
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Theses and Dissertations 

12-2016 

Study of selective laser remelting of 316L S.S. to reduce Study of selective laser remelting of 316L S.S. to reduce 

roughness on inclined surface roughness on inclined surface 

Jafar Ghorbani 
The University of Texas Rio Grande Valley 

Follow this and additional works at: https://scholarworks.utrgv.edu/etd 

 Part of the Manufacturing Commons 

Recommended Citation Recommended Citation 
Ghorbani, Jafar, "Study of selective laser remelting of 316L S.S. to reduce roughness on inclined surface" 
(2016). Theses and Dissertations. 205. 
https://scholarworks.utrgv.edu/etd/205 

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more 
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/301?utm_source=scholarworks.utrgv.edu%2Fetd%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/205?utm_source=scholarworks.utrgv.edu%2Fetd%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


STUDY OF SELECTIVE LASER REMELTING OF 316L S.S.  

TO REDUCE ROUGHNESS ON 

 INCLINED SURFACE 

 

 

A Thesis 

 

by 

 

JAFAR GHORBANI  

 

 

Submitted to the Graduate College of 

The University of Texas Rio Grande Valley 

In partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE ENGINEERING 

 

 

 

 

 

 

 

December 2016 

 

 

 

 

Major Subject: Manufacturing Engineering 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



STUDY OF SELECTIVE LASER REMELTING OF 316L S.S.  

TO REDUCE ROUGHNESS ON 

 INCLINED SURFACE 

A Thesis 

by 

JAFAR GHORBANI  

 

 

 

COMMITTEE MEMBERS 

 

Dr. Jianzhi Li 

Chair of Committee 

 

 

Dr. Rajiv Nambiar 

Committee Member 

 

 

Dr. Anil Srivastava 

Committee Member 

 

 

December 2016 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Copyright 2016 Jafar Ghorbani 

All Rights Reserved 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

ABSTRACT 

 

Jafar, Ghorbani, Study of Selective Laser Remelting of 316L S.S. to Reduce Roughness on 

Inclined Surface. Master of Science Engineering (MSE), December, 2016, 83 pp., 14 tables, 46 

figures, references, 53 titles.  

 Additive manufacturing (AM) technologies are increasingly competing with subtractive 

methods, and there are promising applications for additive technologies that are hybrid with 

traditional manufacturing methods.  Poor surface roughness of additive manufactured parts 

continues to be a major challenge especially for advanced functional parts. In this study, effect of 

processing parameters are evaluated, optimized and verified by using the Box–Behnken design of 

experiment method. The results, for the first time, reveal that surface remelting has the potential 

to become a high speed approach for improving the roughness of non-horizontal surface of additive 

manufactured parts.   
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CHAPTER I 

 

 

INTRODUCTION 

 

 

           The main objective of this chapter is to provide an introduction and overview about this 

study. The problem description, research purposes, overall research methodology and finally the 

structure of the thesis are covered in this chapter.  

1.1 A brief background review 

Selective laser melting (SLM) is one of the main subcategories of additive manufacturing 

(AM) technology which is increasingly being used for end-user functional metallic parts (Gibson 

et al, 2014). Higher geometrical freedom, powder-based additive technology, manufacturing 

remarkably low porosity parts and printing customized parts with complex structure expanded 

SLM application for manufacturing advanced functional metallic components mainly in 

biomedical, aerospace, and automotive sectors (Bourell, 2016).  In spite of numerous competitive 

advantages of SLM process, desirable surface quality and dimensional accuracy are the main 

challenges for expanding SLM application especially for highly loaded and surface sensitive parts 

(Gu et al., 2012).  In practice, post-processing methods including mechanical, thermal, and 

chemical processes can be exploited to improve surface quality, however these methods are time 

consuming and not environmental friendly (Braga et al., 2007). From the engineering perspective, 

surface roughness plays a crucial role in many functional parts. Rough surface could initiate cracks 

and eventually decrease parts’ performance in fatigue, corrosion and tribology, especially when 
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they are exposed to dynamic loads during lifecycle of engineering parts (Mumtaz & Hopkinson, 

2009). In traditional subtractive techniques including milling process, Ra values of less than 1 μm 

are obtainable. However, for SLM manufactured parts, these values generally vary between 2 and 

20 μm depending on powder characteristics, the process parameters selected and scanning 

strategies used. During last decade, laser technology has been developed to a level that it can be 

considered as an appropriate tool for polishing or modification of surface of metallic components 

to enhance topographic, esthetic, and functional properties of component surfaces (Bordatchev et 

al., 2014).  

Since the energy source of selective laser melting and laser polishing is the same, the hybrid 

selective laser melting and laser polishing (re-melting) could be very attractive to enhance surface 

quality with little production time loss. Nowadays, laser surface re-melting (LSR) method is 

widely used to decrease either the surface roughness or volumetric porosity in SLM process. In 

addition, it was incorporated as an option in many additive manufacturing software including 

Magics®. However, most of the studies focused on the improvement of horizontal surface 

roughness though large portion of parts surfaces are inclined (Kruth et al., 2008). 

Vaithilingam et al. (2016) demonstrated that surface remelting could negatively change the 

surface chemistry by selective evaporation of susceptible alloying elements. They attributed this 

phenomenon to the remarkably high energy density which the remelting process induces on the 

surface layers of the part, due to the unique surface laser scan techniques used in most remelting 

processes. Therefore, this limitation should be considered while applying skin scanning on any 

metallic alloy.  Kruth and Yasa (2011) optimized laser process parameters and applied selective 

laser erosion / selective laser remelting on horizontal surfaces of 316L stainless steel and Ti-6Al-

4V titanium alloy parts, improved Ra values from 15 μm to 1.5 μm and from 14.1 μm to 3.1 μm 
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respectively. Wang et al. (2016) improved horizontal surface roughness of 316L stainless steel 

pars from Ra: 14.33 μm to Ra: 3.34 μm at best scenario.  

Yasa and Kruth’s study (2011) demonstrated that laser remelting could improve the surface 

roughness of curved and inclined surfaces as well. However, their technique revealed sharp rough 

area (bands) where   two adjacent laser passes overlap each other. In addition, the minimal 

roughness that they obtained on an inclined surface was 5.18μm. Alrbaey et al. (2014) combined 

laser remelting as a post-processing tool with the selective laser melting process for optimizing the 

roughness of inclined surfaces and achieved the best result of 1.4 μm. This study proposed, 

analyzed and eventually optimized surface roughness of 45˚ inclined surface by printing a virtual 

thin shell on the base samples surfaces. This easy approach has the ability to improve initial surface 

roughness of Ra from more than 10 μm to less than 1 μm at a proper speed with minimum 

detrimental effect of part dimensional accuracy.  

1.2 Problem Statement and Research Objectives 

Surface roughness has been a real challenge for increasing selective laser melting process 

applications especially into functional parts that function under dynamic loads.  During last decade 

most of the investigation for improving SLM manufactured metallic parts  have been conducted 

on horizontal (top) surfaces. There are a few published studies on inclined surface roughness and 

the best reported surface roughness result were more than 1.5 μm (Kruth and Yasa, 2011).  

Therefore, the goal of this study is to evaluate the effects of selective laser melting process 

parameters on the surface roughness of inclined surfaces after applying surface remelting. 

Investigated parameters are laser power, laser exposure time, remelting layer thickness, and point 
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distance. A design of experiment approach is utilized to model process for achieving optimum 

surface roughness.  

1.3 Overview of Research Methodology 

 For this study, first four input processing parameters of selective laser melting, including 

laser power, laser exposure time, point distance, and remelting layer thickness were chosen.  Then 

Bok-Bhenken method of response surface methodology is implemented to investigate effects of 

these parameters on surface roughness as design response surface. Twenty seven tests were run, 

then all surface underwent surface remelting.  Finally, results were analyzed by the use of statistical 

analysis techniques and scanning electron microscope instrument. 

1.4 Organization of Thesis 

The whole structure of this study is made up of five chapters. Chapter one is introductory 

chapter of this thesis. It consists of a problem description statement, research main goals, general 

research methodology and finally this thesis content.  

 Chapter II is a brief review of the recent related literature. This includes additive 

manufacturing (AM) technologies classification, selective laser melting (SLM) principles, and 

why surface roughness is one of main limitation of AM. In addition, optimization of SLM process 

parameters and prediction of the surface roughness of SLM parts are discussed briefly. Recent 

literature on surface morphology analysis through SEM, post processing processes, and hybrid 

manufacturing processes are reviewed.  Laser surface modification processes, application of laser 

polishing in additive manufacturing, and  laser polishing of selective laser melting are discussed 

at the end of this literature review chapter.  
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 Chapter III deals with design of experiments, materials and methods used in this study. 

Raw material specification, system technical specification, process parameters set-up are 

explained and finally, instrumentation and tools used for measuring surface roughness are 

explained at the end of this chapter. 

 Chapter IV provides results from the designed experiments. A step by step statistical 

analysis with relevant tables, graphs, and detailed discussion are covered based on a design of 

experiment methodology. 

 Lastly, chapter V.  Summarizes conclusions of this research and recommends some topics 

for future studies on this field.  
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

 

 

 This chapter outlines a general classification of additive manufacturing technologies and 

also more detail of power-bed based additive manufacturing especially selective laser melting 

(SLM) technique. Advantages and limitation of SLM are discussed to some extent. Then, surface 

roughness as one of main challenges of AM and optimization of AM process parameters is 

discussed. Additionally, prediction of the surface roughness especially on SLM parts and 

evaluation of surface morphology by SEM are reviewed.  Post polishing processes and hybrid 

manufacturing processes as two of the main tools for roughness improvement are then discussed. 

This chapter will be completed by reviewing of studies on surface modification methods including 

laser polishing on selective laser melting (SLM) parts. 

