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ABSTRACT 
 
 

Del Rosal, Edni, DES and TDES Performance Evaluation For Non-Pipelined and Pipelined 

Implementations in VHDL Using The Cyclone II FPGA Technology, Master of Science (MS), 

December, 2017, 177 pp., 14 tables, 100 figures, references, 65 titles. 

Two ongoing issues that engineers must face in the new era of data analytics are 

performance and security.  Field Programmable Gate Arrays (FPGAs) offer a new solution for 

optimizing the performance of applications while the Data Encryption Standard (DES) and the 

Triple Data Encryption Standard (TDES) offer a mean to secure information. In this thesis we 

present a Non-Pipelined and Pipelined, in Electronic Code Book (EBC) mode, implementations 

in VHDL of these two commonly utilized cryptography schemes.  Using Altera Cyclone II 

FPGA as our platform, we design and verify the implementations with the EDA tools provided 

by Altera.  We gather cost and throughput information from the synthesis and timing results and 

compare the cost and performance of our designs to those presented in other literatures.  Our 

designs achieve a throughput of 3.2 Gbps with a 50 MHz clock and our cost triples from DES to 

TDES.   
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CHAPTER I 
 
 

INTRODUCTION 
 
 

In the area of computing, Field Programmable Gate Arrays (FPGAs) offer a new solution 

for optimizing the performance of applications.  FPGAs provide the flexibility of reconfiguring 

the silicon connection structure.  This permits an algorithm needed for a specific application to 

be implemented directly on the FPGA [1].  The optimized architecture can execute the specific 

application in less cycles when compared to a CPU.  In a CPU, the algorithm is broken down 

into a sequence of operations that take multiple cycles to execute [2].  An optimized algorithm 

implemented in FPGAs can execute in one or a few cycles [3].  Microsoft and Ryft have taken 

advantage of the accelerated computing, offered by FPGAs, to implement algorithms for their 

search engines [4] [5].  Microsoft’s project Catapult, started by Doug Burger, “improved the 

operations per seconds of a critical components of Bing’s search engine by nearly a factor of 

two” by loading some workload into Altera’s Stratix V [6] [7].   Having had a success 

incrementing the performance, with the Catapult project, Microsoft used the same platform to 

process the massive amounts of traffic data from Azure and Office 365, thus assisting in deep 

machine learning.  The PFGA implementation in Microsoft’s racks can be seen in Figure 1 as 

presented in [8].  Prototype Version 2 shows every rack connecting to an FPGA that processes 

incoming traffic from the network.
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Figure 1: Microsoft's Prototype For Connecting FPGAs To The Rack and Processing 
Traffic [8] 

	
Microsoft’s success in using FPGA’s, as reprogrammable architecture to meet their 

hardware needs, led Intel to acquire Altera for 16.7 billion dollars [9].  This is Intel’s largest 

purchase in the history of the company.  IBM has also taken this approach to meet the end user 

demands for processing massive amounts of data.  IBM’s solution incorporates a Coherent 

Accelerator Processor Proxy (CAPP) unit in their POWER 8 chip and a Power Service Layer 

(PSL) in the FPGA that allows coherency between the FPGAs and the chip via the Peripheral 

Component Interconnect Express (PCIE) [10] [11].  See Figure 2, provided in [11].  By 

incorporating coherency, the algorithms in the FPGA have access to the resources of the chip as 

well.
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Figure 2: IBM's FPGA Acceleration Approach via CAPI [11] 

From IBM’s Coherent Accelerator Processor Interface (CAPI) documentation, in Figure 

3, we see the potential market targets that can take advantage of this new resource [11]. 

