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ABSTRACT

Galarza, Jose de Jesus, Coupled Telegraph and SIR Model of Information and Diseases. Master

of Science (MS), May, 2017, 73 pp., 6 tables, 22 figures, 52 references, 11 titles.

In this work, the effect of information propagation on disease spread and vaccination

uptake through networks is studied. In this model the information reaches different people at

different distances from the center of information containing the health data. We use a pair of

Telegraph equations to depict the vaccine and disease information propagation on a network em-

bedded into a straight line. The Telegraph equation is coupled with an SIR (Susceptible-Infected-

Recovered) model to examine the anticipated mutual influence. Numerical simulations and stabil-

ity analysis were made to study the model. We show how the propagation of information about

the disease impacts the probability of vaccination and as a consequence the vaccination rate.
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CHAPTER I

INTRODUCTION

In the area of epidemiology there is a need to research the spread of diseases. In order to

study this we start by researching the behavior of the population. As Brauer and Castillo-Chavez

explain in [2, p.xviii], we can address questions raised by a complex demographic processes

through the use of mathematical models. Mathematical models that study the spread of diseases

are typically refereed as epidemic models. There is an effort to produce models that can predict

the spread of diseases; we have several descriptions of these epidemic models, and one in particu-

lar upon which we will focus our attention is the SIR (Susceptible-Infected-Recovered) model.

1.1 SIR Model

The SIR model is one in which according to Brauer, Castillo-Chavez [2, p.350] and Mur-

ray [6, p.320] we have three sections in the population, which are the susceptible population S,

the infected population I and the recovered population R.

The interaction between them can be seen in the next diagram:

Figure 1.1: SIR Model Diagram by Brauer and Castillo-Chavez [2, p.351]

The interaction we can clearly see in the Figure by Brauer and Castillo-Chavez [2, p.351]

is that the susceptible people can only become infected, and the infected people can become

recovered. As we can see the recovered section of the people remain there.
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Usually the only way that one can become infected is when there is interaction between

the susceptible people and the infected ones, and as such a fraction of population will become in-

fected; we will call this effect the rate of infection β . The rate at which people become recovered

or cured in the infected section is called the recovery rate γ . We always regard β and γ as positive

quantities. The model as described by Brauer and Castillo-Chavez [2, p.351] can be seen as:

dS
dt

� �βSI

dI
dt

� βSI�γI (1.1)

dR
dt

� γI.

Of course we see that births and deaths are not considered in this simple model.The vari-

ables of interest can be considered as proportions such that S�I�R � 1. Brauer and Castillo-Chavez

[2, p.352] considered them as actual population sizes such that S� I�R �N. Also it is important to

notice that one variable is redundant; in most of the cases we ignore the R variable, which means

we only need to analyze the differential equations for S and for I.

We are going to describe the analysis made in the book of Brauer and Castillo-Chavez [2,

p.353], which they start by taking the difference between the derivatives of S and I, yielding the

following ODE:

d�S� I�
dt

� �γI. (1.2)

The following initial conditions described by Brauer and Castillo-Chavez [2, p.353] are:

S�0� � S0 I�0� � I0 S0� I0 �N. (1.3)

2



As Brauer and Castillo-Chavez [2, p.354] explain, the functions S and I need to be non-

negative and can be regarded as smooth functions. As such S� I is a smooth non-negative de-

creasing function, which will tend to a limit as t goes to infinity. Recall from Analysis that the

derivative of smooth non-negative decreasing function will tend to zero as t goes to infinity. We

see then that the function S� I has a limit as t approaches infinity. Let’s call this limit Sª. As such

we have the following:

lim
t�ª

d�S� I�
dt

� lim
t�ª

�γI � 0. (1.4)

But this also implies that:

lim
t�ª

I � 0. (1.5)

Now an important aspect of this is to find the so-called final size relation. As explained

by Brauer and Castillo-Chavez [2, p.354] this can be obtained by integrating the differential

equations from zero to infinity. Thus we obtain the following:

S
ª

0

d�S� I�
dt

dt � Sª��S0� I0� � Sª�N. (1.6)

But then we have that

�γS
ª

0
I�t�dt � Sª�N

S
ª

0
I�t�dt �

1
γ
�N �Sª� . (1.7)

3



We can then immediately solve the first differential equation as follows:

dS
dt

� �βSI

dS
S

� �β Idt

S
S�ª�

S�0�
dS
S

� �β S
ª

0
I�t�dt

ln�Sª�� ln�S0� � �

β

γ
�N �Sª�

ln�S0�� ln�Sª� �
β

γ
�N �Sª�

ln
S0

Sª
�

β

γ
�N �Sª� . (1.8)

Now notice that this result is the final size relation mentioned by Brauer and Castillo-

Chavez [2, p.354]. Another way to analyze the model is to understand the behavior of the deriva-

tives as explained by Murray in [6, p.321]. This can be seen in the differential equations we have,

and we notice that I will increase as long as S A γ~β . Notice that even though this is true, the differ-

ential equation of S tells us that it is decreasing in time and I will ultimately stop increasing. This

does not mean it is not epidemic, since in order to make it real we know that the model must stop

if either any of the quantities reaches N or 1 if the variables are defined as proportions. Murray [6,

p.321] shows us this behavior in the phase plane of S and I respectively in Figure 1.2.

1.2 Description of Diffusion of Information

In this section we will talk about the diffusion models which describe how information

propagates as noted by Wang [11, p.9]. It is important to point out that these models which de-

scribe this process are either ordinary differential equations or partial differential equations. The

diffusion models are used most of the time for information propagation, which is derived from a

random walk process which is the way we model how information spreads over users. A detailed

discussion on applications of diffusion can be referred in Murray [7, p.75].

Most of these models come from a general PDE model as described in Wang [11, p.9]
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Figure 1.2: SIR Phase Plane Example by Murray [6, p.321]

which describes information flow:

∂M
∂ t

� d
∂ 2M
∂x2 � f �M,x,t�. (1.9)

Symbol Description

d ∂
2M

∂x2 Diffusion process (random walk)

f �M,x,t� Local growth (birth and death)

Table 1.1: General Information Flow Model Variables Table by Wang [11, p.9]

With this in mind let us talk of the Diffusive Logistic Model which is the simplest one we

can describe. The following equations are given by Wang [11, p.12] as

5



∂M
∂ t

� d
∂ 2M
∂x2 � rM�1�

M
K
�

M�x,1� � φ�x�,` B x B L (1.10)

∂M
∂x

�`,t� �
∂M
∂x

�L,t� � 0, t C 1.

The description of each variable are in Table 1.2. Here φ�x� as explained by Wang [11,

p.12] is the density of influenced users at distance x at the initial time a news story is submitted.

The choice to start at t � 1 is due to the data they have in their research as explained in [11, p.11].

Symbol Description

M Density of influenced users with a distance of x at a time t

d Popularity of information

r Intrinsic growth rate

K Maximum possible density of influenced users at a given distance

L Upper bound of the distance from the source of information

` Lower bound of the distance from the source of information

φ�x� Initial density function

Table 1.2: Diffusive Logistic Model Variables Table by Wang [11, p.12]

The next model was proposed by Wu and Xia et al. [10, p.312], named the Linear dif-

fusive model. The difference here as Wang pointed out [11, p.14], is that it takes into account

effects of heterogeneity at a distance x denoted by h�x� and the news decay with respect to time

which we will denote as r�t�. Thus we have our next model as

6



∂M
∂ t

� d
∂ 2M
∂x2 � r�t�h�x�M

M�x,1� � φ�x�, ` B x B L (1.11)

∂M
∂x

�`,t� �
∂M
∂x

�L,t� � 0, t A 1.

Symbol Description

M Density of influenced users with a distance of x at a time t

d Popularity of information

r�t� News decay with respect to time

h�x� Heterogeneity at a distance x

K Maximum possible density of influenced users at a given distance

L Upper bound of the distance from the source of information

` Lower bound of the distance from the source of information

φ�x� Initial density function

Table 1.3: Linear Diffusive Model Variables Table by Wu and Xia [10, p.312]

The next model proposed by Wang [11, p.16] has the popularity of information as a func-

tion of the distance. Thus we have that

d�x� � d0e�bx. (1.12)

Also it takes into consideration the heterogeneity h�x� and the news decay with respect

to time r�t�. Thus the model named logistic model with variable content-based diffusion is the

following:

7



Symbol Description
M Density of influenced users with a distance of x at a time t
d Popularity of information

r�t� News decay with respect to time
h�x� Heterogeneity at a distance x

K Maximum possible density of influenced users at a given distance
L Upper bound of the distance from the source of information
` Lower bound of the distance from the source of information

φ�x� Initial density function

Table 1.4: Logistic Model With Variable Content-Based Diffusion Variables Table by Wang [11,
p.12,p.16]

∂M
∂ t

�

∂ �d0e�bxMx�
∂x

� r�t�M�h�x��M
K
�

M�x,1� � φ�x�, ` B x B L (1.13)

∂M
∂x

�`,t� �
∂M
∂x

�L,t� � 0, t A 1.

A general model for spreading information on a social network was studied by Dai et al.

[3, p.1614] is

∂M�t,x�
∂ t

�

∂

∂x
�a�x�∂M�t,x�

∂x
� � λ rªu�h�x�� u

K
� , l @ x @ L

M�1,x� � φ�x�, ` B x B L (1.14)

∂M�t,`�
∂x

� 0 t A 1

∂M�t,L�
∂x

�βM�t,L� � 0 t A 1.