2.1 Additive Manufacturing (AM) 

Historically, subtractive and formative manufacturing have been two dominant categories 

of manufacturing processes over at least last three centuries.  Generally, subtractive manufacturing 

creates finished parts from raw bulk materials by use of traditional tools such as turning, milling, 

grinding and so on. Additionally, in formative manufacturing such as forging and casting, solid 

materials and molten materials respectively, are being used to produce parts via predefined molds

 and dies (Yoon et al., 2014).  Recently, a new category of prototyping (and eventually 

manufacturing) technology has been emerged as additive manufacturing (also commercially 

known as 3D printing) for making prototypes, tools and even functional parts (Herzog et al., 2016).
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Even though this technology is new, metal additive manufacturing has been transitioning 

from a pure rapid prototyping technology to a widespread technology whereby functional parts 

could be manufactured even for highly critical applications. In other words, ever since its 

development in the 1980s, additive manufacturing (AM) (Rapid Prototyping as it was originally 

called), has emerged as a powerful facet of advanced manufacturing.  The principle of AM is that 

the part is created through layer-by-layer deposition of the desired material.  The term Additive 

Manufacturing (AM) has been defined by ASTM International Committee F42 in (ASTM F2792-

12a, 2012) as “process of joining materials to make objects from 3D model data, usually layer-

upon-layer, as opposed to subtractive manufacturing methodologies, such as traditional 

machining” (Boschetto & Bottini, 2015). This standard for terminology established a classification 

of AM processes into seven main categories as follows:  

1) Binder jetting  

2) Directed energy deposition  

3) Material extrusion  

4) Material jetting 

5) Sheet lamination 

6) Vat polymerization  

7) Powder bed fusion  

 

Indeed, powder bed fusion is one of the widely used AM technologies which have been 

implemented for producing of prototypes and also near net shape final products without 

geometrical intricacy restrictions (Boschetto & Bottini, 2015). In general, powder bed is prepared 

by evenly distribution of powder particles on a substrate.  The energy source (electron beam or 
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laser beam) is programmed to transfer energy to the surface of the bed melting or sintering the 

powder into the required shape. Additional powder is piled up across the work area, and the process 

is continued to create a solid 3D component. The advantages of this system include its ability to 

produce high resolution features, internal passages, and maintain dimensional control (Frazier, 

2014). Figure 2.1 schematically represents a generic powder bed fusion system.  

 

 

Figure 2-1- Generic illustration of an AM powder bed system (Frazier, 2014) 

 

It has been estimated that for direct metal fabrication by additive manufacturing, powder 

bed fusion technology have the most commercial applications. These days, more focus is on the 

design and manufacturing of powder-bed fusion additive laser machines with smaller spot size and 

higher power for improving the surface roughness and also the built rate (King et al., 2014). 

 

2.2 Selective Laser Melting (SLM) 

Selective laser melting is a powder-based, additive manufacturing process where 3D part 

is manufactured, layer-by-layer, by utilizing a laser beam to completely melt and then solidify the 

metallic powder particles (Jia, & Gu, 2014). A particular challenge in this process is the selection 

of appropriate process parameters that result in parts with desired properties (Kamath et al., 2014). 
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Additive manufacturing techniques especially selective laser melting are very interesting 

for fabricating biomedical devices and parts for aerospace industries. Increasingly it is penetrating 

to other industries including automotive. Despite of many advantages of SLM process, such as the 

flexibility of choosing materials and the increased functional performances, there are still 

limitations, with  poor surface finish as one of the most important one (Strano et al., 2013).  

 

 2.3 Surface roughness as one of main limitation of AM 

The surface roughness and resolution of a part are critical in many engineering 

applications. Some applications need a surface roughness of about 0.8µm or lower to prevent 

initiated cracking of surfaces. Specifically, additive manufacturing has enabled the fabrication of 

complex parts and components using a layer-by-layer based method but it often produces parts 

whose roughness and tolerance are less desirable due to the nature of the process that involves 

melting and cooling the powders. Commercial powder bed machines such as MTT’s realizer, EOS 

M270, etc. often need post processing operations such as surface machining, polishing and shot 

peening to enhance the final part finish surface. From the first commercialization of rapid 

prototyping in the late 1980, it was clear that due to layer by layer manufacturing nature of this 

new technology, inferior surface quality was one of main limitations of applying additive 

manufacturing in comparison to traditional subtractive technologies.  However at that time priority 

was on expanding advantages of this systems rather than decreasing of relevant drawbacks (Yasa 

& Kruth, 2011). 

With recent development in additive manufacturing technologies, especially during last 

decade, researchers on this ground considered surface quality of parts which are being 

manufactured by this new technology as a real challenge which could somewhat limit the advanced 
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industrial applications of the process. A large stream of research has tried to investigate and 

improve surface roughness. For power bed fusion systems, it can be deduced from trend of recent 

publications that generally three major approaches have been considered by researchers, and these 

are optimization of independent parameters, application of post processing processes and also 

implementation of hybrid processes (Lavvafi, 2013).  The hybrid approach (integration of additive 

and subtractive process) works by combining the best engineering aspects of additive processes 

(i.e. near-net shape parts) and subtractive processes (i.e. better geometric accuracy and surface 

finish) (Merklein et al., 2016).  

In conclusion, AM provides the capabilities to process an ever-growing range of materials 

and produces parts with complex geometries without the additional cost and time associated with 

making fixtures, dies and tools (as in conventional manufacturing). However, when compared to 

conventional methods (subtractive methods such as machining), current AM methods produce 

parts with poorer surface finish and part accuracy. These aspects are not critical factors in certain 

applications such as biomedical implants where rougher surfaces are preferred to accelerate bone 

ingrowth. However, for most mechanical and aerospace applications, superior surface finish and 

part accuracies are desired. Hence, there is a need to solve two major challenges in AM which are 

increasing part accuracy and improving surface finish. As mentioned earlier, the fundamental 

approaches in addressing these challenges are to:  

(1) Improve the performance of each AM processes and/or  

(2) Application of post processing techniques and/or 

(3) Develop a hybrid process 

 

http://www.sciencedirect.com.ezhost.utrgv.edu:2048/science/article/pii/S187538921630164X
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 The first and second approaches are relatively challenging and time-consuming since there 

are multiple AM processes with unique processing techniques and characteristics such as energy 

source (laser, electron beam), processing nature (binder jetting, material powder bed fusion), etc. 

Hybrid processes incorporates AM methods as a pre-cursor where near-net AM-made parts can be 

coupled with conventional material removal processes such as machining. In order to improve the 

process performance of each AM method, discrete research efforts targeted at specific AM 

technologies are required (Karunakaran et al., 2010). 

 

2.4 Optimization of process parameters 

Some studies tried to optimize relevant materials, laser and operation interrelated 

parameters and understand details of mechanisms behind the creation of surface roughness. 

Yadroitsev et al. (2007) indicated that there are more than 130 parameters that could affect the 

final quality of the material that is being produced by laser powder-bed fusion additive 

manufacturing (AM) method. These include laser power, scan speed, scan-line spacing (hatching 

distance), powder layer thickness, scanning strategy, atmosphere, and powder bed temperature and 

so on, though these parameters have different levels of importance. Lavvafi et al. (2012) 

demonstrated that the laser parameters will affects not only the roughness of the resulting surfaces, 

but also the depth of the heat affected zones on the surface of the alloy.  Using a novel method to 

vary the surface roughness of the alloy, it is possible to improve the fatigue properties of the alloy. 

Lavvafi et al. (2012) showed that the fatigue properties of laser treated 316 stainless steel can 

improve significantly due to creation of fine-grains on the surface of the alloy, which consequently 

results in improved surface hardness, and therefore the fatigue life of the components. 
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Singhal et al. (2009) determined optimum part deposition orientation for achieving 

minimum average part surface roughness, minimum build time and support structure for selective 

laser sintering (SLS) processed parts by solving a multi-objective optimization problem. Recently 

a few researchers directly and deeply investigated the effects of build angles in AM and proposed 

theoretical models for the prediction of surface roughness for selective laser sintering process in 

order for the surface roughness of layered manufacturing processed parts to be predicted and 

controlled and eventually to alleviate the process from the need of the post processing step (Wang 

et al., 2016).  It is generally accepted that NC-machined parts have superior surface quality than 

layered manufacturing parts. The stair-stepping effect and balling effect are among important 

factors that have more deleterious effects on surface quality of AM processed components so a 

comprehensive review of the factors that affect surface finish will be discussed in more detail in 

the following sections. 

 

2.5  Prediction of the surface roughness 

Ahn et al. (2009) considered the stir step phenomenon and mathematically modeled surface 

roughness. Figure 2.2 schematically shows concept of stair stepping effect in additive 

manufacturing processes. Theoretical CAD models have no surface roughness, but due to the fact 

that the object is created by a pile up of 2D layers, one on top of each other, inevitably leads to the 

stepping effect on the part surface. Figure 2 in fact simply shows that surface roughness can be 

decreased by reducing the 2D layer thickness, but unfortunately smaller layer thickness increases 

the manufacturing time. Indeed, this phenomenon has a great effect on surface quality. Therefore, 

understanding surface angle effects on surface roughness are of interest.  According to this figure 
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the main factors that influence the surface roughness are the layer thickness (L), surface angle (ϴ), 

and surface profile angle (φ).    

 

 

Figure 2. 2- Stair stepping effect in: a) CAD model, b) AM part, c) Surface profile Schematic 

(Ahn et al., 2009). 

 

  Figure 2.3 displays samples that were used for examining the effects of surface angle.  This 

“truncheon” test part was designed to measure roughness surfaces inclined to the horizontal at 

“sloping angles” in the range 00–900 at 50 intervals and it allows the surface roughness for each 

inclination angle to be easily measured. 
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Fatigue 2.3- Test part fabrication and measurement: a) CAD Model,   b) fabricated test part,   c) 

magnification photograph of the surface (Ahn et al., 2009). 