 

Figure 3: IBM's Potential Markets For CAPI [11] 
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1.1 FPGA History 

 
 

FPGAs derived from Programmable Logic Devices (PLDs) and Complex Programmable 

Logic Devices (CPLDs).  PLDs consist of fully connected macros containing a few logic 

elements and a sequential element.  The sequential element allows the PLD to be a 

reconfigurable device for digital circuits.  CPLDs contain multiple PLDs and they may or may 

not be fully connected and they support more complex functions [12] [13].  The invention of the 

FPGA is accredited to Ross Freedman in 1984.  Afterwards, Ross Freedman founded Xilinx, an 

American company supplier of FPGAs.  Xilinx and Altera, both competitive American 

companies, dominate about 90 percent of the current FPGA market [14].  These two companies 

have been setting the FPGA technology standard for the past decades.  Xilinx’s current fastest 

technology, embedded in their Virtex and Kintex UltraScale+ FPGA series, is the 16 nm 

FinFET, meanwhile, Altera’s fastest technology, embedded in the Stratix FPGA series, is the 14 

nm Tri-Gate [15] [16] [17].  The Altera’s Stratix series density can be up to 5.5 million Logic 

Elements (LEs) and the Xilinx’s UltraScale+ series density can be up to 3.7 million System 

Logic Cells [18]. 

 
1.2 FPGA Business Market Model 

 
 

As stated before, Altera and Xilinx are two FPGA vendors that dominate about 90 

percent of the supply market.  Intellectual Property (IP) logic block vendors license their designs 

to FPGA vendors.  These designs are based on the specifications given by the FPGA vendors.  

The FPGA market and supply flow, shown in Figure 4, is extracted from [19]. 
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Figure 4: FPGA Market Demand and Supply Flow [19] 

	
FPGA vendors define the specifications based on the needs of the System Developers, 

who must meet the specifications of FPGA-based systems, which are dictated by the needs of the 

End Users.  With the assistance of Electronic Design Automation (EDA) tools, provided by EDA 

vendors, FPGA vendors can implement and verify their designs. 

 
1.2.1 FPGA Vendors, Technology and Altera’s DE2 Board EP2C35F672C6 

 
 

 Xilinx and Intel owned Altera dominate 90 percent of the FPGA market.  The high-end 

technology embedded in Altera’s Stratix FPGA series is the 14 nm Tri-Gate and the density can 

be up to 5.5 million LEs.  Xilinx high-end technology embedded in the Virtex and Kintex 

UltraScale+ FPGA series is the 16 nm FinFETs and the density can be up to 3.7 million LCs.  

Table 1 compares the technology, maximum density and DSP logic operation of Altera’s high-
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end Stratix versus Xilinx high-end UltraScale+ [20] [21] [22]. 

Table 1: Comparison of Altera VS Xilinx High-End FPGA 

 Technology Density Cost DSP Operation RELEASE 

Altera Stratix 10 14 nm Tri-Gate 5.5 Million 

LEs 

$24,995* 1 GHz N/A*** 

Xilinx UltraScale+ 16 nm FinFET 3.7 Million 

LCs 

$15,995** 600 – 891 MHz 2016 

Altera EP2C35 90 nm 33,216 LEs $284 - $495 180 – 260 MHz 2005 

 *price of 100G Development Kit Stratix V GX Edition 
**Xilinx Virtex UltraScale FPGA VCU110 Development Kit 
***Stratix 10 Was Announced On 2013 But Has Not Been Released 

 

From Altera’s website, the price of the 100G Development Kit Stratix V GX Edition is 

$24,000, and from Xilinx’s website, the price of the Virtex UltraScale FPGA VCU110 

Development Kit is $15,995.  Altera’s DSP Block operation frequency of 1GHz is greater than 

Xilinx’s Slice frequency operation of 891 MHz. 