Taking u�x� � limt��ªM�t,x� and rª � limt��ª r�t� and taking the time derivatives to

zero, we see that the following is the steady state equations of 1.14 which are

8



��a�x�u��� � λ rªu�h�x�� u
K
� , ` @ x @ L

u��`� � 0 (1.15)

u��L��βu�L� � 0.

Having the principal eigenvalue λ�

1 from the following problem, the principal result from

Dai [3, p.1622] is that the Logistic model with variable content-based diffusion has λ @ λ�

1 ~rª then

the information will vanish with finite time. If λ A λ�

1 ~rª then information diffusion last forever.

1.3 Telegraph From Random Walk

In this section we will discuss how the telegraph equation is derived from a random walk,

an important aspect in our study used later on. As such let us comment on the motivation of the

idea and derivation described by Keller [5, p.1120].

The motivation or the paradox, another way of describing the situation, is how is it pos-

sible that the diffusion equation with infinite speed is derived from a random walk with steps

with finite speed. We can resolve this paradox as explained by Keller [5, p.1120] by showing

that the diffusion approximation only holds for a limited range of distance. As such let us start

to describing how this is derived. Murray also has a derivation of the diffusion equation from a

simple random walk, of which can be seen in [6, p.395].

Consider a particle which is moving on the x axis, and at position x � k in which each step

has a probability p to move to the left and probability q to move to the right. This can be seen in

Figure 1.3, with time interval equal to 1 between steps and each step at time t � i is hi � �1.

For our case in particular we have that p � q � 1~2 and we have that the steps are assumed

to be independent. So denoting the position at a time t as xt , we can calculate it as xt �Pt
i�1 hi.

Now for large time t, the central limit theorem as explained in the book by Ross [9, p.210], states

that the probability density of the sum xt is asymptotic to a normal density with zero mean and

variance of t. In other words we have that

9



Figure 1.3: Simple Random Walk Step Diagram

p�x,t� � e�x2~2t

�2πt�1~2 , SxS �O�ºt�. (1.16)

Notice that the term in the right hand side, as Keller points out in [5, p.1120], is the solu-

tion for the following diffusion equation with the coefficient as D � 1~2 with initial condition as

follows:

∂ p�x,t�
∂ t

�D
∂ 2 p�x,t�

∂x2 , p�x,0� � δ�x�. (1.17)

Special care is needed when using the previous equation since it states there is a positive

probability no matter how large xt . But this is not true since we know that the bound for Sxt S B t, so

we need another equation to state this fact which is the following:

p�x,t� � 0, SxS A t. (1.18)

Equation 1.17 is only valid for were x �O�ºt�. But then we can obtain probability densi-

ties for values of SxS greater than O�ºt�. To do this, as Keller [5, p.1120] describes, consider the

steps j to the right of the particle up to time t which will yield the following equation (notice in

10



the parentheses we are subtracting the step on the left):

xi j � j��t � j� � 2 j� t. (1.19)

The probability of xi j by the binomial distribution is as follows:

p�xi j,t� � t!
j!�t� j�!2 , j � 0,1, . . . ,t (1.20)

� 0 j @ 0 or j A t.

A simplification of the previous equation which later will be used for the validation of the

telegraph equation is obtained for large t. The procedure given according to Keller [5, p.1120]

is by dividing by 2 and using the Stirling formula �t � j�! and making j � �x� t�~2, as Keller [5,

p.1120] points out, we obtain the following:

p�xi j,t� � 1º
2πt

�1� x
t �� 1

2�t�x�1� �1� x
t �� 1

2�t�x�1� Vx
t
V @ 1, t Q 1, (1.21)

� 0 Vx
t
V A 1.

The next step is to derive a better approximation than the diffusion equation. In order to

do this we use the procedure denoted by Keller [5, p.1121]. We denote x j � j, where j is an integer

and t is a positive integer starting from zero. We then proceed to find the probability p�x j,t �1� as

follows:

p�x j,t �1� �
1
2
�p�x j�1,t�� p�x j�1,t�� . (1.22)
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Subtracting by p�x j,t� we get

p�x j,t �1�� p�x j,t� �
1
2
�p�x j�1,t��2p�x j,t�� p�x j�1,t�� . (1.23)

As explained by Keller [5, p.1121] if p�x,t� is smooth function on x and t then the deriva-

tives of an order higher than two can be disregarded. This will yield:

∂ p�x,t�
∂ t

�

1
2

∂ 2 p�x,t�
∂ t2 �

1
2

∂ 2 p�x,t�
∂x2 . (1.24)

This is the telegraph equation. This equation propagates p with speed less than 1 which is

the same speed as the random walk steps. This is the result with finite speed which was required

from the random walk. Keller [5, p.1121] illustrates the accuracy of this equation when he substi-

tutes the large deviation approximation in the the telegraph left hand side and subtracts the right

hand side substitution; the error is plotted in the Figure 1.4, and we see that the error is really low

to the order of 10�7. (There is a typo in Keller’s [5, p.1121] plot in the magnitude, but the caption

has the correct magnitude.)

Figure 1.4: Telegraph Equation Error Graph by Keller [5, p.1121]
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An important thing to notice is this is a natural way to get the telegraph equation from

a random walk. The telegraph equation occurs in various physical phenomena, and that is the

important use of this equations. Since it describes more accurately the random walk where it

takes into account large deviation it stands to reason that is better suited to model the information

system.
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CHAPTER II

MODEL DESCRIPTION AND METHODS

In this chapter we will explain the details of the model, the numerical solution and algo-

rithm.

2.1 Description of the Model

The following model was considered to solve numerically:

∂S�x,t�
∂ t

� �β�1� p�x,t��S�x,t�I�t�� p�x,t�S�x,t� (2.1)

dI�t�
dt

� β I�t�S ª

0
�1� p�x,t��S�x,t�dx�γI�t� (2.2)

dR�t�
dt

� S
ª

0
p�x,t�S�x,t�dx�γI�t�. (2.3)

Here S�x,t� is the density of the susceptible individuals who are at distance x from the

center of information 0. I�t� and R�t� are the proportion of infected and recovered individuals

in the population. p�x,t� is the probability that an individual at distance x is going to accept to

vaccinate at time t. The model diagram can be seen in Figure 2.1 inspired by the SIR model

Figure 1.1 by Brauer and Castillo-Chavez [2, p.351]. The rate of change of the accumulated

vaccinated individuals at a time t is given by dV�t�
dt � R ª0 p�x,t�S�x,t�dx.
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Figure 2.1: Model Diagram

The information about the disease and vaccine at time t and distance x are MI�x,t� and

MV �x,t�, respectively. Now the network of information will be modeled the following way:

τI
∂ 2MI

∂ t2 �αI
∂MI

∂ t
� DI

∂ 2MI

∂x2 �γI�1�MI �MV �MI (2.4)

τV
∂ 2Mv

∂ t2 �αV
∂MV

∂ t
� DV

∂ 2Mv

∂x2 �γV �1�MI �MV �MV . (2.5)

With τI x 0 and τV x 0, and the rest of the constants are arbitrary. From that type of informa-

tion about the disease and vaccination, people make the decision to vaccinate with probability:

p�x,t� �
1

1�e�c�MI�x,t��MV �x,t�� .

The probability being based in a logistic equation is a common practice when you hav-

ing a competition of information as we can see in Oraby’s paper in [8, p.4]. Here in the expo-

nential we see the difference for MI�x,t� and MV �x,t�. If the information about the disease is

more prevalent, meaning that MI�x,t� A MV �x,t� will make the decision to vaccinate more prob-

able. If the secondary effects of the disease is more prevalent, meaning that MI�x,t� @ MV �x,t�
will make the decision to vaccinate less probable. If information have the same impact meaning

MI�x,t� �Mv�x,t� the probability is 0.5 as expected.
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2.2 Numerical Method

The discretization that we are going to use is finite differentiation in space, so we can

change this partial differential equation into a coupled Ordinary differential equation, then re-

duce it to a first order system and apply the fourth order Runge Kutta. This procedure is in fact

called the method of lines for solving the partial differential equation. For some integrals in the

main model we will use numerical integration, in particular the trapezoid rule which is already

integrated in MATLAB to integrate a grid of lines.

2.2.1 Numerical Solving Methods for Partial Differential Equations

There are various methods for solving partial differential equations, but in our research

we are going to use the ’Method of Lines’ by which we discretize the space domain with finite

difference which makes our partial differential equation into a Coupled ODE’s. Afterwards,

we use MATLAB ode45 into the the system of coupled ODEs time domain which uses explicit

Runge Kutta of fourth order in the time domain.

The methods we usually compare are Crank-Nicholson which is a second order method in

time, and is also implicit in time and the use of Linear State Space method, but since we usually

encounter PDEs with nonlinear coefficients we discard this one. In summary we just need to

compare to Crank-Nicholson since it is also widely popular.

It is common to use a known result, so we use the wave equation with initial value U�x,0��
sin�x�. And as such we compare the two results: First we see our exact solution is given by Fig-

ure 2.2. Then we see the numerical results from the Method of Lines with a fourth order differ-

ence in time on the left and Crank-Nicholson on the right with their respective errors in Figure

2.3.
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Figure 2.2: Wave Equation Results 1

Figure 2.3: Wave Equation Results 2
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Figure 2.4: Wave Equation Results 3

We see that the errors are really similar, but as will be the case for stability sometimes it

is required to increase the order of the discretization, in particular in the space dimension. For

example, trying to make a higher order approximation for Crank-Nicholson immediately gives

bad results (stable none the less).