 

2.5.1 Prediction of the surface roughness of SLM parts 

Strano et al. (2013), based on comparison of observed data, surface analysis and 

experimental data with previous models, indicated that in addition to geometrical considerations, 

for accuracy of a model, presence of some rough  solidified particles on the surfaces at specific 

range of angles also should be considered in relevant mathematical modeling. Through analysis of 

the surface morphology and roughness at different inclinations of the upward surfaces of SLM 

parts, they identified the major effects and proposed a new mathematical model to predict the 

characteristics of the surface created through the SLM process. A surface roughness-sloping angle 

curve was also presented, which showed the variation in average surface roughness with different 

sloping angles. The horizontal surface (00 inclination) had lowest roughness, as expected. Surface 

roughness at 00 horizontal surface is caused due to the rippling effect that occurs during the laser 

melting process. It is concluded that when the laser moves, there is a temperature gradient between 

the laser beam and the solidifying zone, which generates a shear force on the liquid surface that is 
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counter acted by surface tension forces. The gravity and surface curvature counteract the external 

shear force, thus tending to restore the surface height of the melt pool to the free level. However, 

due to the short melt pool solidification time, this relaxation process is often not fully achieved 

instead a residual rippling on the surface is formed. It has been shown (Strano et al., 2013) that it 

is possible to reduce the roughness generated by rippling effect, by surface remelting.  As the 

inclination angle increases from 00, additional surface roughness is expected, resulting from the 

stair-step effect. It is important to notice that on the slanted surfaces, unlike on horizontal ones, 

laser remelting is not possible with SLM technology, since the material can only be sintered 

horizontally. The trend of roughness is always constant in the range of about 50–450, with a 

relatively slow decrease in the range of about 500–900.   

 

2.6 Surface morphology analysis through SEM 

Strano et al., (2013) compared SEM pictures of a horizontal surface (normal to the build 

direction) with a small inclination (5 degree) at 3 different magnifications (Figures 2.4 and 2.5). 

For the horizontal surface (Figure 2.4), there are very few sparse, partially-sintered particles on the 

surface, because of the small layer thickness (20μm) and the high power (195W) of the scanning 

laser beam which allow the powder to fully melt and fuse into a relatively smooth and uniform 

layer. The effects of scan direction and strategy such as hatch distance (highlighted by the arrows) 

are visible. For each scan line there are noticeable bullet-shaped marks oriented in accordance with 

the moving laser beam, presumably caused due to slower cooling in the center of each track.  
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   Figure 2. 4- SEM picture of a horizontal surface: a) an surface overview, b) detail profile, c) 

detail profile at high magnification (Strano et al., 2013). 

 

As for the inclined surface (Figure 2.5) the stair-step is visible at intervals of about 230 

μm.  
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Figure 2.5- SEM picture of a slightly inclined surface (sloping angle 5): a) at low magnification      

b) at high magnification,  c) detail of slightly inclined surface (Strano et al., 2013). 

 

When the build inclination increases, the SEM micrographs show the lack of sharpness of 

the step edges, due to discontinuities along step edges and the presence of partially bonded particles 

stuck at the edge borders. The formation of discontinuous borders is partially caused by the balling 

effect that happens during the laser melting of the metal powder. Balling is the breakup of the 

molten pool into small entities. During the laser melting of metal powders, the high thermal 

gradient between different volumes of the molten material generates a difference in surface tension 

within the pool, which produces Marangoni convection (Strano et al., 2013). Figure 2.6 shows a 

particular effect on the 900 inclined surface, a high number of partially bonded, clustered particles 
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is present on the surface, and partially bonded particles can be considered the main cause of surface 

roughness at 900. 

 

 

Figure 2.6- Presence of particle on highly sloped surface (sloping angle 90) (Strano et al., 2013). 

 

2.7 Post processing processes 

Additive manufacturing technologies rarely produce fully finished (net shape) parts 

specified by the customer requirement and part functions. Generally, after manufacture of the 

component via a specific AM process, for example for powder bed fusion system, tasks such as 

removal of residual powder particles, support scaffolding removal, further UV exposure for 

polymeric parts, heat treatment for reducing residual stress and/or improving mechanical 

properties reduce surface roughness and so on are required. Also, post processing has always been 

considered to be one of the practical ways to decrease surface roughness. Conventional polishing 

operations such as abrasive or electrochemical techniques are frequently used to decrease surface 

roughness. Apart from increasing of production time, these post processing activities have several 

limitations. Indeed, one of outstanding advantages of powder bed fusion additive manufacturing, 

similar to other additive techniques, is the ability to produce parts with high geometrical 

complexity. Therefore post processes such as abrasive process have a lot of difficulty to access 
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interior surfaces of complicated parts. The electrochemical polishing process utilizes chemical 

materials and so has some problems especially from the environmental point of view (Rosa1 et al., 

2015). 

Rossl et al. (2015) studied the effect of several surface treatments including grinding and 

emery polishing to decrease surface roughness of the prototyped parts and reported that electroless 

nickel coatings after shot peening and polishing can considerably improve surface quality and 

corrosion resistance. It should be noted that though during post processing stage of AM 

technologies it is possible to improve surface roughness and accuracy of AM manufactured parts, 

for some applications such as fabricating die or mold using additive processes, it not a practical 

step. For example, dies and tool steel parts have around 60HRC hardness, and manual polishing 

them is a really rough and time consuming job (Löber et al., 1995). 

 

2.8 Hybrid manufacturing processes 

  The third approach employs AM to produce near-net parts and then incorporates a 

‘hybrid strategy’ to improve part accuracy and surface finish. Hybrid manufacturing processes 

play a crucial role by concurrently utilizing both a subtractive and an additive technique in order 

to improve the performance (Lauwers et al., 2014). Several investigators have identified the need 

for secondary operations and the advantages of coupling AM and machining methods. Chu et al., 

(2014) listed a total of fifty seven micro and nano scale hybrid manufacturing processes based on 

process timing and process type. In Chu et al., (2014) classification approach, the process type is 

defined as either geometrically additive or subtractive, and all hybrid processes are classified into 

combinations of additive, subtractive, and assistive process. It is reported that combination of 

http://www.sciencedirect.com/science/article/pii/S0007850614001851
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direct metal laser sintering with high speed milling, electro discharge machining can be a good 

solution for prototype injection molds for plastic parts (Mognol, 2006). 

Essentially, hybrid strategies have been developed for specific AM methods where additive 

and subtractive operations are repeated in a cyclic manner until the final part is created. However, 

in AM processes that are categorized as powder bed fusion processes, where the material is spread 

across in each layer, such hybrid strategies are not feasible. Hence, it is more efficient and rational 

to develop a hybrid strategy which is versatile and independent of any AM process characteristics. 

Such hybrid process needs to be consolidated yet adaptable to combine any near-net AM process 

with conventional SM process (Karunakaran et al., 2010). Successful development and 

implementation of such a hybrid process can accelerate the applications of AM-made parts and 

efficiently incorporate functionality such as part accuracy and surface finish (e.g. assembly sub-

parts). In response to the aforementioned needs, laser polishing as a non-traditional subtractive 

method was studied by researchers, through integrating the hybrid power bed fusion process with 

the laser polishing post process with the aim to reduce limitations of power bed fusion technology. 

 

2.9 Laser surface modification processes 

Laser surface polishing, laser surface texturing and laser surface hardening are among the 

main laser surface modification processes that are being applied for a variety of purposes including 

but not limited to overcoming porosity issues, improving mechanical properties ranging from 

strength, corrosion resistance, wettability, micro-hardness, wear behavior, and fatigue. The 

reduction of surface asperities results from the volumetric redistribution of molten material under 

the influence of surface tension followed by rapid solidification. The laser polishing process has 

been applied successfully for more than a decade to reduce surface roughness of non-metal parts 

http://www.sciencedirect.com.ezhost.utrgv.edu:2048/science/article/pii/S0736584510000189


20 
   

such as optical glasses or silicon wafers. This process is based on controlled melting and 

solidification of a thin layer of material close to surface. Unlike glasses, finishing could be time 

and cost-consuming in the manufacturing of several metal components, as the final morphology 

plays a fundamental role since it can influence both the visual appearance and working 

performance of several end-products (Park & Lee, 2009). 

Surface finishing operations are a key step in a variety of industry sectors, namely die and 

mold industry, semi-conductor manufacturing, medical implants, and optical industry and so on. 

Whether it is for its tribological behavior, biocompatibility or optical response, the topography of 

a part can be of utmost importance. Traditional surface finishing techniques include material 

removal by abrasive processes, normally in a sequence of different steps, using wheels, vibrating 

tools or cloths, as well as chemical-mechanical polishing and electrochemical polishing. 

Disadvantages of these approaches include high manufacturing time and cost, for example, up to 

30% of the total production cost in die and mold industry, dimensional deviations among different 

operators and high consumable cost. To circumvent these issues, polishing by laser radiation 

appears as an attractive alternative, worth evaluating. As in all laser based methods, laser polishing 

is a non-contact process, which can be automated with relative ease, and is therefore able to tackle 

complex, three-dimensional parts with precision and repeatability. In the late 1990, laser polishing 

only had been used for applications with high added value, such as optical industry, but nowadays 

it becomes increasingly applicable for metallic parts surfaces, with remarkable performance as a 

finishing process. Laser polishing possesses extra advantages for additive manufacturing 

techniques in that since both process works based on laser as a source of thermal energy so 

combining of these two additives and subtractive process is highly desirable. Laser polishing is 

one of the fast growing laser surface modification process that is expected eventually to replace 
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current time consuming and costly manual polishing operation of especially metallic parts. It 

would be even more beneficial for complicated parts and also harder parts such as die and mold 

parts for which manual polishing is a major problem. Additionally, there is no contact between 

polishing tool and work piece, and there is no tool wear in comparison to conventional machining.  

