(hiddenCount); 

     result.append(":B->SIGMOID->?"); 

     return result.toString(); 

 The code shows the Encog code for the Feedforward Network Configuration and how the 

basic architecture of the neural model is structured, with the input and output columns grabbed 

from the CSV file, while the hidden layer contains 1.5 times that of the input and output neurons 

combined.  It also shows how the activation functions are being specified and called. 
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Results 

 The results for the following four networks, Feedforward networks, NEAT Networks, 

Support Vector Machine, and RBF Networks, were gathered from the console.  The overall 

accuracy was taken by calculating the total amount of rows correctly predicted over the total 

amount of rows tested. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑟𝑟𝑒𝑐𝑡/𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑠𝑡𝑒𝑑 

Specificity and sensitivity were also used to evaluate the performance of the classifiers 

and were defined as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡/𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑀𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝑒𝑛𝑖𝑔𝑛/𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐵𝑒𝑛𝑖𝑔𝑛  

Sensitivity could also be described as the total positives over the total positives and false 

negatives, while specificity could be described as the total negatives over the total negatives and 

false positives.   

Feedforward Networks 

The Feedforward Network was the first Neural Network that I tested.  As previously 

stated, for this neural network I used the sigmoid activation function for the layers, an input of 9 

neurons, an output of 1 neuron, and only one hidden neuron layer with fifteen neurons.  A 

momentum of 0.7 was used as well to avoid overfitting.  10-cross fold validation was also used 

to select the best model from among those trained.  The following is an example of what the 

console displayed.  
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1/10 : Fold #1 

1/10 : Fold #1/10: Iteration #1, Training Error: 1.95338433, 

Validation Error: 1.88607197 

1/10 : Fold #1/10: Iteration #2, Training Error: 0.65475619, 

Validation Error: 1.88607197 

1/10 : Fold #1/10: Iteration #3, Training Error: 0.50751008, 

Validation Error: 1.88607197 

... 

10/10 : Fold #10/10: Iteration #41, Training Error: 0.07384639, 

Validation Error: 0.05168873 

10/10 : Fold #10/10: Iteration #42, Training Error: 0.07332578, 

Validation Error: 0.06249483 

10/10 : Cross-validated score:0.11516842228163807 

Training error: 0.05999059427124292 

Validation error: 0.09192842693193816 

... 

[2, 1, 1, 1, 2, 1, 1, 1, 1] -> predicted: 2(correct: 2) 

[5, 10, 10, 3, 7, 3, 8, 10, 2] -> predicted: 4(correct: 4) 

[4, 8, 6, 4, 3, 4, 10, 6, 1] -> predicted: 4(correct: 4) 

[4, 8, 8, 5, 4, 5, 10, 4, 1] -> predicted: 4(correct: 4) 

Total Tested: 683 

Total Correct: 671 

Overall accuracy: 98.24304538799414% 

Sensitivity: 95.95141700404858% 

Specificity: 99.54128440366972% 
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 In the output, the number of iterations each fold takes, as well as the cross validated score 

with the final training and validation error were displayed on the console.  The crossfold 

validation is useful since it compares the model against data it was not trained with, giving a 

more accurate result as to how the network might work when presented with new data.  Once the 

crossfold validation was done and a model was chosen, the testing began on the data and went 

through each row, showing the denormalized data for each row, as well as the predicted and 

correct results.   

 Overall, the total correct out of the total amount of rows tested resulted in an accuracy of 

98.24%.  The sensitivity was also recorded and had a percentage of 95.95% and a specificity of 

99.54%.  The cross validated score was 0.12, with a training error of 0.06 and a validation error 

of 0.09.   

As can be seen in the table, the each fold has a different amount of iterations that it took 

for it to achieve a goal training and validation error.   

Table 1.  The iterations, training error values, and validation error values for each of the ten cross -

fold validations for Feedforward Neural Networks. 

 1 2 3 4 5 6 7 8 9 10 

Iterations 24 48 18 18 24 30 24 18 12 42 

Training Error 0.08 0.06 0.09 0.08 0.07 0.07 0.06 0.08 0.09 0.07 

Validation Error 0.11 0.02 0.08 0.12 0.12 0.09 0.17 0.21 0.18 0.06 
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SVM Results   

Much like the Feedforward Neural Network results, the SVM results were displayed on 

the console except without iterations.  Each fold gave a training error and validation error, and at 

the end a cross-validated score, total training error and validation error were given. 

10/10 : Cross-validated score:0.04297112462006079 

Training error: 0.04384133611691023 

Validation error: 0.049019607843137254 

The different rows and the predicted output versus the correct output were also displayed 

with the following results: 

Overall accuracy: 95.46120058565154% 

Sensitivity: 96.84684684684684% 

Specificity: 94.79392624728851% 

As can be seen by the output, the overall accuracy was lower than that of the 

Feedforward Neural Network’s result.  Support Vector Machines attained an overall accuracy of 

95.46%, with a sensitivity of 96.85% and a specificity of 94.79%. 