With this in mind we see that although Crank-Nicholson is a good alternative we might

want to stay in with the Method of Lines because at the very least we have more freedom modify-

ing the numerical method to our requirements.

Regarding implementation speed, we compare this aspect when we implemented the

Method of Lines and Crank-Nicholson to a Coupled Telegraph Fisher. We see that Crank-Nicholson

is slower to implement, because there is a need to derive the matrices required for the calculations

before starting coding, which takes extra time.
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2.2.2 Space Discretization

In this subsection we will talk about how we do the discrertization. As we previously

discussed, we are going to approximate the PDE of the telegraph equation into a coupled ODEs.

Now from Fernberg [4, p.702,p.704] we have the following tables for central and forward dif-

ferences (backward difference coefficients have the same value but for odd derivatives change

sign):

Derivative Accuracy 0 1 2 3 4 5 6 7

1

1 -1 1

2 -3/2 2 -1/2

3 -11/6 3 -3/2 1/3

4 -25/12 4 -3 4/3 -1/4

5 -137/60 5 -5 10/3 -5/4 1/5

6 -49/20 6 -15/2 20/3 -15/4 6/5 -1/6

2

1 1 -2 1

2 2 -5 4 -1

3 35/12 -26/3 19/2 -14/3 11/12

4 15/4 -77/64 107/6 -13 61/12 -5/6

5 203/45 -87/5 117/4 -254/9 33/2 -27/5 137/180

6 469/90 -223/10 879/20 -949/18 -41 201/10 1019/180 -7/10

Table 2.1: Forward Difference Coefficients Table by Fornberg [4, p.704]
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Derivative Accuracy -4 -3 -2 -1 0 1 2 3 4

1

2 -1/2 0 1/2

4 1/12 -2/3 0 2/3 -1/12

6 -1/60 3/20 -3/4 0 3/4 -3/20 1/60

8 1/280 -4/105 1/5 -4/5 0 4/5 -1/5 4/105 -1/280

2

2 1 -2 1

4 -1/12 4/3 -5/2 4/3 -1/12

6 1/90 -3/20 3/2 -49/18 3/2 -3/20 1/90

8 -1/560 8/315 -1/5 8/5 -205/72 8/5 -1/5 4/105 -1/560

Table 2.2: Central Difference Coefficients Table by Fornberg [4, p.702]

Having these coefficients we are going to set the coupled approximation of the PDE of the

telegraph as a coupled first order ODE with finite difference, depending on what point you are in

the boundary. Notice that the values of MI and Mv come from previous time steps, as well as the

time derivatives used in the calculation. The space coordinates will be denoted as xk for clarity.

If we are at k � 1 a fourth order accuracy forward differences was chosen, and thus we will

have our telegraph coupled ODE as follows:

d2MI,k

dt2 �
DI

τI
�MI,k�2MI,k�1

�MI,k�2�~∆x2 (2.6)

�

γI

τI
�1�MI,k�MV,k�MI,k

�

αI

τI

dMI,k

dt
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d2MV,k

dt2 �
DV

τV
�MV,k�2MV,k�1

�MV,k�2�~∆x2 (2.7)

�

γV

τV
�1�MI,k�MV,k�MV,k

�

αV

τV

dMV,k

dt
.

If we are at k � 2 or k � n�1 a second order central differences accuracy was chosen, and

thus we will have our telegraph coupled ODE as follows:

d2MI,k

dt2 �
DI

τI
�MI,k�1�2MI,k

�MI,k�1�~∆x2 (2.8)

�

γI

τI
�1�MI,k�MV,k�MI,k

�

αI

τI

dMI,k

dt

d2MV,k

dt2 �
DV

τV
�MV,k�1�2MV,k

�MV,k�1�~∆x2 (2.9)

�

γV

τV
�1�MI,k�MV,k�MV,k

�

αV

τV

dMV,k

dt
.

If we are at k � 3, k � 4, k � n�3 or k � n�2 a fourth order central differences accuracy was

chosen, and thus we will have our telegraph coupled ODE as follows:
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d2MI,k

dt2 �
DI

τI
�� 1

12
MI,k�2�

4
3

MI,k�1

�

5
2

MI,k�
4
3

MI,k�1

�

1
12

MI,k�2�~∆x2 (2.10)

�

γI

τI
�1�MI,k�MV,k�MI,k

�

αI

τI

dMI,k

dt

d2MV,k

dt2 �
DV

τV
�� 1

12
MV,k�2�

4
3

MV,k�1

�

5
2

MV,k�
4
3

MV,k�1

�

1
12

MV,k�2�~∆x2 (2.11)

�

γV

τV
�1�MI,k�MV,k�MV,k

�

αV

τV

dMV,k

dt
.

If we are at k � n a fourth order accuracy backward differences was chosen, and thus we

will have our telegraph coupled ODE as follows:

d2MI,k

dt2 �
DI

τI
�MI,k�2MI,k�1

�MI,k�2�~∆x2 (2.12)

�

γI

τI
�1�MI,k�MV,k�MI,k

�

αI

τI

dMI,k

dt
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d2MV,k

dt2 �
DV

τV
�MV,k�2MV,k�1

�MV,k�2�~∆x2 (2.13)

�

γV

τV
�1�MI,k�MV,k�MV,k

�

αV

τV

dMV,k

dt
.

For every other point we will use eight order central differences as follows, and we will

have our telegraph coupled ODE as follows:

d2MI,k

dt2 �
DI

τI
�� 1

560
MI,k�4�

8
315

MI,k�3

�

1
5

MI,k�2�
8
5

MI,k�1

�

205
72

MI,k�
8
5

MI,k�1

�

1
5

MI,k�2�
8

315
MI,k�3 (2.14)

�

1
560

MI,k�4�~∆x2

�

γI

τI
�1�MI,k�MV,k�MI,k

�

αI

τI

dMI,k

dt
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d2MV,k

dt2 �
DV

τV
�� 1

560
MV,k�4�

8
315

MV,k�3

�

1
5

MV,k�2�
8
5

MV,k�1

�

205
72

MV,k�
8
5

MV,k�1

�

1
5

MV,k�2�
8

315
MV,k�3 (2.15)

�

1
560

MV,k�4�~∆x2

�

γV

τV
�1�MI,k�MV,k�MV,k

�

αV

τV

dMV,k

dt
.

Finally after describing these equations we can calculate the probability as described at

the start of the section. The next step is to calculate the values of the derivatives of S,I and R at

the time step. Note that we use the values of the previous step to make the calculation with the

probability of the actual step. Let us denote the function as in MATLAB notation as trapz�X�
which is the numerical integration of the discrete values of the vector X . Products in MATLAB

are point wise, so if we input a product of two vectors XY in trapz�XY� it will be valid. Thus we

have that:

∂S�x,t�
∂ t

� �β�1� p�SI� pS

dI�t�
dt

� β I�t�trapz��1� p�S���γI (2.16)

dR�t�
dt

� trapz�pS��γI�t�.
This completes the Runge Kutta step to calculate the time derivatives.
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2.3 Algorithm

We are going to explain the general algorithm in MATLAB, in which case there are two

main ones:

Pseudocode 1 Main program
begin

Initialize the constant variables

Discretize the space and time dimension

Create vectors T and X of the discretization

Create initial conditions for MI and Mv

Create initial conditions for S�x,t�, I�t� and R�t�
Save all initial conditions in a vector y0 for the solver

Use ode45 with the discretize model with initial conditions

Reassign variables of the solution y which the solver gives

Graph results

end

We will include an initial condition for a second test defined as:

∂MI

∂ t
� I�t� (2.17)

∂MV

∂ t
� V�t�. (2.18)

Now the next algorithm is applied in each of the time step t, in which case we approxi-

mately calculate the derivatives along the x axis with our space discretization values at that time

step. This is used for the solver ode45 from MATLAB. The algorithm is as follows:
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Algorithm 1 Function algorithm for ode45 solver
Input t,y,X ,dx

Output dy
dt

begin

Reassignation of the variables from y

for x > X

Calculate the derivatives MI and Mvat the time step

The description of the calculation is explained in the numerical method subsection

end

Calculate the probability P

If I<0 from previous time step then I � 0

Calculate the derivatives of S,I,R

Reassign all results to the output dy
dt

end
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CHAPTER III

RESULTS AND DISCUSSION

In the previous section we discussed a numerical approach to solving the model. In this

section we will talk about exact solutions for the telegrapher equation, a solution for a coupled

model with some special coefficients and some simulations with different scenarios and discuss

the results obtained.