In general, the principle of laser polishing for metallic parts is melting a thin layer of 

material close to surface through laser irradiation. At the micro level, laser induced energy melt 

peaks of surfaces and this melted liquid filles in valleys of surface, thus reducing surface roughness 

(Lamikiz et al., 2007). Laser polishing process may be classified into two main categories: macro 

polishing and micro polishing. Macro polishing is carried out with continuous wave (cw) laser 

radiation. The best results achieved yet is the reduction of the roughness of a turned tool steel (DIN 

1.2343) from Ra=5μm to Ra=1μm. In contrast to macro polishing, micro polishing is carried out 

with pulsed laser radiation. The range of pulse duration is 20 to 1000 ns and the remelting depth 

is about 0.5μm. Due to the small remelting depth, laterally larger surface structures remain 

unaffected, and, therefore, cannot be eliminated. The most important process parameters are pulse 

duration and intensity. Longer pulses generate higher pick laser power, thus possible to eliminate 

laterally larger surface structures. In most case, a top-hat intensity distribution is preferable to 

generate a homogenous remelting depth. Typical laser types used include Fiber-coupled Nd/YAG 

and excimer lasers with achievable processing time less than 3 s/cm². The correct selection for 

laser type depends on the initial roughness and surface homogeneity. In general, for values of the 

Ra parameter greater than around 0.5μm, the macro polishing is preferred. A sequential 

combination of both approaches is also possible, as demonstrated, for example, where an AISI 

H13 surface with a starting aerial topography roughness, Ra, of 1.35μm is laser smoothed down 

to 0.18μm. One of the first applications of the technique, in the late eighties and early nineties, 
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termed planarization at the time, was in the field of microelectronics, to flatten out the surface of 

thin metal layers in integrated circuits and fill holes. Since then, several authors have demonstrated 

the potential of the technique on tool steels, stainless steel, titanium alloys, sintered bronze 

substrates, optical glasses, and ceramics.  Figure 2.7 somewhat clarifies concept of relocation of 

thin layer at surface of metallic material due to laser irritation. 

 

Figure 2.7- Overview of laser polishing: a) Schematic of remelting mechanism, b) the effect of 

laser on surface micro-asperities (Bordatchev et al., 2014). 

 

Surface finish always has been one of design and quality requirement for engineering parts.  

A number of researchers have identified two different operating regimes for the laser polishing 

process based on the energy density applied: shallow surface melting (SSM) and surface over melt 

(SOM). In the SSM regime, the thickness of the melted layer is less than the peak-to-valley height 

of the micro-milled track. Consequently, the molten material will naturally flow from the local 
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maximum to the valleys under capillary pressure, and hence decrease the Ra over the heat affected 

region. If the thickness of the melted layer created by the laser beam is greater than the peak-to-

valley height, then the original surface topology may disappear and a molten material pool can be 

created. Generally surface roughness is strongly correlated with three interdependent indicators 

including:  

(1) Topographic quality and accuracy, precision and surface macro/micro asperities 

(2) Functionality and tribological, optical and other physical-mechanical properties 

(3) Esthetic and visual appearance 

The surface roughness of a part or a product strongly influences its properties and 

functions. Among these can be counted: abrasion and corrosion resistance, tribological properties, 

optical properties, haptics as well as the visual impression the customer desires. Therefore, in 

industrial manufacturing, grinding and polishing techniques are widely used to reduce the 

roughness of surfaces.  A point of interest is that laser polishing can improve these indicators 

altogether.  It is worth to note here that conventional polishing methods (manual, mechanical and 

chemical) carried out in consecutive stages and almost always need inter-stage cleaning and, 

therefore it remarkably increases time, cost, and consequently reduce productivity of the whole 

process. By contrast, laser polishing systems configuration and control parameters system are more 

or less similar to a SLM machine since both process have laser energy source. Therefore, the time 

and efforts involved in laser polishing can be significantly reduced (Bordatchev et al., 2014). 

 

2.10  Laser polishing (LP) and additive manufacturing (AM) 

In this section, recent studies on laser polishing (LP) of AM processed parts especially 

selective laser melting process are presented.  The idea of hybrid additive manufacturing (AM) 
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and laser polishing (LP), can be set up with two different approchs. In the first approch, LP can be 

applied after each AM layer is created. The advantages of this approach is creation of 100% dense 

part and considerably decreased residul stress. This technique can be more time consuming but it 

is preferred for automotive, aerospace, and other fields of engineering where high mechanical 

strength and wear resistance are of paramount importance. The other approach is that LP only be 

applied after final (top) layer of AM. This approch can increase surface quality, however it has no 

positive effect on the reduction of part internal prosity, as only top layer is polished. Therefore, 

selection of the better approach has to be based on application and functionality of part component.   

 

During last decade at least two comrehensive studies have been caried out on laser 

polishing of parts which were manufactured by SLM methods. Alrbaey et al. (2014) reported that 

for parts of 316L stainless steel manufactured by SLM with a initial surface roughness ranging 

from 8 μm to 20 μm, laser remelting caused an 80% decrease in surface roughness. It should be 

underscored here that they used DOE (Design of Experiment Method) for optimization of SLM 

and laser remelting separately. To circumvent limitation of Alrbaey’s work, researchers such as   

Yasa et al. (2011) employed a comprehensive and systematic approach to investigate the joint 

effects of laser polishing process and SLM process that used a continuous wipe laser. Several 

papers are published based on this work, to report the outcomes for parts fabricated with commonly 

used metal powders such as 316L stainless steel and Ti-6Al-4V. This work have been referenced 

in almost all recent studies on laser polishing of metallic materials and alloys. It should be point 

out that similar systematic studies (Lamikiz et al., 2007) also have been conducted on SLS process 

and more or less similar results have been demonstrated.  
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Due to the nature of SLM which utilizes powder materials, in addition to surface roughness 

limitation, SLM also suffers from 1 to 2 percent of porosity. Polishing of the outer surface (after 

top layer) of SLM manufactured parts can only decrease surface porosity. For some critical 

applications, reduction of internal prosity certainly could expand its application in other industries. 

For this case, laser polishing after each layer melting in SLM is an effective but time consuming 

approach for improving parts quality.  

It is concluded that, in the field of additive manufacturing, not enough work has been 

dedicated to laser re-melting, though laser surface modification of bulk materials has been studied 

extensively by some researchers  as has been discussed in previous sections. 
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CHAPTER III 

 

 

METHODOLOGY 

 

 

 In this chapter, all the experiments and utilized instrumentation are discussed. In the 

Materials and Methods sections, morphology and chemical properties of stainless steel powder are 

provided. In addition, technical specification of the additive manufacturing machine used for the 

experiments is described and details of file preparation with Magics® software are discussed. At 

the end of this chapter, tools which have been used for measuring design outcomes are discussed.  

  

3.1 Materials  

316L austenitic stainless steel powder was supplied by Renishaw plc. Chemical 

composition of powder is presented in table 3.1.  

Table 3.1- Chemical composition (Weight %) of 316L stainless steel powder  

Element Cr Ni Mo Mn Si N O P C S 

Mass 

(%) 
16 to 18 10 to 14 2 to 3 < 2 < 1 < 0.1 < 0.1 < 0.045 < 0.03 < 0.03 
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The particle size distribution of powder was 45+15 μm. Figure 3.1 shows the SEM of 316L 

austenitic stainless steel powder. As can be seen, the particles display a round shape morphology 

with an appropriate size distribution.  

 

Figure 3.1- SEM image of 316L austenitic stainless steel powder 

 

3.2 Selective Laser Melting System  

A Renishaw AM 250 laser melting machine was used for preparing samples for this study.  

Figure 3.2 shows front view of this machine. Technical specifications of this machine are presented in 

Table 3.2.  
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Figure 3.2- Renishaw AM 250 laser melting machine  

 

Table 3.2-Technical specification of Renishaw AM 250 laser melting machine 

Max part building area 245 x 245 x 300 mm (X, Y, Z) 

Build rate 5 cm³ - 20 cm³ per hour 

Scan Speed Up to 2000 mm/s 

Positioning speed(max) 7000 mm/s 

Layer thickness 20 – 100 μm 

Laser beam diameter 70 μm diameter at powder surface 

Laser type ytterbium fiber laser  

Laser wavelength 1070 nm  

Max laser power 200 Watt 
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3.3 Methods  

Ultimate goal of this study is optimizing remelting process parameters. So, at first step, 

4x4 test series (4 column and 4 rows) are printed in order to find a proper range of process 

parameters. It should be noted that at each test series, one input parameter varies in the row 

direction and another input parameter varies in the column direction, and all remaining process 

parameters remain constant. Figure 3.3 shows one of test series being used for finding appropriate 

range of vital parameters. Preliminary trial and error runs, machine technical specifications and 

also previously published works (Wang et al., 2016) were used for identifying the important input 

variables and the proper range for those input factors. At all examined levels of thickness of 

remelted shell, change of hatch distance reveals no effect on surface roughness. In other words, by 

fixing remelting layer thickness to 100 μm, 150 μm, or 200 μm, at each slice of remelting, laser 

swept the surface just one time and there is no overlap at each specific step. Four examined input 

variables are laser power, laser exposure time, point distance, and remelting layer thickness. It 

should be noted that for printing of base samples, layer thickness was fixed at 50 μm. 

 

 

Figure 3.3- 4X4 printed test series 
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Based on primary trials and errors for finding the suitable range of process parameters, four 

vital process parameters (Table 3.3) were selected for laser remelting process. In this study, after 

having ranges for the four independent variables, Box-Behnken design of experiment is used for 

optimization. Based on the Box-Behnken design, totally twenty seven (27) experiments were 

carried out with four independent variables.   

 

 

Table 3.3-Parameters and ranges for Box-Behnken design 

Dependent Variables Coded and actual levels of dependent variables 

-1 0 1 

A: Shell Layer Thickness, μm 100 150 200 

B: Point Distance, μm 30 50 70 

C: Laser Exposure Time , μs 200 300 400 

D: Laser Power, Watt 150 175 200 

 

Twenty seven pieces of 450 inclined samples were printed separately in order to meet 

randomization assumption of designed statistical study. It should be noted that all 27 samples were 

printed with the same process parameters in order to obtain the same initial surface roughness for 

all the samples. After completion of printing of each sample, the substrate was moved upward (to 

the initial position) and the powder around the sample was removed.  At this step, laser remelting 

was conducted on the inclined surface of the sample. After completion of the remelting process, 

sample was removed from the substrate for evaluation of surface roughness. Figure 3.4 shows one 

of 27 samples after remelting and removal from the substrate. 
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Figure 3.4- Typical SLM printed sample based on Box-Behnken design 

 

3.3.1  CAD file preparation 

Predefined slider type CAD model parts with the 45˚ slope were created using Materialize 

Magics® 19.02 3D Printing software. Figure 3.5 shows defined dimensions values for creating 

base sample (Figure 3.4) in Magics® software.  
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Figure 3.5- Snapshot of creating 45 º inclined sample file in Magics® software 

 

Figure 3.6 shows the dimensions and orientation of the base sample in Magics® software 

along with supports for sample. 