Table 2.  The training error values and validation error values for the ten cross-fold validation of Support 

Vector Machine Network. 

 1 2 3 4 5 6 7 8 9 10 

Training error 0.04 0.04 0.04 0.05 0.05 0.05 0.04 0.05 0.04 0.05 

Validation error 0.09 0.09 0.04 0.0 0.02 0.02 0.09 0.02 0.06 0.0 

 

 



38 
 

RBF Network Results   

The Radial Basis Function Network went through several iterations at each fold.  This 

algorithm obtained the following results.   

10/10: Cross-validated score:0.1855936294354464 

Training error: 0.11573472522050637 

Validation error: 0.12460479104242392 

Overall accuracy: 93.1185944363104% 

Sensitivity: 98.0% 

Specificity: 91.09730848861284% 

 The RBF Network obtained an overall accuracy of 93.12%, the lowest out of the four 

different methods, though it did achieve a sensitivity of 98.0%.  The RBF Network also went 

through the highest amount of iterations, as can be seen in Table 3.   

Table 3.  The iterations, training error value and validation error values for each of the ten cross-fold 

validations for the Radial Basis Function Network. 

 1 2 3 4 5 6 7 8 9 10 

Iterations 36 54 138 24 48 36 30 54 126 36 

Training error 0.21 0.19 0.15 0.19 0.21 0.11 0.18 0.16 0.16 0.19 

Validation error 0.23 0.20 0.20 0.18 0.24 0.10 0.15 0.18 0.18 0.20 
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NEAT Results 

For the NEAT network, a low amount of iterations were needed to achieve the training 

error and validation error goals (Table 3), though the overall accuracy was still below that of the 

Feedforward Networks at 96.63%.   

10/10 : Cross-validated score:0.043723725771640534 

Training error: 0.035645061169585435 

Validation error: 0.05620576258222121 

Overall accuracy: 96.63250366032212% 

Sensitivity: 93.54838709677419% 

Specificity: 98.39080459770115% 

The cross-validated score was one of the lowest, though, as was the total error and the 

validation error for the training model, indicating that with a new dataset, this method might 

outperform the Feedforward Neural Networks. 

Table 4.  The iterations, training error values and validation error values for the ten cross-fold validation of 

the NEAT Neural Network 

 1 2 3 4 5 6 7 8 9 10 

Iterations 25 13 19 13 19 25 13 31 25 13 

Training Error 0.04 0.05 0.04 0.03 0.03 0.03 0.04 0.04 0.04 0.03 

Validation Error 0.06 0.02 0.05 0.06 0.02 0.02 0.12 0.01 0.05 0.03 
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Comparison 

Table 5.  The overall accuracy, specificity and sensitivity of the four Neural Networks: Feedforward Network, 

NEAT Network, RBF Network, and SVM Network.  Overall accuracy was taken by dividing the total correct 

over the total tested.  The specificity was calculated by dividing the amount of correct benign predicted over 

the total amount of benign predicted, and the sensitivity was calculated as the total amount of correct 

malignant classifications over the amount of malignant predictions. 

 Overall Accuracy Specificity Sensitivity 

Feedforward  98.24% 99.54% 95.95% 

NEAT 96.63% 98.39% 93.55% 

RBF Network 93.12% 91.10% 98.0% 

SVM 95.46% 94.79% 96.85% 

 

 As can be seen in Table 5, Feedforward Networks achieved the best overall accuracy at 

98.24%, with a 99.54% specificity and a 95.95% sensitivity.  Although the results were high on 

specificity, sensitivity and the data that falls into that category could be analyzed in order to see 

what is making it be lower than the specificity.  NEAT Networks performed second best, with a 

96.63% accuracy, a 98.39% specificity, and a 93.55% sensitivity.  It is possible that with some 

adjustments to the algorithm in the code, this network could perform better. 

 The Radial Basis Function Network performed at an overall accuracy of 93.12%, with a 

high sensitivity of 98% but rather low specificity of 91.10%.  The low specificity indicates that a 

large amount of benign samples are being classified as malignant.  Further analysis of the data 

and algorithm used for the RBF Network in Encog could provide a higher specificity rate.  The 

Support Vector Machine Network performed at a 95.46% overall accuracy, with a specificity and 

sensitivity that did not deviate too much from each other.  Similar to the previous two networks, 
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analysis of the algorithm and methods used for this method in Encog, as well as going through 

the data could allow some insight into how to get a higher accuracy for this method. 