3.1 Explicit Solutions-Traveling Waves

Theorem 1 The following is an arbitrary nonlinear telegraph equation:

τ
∂ 2u
∂ t2 �α

∂u
∂ t

� D
∂ 2u
∂x2 �γ�1�up�u (3.1)

Looking for a solution for u�x,t� � f �kx�ωt� � f �z� with boundary conditions f ��ª� � 1 and

f �ª� � 0. If Dk2
�τω2 � 1 then it has the Ablowitz-Zappatella type solution

f �z� � �1�me�p
¼

γ

4�2p z�� 2
p

with

z � kx�ωt

ω1,2 � �

4� p
α

¾
γ

4�2p

k �

¾
τω2

�1
D

.
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Proof: Making u�x,t� � f �kx�ωt� � f �z�, thus

∂u
∂ t

�
d f
dz

dz
dt

�
d f
dz
��ω� � �ω

d f
dz

(3.2)

∂ 2u
∂ t2 � ω

2 d2 f
dz2 (3.3)

∂u
∂x

� k
d f
dz

(3.4)

∂ 2u
∂x2 � k2 d2 f

dz2 (3.5)

up�1
� � f �z��p�1

, (3.6)

but making

Dk2
�τω

2
� 1 (3.7)

k �

¾
τω2

�1
D

, (3.8)

thus we have

τω
2 d2 f

dz2 �αω
d f
dz

� Dk2 d2 f
dz2 �γ f �γ f p�1 (3.9)

�τω
2
�Dk2�d2 f

dz2 �αω
d f
dz
�γ f �γ f p�1

� 0 (3.10)

�Dk2
�τω

2�d2 f
dz2 �αω

d f
dz
�γ f �γ f p�1

� 0 (3.11)

d2 f
dz2 �

αω

Dk2
�τω2

d f
dz
�

γ

Dk2
�τω2 f �

γ

Dk2
�τω2 f p�1

� 0. (3.12)

Since Dk2
�τω2 � 1

d2 f
dz2 �αω

d f
dz
�γ f �γ f p�1

� 0. (3.13)

Following Ablowitz-Zappatella [1, p.383] we start with:
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τ
∂ 2u
∂ t2 �α

∂u
∂ t

�D
∂ 2u
∂x2 �γ�1�up�u Ô�

d2 f
dz2 �αω

d f
dz
�γ f �γ f p�1

� 0. (3.14)

We look for a solution of the form:

f �z� � �1�menz��r m,n A 0 r A 0. (3.15)

For (3.13) we have z � kx�ωt, so we obtain

d f
dz

� �r�1�menz��r�1 �nmenz� (3.16)

d2 f
dz2 � �r��r�1��1�menz��r�2 �nmenz��nmenz� (3.17)

�r�1�menz��r�1 �n2menz�
� r�r�1��1�menz��r�2 n2m2e2nz (3.18)

�r�1�menz��r�1 �n2menz�
f p�1

� �1�menz��r�p�1�
. (3.19)

So (3.13) becomes

d2 f
dz2 �αω

d f
dz
�γ f �γ f p�1

� r�r�1��1�menz��r�2 n2m2e2nz

�r�1�menz��r�1 �n2menz�
�rαω �1�menz��r�1 �nmenz� (3.20)

�γ �1�menz��r

�γ �1�menz��r�p�1�
,
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but then if we factor �1�menz��r�2 we will get

d2 f
dz2 �αω

d f
dz
�γ f �γ f p�1

� �1�menz��r�2 �r�r�1�n2m2e2nz

�r�1�menz��n2menz�
�rαω �1�menz��nmenz�
�γ �1�menz�2

�γ �1�menz��rp�2�
� �1�menz��r�2 �r�r�1�n2m2e2nz

�rn2menz
� rn2m2e2nz

�rαωnmenz
� rαωnm2e2nz

�γ �2γmenz
�γm2e2nz

�γ �1�menz��rp�2�
� �1�menz��r�2 �m2e2nz �r�r�1�n2

� rn2
� rαωn�γ�

menz ��rn2
� rαωn�2γ� (3.21)

�γ �γ �1�menz��rp�2� .
Choosing to solve d2 f

dz2 �αω
d f
dz �γ f �γ f p�1 � 0 we have

r�r�1�n2
� rn2

� rαωn�γ � 0 (3.22)

�rn2
� rαωn�γ � �γ. (3.23)
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Subtracting them we get

r�r�1�n2
� rn2

� rαωn�γ � 0 (3.24)

�rn2
� rαωn�γ � γ. (3.25)

which will yield

r�r�1�n2
�γ � 0 (3.26)

r�r�1�n2
� γ. (3.27)

With

�rp�2 � 0 (3.28)

it will yield

r �
2
p
, (3.29)

we will have

2
p
�2

p
�1�n2

� γ (3.30)

2
p
�2� p

p
�n2

� γ (3.31)

�4�2p
p2 �n2

� γ. (3.32)

Thus we have

n � �

¾
p2γ

4�2p
(3.33)

� �p
¾

γ

4�2p
. (3.34)
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Notice that for ω we have

r�r�1�n2
� rn2

� rαωn�γ � 0

rn2
� rαωn � 2γ

2
p

p2γ

4�2p
�

2
p

αω ��p
¾

γ

4�2p
� � 2γ

pγ

4�2p
�αω �

¾
γ

4�2p
� γ

αω �

¾
γ

4�2p
� γ �

pγ

4�2p

αω �

¾
γ

4�2p
�

4γ �2pγ � pγ

4�2p

αω �

¾
γ

4�2p
� γ

4� p
4�2p

ω � �

4� p
α

¾
γ

4�2p
. (3.35)

We see that there are two speeds (forward direction and a backward direction):

ω1,2 � �

4� p
α

¾
γ

4�2p
. (3.36)

But then

k �

¾
τω2

�1
D

�

¿ÁÁÁÀτ ��4�p
α

¼
γ

4�2p�2
�1

D

�

¿ÁÁÁÀ �4�p�2

α2�4�2p�τγ �1

D
. (3.37)

Therefore a solution is given by

f �z� � �1�me�p
¼

γ

4�2p z�� 2
p
. (3.38)
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Notice that for p � 1 we will have

f �z� � �1�me�
¼

γ

6 z��2
, (3.39)

result used in the next section.

3.1.1 A Coupled Model

We can make a solution of the difference of the coupled telegraph for some special coeffi-

cients.

Theorem 2 If we have the following coupled telegraph equation

∂ 2u
∂ t2 �

∂u
∂ t

�
∂ 2u
∂x2 ��1�u�v�u (3.40)

∂ 2v
∂ t2 �

∂v
∂ t

�
∂ 2v
∂x2 ��1�u�v�v (3.41)

with boundary conditions u��ª� � 1� k u�ª� � L,v��ª� � k,v�ª� � L, then we have that

u�v � �1�me�
¼

1
6 z��2

with z � kx�ωt.

Proof: Taking the difference we will get

∂ 2u
∂ t2 �

∂ 2v
∂ t2 �

∂u
∂ t
�

∂v
∂ t

�
∂ 2u
∂x2 �

∂ 2v
∂x2

��1�u�v�u��1�u�v�v
∂ 2�u�v�

∂ t2 �

∂�u�v�
∂ t

�
∂ 2�u�v�

∂x2 ��1�u�v��u�v�
∂ 2�u�v�

∂ t2 �

∂�u�v�
∂ t

�
∂ 2�u�v�

∂x2 ��1��u�v���u�v�. (3.42)

Making f � u�v we will have

∂ 2 f
∂ t2 �

∂ f
∂ t

�
∂ 2 f
∂x2 ��1� f � f , (3.43)

for which we already have an explicit solution explained in Theorem 1. This solution can
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be used to obtain the values of the probability p.

3.2 Numerical Solution

Limitations of explicit solution are serious; for example if we change the coefficients

in our model we will stop having explicit solutions. In this section we will show the numerical

solution, which avoids these kind of problems in exchange accuracy as discussed in the previous

sections.

Since we already have our model, numerical method, and our algorithms we can now start

programming our solution into MATLAB. It is important to create two files for the main program

and for the ode45 solver which are named SIRTel1 and odefcn respectively. It is important to

note that this program will solve the telegraph and the SIR model at the same time.

It is important to have these two files in the same folder as in Figure 3.1 so it can be run in

MATLAB main program.

Figure 3.1: MATLAB Folder With Files

The parameters used in the telegraph equation are the following:

τI � 1 τV � 1

αI � 1 αV � 1 (3.44)

DI � 1 DV � 1

γI � 1 γV � 1.

The initial distribution used in all simulations for S�x,0� is a scaled Beta(1,2). The param-

eter used in the probability is c � 1 and the parameters used for the SIR model are β � 1 and γ � 1.
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Now for the time and space discretization we have these parameters:

n � 200

m � 100

x0 � 0

xn � 10 (3.45)

t0 � 0

tm � 1.5.

S�0� � 0.6

I�0� � 0.3

Now we see the following results from the MATLAB code:

Figure 3.2: MI�x,t��Mv�x,t� Solution 1
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Figure 3.3: S�x,t� Solution 1

Figure 3.4: SIR Solution 1
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3.3 Simulation Analysis

In order to see if the telegraph indeed makes an impact to the model we are going to plot

several solutions wherein all the parameters in the telegraph equations are one, except we vary

the diffusion coefficient as DI � 500Dv, DI �DV and 500DI �DV . The time and space discretization

n � 200, m � 50, x0 � 0, xn � 10, t0 � 0 and tm � 2.. Here the time units are in days. The parameter

used for the probability is c � 50 and the parameters used for the SIR model are β � 1, γ � 1.

Figure 3.5: S�t� Solution 1
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Figure 3.6: I�t� Solution 1

In the next simulation the parameter used for the probability will remain the same and the

parameters used for the SIR model are β � 10, γ � 1.

Figure 3.7: S�t� Solution 2
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Figure 3.8: I�t� Solution 2

In the next simulation the parameter used for the probability will remain the same and the

parameters used for the SIR model are β � 1, γ � 10.