  

Figure 3.6- Dimensions and geometry of 450 inclined sample file along with support section in 

Magics® software 
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Predefined slider type CAD model parts with the 450 slope were created using Materialize 

Magics® 19.02 3D Printing software. Figure 3.7 shows method of creating remelting layer sample 

in Magics® software. 

 

Figure 3.7- Snapshot of creating 450 inclined remelting layer file in Magics® software 
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Figure 3.8- Dimensions and geometry of 450 inclined thin layer file in Magics® software 

 

Due to the unique orientation of sample, nature of scan strategy for remelting process is 

very important. Figure 3.9 display scan strategy for remelting of inclined surface. 

 

Figure 3.9- Scan strategy in Renishaw build processor slice viewer  

 

Relationship between slice thickness and number of slices for three different slice 

thicknesses is presented in table 3.4.  As this table illustrates, with increasing the slice thickness, 

number of slice will decrease. 
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Table 3.4- Relationship between slice thickness and number of slices 

Slice Thickness Shell Height Number of shell slice (Layer) 

100 μm 15.00 mm 151 

150 μm 15.00 mm 101 

200 μm 15.00 mm 76 

 

 

The hatch scanning parameters for printing of base samples were fixed based on Renishaw 

build processer as follows: Power: 200 Watt, Exposure Time: 80 µs, Point Distance: 50 µm, Focus 

offset: 0 mm, Build Strategy type: Meander, Hatch Distance: 50 µm, Hatching Rotation Angle 

(Increment value) : 670. In addition, for shell printing build strategy was meander with focus as 

zero.  Since measurement of roughness on inclined surface is impossible so all samples after 

printing and removing from substrate were mounted by Buehler manual metallurgical sample 

mounting press (Figure 3.10).   
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Figure 3.10- Manual metallurgical sample mounting press 

 

Figure 3.11 displays some of printed samples in mounted condition. 
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Figure 3.11- Some of samples after mounting process 

 

 

3.4 Surface roughness evaluation 

A Marsurf M300-C mobile roughness measuring instrument (figure 3.12) was used for 

measuring surface roughness of inclined samples after mounting. The roughness tester measures 

both the arithmetic mean surface roughness (Ra) and the surface roughness depth (Rz). Since both 

measurements show the same trend (for each measurement, value of Rz is around 4 times the value 

of Ra), in this study the roughness of the samples are reported only by the arithmetic mean surface 

roughness (Ra). An example of roughness measurement on non-remelted (initial) surface and an 

example of roughness measurement on remelted (final) surface are presented in figures 3.13 and 

3.14 respectively. 
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Figure 3.12- roughness measuring instrument set up 

 

 

Figure 3.13- A sample of roughness measurement on not remelted (initial) surface 
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Figure 3.14- A sample of roughness measurement on remelted (final) surface 

 

The morphology and surface of samples after remelting were investigated via a Carl Zeiss Sigma 

VP scanning electron microscope. 

 

Figure 3.15- scanning electron microscope set up 
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CHAPTER IV 

 

 

RESULTS AND DISCUSSION 

 

 

 This chapter starts with a brief explanation of design of experiment. Then the Box-Behnken 

design method of Response Surface Methodology (RSM) is discussed. Response Surface 

Methodology (RSM) was introduced by Box and Wilson.  Main process parameters and results of 

this study based on this DoE tool are summarized in separate tables. The main effect and 

interaction plot of the experiment are displayed and discussed in detail. ANOVA analysis is used 

repeatedly in this chapter in order to fit the regression models to be developed. Assumptions of 

ANOVA and regression were validated by the study of residual plots and probability plots. At the 

end of this chapter, contour plots and surface plots are represented for visualization of results. 

Finally optimization conditions for response variable (surface roughness) are discussed.      

 

4.1 Experimental design and modeling 

Design of experiment (DoE) means finding any cause-and-effect relationships in a process, 

product or system by purposefully changing the input parameters and then measuring the desired 

output factors. Ultimately, DoE enables researchers to develop a mathematical and/or empirical 

model to relate the system output variables to the system input variables and therefore facilitate 

system improvement and/or decision making on the system.  RSM is among the main categories 

of DoE techniques. In fact, it is one of the mathematical or statistical modeling tools. 
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RSM is widely used in industry and academia to study relationship between independent 

and dependent variables of any interested process or system. Most of the time, the approach is that 

a few key independent and controllable variables under investigation system are first identified. 

At next step, RSM tools are utilized to find appropriate level of input factors that optimize the 

response variables. Whenever there is doubt about the curvature in response surface, RSM is an 

acceptable choice.  Box-Behnken designs and central composite designs are the most popular RSM 

statistical tools. It should be noted that there are five experimental levels for the central composite 

approach but a Box-Behnken design is a three level experimental design. Design points are located 

either at the center of design or at the center of each edge of the cube.  

In fact, the design points are never chosen at low or high levels for all variables 

concurrently. Possibility of efficient prediction of quadratic polynomial terms in a regression 

equation, fewer number of runs in comparison to central composite design, and all points being 

within safe variables range, are fundamental characteristics of Box-Behnken design (C. 

Montgomery, 2012). Box–Behnken design of experiments matrix and results are displayed in 

Table 4.1. This table includes input variables in both coded and actual conditions. Based on this 

table the minimum measured value for the response variable is 0.91 μm and the maximum 

measured response variable is 7.19 μm. 
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Table 4.1- Box–Behnken design of experiments matrix and results 

Run 

Order 

Coded (Dimensionless) 

Input Variables 

Actual Input Variables Response Variable 

T D E P Remelting 

Layer 

Thickness 

(μm) 

Point 

Distance 

(μm) 

Laser 

Exposure 

Time 

(μs) 

Laser 

Power 

(Watt) 

Measured 

Roughness 

(Ra(μm)) 

Calculated 

Roughness 

(Ra(μm)) 

1 0 0 +1 -1 150 50 400 150 0.76 0.91 

2 -1 0 0 -1 100 50 300 150 3.43 3.68 

3 -1 0 0 +1 100 50 300 200 2.45 2.22 

4 0 0 -1 -1 150 50 200 150 6.00 5.97 

5 0 0 0 0 150 50 300 175 1.85 1.85 

6 0 +1 +1 0 150 70 400 175 2.27 1.98 

7 0 0 +1 +1 150 50 400 200 1.45 1.46 

8 -1 -1 0 0 100 30 300 175 3.84 3.73 

9 +1 0 +1 0 200 50 400 175 2.20 2.29 

10 0 0 -1 +1 150 50 200 200 4.68 4.70 

11 0 +1 0 -1 150 70 300 150 3.22 3.02 

12 0 +1 -1 0 150 70 200 175 4.83 4.60 

13 0 -1 0 +1 150 30 300 200 3.60 3.72 

14 0 -1 0 -1 150 30 300 150 4.60 4.28 

15 0 -1 -1 0 150 30 200 175 6.83 7.19 

16 +1 0 -1 0 200 50 200 175 6.21 6.24 

17 0 +1 0 +1 150 70 300 200 2.62 2.85 

18 -1 0 -1 0 100 50 200 175 5.65 5.47 

19 0 0 0 0 150 50 300 175 1.65 1.85 

20 0 0 0 0 150 50 300 175 2.06 1.85 
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21 +1 +1 0 0 200 70 300 175 3.54 3.63 

22 -1 +1 0 0 100 70 300 175 2.92 3.29 

23 +1 0 0 -1 200 50 300 150 3.24 3.55 

24 +1 -1 0 0 200 30 300 175 5.71 5.32 

25 0 -1 +1 0 150 30 400 175 1.20 1.51 

26 -1 0 +1 0 100 50 400 175 1.25 1.13 

27 +1 0 0 +1 200 50 300 200 4.45 4.28 

            

 

4.2 Main effects of process independent variables on surface roughness 

Based on the data from the Box–Behnken design of experiments matrix and results (Table 

4.1), the main effects plot are presented in Figure 4.1 Main effect plot is a subcategory of factorial 

plot and displays the effect of input variable level on the mean of the response variable.  

 

 

 

Figure 4.1- Main effects plot for response (fitted means) 
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MINITAB® software was used to calculate magnitudes of the main effects of the four 

involved independent variables (remelting layer thickness, point distance, laser exposure time, and 

laser power) on surface roughness as dependent variable of this study. Outcomes of calculation are 

presented in Figure 4.1.  

 

4.2.1 Effect of remelting layer thickness 

Considering remelting layer thickness, it is demonstrated that this parameter has a 

remarkable effect on study response. For the range of study, at lower layer thickness, mean effect 

of this factor is about 2.5 μm. Then, with the increase of layer thickness, mean effect decreases to 

around 1.6 μm, however with increase of layer thickness beyond 150 μm, main effect increase 

considerably. During preliminary study for choosing appropriate range for input variables, a 

sample with minimum possible layer thickness by software (10 μm) and a sample with 

extraordinarily high layer thickness (500 μm) remelted. It was observed that when layer thickness 

is 10 μm, Ra rapidly increases to above 5 μm. This detrimental effect possibly is attributed to the 

high input of energy that causes dimensional inaccuracy and surface deflection. Lower remelting 

layer thickness decreases the production rate as well. Therefore, remelting layer thickness below 

100 μm is not efficient and effective at all. On the other hand, for remelting layer thickness 500 

μm, it was noticed that remelting was not able to cover all the surface. Therefore consecutive 

remelted and un-remelted bands again resulted with surface inhomogeneity and increase of surface 

roughness (Li et al., 2009).  
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4.2.2 Point distance effect 

As Figure 4.1 displays, at lower range of point distance, mean effect of this parameter on 

response variable is close to 3 μm but with increase of point distance, first this effect moderately 

decreases and reaches a value around 50 μm and after that increase of point distance results in 

gradually increase of surface roughness.    