Table 6.  The cross-validated scores, total error values, and validation error values of the best training model 

from each of the four networks: Feedforward Neural Network, NEAT Neural Network, RBF Network and 

SVM Network. 

 Cross-Validated Score Total Error Validation Error 

Feedforward 0.12 0.06 0.09 

NEAT 0.04 0.04 0.05 

RBF Network 0.18 0.12 0.12 

SVM 0.04 0.04 0.06 

 

In this table, the cross-validated scores are compared between the different networks.  

Cross-validated scores are useful in being able to tell what networks may get a higher accuracy 

when tested with new data since the data used after training is data that has not previously been 

introduced to the networks.  The total error and the validation error are also shown.  As can be 

seen, the RBF Network, also the network with the lowest overall accuracy, got the worst cross-

validated score, total error, and validation error.  The SVM Network did slightly better than the 

NEAT network, though they were close in terms of which had the better cross-validated score.   

The Feedforward Network seems to not have performed as well during training as it did 

during testing, which poses the question of how well it would do with new data.  Further testing 

would be required to see whether the network would perform just as well or worse with new data 

and an analysis as to why the cross-validated score and the validation error came out low would 

have to be done. 
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CHAPTER III 

CONCLUSION AND FUTURE WORK 

Conclusion 

In this thesis I focused on investigating how Feedforward Networks worked and how 

well they would be at classifying the fine needle aspirate dataset.  Using the Encog library, I was 

able to build a program that allowed me to run various tests, as well as compare the Feedforward 

Network to three other type of networks: Support Vector Machine, Neat Neural Networks, and 

RBF Neural Networks (although these were left as is without any customization).  First, the 

program was built using the Encog libraries, the dataset was imported, normalized, and trained.  

Although the dataset could have been normalized easily seeing as the numbers ranged from one 

to ten already, it was interesting to see how the Encog software normalized the dataset (though 

the range had to be changed from -1 to +1 to 0 to +1 since the activation functions were 

changed).  Once the program was created and initiated, the amount of iterations it took for the 

dataset in to train was noticeably lower compared to other softwares that I had tested, such as 

Neuroph, a Java neural network framework.  Encog required an average of about thirty iterations 

per fold.  Crossfold validation was used in this experiment to aid in choosing the best model for 

testing.   Results at the end showed Feedforward Neural Networks having the best overall 

accuracy at 98.24%, but with a crossfold validation score of 0.12, lower than NEAT networks 

and SVM Networks.   
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The experiments also showed how Feedforward Neural Networks compared against 

SVM, Neat Networks, and RBF Networks.  Whether it was due to the dataset that was used, or 

the fact that the Feedforward Neural Network was altered from the basic Encog library, the 

Feedforward Neural Network consistently managed better results than the other three methods in 

terms of classification.   

Future Work 

The focus of this project was to get some insight into how Artificial Neural Networks 

work, how they analyzed data, and how accurate they were at predicting the ideal output for 

certain data.  I was able to observe how a Feedforward Network performed, as well as how it 

performed against three other networks although more in depth research is necessary into the 

other three methods since I barely touched the surface on understanding how they work. 

Network Customization 

Continuing to test the Feedforward Neural Network, such as how different learning rates 

affect the outcome, how different layers affect the output, and how different amount of neurons 

may affect the output would be something to continue to research.  Changing these as well as the 

maximum error rate may have an impact on the total accuracy and could prove interesting results 

and better understanding of neural networks, at least in terms of how many layers may actually 

be useful for a Feedforward Network and how many hidden neurons should a hidden layer have. 

Machine Learning Methods 

  Comparing the Feedforward Network to other networks, but more in detail would also 

be of value.  Not just using a basic library for the other three, but actually creating and 
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customizing the other three neural networks to best fit the data would create more competitive 

neural networks and may even show that a different type of Machine Learning Method is better 

suited for this type of classification than a Feedforward Neural Network.   

Image Recognition  

As was stated previously in the paper, the dataset came from analysis of fine needle 

aspirate samples.  These analysis were done from samples of cells under a microscope that a 

cytologist had to examine.  Cytologists can be costly, and being able to automate this analysis 

would aid the fine needle aspirate tests and bring down their cost even further.  Implementing not 

only Encog, but a library geared towards image recognition, such as Caffe or Torch7 would 

allow to see whether a different software may be more suitable for this type of task.   

This work is only a step into Artificial Neural Networks and how they work, as well as 

the research being done to understand neural networks better and how to utilize them.  Here I 

performed experiments with Feedforward Neural Networks to better understand how to 

implement neural networks and how they work, as well as how accurate they were at 

classification.  Comparisons were done to see whether Feedforward Networks really were the 

most suitable method for this type of dataset.  Further research and future investigations are 

needed to continue to explore neural networks, their implementation, and how to best utilize 

them. 
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