Figure 3.9: S�t� Solution 3
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Figure 3.10: I�t� Solution 3

Now will run a long term simulation with more realistic values of β and γ for the time

and space discretization we have these parameters:

n � 200

m � 50

x0 � �50

xn � 50

t0 � 0

tm � 90

S�0� � 0.5

I�0� � 0.3.
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The parameter used for the probability is c � 50 and the parameters used for the SIR model

are β � 1~20, γ � 1~20.

Figure 3.11: S�t� Solution 4

Figure 3.12: I�t� Solution 4
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In the next simulation the parameter used for the probability will remain the same and the

parameters used for the SIR model are β � .8, γ � 1~20.

Figure 3.13: S�t� Solution 5

Figure 3.14: I�t� Solution 5
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We see the behavior as expected in this extreme example. The telegraph equation does

affect the distribution of the probability of vaccination and does have a direct impact to the SIR

model as a whole.

3.4 Asymptotic Behavior

In this section we are going to analyze the stable points in the SIR model.

Theorem 3 The following SIR model

dS�t�
dt

� �β I�t�S ª

0
�1� p�x,t��S�x,t�dx�S

ª

0
p�x,t�S�x,t�dx (3.46)

dI�t�
dt

� β I�t�S ª

0
�1� p�x,t��S�x,t�dx�γI�t� (3.47)

dR�t�
dt

� S
ª

0
p�x,t�S�x,t�dx�γI�t� (3.48)

with I�t�,S�t� and R�t� are non-negative and with positive transmission parameter β A 0 and

recovery rate γ A 0. If the initial conditions I�0� A 0 and S�0� A 0, then the following limits are true:

lim
t�ª

S�t� � Sª (3.49)

lim
t�ª

I�t� � 0 (3.50)

lim
t�ª

R�t� � Rª. (3.51)

Proof: If we add the derivatives of S�t� and I�t�, we will have the following:

d
dt
�S�t�� I�t�� � �γI�t��S ª

0
p�x,t�S�x,t�dx. (3.52)

Brauer and Castillo-Chavez points out in [2, p.354] that the derivative of a non-negative

smooth decreasing function must tend to zero as t �ª, and as such we have that

lim
t�ª

� d
dt
�S�t�� I�t��� � 0

lim
t�ª

��γI�t��S ª

0
p�x,t�S�x,t�dx� � 0.
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Since both terms are always positive then both must converge to 0, so

lim
t�ª

γI�t� � 0 (3.53)

lim
t�ªS

ª

0
p�x,t�S�x,t�dx � 0. (3.54)

Therefore we have that.

lim
t�ª

I�t� � 0. (3.55)

lim
t�ª

�S�t�� I�t��� � Sª.

(3.56)

And thus

lim
t�ª

�S�t�� I�t��R�t�� � 1

lim
t�ª

S�t�� lim
t�ª

I�t�� lim
t�ª

R�t� � 1

Sª�Rª � 1

Rª � 1�Sª. (3.57)

As desired.

Theorem 4 The following SIR model without recovery rate

dS�t�
dt

� �β I�t�S ª

0
�1� p�x,t��S�x,t�dx�S

ª

0
p�x,t�S�x,t�dx (3.58)

dI�t�
dt

� β I�t�S ª

0
�1� p�x,t��S�x,t�dx (3.59)

dR�t�
dt

� S
ª

0
p�x,t�S�x,t�dx (3.60)
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with I�t�,S�t� and R�t� are non-negative and with positive transmission parameter β A 0. If the

initial conditions I�0� A 0 and S�0� A 0, then the following limits are true:

lim
t�ª

R�t� � Rª (3.61)

where 0 B Rª B 1.

Proof: If we add the derivatives of S�t� and I�t�, we will have the following:

d
dt
�S�t�� I�t�� � �S

ª

0
p�x,t�S�x,t�dx. (3.62)

Brauer and Castillo-Chavez points out in [2, p.354] that the derivative of a non-negative

smooth decreasing function must tend to zero as t �ª and as such we have that

lim
t�ª

� d
dt
�S�t�� I�t��� � 0

lim
t�ªS

ª

0
p�x,t�S�x,t�dx � 0.

This implies the following

lim
t�ª

�dR�t�
dt

� � 0

.

And thus

lim
t�ª

R�t� � Rª, (3.63)

as desired.
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CHAPTER IV

CONCLUSIONS AND FUTURE WORK

The research on how to model networks have become increasingly important since the

arrival of social networks in which information spreads at a faster rate since previous decades.

This information shapes the behavior in which of the population makes decisions regarding vacci-

nation and as consequence shape the way the disease will spread.

As we see in The Coupled Telegraph and SIR Model, the information about the disease

and how it propagates impacts the probability of vaccination and as a consequence the vacci-

nation rate. We can see that this vaccination rates shape how long the disease will last in the

population and with numerical simulation we confirm this hypothesis.

The model that we study here has limitations. Complexity can be added to the SIR model

such as death and birth rates, incubation periods and reinfection. Also it is also important to

notice that infection rates changes with age of the individuals, as such in this model is not con-

sidered. Further study can be done with other types of information, such as an anti-vaccination

information, speed of propagation and changing the probability definition for the decision of

vaccination.

This model is intended as a first approach to understand how if we integrate social net-

works into classical models the behavior will change. This is intended to be a first step and fur-

ther work needs to be done making more realistic models were social networks play an important

role in the population.
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APPENDIX A

MATLAB CODE

Main program MATLAB file:

c l o s e a l l

%C o n s t a n t s i n i t i a l i z a t i o n s

t a u =3;

a l p h a =2;

D=2;

gamma = . 5 ;

mc=2;

r =2;

p =1;

nc =(gamma / 6 ) ^ . 5 ;

K= ( ( ( 2 5 * t a u *gamma / ( a l p h a ^2 ) ) +1) /D) ^ . 5 ;

omega = ( 5 / a l p h a ) * ( gamma / 6 ) ^ . 5 ;

%Space d i s c r e t i z a t i o n

n =200;

m=100;

n0=m;

Du= z e r o s ( n ,m) ;
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x0 =0;

xn =10;

t 0 =0;

tm = 1 . 5 ;

%V e c t o r i z a c t i o n s and space � t ime meshgr id c r e a t i o n

X= l i n s p a c e ( x0 , xn , n ) ;

T= l i n s p a c e ( t0 , tm ,m) ;

[ t t , xx ]= meshgr id ( T ,X) ;

dx =( xn�x0 ) / ( n ) ;

d t =( tm� t 0 ) / (m) ;

%I n i t i a l c o n d i t i o n s f o r t h e T e l e g r a p h e q u a t i o n

Mi0 = .9* (1+mc* exp ( nc *K*X) ) . ^ ( � r ) ;

dMi0 =.9*� r * ( nc *mc* exp ( nc *K*X) ) . * ( 1 + mc* exp ( nc *K*X) ) . ^ ( � r �1) ;

Mv0= .1* (1+mc* exp ( nc *K*X) ) . ^ ( � r ) ;

dMv0=.1*� r * ( nc *mc* exp ( nc *K*X) ) . * ( 1 + mc* exp ( nc *K*X) ) . ^ ( � r �1) ;

%SIR i n i t i a l c o n d i t i o n s

S0 = . 6 ;

%Another t e s t f u n n c t i o n

%S0xt =S0* exppdf (X, 2 ) ’ ;

S0xt =S0* S c a l e d _ B e t a (X, 10 , 1 , x0 , xn ) ’ ;

%S0xt =S0* S c a l e d _ B e t a (X, 1 , 2 , x0 , xn ) ’ ;

t r a p z (X, S0xt ) ;
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I0 = . 3 ;

R0=1�(S0+ I0 ) ;

%V e c t o r i z a t i o n o f a l l i n i t i a l c o n d i t i o n s

y0 =[ Mi0 ’ ; dMi0 ’ ; Mv0 ’ ; dMv0 ’ ; S0xt ; I0 ; R0 ] ;

%Main s o l v e r ODE45

o p t i o n s = o d e s e t ( ’ AbsTol ’ , 1 . 0 e �3 , ’ Re lTo l ’ , 1 . 0 e �3) ;

[ t , y ] = ode45 (@( t , y ) o de fc n ( t , y , X, dx ) , T , y0 , o p t i o n s ) ;

%R e a s i g n a t i o n o f main r e s u l t

Mi=y ( : , 1 : n ) ’ ;

Mv=y ( : , ( 2 * n +1) : 3 * n ) ’ ;

S tx =y ( : , ( 4 * n +1) : 5 * n ) ’ ;

I =y ( : , end �1) ;

R=y ( : , end ) ;

S=1�( I +R) ;

ho ld on

%Graph r e s u l t s e c t i o n

f i g u r e ( 1 )

s u r f ( xx , t t , Mi�Mv, ’ e d g e c o l o r ’ , ’ none ’ ) ;

s e t ( gcf , ’ R e n d e r e r ’ , ’ ZBuf fe r ’ ) ;

s h a d i n g i n t e r p

x l a b e l ( ’ x ’ ) ;

y l a b e l ( ’ t ’ ) ;

z l a b e l ( ’$M_{ i } ( x , t )�M_{v } ( x , t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ LaTex ’ ) ;
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t i t l e ( ’ Ode45 Mi�Mv S o l u t i o n ’ ) ;

r o t a t e 3 d ;

view ( 3 )

g r i d on

drawnow ;

f i g u r e ( 2 )

s u r f ( xx , t t , Stx , ’ e d g e c o l o r ’ , ’ none ’ ) ;

s e t ( gcf , ’ R e n d e r e r ’ , ’ ZBuf fe r ’ ) ;

s h a d i n g i n t e r p

x l a b e l ( ’ x ’ ) ;

y l a b e l ( ’ t ’ ) ;

z l a b e l ( ’ $S ( x , t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ LaTex ’ ) ;

t i t l e ( ’ Ode45 S S o l u t i o n ’ ) ;

r o t a t e 3 d ;

drawnow

f i g u r e ( 3 )

p l o t ( t , S , ’ b ’ , t , I , ’ r �� ’ , t , R , ’b � . ’ ) ;

x l a b e l ( ’ t ’ ) ;

y l a b e l ( ’ $S ( t ) , I ( t ) ,R( t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ LaTex ’ ) ;

t i t l e ( ’ Ode45 SIR S o l u t i o n ’ ) ;

l e g e n d ( ’ S u s c e p t i b l e ’ , ’ I n f e c t e d ’ , ’ Recovered ’ )

r o t a t e 3 d ;

drawnow
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%Custom s c a l e d f u n c t i o n f o r a s c a l e d b e t a d i s t r i b u t i o n

f u n c t i o n PDF = S c a l e d _ B e t a ( x , a , b , x0 , xn )

PDF = ( ( x�x0 ) . ^ ( a �1) . * ( xn�x ) . ^ ( b�1) ) . / . . .