 

4.2.3 Laser exposure time effect 

The graphs showing main effects indicate that laser exposure time has the highest effect on 

surface roughness among four studied factors. At 200 μs of exposure, mean of surface roughness 

is close to 5 μm. With increase of exposure time, the mean of surface roughness dramatically 

deceases. At the upper extreme of laser exposure time range slowly heat a low point of 0.5 μm 

mean effect.  

 

4.2.4 Laser power effect 

The graphs showing main effects indicate that laser power has the least effect on surface 

roughness among four studied factors. At 150 watt of laser power, the mean of surface roughness 

is near 2 μm and slowly decreases with increase of laser power and then reaches its lower point 

around 180 watt.  From 180 watt to 200 watt, mean of surface roughness shows a gradually upward 

trend. In other words, across all laser power levels, the response mean stays approximately at the 

same level.  
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4.3 Interaction plots for response 

Figure 4.2 is interaction plot for the variables. In general, interaction occurs whenever 

influence of one input variable is influenced by the level of another input variable. Figure 4.2 

shows that effect of laser power is dependent on level of layer thickness, effect of laser exposure 

time is dependent on point distance, effects of both point distance and laser power are dependent 

on level of laser exposure time, and both layer thickness and laser exposure time are dependent on 

laser power (Lavvafi, 2013).  It should be noted that laser exposure time has highest amount of 

effect on point distance and laser power.  

 

 

Figure 4.2- Interaction plots for response (fitted means) 
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4.4 Analysis of variance (ANOVA) and effect of input parameters 

           The reality is that the main effects are not able to illustrate interaction among experiment 

independent variables and nature of their impacts on the surface roughness. Therefore, the RSM 

tool was utilized to examine the cross effects. In order to fit a regression model to response surface 

design, Box–Behnken design of experiments matrix and results were analyzed by use of Minitab 

surface response design analyzer. At initial step, full quadratic terms (linear, squares, and 

interactions) were included for fitting in analyzer.  

The general approach for modeling of independent process variable is that first fitness of a 

first-order regression model is examined. In case the first order model reveals remarkable lack of 

fit then the second order model is examined. Analysis of variance for first order model indicates 

considerable lack of fit (i.e.  P-Value =0.05 for Lack-of-Fit, R2, R2 adjusted, R2 predicted 

respectively are 78.24%, 74.29%, and 70.65%). Therefore, at this step it can be concluded that 

range of initial parameters is not in remote are of response surface and set of values are suitable 

for approaching to valley of response surface.  In other words, second order model will be a better 

fit for these experiments. 

For second order modeling analysis of variance, model summary, and coded coefficients 

are outcomes of analyzer (Minitab® software) which are presented in Table 4.2 through Table 4.8. 

In this study, in analysis of variance table, P-value approach is being used for testing the hypothesis 

and will fail to reject H0 if statistic F0 is more than predefined alpha value. Results of ANOVA 

analysis for surface roughness are presented in Table 4.2. As this table illustrates, P-values of linear 

terms of T, D, and E, all square terms (T*T, D*D, E*E, P*P), and two way interaction terms of 

T*P, D*E, E*P statistically are significant and play a role in the response (surface roughness) 

regression equation. As Table 4.2 shows, value of lack-of-fit for this analysis is 0.254. This non-
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significant value implies that relevant surface roughness regression model could properly define 

the relationship between four input variables (remelting layer thickness, point distance, laser 

exposure time, and laser power) and response variable (surface roughness). In ANOVA table R2 

as coefficient of multiple determinations is defined by the following equation: 

 

Where SST is total sum of squares, SSR is sum of squares due to the regression and SSE 

sum of squares due to residual error. Since R2 value always increases with adding terms to the 

regression model, the adjusted R2 statistic which is defined by the following equation is more 

applicable. 

 

In general, if an inappropriate term is added, the value of R2 adjusted will almost always increase. 

 

Table 4.2-Analysis of Variance for surface roughness including all quadratic terms 

Source               DF   Adj SS   Adj MS  F-Value  P-Value 

Model                14  74.0732   5.2909    49.90    0.000 

  Linear              4  58.9522  14.7381   138.99    0.000 

    T                 1   2.8130   2.8130    26.53    0.000 

    D                 1   3.3920   3.3920    31.99    0.000 

    E                 1  52.4172  52.4172   494.33    0.000 

    P                 1   0.3300   0.3300     3.11    0.103 

  Square              4  10.0770   2.5192    23.76    0.000 

    T*T               1   6.0161   6.0161    56.74    0.000 

    D*D               1   6.4338   6.4338    60.68    0.000 
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    E*E               1   3.9982   3.9982    37.71    0.000 

    P*P               1   1.3986   1.3986    13.19    0.003 

  2-Way Interaction   6   5.0440   0.8407     7.93    0.001 

    T*D               1   0.3906   0.3906     3.68    0.079 

    T*E               1   0.0380   0.0380     0.36    0.560 

    T*P               1   1.1990   1.1990    11.31    0.006 

    D*E               1   2.3562   2.3562    22.22    0.001 

    D*P               1   0.0400   0.0400     0.38    0.551 

    E*P               1   1.0201   1.0201     9.62    0.009 

Error                12   1.2724   0.1060 

  Lack-of-Fit        10   1.1884   0.1188     2.83    0.289 

  Pure Error          2   0.0841   0.0420 

Total                26  75.3457 

Model Summary 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.325633  98.31%     96.34%      90.66% 

 

 

Table 4.3-Estimated Coded Coefficients for surface response including all quadratic terms 

Term       Effect     Coef  SE Coef  T-Value  P-Value   VIF 

Constant             1.853    0.188     9.86    0.000 

T          0.9683   0.4842   0.0940     5.15    0.000  1.00 

D         -1.0633  -0.5317   0.0940    -5.66    0.000  1.00 

E         -4.1800  -2.0900   0.0940   -22.23    0.000  1.00 

P         -0.3317  -0.1658   0.0940    -1.76    0.103  1.00 

T*T         2.124    1.062    0.141     7.53    0.000  1.25 

D*D         2.197    1.098    0.141     7.79    0.000  1.25 

E*E         1.732    0.866    0.141     6.14    0.000  1.25 
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P*P         1.024    0.512    0.141     3.63    0.003  1.25 

T*D        -0.625   -0.312    0.163    -1.92    0.079  1.00 

T*E         0.195    0.098    0.163     0.60    0.560  1.00 

T*P         1.095    0.547    0.163     3.36    0.006  1.00 

D*E         1.535    0.768    0.163     4.71    0.001  1.00 

D*P         0.200    0.100    0.163     0.61    0.551  1.00 

E*P         1.010    0.505    0.163     3.10    0.009  1.00 

 

 

Considering P-Values in both analysis of variance table and coded coefficient tables, it is 

evident that three of two-way interaction terms have non-significant P-Values including T*D, T*E, 

and D*P. Since the two-way interaction term T*E has the highest P-Value, term will be removed 

from quadratic equation at this step. It should be noted that at this step R squared values and lack-

of-fit values seems reasonable.  The refitted model after removing term T*E is presented in Table 

4.4. 

 

Table 4.4- Analysis of Variance for surface roughness after removing term T*E 

Source               DF   Adj SS   Adj MS  F-Value  P-Value 

Model                13  74.0352   5.6950    56.50    0.000 

  Linear              4  58.9523  14.7381   146.20    0.000 

    T                 1   2.8130   2.8130    27.91    0.000 

    D                 1   3.3920   3.3920    33.65    0.000 

    E                 1  52.4172  52.4172   519.99    0.000 

    P                 1   0.3300   0.3300     3.27    0.094 

  Square              4  10.0770   2.5192    24.99    0.000 

    T*T               1   6.0161   6.0161    59.68    0.000 
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    D*D               1   6.4338   6.4338    63.82    0.000 

    E*E               1   3.9982   3.9982    39.66    0.000 

    P*P               1   1.3986   1.3986    13.87    0.003 

  2-Way Interaction   5   5.0060   1.0012     9.93    0.000 

    T*D               1   0.3906   0.3906     3.88    0.071 

    T*P               1   1.1990   1.1990    11.89    0.004 

    D*E               1   2.3562   2.3562    23.37    0.000 

    D*P              1   0.0400   0.0400     0.40    0.540 

    E*P               1   1.0201   1.0201    10.12    0.007 

Error                13   1.3105   0.1008 

  Lack-of-Fit        11   1.2264   0.1115     2.65    0.306 

  Pure Error          2   0.0841   0.0420 

Total                26  75.3457 

Model Summary 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.317498  98.26%     96.52%      90.81% 

 

 

Table 4.5-Estimated Coded Coefficients for surface roughness after removing term T*E  

Term       Effect     Coef  SE Coef  T-Value  P-Value   VIF 

Constant             1.853    0.183    10.11    0.000 

T          0.9683   0.4842   0.0917     5.28    0.000  1.00 

D         -1.0633  -0.5317   0.0917    -5.80    0.000  1.00 

E         -4.1800  -2.0900   0.0917   -22.80    0.000  1.00 

P         -0.3317  -0.1658   0.0917    -1.81    0.094  1.00 

T*T         2.124    1.062    0.137     7.73    0.000  1.25 

D*D         2.197    1.098    0.137     7.99    0.000  1.25 

E*E         1.732    0.866    0.137     6.30    0.000  1.25 
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P*P         1.024    0.512    0.137     3.72    0.003  1.25 

T*D        -0.625   -0.312    0.159    -1.97    0.071  1.00 

T*P         1.095    0.548    0.159     3.45    0.004  1.00 

D*E         1.535    0.768    0.159     4.83    0.000  1.00 

D*P         0.200    0.100    0.159     0.63    0.540  1.00 

E*P         1.010    0.505    0.159     3.18    0.007  1.00 

 

 

 

At this stage, still two-way interaction terms of T*D and D*P have non-significant (>0.05) 

values of P-Values.  R squared values and lack-of-fit values seem reasonable.  Since term D*P has 

the higher non-significant P-Value, it was removed from regression equation terms. The refitted 

model after removing term D*P is presented in Table 4.6.  