( ( xn�x0 ) . ^ ( a+b�1) . * b e t a ( a , b ) ) ;

end
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ODE solver function program MATLAB file:

f u n c t i o n dyd t = od e f cn ( t , y , X, dx )

%R e a s s i g n a t i o n o f t h e i n p u t v a r i a b l e s

n =( l e n g t h ( y ) �2) / 5 ;

Mi=y ( 1 : n ) ;

dMi=y ( n +1:2* n ) ;

Mv=y (2* n +1:3* n ) ;

dMv=y (3* n +1:4* n ) ;

S=y (4* n +1:5* n ) ;

I =y (5* n +1) ;

R=y (5* n +2) ;

t a u i =1 ;

t a u v =1;

a l p h a i =1;

a l p h a v =1;

Di =1;

Dv=1;

gammai =1;

gammav =1;

c =50;

b e t a =1;

gamma=1;

%C a l c u l a t i o n o f t e l e g r a p h p o i n t s i n t h e s p a c e d imens ion

%R e f e r t o t h e n u m e r i c a l method f o r e x p l a n a t i o n o f t h i s

%p a r t o f t h e code and how i t was c o n s t r u c t e d
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f o r k =1: n

i f k==1

dMit ( k , 1 ) = ( Di / t a u i ) * ( ( 1 ) *Mi ( k ) + . . .

( �2) *Mi ( k +1) + . . .

( 1 ) *Mi ( k +2) ) / dx ^2+ . . .

( gammai / t a u i ) *(1�Mi ( k )�Mv( k ) ) *Mi ( k ) � . . .

( a l p h a i / t a u i ) *dMi ( k ) ;

dMvt ( k , 1 ) = ( Dv / t a u v ) * ( ( 1 ) *Mv( k ) + . . .

( �2) *Mv( k +1) + . . .

( 1 ) *Mv( k +2) ) / dx ^2 . . .

+(gammav / t a u v ) *(1�Mi ( k )�Mv( k ) ) *Mv( k ) � . . .

( a l p h a v / t a u v ) *dMv( k ) ;

e l s e i f k==2 | | k==n�1

dMit ( k , 1 ) = ( Di / t a u i ) * ( Mi ( k�1) � . . .

2*Mi ( k ) +Mi ( k +1) ) / dx ^2 . . .

+( gammai / t a u i ) *(1�Mi ( k )�Mv( k ) ) *Mi ( k ) � . . .

( a l p h a i / t a u i ) *dMi ( k ) ;

dMvt ( k , 1 ) = ( Dv / t a u v ) * (Mv( k�1) � . . .

2*Mv( k ) +Mv( k +1) ) / dx ^2 . . .

+(gammav / t a u v ) *(1�Mi ( k )�Mv( k ) ) *Mv( k ) � . . .

( a l p h a v / t a u v ) *dMv( k ) ;
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e l s e i f k==3 | | k==4 | | k==n�2 | | k==n�3

dMit ( k , 1 ) = ( Di / t a u i ) * ( ( �1 / 1 2 ) *Mi ( k�2) + . . .

( 4 / 3 ) *Mi ( k�1) +( �5 /2 ) *Mi ( k ) + . . .

( 4 / 3 ) *Mi ( k +1) +( �1 /12) *Mi ( k +2) ) / dx ^2 . . .

+( gammai / t a u i ) *(1�Mi ( k )�Mv( k ) ) *Mi ( k ) � . . .

( a l p h a i / t a u i ) *dMi ( k ) ;

dMvt ( k , 1 ) = ( Dv / t a u v ) * ( ( �1 / 1 2 ) *Mv( k�2) + . . .

( 4 / 3 ) *Mv( k�1) +( �5 /2 ) *Mv( k ) + . . .

( 4 / 3 ) *Mv( k +1) +( �1 /12) *Mv( k +2) ) / dx ^2 . . .

+(gammav / t a u v ) *(1�Mi ( k )�Mv( k ) ) *Mv( k ) � . . .

( a l p h a v / t a u v ) *dMv( k ) ;

e l s e i f k==n

dMit ( k , 1 ) = ( Di / t a u i ) * ( ( 1 ) *Mi ( k ) + . . .

( �2) *Mi ( k�1) + . . .

( 1 ) *Mi ( k�2) ) / dx ^2+ . . .

( gammai / t a u i ) *(1�Mi ( k )�Mv( k ) ) *Mi ( k ) � . . .

( a l p h a i / t a u i ) *dMi ( k ) ;

dMvt ( k , 1 ) = ( Dv / t a u v ) * ( ( 1 ) *Mv( k ) + . . .

( �2) *Mv( k�1) + . . .

( 1 ) *Mv( k�2) ) / dx ^2 . . .

+(gammav / t a u v ) *(1�Mi ( k )�Mv( k ) ) *Mv( k ) � . . .

( a l p h a v / t a u v ) *dMv( k ) ;
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e l s e

dMit ( k , 1 ) = ( Di / t a u i ) * ( ( �1 / 5 6 0 ) *Mi ( k�4) + . . .

( 8 / 3 1 5 ) *Mi ( k�3) + . . .

( �1 / 5 ) *Mi ( k�2) + . . .

( 8 / 5 ) *Mi ( k�1) + . . .

( �205 /72 ) *Mi ( k ) . . .

+ ( �1 /560) *Mi ( k +4) + . . .

( 8 / 3 1 5 ) *Mi ( k +3) + . . .

( �1 / 5 ) *Mi ( k +2) + . . .

( 8 / 5 ) *Mi ( k +1) ) / dx ^2 . . .

+( gammai / t a u i ) *(1�Mi ( k )�Mv( k ) ) *Mi ( k ) � . . .

( a l p h a i / t a u i ) *dMi ( k ) ;

dMvt ( k , 1 ) = ( Dv / t a u v ) * ( ( �1 / 5 6 0 ) *Mv( k�4) + . . .

( 8 / 3 1 5 ) *Mv( k�3) + . . .

( �1 / 5 ) *Mv( k�2) + . . .

( 8 / 5 ) *Mv( k�1) + . . .

( �205 /72 ) *Mv( k ) . . .

+ ( �1 /560) *Mv( k +4) + . . .

( 8 / 3 1 5 ) *Mv( k +3) + . . .

( �1 / 5 ) *Mv( k +2) + . . .

( 8 / 5 ) *Mv( k +1) ) / dx ^2 . . .

+(gammav / t a u v ) *(1�Mi ( k )�Mv( k ) ) *Mv( k ) � . . .

( a l p h a v / t a u v ) *dMv( k ) ;

end
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end

P = 1 . / ( 1 + exp (� c * ( Mi�Mv) ) ) ;

%V a l i d a t i o n o f t h e v a l u e o f I f o r f u r t h e r c a l c u l a t i o n s

%of t h e d e r i v a t i v e s o f t h e SIR model

i f I >0

dSxt=� b e t a *(1�P ) . * S . * I �P . * S ;

d I = b e t a * I . * t r a p z (X, (1 �P ) . * S )�gamma . * I ;

dR= t r a p z (X, P . * S ) +gamma . * I ;

e l s e

dSxt=�P . * S ;

d I =0;

dR= t r a p z (X, P . * S ) ;

end

%A s s i g n a t i o n o f t h e t ime d i f f e r e n t i a l

t

dyd t =[ dMi ; dMit ; dMv ; dMvt ; dSxt ; d I ; dR ] ;

end
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Main program for testing solutions MATLAB file:

f u n c t i o n SIRTel1COS ( )

c l o s e a l l

%C o n s t a n t s i n i t i a l i z a t i o n s

t a u =3;

a l p h a =2;

D=2;

gamma = . 5 ;

mc=2;

r =2;

p =1;

nc =(gamma / 6 ) ^ . 5 ;

K= ( ( ( 2 5 * t a u *gamma / ( a l p h a ^2 ) ) +1) /D) ^ . 5 ;

omega = ( 5 / a l p h a ) * ( gamma / 6 ) ^ . 5 ;

%Space d i s c r e t i z a t i o n

n =200;

m=50;

n0=m;

Du= z e r o s ( n ,m) ;

x0 =0;

xn =2;

t 0 =0;

tm =2;

D=501;

c1 =1;

c2 =10;
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% c1 = 1 / 2 0 ;