 

Table 4.6-Analysis of Variance for surface roughness after removing term D*P 

Source               DF   Adj SS   Adj MS  F-Value  P-Value 

Model                12  73.9952   6.1663    63.92    0.000 

  Linear              4  58.9522  14.7381   152.79    0.000 

    T                 1   2.8130   2.8130    29.16    0.000 

    D                 1   3.3920   3.3920    35.16    0.000 

    E                 1  52.4172  52.4172   543.40    0.000 

    P                1   0.3300   0.3300     3.42    0.086 

  Square              4  10.0770   2.5192    26.12    0.000 

    T*T               1   6.0161   6.0161    62.37    0.000 

    D*D               1   6.4338   6.4338    66.70    0.000 

    E*E               1   3.9982   3.9982    41.45    0.000 

    P*P               1   1.3986   1.3986    14.50    0.002 
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  2-Way Interaction   4   4.9660   1.2415    12.87    0.000 

    T*D               1   0.3906   0.3906     4.05    0.064 

    T*P               1   1.1990   1.1990    12.43    0.003 

    D*E               1   2.3562   2.3562    24.43    0.000 

    E*P               1   1.0201   1.0201    10.58    0.006 

Error                14   1.3505   0.0965 

  Lack-of-Fit        12   1.2664   0.1055     2.51    0.320 

  Pure Error          2   0.0841   0.0420 

Total                26  75.3457 

Model Summary 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.310583  98.21%     96.67%      91.81% 

 

 

Table 4.7-Estimated Coded Coefficients for surface roughness after removing term D*P  

Term       Effect     Coef  SE Coef  T-Value  P-Value   VIF 

Constant             1.853    0.179    10.34    0.000 

T          0.9683   0.4842   0.0897     5.40    0.000  1.00 

D         -1.0633  -0.5317   0.0897    -5.93    0.000  1.00 

E         -4.1800  -2.0900   0.0897   -23.31    0.000  1.00 

P         -0.3317  -0.1658   0.0897    -1.85    0.086  1.00 

T*T         2.124    1.062    0.134     7.90    0.000  1.25 

D*D         2.197    1.098    0.134     8.17    0.000  1.25 

E*E         1.732    0.866    0.134     6.44    0.000  1.25 

P*P         1.024    0.512    0.134     3.81    0.002  1.25 

T*D        -0.625   -0.312    0.155    -2.01    0.064  1.00 

T*P         1.095    0.548    0.155     3.53    0.003  1.00 

D*E         1.535    0.768    0.155     4.94    0.000  1.00 
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E*P         1.010    0.505    0.155     3.25    0.006  1.00 

 

  

  

At this stage, the two-way interaction term of T*D still has a non-significant (0.064>0.05) 

P-Value.  R squared values and lack-of-fit values seem reasonable.  At this step, term T*D was 

removed from regression equation terms. The refitted model after removing term T*D is presented 

in Table 4.8. Analysis of Variance for surface roughness after removing term T*D and estimated 

coded coefficients for surface roughness after removing term T*D were shown in Table 4.8.  

 

Table 4.8-Analysis of Variance for surface roughness after removing term T*D 

Source               DF   Adj SS   Adj MS  F-Value  P-Value 

Model                11  73.6046   6.6913    57.65    0.000 

  Linear              4  58.9522  14.7381   126.97    0.000 

    T                 1   2.8130   2.8130    24.23    0.000 

    D                 1   3.3920   3.3920    29.22    0.000 

    E                 1  52.4172  52.4172   451.59    0.000 

    P                 1   0.3300   0.3300     2.84    0.112 

  Square              4  10.0770   2.5192    21.70    0.000 

    T*T               1   6.0161   6.0161    51.83    0.000 

    D*D               1   6.4338   6.4338    55.43    0.000 

    E*E               1   3.9982   3.9982    34.45    0.000 

    P*P               1   1.3986   1.3986    12.05    0.003 

  2-Way Interaction   3   4.5754   1.5251    13.14    0.000 

    T*P               1   1.1990   1.1990    10.33    0.006 

    D*E               1   2.3562   2.3562    20.30    0.000 

    E*P               1   1.0201   1.0201     8.79    0.010 
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Error                15   1.7411   0.1161 

  Lack-of-Fit        13   1.6570   0.1275     3.03    0.275 

  Pure Error          2   0.0841   0.0420 

Total                26  75.3457 

Model Summary 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.340695  97.69%     95.99%      92.08% 

 

 

At this stage, all remaining terms of regression model have significant P-values apart from 

linear term D (P-Value as 0.112). Having removed all non-significant terms, the following revised 

regression models (both coded and uncoded) were obtained. In the final model, P-Value for lack-

of-fit is 0.275 which is not statistically significant. Therefore, final model does not reveal any lack-

of-fit. Additionally, bottom of ANOVA tables also summarize values of regression model such as 

R2, R2 adjusted, and R2 predicted. Values for these statistical parameters could vary between 0 and 

100%. In general, higher values of these parameters are desirable. As Table 4.8 shows, R2 value is 

97.69%.  R2 also is known as the determination coefficient. For the purpose of this study, it means 

that 97.69% of the variability in surface roughness can be explained by the final proposed 

regression model. R2 adjusted value is 95.99%. Typically, adding a new term in the regression 

model results in increase of R2, however this does not necessarily imply that newly added term 

improves the fitness of regression model (Wu et al., 2009).  

Therefore, R2 adjusted is a better indicator to check whether adding a new term to the 

regression model increase its fit or not. As discussed previously, one of the main objectives of DoE 

and the proposed regression model is to predict effects of future sets of input variables on the 

response variable. In other words, R2, and R2 adjusted are good indicators for examining the current 



56 
 

status of the model but R2 predicted is used for accuracy of the model for future observations of 

the system or process. The R2 predicted value is 92.08%. 

 

4.5 Transformation necessity 

In addition to ANOVA, Box-Cox transformation procedure was applied on experimental 

data in order to check whether there is room for improving normality and equality of variance over 

variable ranges. Indeed, major violations of normality and equality assumptions increase the 

likelihood of type I or type II errors (Hamze et al, 2015).  Calculated values of rounded λ and 

estimated λ are 1 and 0.96831, repeatedly. In addition, with 95% confidence interval, the value of 

λ is located between 0.611810 and 1.33681. The value of rounded λ implies that no transformation 

is required and utilizing Box-Cox transformation only makes available results identical to before 

transformation. 

 

 

4.6 Fitting Regression Model 

In many of engineering and scientific systems, each dependent variable is related to several 

input variables. Thus, developing a reliable mathematical or regression model to appropriately 

display the functional relationship between regression variables and output variables is very useful 

since the model can be easily utilized for several purposes including process control, optimization 

of process, and future status prediction. Often the cause and effect relationship between dependent 

and independent variables is not perfect. Therefore, first and second order polynomial regression 

models are used in order to approximate functional relationship. Design of experiments methods 
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highly rely on regression for quantitative modeling and analyzing the data (Montgomery et al., 

2006). 

 

 

Table 4.9-Estimated Coded Coefficients for surface roughness after removing term T*D  

Term       Effect     Coef  SE Coef  T-Value  P-Value   VIF 

Constant             1.853    0.197     9.42    0.000 

T          0.9683   0.4842   0.0984     4.92    0.000  1.00 

D         -1.0633  -0.5317   0.0984    -5.41    0.000  1.00 

E         -4.1800  -2.0900   0.0984   -21.25    0.000  1.00 

P         -0.3317  -0.1658   0.0984    -1.69    0.112  1.00 

T*T         2.124    1.062    0.148     7.20    0.000  1.25 

D*D         2.197    1.098    0.148     7.45    0.000  1.25 

E*E         1.732    0.866    0.148     5.87    0.000  1.25 

P*P         1.024    0.512    0.148     3.47    0.003  1.25 

T*P         1.095    0.547    0.170     3.21    0.006  1.00 

D*E         1.535    0.768    0.170     4.51    0.000  1.00 

E*P         1.010    0.505    0.170     2.96    0.010  1.00 

 

 

 

 

4.6.1 Regression Equation in Uncoded (actual) Units 

Developing a suitable regression model for predicting the relationship among input and 

outputs of a process is one of the main objectives of statistical DoE analysis. For this study, 

regression equation in uncoded units for this set of experiment is as follows:  
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Surface roughness (μm) = 86.3 - 0.1944 T - 0.4163 D - 0.1274 E - 0.4197 P + 0.000425 T*T 

+ 0.002746 D*D + 0.000087 E*E + 0.000819 P*P + 0.000438 T*P + 0.000384 D*E 

+ 0.000202 E*P 

 

4.6.2 Regression Equation in coded (dimensionless) Units 

Regression analysis is a statistical modeling approach that is widely used to estimate the 

relationships among system input and output variables. The ranges of values for the coded 

variables are -1.0 to1.0. Regression equation in coded units for this experiment is as follows:  

 

Surface roughness (μm) = 1.853 +0.4842 T - 0.5317 D – 2.09 E - 0.1658 P + 1.062 T*T 

+ 1.098 D*D + 0.866 E*E + 0.512 P*P + 0.547 T*P + 0.768 D*E + 0.505 E*P 

 

4.7 Validate model assumptions in regression or ANOVA 

ANOVA analysis was used for statistical analysis of results of this study. Similar to a 

variety of statistical techniques, in ANOVA analysis also some assumptions should be carefully 

considered for robust and reliable application of analysis. The first assumption is that the residual 

of both independent and dependent variables should have normal distribution. Homoscedasticity 

or homogeneity of variance is the second assumption that should be fulfilled. From latter 

assumption constant variance or close to constant variance of a variable over the space of analysis 

of variable is expected. Due to importance of these two underlying assumptions, at this very 

beginning step, normality of residuals versus both four input parameters and the surface roughness 

output parameter was examined (Osborne, 2012).  
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Figure 4.3 shows the normal probability plot, the residual versus fitted value, the histogram, 

and the residual versus order. The normal probability graph implies that residual has close to 

normal distribution. There is no distinguishable trend for residual versus fitted value graph. 

Additionally, the histogram shape is close to a normal distribution curve.  The residual versus 

observed order graph reveals proper randomization. 

 

 

Figure 4.3-Residual plots for response (Surface roughness) 

 

Figures 4.4 through 4.4.7 display residual versus four input factors namely laser power, 

laser exposure time, point distance, and remelting layer thickness. It is evident that for all 

independent variables of this study, constancy of variance of residual over the parameters range of 

study is acceptable.   In addition, residual versus predicted values of dependent variable of surface 
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roughness do not disclose any specific trend and therefore randomness of residual could be 

anticipated.  

 

Figure 4.4-Residual versus variable T (Remelting layer thickness) 

 

 

Figure 4.5-Residual versus variable D (point distance) 
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Figure 4.6-Residual versus variable E (laser exposure time) 

 

 

Figure 4.7-Residual versus variable P (laser power) 
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Figure 4.8 shows the normal probability plot of residuals. P-Value of far more than 0.05 

imply that normality of residuals of predicted values appropriately are fulfilled.  In other words, 

there is no remarkable violation of these two underlying assumptions of ANOVA analysis. 

Therefore, ANOVA analysis could be applied to this study data without any concern for 

assumptions of this statistical procedure.  

 

Figure 4.8- Normal probability plot of residual- 95% CI 

 

Figure 4.9 shows fitted values versus experimental values of surface roughness. Comparing these 

values reveal that there is a satisfying positive relationship between calculated and measured 

values and proposed regression model appropriately agrees with the response variable of this 

study. 
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Figure 4.9- Scatter plot of surface roughness (response variable) 

 

4.8 Contour plots of response 

Figures 4.10, 4.11, and 4.12 represent six contour plot graphs for relationship between 

combinations of two of independent input variables (i.e. layer thickness, point distance, laser 

exposure time , and laser power) and surface roughness as dependent output variable. As it can be 

seen, contour plot is an effective tool for visualizing the effects of process input variables on the 

process response variable. The curvature of contours and elliptical graphs imply that process 

properly meets the second order model (Long et al., 2014).    
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Figure 4.10- Contour plots at minimum set of hold values 

 

 

Figure 4.11- Contour plots at average set of hold values 
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Figure 4.12- Contour plots at maximum set of hold values 

 

Comparing contours plots at three (i.e. minimum, average, maximum) levels of hold values 

reveals that the optimum surface roughness at the average set of values is obtainable. The graphs 

of the optimum surface roughness are achievable at layer thickness of around 150 μm with laser 

exposure time more than 350 μs. 

    

4.9 Surface plots of response 

Similar to two-dimensional contour plots, three-dimensional surface plots also are data 

visualizing tools and are valuable for finding required output values and desirable operating 

settings. Based on the regression model for the process, each surface plot relates two independent 

parameters to an output parameter. It is clear that for examining the effect of two input variables 

on a response surface other variables of process should be held at a constant level. Figure 4.13 
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through 4.18 depict surface plots for four input variables of this study. Figure 4.13 shows that 

increasing laser exposure time remarkably improves the surface roughness. It should be noted that 

from process point of view there appears to be no technical limitation for increasing exposure time 

in order to better surface roughness. 

 

 

Figure 4.13- three-dimensional surface plot of surface roughness versus laser power and laser 

exposure time 

 

Figure 4.14 implies that there is an optimum point distance for obtaining minimum surface 

roughness. As Figure 4.14 shows lower extreme of point distance has a more deterioration effect 

on surface roughness than the higher extreme.    
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Figure 4.14- three-dimensional surface plot of surface roughness versus laser power and point 

distance 
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Figure 4.15- three-dimensional surface plot of surface roughness versus point distance and laser 

exposure time 

 

Figure 4.16 shows that increasing layer thickness beyond about 150 μm remarkably 

increases the surface roughness. On the other hand, lowering layer thickness increases the 

remelting process time. Therefore, based on process objective there is a tradeoff among layer 

thickness, remelting speed, and surface roughness.  
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Figure 4.16- three-dimensional surface plot of surface roughness versus layer thickness and laser 

power 

 

Comparison among Figures 4.13, 4.14, and 4.16 reveals the fact that for approaching 

optimum surface roughness, higher extreme of laser power is not required.  Technically this means 

that current utilized AM machine is capable of providing desirable surface roughness far below 

maximum laser power capacity of the machine (200 Watt).   
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Figure 4.17- three-dimensional surface plot of surface roughness versus layer thickness and laser 

exposure time 

 

 

Figure 4-18-three-dimensional surface plot of surface roughness versus layer thickness and point 

distance 
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4.10 Response Optimization 

Optimized set of vital input variables for obtaining optimized response is one of the 

ultimate objectives of RSM as a combination of statistical and mathematical tools in design of 

experiments approach (Akia et al, 2009). Figure 4.19 represents optimization plot of current 

experiment. Top of Figure displays range of input variables which are shell layer thickness (T), 

point distance (D), laser exposure time (E), laser power (P). As this Figure reveals, minimum 

(optimize for the purpose of this study) amount of surface roughness (y=0.5354) is achieved at a 

set of 141.41μm of shell layer thickness, 47.77 μm of point distance, 400μs of laser exposure time, 

and 169.19 watt of laser power. In fact, this optimization plot also represents the effect of each 

input parameter on the experiment response. In addition, Table 4.10 shows variable setting and 

fitted response for optimized prediction along with 95% CI and 95% PI. The upright red lines on 

the four graphs display the current input variables settings. It’s worth mentioning here that these 

settings can be changed in order to investigate the sensitivity of surface roughness to the input 

variables.    

 

 

Figure 4-19- response optimization plot 
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Table 4.10-Variable setting and fitted response for optimized predicted solution 

T D E P Response 

 Fit 

Composite 

Desirability 

95% CI 95% PI 

141.414 47.7778 400 169.192 0.535385 1 (0.153, 

0.918)   

(-0.285, 

1.356) 

 

 

 

4.10.1 Validation of Optimization model 

In order to validate the proposed statistical optimization model, two samples were prepared 

according to optimal condition of process parameters. Optimal condition of parameters are 140 

μm for remelting layer thickness, 50 μm for point distance, 400 μs for laser exposure time, and 

170 watt for remelting laser power.  At these levels of remelting process parameters, predicted 

surface roughness should be 0.54 μm. However, average of measured surface roughness on two 

prepared samples was 0.68 μm. This means that there is less than 15% difference between 

calculated and measured response and measured response located within 95% confidence interval.  

 

 

4.11 SEM of surface  

Examining surface of additive manufacturing printed parts both before and after remelting 

is helpful for understanding the efficiency and mechanisms of remelting process. Figures 4-20 and 

4-21 show SEM images of two SLM printed samples both before and after remelting at a 

magnification of about 100X for run 4 and run 1 of this set of experiments. In addition, Figures 4-
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22 and 4-23 show SEM images of two SLM printed samples both before and after remelting at a 

magnification of 400X for run 4 and run 1 of this set of experiment respectively. As these four 

SEM images reveal, laser remelting process on inclined surfaces has the ability to reduce 

irregularity of SLM prepared surface remarkably. In addition, comparing Figures 4.22 and 4.23 

indicate that remelting efficiency for improving surface roughness is highly influenced by process 

parameters. In other words, optimization of selective laser remelting process parameters play 

crucial rule in effective application of this process (Cherry et al., 2015).    

   

 

Figure 4-20- SEM image of run 4 sample at magnification 100 (Remelting layer thickness: 150 

μm, Point distance: 50 μm, Laser exposure time: 200 μs, Laser power: 150 Watt) 
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Figure 4-21- SEM image of run 1 sample at magnification 100 (Remelting layer thickness: 150 

μm, Point distance: 50 μm, Laser exposure time: 400 μs, Laser power: 150 Watt) 
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Figure 4-22- SEM image of run 4 sample at magnification 400 (Remelting layer thickness: 150 

μm, Point distance: 50 μm, Laser exposure time: 200 μs, Laser power: 150 Watt) 

 

 

Figure 4-23- SEM image of run 1 sample at magnification 400 (Remelting layer thickness: 150 

μm, Point distance: 50 μm, Laser exposure time: 400 μs, Laser power: 150 Watt) 
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Figure 4.24 shows at least two adjacent laser paths on two consecutive remelting layers. In 

contrary to a previous publication (Yasa and Kruths, 2011), this result reveals that with optimized 

selection of process parameters, roughness in overlap area also could be improved significantly.  

 

 

Figure 4-24- SEM image of central area of run 1 sample at magnification 400 (Remelting layer 

thickness: 150 μm, Point distance: 50 μm, Laser exposure time: 400 μs, Laser power: 150 Watt) 
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CHAPTER V 

 

 

CONCLUSIONS AND FUTURE RESEARCH 

 

 

Over the last decade additive manufacturing has increasingly been used for customized 

manufacturing of functional parts, in particular, for aerospace and biomedical industries. There is 

a massive driving force to widen AM application in other industries including automotive.  In spite 

of the variety of advantages, AM technologies still have some real challenges. One of these 

challenges is to achieve desirable surface roughness. In fact, this characteristic is highly important 

for functional parts which work under dynamic loads. This research is truly an attempt to improve 

the surface roughness in SLM process. Conclusions of this research are summaries as follows:  

1-Improving inclined surface roughness of 316L stainless steel below 1 µm by a hybrid SLM and 

remelting process is feasible.  

2-For remelting of inclined surfaces, laser exposure time plays the most important role in obtaining 

low surface roughness.  

3-The results reveal that hatch distance has no effect on inclined surface remelting but there is an 

optimal value for layer thickness for the remelting process. Layer thickness of 50 µm and 100 µm 

widely are used for selective laser melting of 316L stainless steel, however, for consecutive laser 

remelting a layer thickness of 200 µm could be applied. In other words, production rate of laser 

remelting on inclined surfaces can be twice the selective laser melting process. 
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4-This study mainly focused on remelting of 45º inclined surfaces. Optimization of remelting 

process parameters for other (lower and higher) inclined angles could also be investigated and 

optimized.  

5-Currently, the substrate is fixed and just moves in Z direction in the SLM system. However for 

remelting of geometrically complex parts, giving more degrees of freedom and rotation to the 

substrate should be investigated.   
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