% c2 = . 8 ;

%V e c t o r i z a c t i o n s and space � t ime meshgr id c r e a t i o n

X= l i n s p a c e ( x0 , xn , n ) ;

T= l i n s p a c e ( t0 , tm ,m) ;

[ t t , xx ]= meshgr id ( T ,X) ;

dx =( xn�x0 ) / ( n ) ;

d t =( tm� t 0 ) / (m) ;

%I n i t i a l c o n d i t i o n s f o r t h e T e l e g r a p h e q u a t i o n

Mi0 = .9* (1+mc* exp ( nc *K*X) ) . ^ ( � r ) ;

dMi0 =.9*� r * ( nc *mc* exp ( nc *K*X) ) . * ( 1 + mc* exp ( nc *K*X) ) . ^ ( � r �1) ;

Mv0= .1* (1+mc* exp ( nc *K*X) ) . ^ ( � r ) ;

dMv0=.1*� r * ( nc *mc* exp ( nc *K*X) ) . * ( 1 + mc* exp ( nc *K*X) ) . ^ ( � r �1) ;

%SIR i n i t i a l c o n d i t i o n s

S0 = . 5 ;

%Another t e s t f u n n c t i o n

%S0xt =S0* exppdf (X, 2 ) ’ ;

%S0xt =S0* S c a l e d _ B e t a (X, 10 , 1 , x0 , xn ) ’ ;

S0xt =S0* S c a l e d _ B e t a (X, 1 , 2 , x0 , xn ) ’ ;

I0 = . 3 ;

R0=1�(S0+ I0 ) ;

%V e c t o r i z a t i o n o f a l l i n i t i a l c o n d i t i o n s
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y0 =[ Mi0 ’ ; dMi0 ’ ; Mv0 ’ ; dMv0 ’ ; S0xt ; I0 ; R0 ] ;

%Main s o l v e r ODE45

o p t i o n s = o d e s e t ( ’ AbsTol ’ , 1 . 0 e �4 , ’ Re lTo l ’ , 1 . 0 e �4) ;

[ t , y ] = ode45 (@( t , y ) odefcnCOS ( t , y , X, dx , D, c1 , c1 ) , T , . . .

y0 , o p t i o n s ) ;

%R e a s i g n a t i o n o f main r e s u l t

I ( : , 1 ) =y ( : , end �1) ’ ;

R ( : , 1 ) =y ( : , end ) ’ ;

S ( : , 1 ) =1�( I ( : , 1 ) +R ( : , 1 ) ) ;

[ t , y ] = ode45 (@( t , y ) odefcnCOS ( t , y , X, dx , 0 , c1 , c1 ) , T , . . .

y0 , o p t i o n s ) ;

%R e a s i g n a t i o n o f main r e s u l t

I ( : , 2 ) =y ( : , end �1) ’ ;

R ( : , 2 ) =y ( : , end ) ’ ;

S ( : , 2 ) =1�( I ( : , 2 ) +R ( : , 2 ) ) ;

[ t , y ] = ode45 (@( t , y ) odefcnCOS ( t , y , X, dx , �D, c1 , c1 ) , T , . . .

y0 , o p t i o n s ) ;

%R e a s i g n a t i o n o f main r e s u l t

I ( : , 3 ) =y ( : , end �1) ’ ;
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R ( : , 3 ) =y ( : , end ) ’ ;

S ( : , 3 ) =1�( I ( : , 3 ) +R ( : , 3 ) ) ;

f i g u r e ( 1 )

p l o t ( t , S ( : , 1 ) , ’ b ’ , t , S ( : , 2 ) , ’ r �� ’ , t , S ( : , 3 ) , ’b � . ’ ) ;

x l a b e l ( ’ t ’ ) ;

y l a b e l ( ’ $S ( t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ LaTex ’ ) ;

t i t l e ( ’ Ode45 SIR S o l u t i o n ’ ) ;

a x i s ( [ 0 tm 0 . 5 ] )

l e g e n d ( { ’$D_{ I }=500D_{V}$ ’ , ’$D_{ I }=D_{V}$ ’ , . . .

’ $500D_{ I }=D_{V}$ ’ } , ’ I n t e r p r e t e r ’ , ’ LaTex ’ )

ho ld on

f i g u r e ( 2 )

p l o t ( t , I ( : , 1 ) , ’ b ’ , t , I ( : , 2 ) , ’ r �� ’ , t , I ( : , 3 ) , ’b � . ’ ) ;

x l a b e l ( ’ t ’ ) ;

y l a b e l ( ’ $ I ( t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ LaTex ’ ) ;

t i t l e ( ’ Ode45 SIR S o l u t i o n ’ ) ;

a x i s ( [ 0 tm 0 . 5 ] )

l e g e n d ( { ’$D_{ I }=500D_{V}$ ’ , ’$D_{ I }=D_{V}$ ’ , . . .

’ $500D_{ I }=D_{V}$ ’ } , ’ I n t e r p r e t e r ’ , ’ LaTex ’ )

ho ld on

%Main s o l v e r ODE45

[ t , y ] = ode45 (@( t , y ) odefcnCOS ( t , y , X, dx , D, c2 , c1 ) , T , . . .

y0 , o p t i o n s ) ;
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%R e a s i g n a t i o n o f main r e s u l t

I ( : , 1 ) =y ( : , end �1) ’ ;

R ( : , 1 ) =y ( : , end ) ’ ;

S ( : , 1 ) =1�( I ( : , 1 ) +R ( : , 1 ) ) ;

[ t , y ] = ode45 (@( t , y ) odefcnCOS ( t , y , X, dx , 0 , c2 , c1 ) , T , . . .

y0 , o p t i o n s ) ;

%R e a s i g n a t i o n o f main r e s u l t

I ( : , 2 ) =y ( : , end �1) ’ ;

R ( : , 2 ) =y ( : , end ) ’ ;

S ( : , 2 ) =1�( I ( : , 2 ) +R ( : , 2 ) ) ;

[ t , y ] = ode45 (@( t , y ) odefcnCOS ( t , y , X, dx , �D, c2 , c1 ) , T , . . .

y0 , o p t i o n s ) ;

%R e a s i g n a t i o n o f main r e s u l t

I ( : , 3 ) =y ( : , end �1) ’ ;

R ( : , 3 ) =y ( : , end ) ’ ;

S ( : , 3 ) =1�( I ( : , 3 ) +R ( : , 3 ) ) ;

ho ld on

f i g u r e ( 3 )

p l o t ( t , S ( : , 1 ) , ’ b ’ , t , S ( : , 2 ) , ’ r �� ’ , t , S ( : , 3 ) , ’b � . ’ ) ;
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x l a b e l ( ’ t ’ ) ;

y l a b e l ( ’ $S ( t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ LaTex ’ ) ;

t i t l e ( ’ Ode45 SIR S o l u t i o n ’ ) ;

l e g e n d ( { ’$D_{ I }=500D_{V}$ ’ , ’$D_{ I }=D_{V}$ ’ , . . .

’ $500D_{ I }=D_{V}$ ’ } , ’ I n t e r p r e t e r ’ , ’ LaTex ’ )

a x i s ( [ 0 tm 0 . 5 ] )

ho ld on

f i g u r e ( 4 )

p l o t ( t , I ( : , 1 ) , ’ b ’ , t , I ( : , 2 ) , ’ r �� ’ , t , I ( : , 3 ) , ’b � . ’ ) ;

x l a b e l ( ’ t ’ ) ;

y l a b e l ( ’ $ I ( t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ LaTex ’ ) ;

t i t l e ( ’ Ode45 SIR S o l u t i o n ’ ) ;

a x i s ( [ 0 tm 0 . 5 ] )

l e g e n d ( { ’$D_{ I }=500D_{V}$ ’ , ’$D_{ I }=D_{V}$ ’ , . . .

’ $500D_{ I }=D_{V}$ ’ } , ’ I n t e r p r e t e r ’ , ’ LaTex ’ )

ho ld on

%Main s o l v e r ODE45

[ t , y ] = ode45 (@( t , y ) odefcnCOS ( t , y , X, dx , D, c1 , c2 ) , T , . . .

y0 , o p t i o n s ) ;

%R e a s i g n a t i o n o f main r e s u l t

I ( : , 1 ) =y ( : , end �1) ’ ;

R ( : , 1 ) =y ( : , end ) ’ ;

S ( : , 1 ) =1�( I ( : , 1 ) +R ( : , 1 ) ) ;
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[ t , y ] = ode45 (@( t , y ) odefcnCOS ( t , y , X, dx , 0 , c1 , c2 ) , T , . . .

y0 , o p t i o n s ) ;

%R e a s i g n a t i o n o f main r e s u l t

I ( : , 2 ) =y ( : , end �1) ’ ;

R ( : , 2 ) =y ( : , end ) ’ ;

S ( : , 2 ) =1�( I ( : , 2 ) +R ( : , 2 ) ) ;

[ t , y ] = ode45 (@( t , y ) odefcnCOS ( t , y , X, dx , �D, c1 , c2 ) , T , . . .

y0 , o p t i o n s ) ;

%R e a s i g n a t i o n o f main r e s u l t

I ( : , 3 ) =y ( : , end �1) ’ ;

R ( : , 3 ) =y ( : , end ) ’ ;

S ( : , 3 ) =1�( I ( : , 3 ) +R ( : , 3 ) ) ;

f i g u r e ( 5 )

p l o t ( t , S ( : , 1 ) , ’ b ’ , t , S ( : , 2 ) , ’ r �� ’ , t , S ( : , 3 ) , ’b � . ’ ) ;

x l a b e l ( ’ t ’ ) ;

y l a b e l ( ’ $S ( t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ LaTex ’ ) ;

t i t l e ( ’ Ode45 SIR S o l u t i o n ’ ) ;

l e g e n d ( { ’$D_{ I }=500D_{V}$ ’ , ’$D_{ I }=D_{V}$ ’ , . . .

’ $500D_{ I }=D_{V}$ ’ } , ’ I n t e r p r e t e r ’ , ’ LaTex ’ )

a x i s ( [ 0 tm 0 . 5 ] )
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ho ld on

f i g u r e ( 6 )

p l o t ( t , I ( : , 1 ) , ’ b ’ , t , I ( : , 2 ) , ’ r �� ’ , t , I ( : , 3 ) , ’b � . ’ ) ;

x l a b e l ( ’ t ’ ) ;

y l a b e l ( ’ $ I ( t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ LaTex ’ ) ;

t i t l e ( ’ Ode45 SIR S o l u t i o n ’ ) ;

l e g e n d ( { ’$D_{ I }=500D_{V}$ ’ , ’$D_{ I }=D_{V}$ ’ , . . .

’ $500D_{ I }=D_{V}$ ’ } , ’ I n t e r p r e t e r ’ , ’ LaTex ’ )

a x i s ( [ 0 tm 0 . 5 ] )

ho ld on

%Custom s c a l e d f u n c t i o n f o r a s c a l e d b e t a d i s t r i b u t i o n

f u n c t i o n PDF = S c a l e d _ B e t a ( x , a , b , x0 , xn )

PDF = ( ( x�x0 ) . ^ ( a �1) . * ( xn�x ) . ^ ( b�1) ) . / . . .

( ( xn�x0 ) . ^ ( a+b�1) . * b e t a ( a , b ) ) ;

end

end
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ODE solver function program for testing solutions MATLAB file:

f u n c t i o n dyd t = od e f cn ( t , y , X, dx , d i f f , be t a , gamma )

%R e a s s i g n a t i o n o f t h e i n p u t v a r i a b l e s

n =( l e n g t h ( y ) �2) / 5 ;

Mi=y ( 1 : n ) ;

dMi=y ( n +1:2* n ) ;

Mv=y (2* n +1:3* n ) ;

dMv=y (3* n +1:4* n ) ;

S=y (4* n +1:5* n ) ;

I =y (5* n +1) ;

R=y (5* n +2) ;

t a u i =1 ;

t a u v =1;

a l p h a i =1;

a l p h a v =1;

i f d i f f >0

Di= d i f f �1;

Dv=1;

e l s e i f d i f f <0

Di =1;

Dv= abs ( d i f f ) �1;

e l s e

Di =1;

Dv=1;

end

gammai =1;
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gammav =1;

c =50;

%C a l c u l a t i o n o f t e l e g r a p h p o i n t s i n t h e s p a c e d imens ion

%R e f e r t o t h e n u m e r i c a l method f o r e x p l a n a t i o n o f t h i s

%p a r t o f t h e code and how i t was c o n s t r u c t e d

f o r k =1: n

i f k==1

dMit ( k , 1 ) = ( Di / t a u i ) * ( ( 1 ) *Mi ( k ) + . . .

( �2) *Mi ( k +1) + . . .

( 1 ) *Mi ( k +2) ) / dx ^2+ . . .

( gammai / t a u i ) *(1�Mi ( k )�Mv( k ) ) *Mi ( k ) � . . .

( a l p h a i / t a u i ) *dMi ( k ) ;

dMvt ( k , 1 ) = ( Dv / t a u v ) * ( ( 1 ) *Mv( k ) + . . .

( �2) *Mv( k +1) + . . .

( 1 ) *Mv( k +2) ) / dx ^2 . . .

+(gammav / t a u v ) *(1�Mi ( k )�Mv( k ) ) *Mv( k ) � . . .

( a l p h a v / t a u v ) *dMv( k ) ;

e l s e i f k==2 | | k==n�1

dMit ( k , 1 ) = ( Di / t a u i ) * ( Mi ( k�1) � . . .

2*Mi ( k ) +Mi ( k +1) ) / dx ^2 . . .
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+( gammai / t a u i ) *(1�Mi ( k )�Mv( k ) ) *Mi ( k ) � . . .

( a l p h a i / t a u i ) *dMi ( k ) ;

dMvt ( k , 1 ) = ( Dv / t a u v ) * (Mv( k�1) � . . .

2*Mv( k ) +Mv( k +1) ) / dx ^2 . . .

+(gammav / t a u v ) *(1�Mi ( k )�Mv( k ) ) *Mv( k ) � . . .

( a l p h a v / t a u v ) *dMv( k ) ;

e l s e i f k==3 | | k==4 | | k==n�2 | | k==n�3

dMit ( k , 1 ) = ( Di / t a u i ) * ( ( �1 / 1 2 ) *Mi ( k�2) + . . .

( 4 / 3 ) *Mi ( k�1) +( �5 /2 ) *Mi ( k ) + . . .

( 4 / 3 ) *Mi ( k +1) +( �1 /12) *Mi ( k +2) ) / dx ^2 . . .

+( gammai / t a u i ) *(1�Mi ( k )�Mv( k ) ) *Mi ( k ) � . . .

( a l p h a i / t a u i ) *dMi ( k ) ;

dMvt ( k , 1 ) = ( Dv / t a u v ) * ( ( �1 / 1 2 ) *Mv( k�2) + . . .

( 4 / 3 ) *Mv( k�1) +( �5 /2 ) *Mv( k ) + . . .

( 4 / 3 ) *Mv( k +1) +( �1 /12) *Mv( k +2) ) / dx ^2 . . .

+(gammav / t a u v ) *(1�Mi ( k )�Mv( k ) ) *Mv( k ) � . . .

( a l p h a v / t a u v ) *dMv( k ) ;

e l s e i f k==n

dMit ( k , 1 ) = ( Di / t a u i ) * ( ( 1 ) *Mi ( k ) + . . .

( �2) *Mi ( k�1) + . . .

( 1 ) *Mi ( k�2) ) / dx ^2+ . . .

( gammai / t a u i ) *(1�Mi ( k )�Mv( k ) ) *Mi ( k ) � . . .
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( a l p h a i / t a u i ) *dMi ( k ) ;

dMvt ( k , 1 ) = ( Dv / t a u v ) * ( ( 1 ) *Mv( k ) + . . .

( �2) *Mv( k�1) + . . .

( 1 ) *Mv( k�2) ) / dx ^2 . . .

+(gammav / t a u v ) *(1�Mi ( k )�Mv( k ) ) *Mv( k ) � . . .

( a l p h a v / t a u v ) *dMv( k ) ;

e l s e

dMit ( k , 1 ) = ( Di / t a u i ) * ( ( �1 / 5 6 0 ) *Mi ( k�4) + . . .

( 8 / 3 1 5 ) *Mi ( k�3) + . . .

( �1 / 5 ) *Mi ( k�2) + . . .

( 8 / 5 ) *Mi ( k�1) + . . .

( �205 /72 ) *Mi ( k ) . . .

+ ( �1 /560) *Mi ( k +4) + . . .

( 8 / 3 1 5 ) *Mi ( k +3) + . . .

( �1 / 5 ) *Mi ( k +2) + . . .

( 8 / 5 ) *Mi ( k +1) ) / dx ^2 . . .

+( gammai / t a u i ) *(1�Mi ( k )�Mv( k ) ) *Mi ( k ) � . . .

( a l p h a i / t a u i ) *dMi ( k ) ;

dMvt ( k , 1 ) = ( Dv / t a u v ) * ( ( �1 / 5 6 0 ) *Mv( k�4) + . . .

( 8 / 3 1 5 ) *Mv( k�3) + . . .

( �1 / 5 ) *Mv( k�2) + . . .

( 8 / 5 ) *Mv( k�1) + . . .

( �205 /72 ) *Mv( k ) . . .

+ ( �1 /560) *Mv( k +4) + . . .
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( 8 / 3 1 5 ) *Mv( k +3) + . . .

( �1 / 5 ) *Mv( k +2) + . . .

( 8 / 5 ) *Mv( k +1) ) / dx ^2 . . .

+(gammav / t a u v ) *(1�Mi ( k )�Mv( k ) ) *Mv( k ) � . . .

( a l p h a v / t a u v ) *dMv( k ) ;

end

end

%P r o b a b i l i t y c a l c u l a t i o n

P = 1 . / ( 1 + exp (� c * ( Mi�Mv) ) ) ;

%V a l i d a t i o n o f t h e v a l u e o f I f o r f u r t h e r c a l c u l a t i o n s

%of t h e d e r i v a t i v e s o f t h e SIR model

i f I >0

dSxt=� b e t a *(1�P ) . * S . * I �P . * S ;

d I = b e t a * I . * t r a p z (X, (1 �P ) . * S )�gamma . * I ;

dR= t r a p z (X, P . * S ) +gamma . * I ;

e l s e

dSxt=�P . * S ;

d I =0;

dR= t r a p z (X, P . * S ) ;
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end

%A s s i g n a t i o n o f t h e t ime d i f f e r e n t i a l

t

dyd t =[ dMi ; dMit ; dMv ; dMvt ; dSxt ; d I ; dR ] ;

end
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