In this thesis we use the Altera’s Cyclone II DE2 Board EP2C35F672C6 platform.  The 

technology in Cyclone II was realeased in 2005 [23].  The density, of model EP2C35F672C6, is 

33,216 LEs and the technology is 90 nm.  The DSP operation is about 200 MHz.  This is the 

platform we have available in our Electrical Engineering department and we decided to evaluate 

our algorithms using the technology of this platform.  This development board is available in 

Terasic’s website for $495 [24].  The Altera Cyclone 2 FPGA contains the following: 33,216 

Logic Elements, 105 M4K RAM blocks, 483,840 total RAM bits, 35 embedded multipliers, 

4PLLs, 475 user I/O pins and the FineLine BGA 672-pin package.  It contains an internal 50 

MHz clock, an internal 27 MHz clock and an SMA external clock input [25]. 

The Logic Element (LE) is the unit that helps us determine the cost in Altera’s Cyclone II 
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architecture. 

 

Figure 5: LE Architecture [25] 

	
The LE is also smallest unit of logic that provides the following features, seen in Figure 

5, as explained in [25]: 

• A four-input look-up table (LUT), which is a function generator that can implement     
any function of four variables 

• A programmable register 

• A carry chain connection  

• A register chain connection 

• The ability to drive all types of interconnects: local, row, column, register chain, and 
direct link interconnects 

• Support for register packing 

• Support for register feedback  
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The LE can be programmed to be a sequential element or, if needed, the sequential 

element can be bypassed and the Look-Up Table output can be set as the direct output of the LE 

for combinational functions.  A group of 16 LE’s, as seen in Figure 6, are grouped into 1 Logic 

Array Block (LAB) and LABs are grouped into rows and columns. 

 

Figure 6: LE’s Interconnects in 1 LAB [25] 

	
Each LAB consists16 LEs, LAB control signals, LE carry chains, register channels and 

local interconnects.  The LAB control signals consist of 2 clocks, 2 clock enables, two 

asynchronous clears, 1 synchronous clear and 1 synchronous load.  Figure 7 shows LABs 

arranged in rows and columns with the proper interconnect. 



	 9	

 

Figure 7: LABs Arranged Into Rows and Columns With Interconnect [25] 

	
1.2.2 FPGA Based System Developers and Thesis Objective 

 
 
The FPGA Based System Developers, as described in [19], “create commercial products 

on FPGA chips. The product is normally in the form of configuration bit stream file for a given 

family FPGA chips.”  In this thesis, the function we implement, in VHSIC Hardware Description 

Language (VHDL), is the Data Encryption Standard (DES) and the Triple Data Encryption 

Standard (TDES) cryptographic algorithms for Altera’s Cyclone II DES2 EP2C35F672C6 FPGA 

Board.  We implement and verify the pipelined and non-pipelined algorithms as stated in the 

National Institute of Standards (NIST) special publications 800-17 and 800-20 [26] [27].  The 

goal is to analyze the cost while increasing the cryptographic throughput by keeping a coherent 
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design that allows the non-pipelined designs to be pipelined with out major modifications.  To 

achieve the coherent design, we implement different key scheduling schemes for the DES 

encryption and decryption algorithms.  As presented in Section 2.1.1.1 and 2.1.2.1, the key 

scheduling for the DES encryption scheme performs left shift rotations and the key scheduling 

for the DES decryption scheme performs right shift rotations.  Implementing the key schedules, 

this way, is different from what we have seen in the literature reviews presented in Section 1.4.  

The literature reviews implement left shift rotations only.  Implementing left shifts rotations 

alone make it difficult to implement a fully TDES pipelined design since the pipelined 

encryptions and decryptions for DES are incoherent.  As seen in Section 3.1.2, our coherent DES 

designs allow us to fully pipeline TDES by adding a key bank that buffers the keys and feeds 

them to the proper components in the proper cycle.   

 
1.2.3 Conceptual Digital Design Flow and EDA Tools 

 
 

 The conceptual digital design flow is a top-down technique approach to solve a problem.  

The Design flow will help us implement the algorithms for both non-pipelined and pipelined 

cryptography schemes mentioned above.  As seen in Figure 8, we begin with the design 

specifications. 
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Figure 8: Digital Design Flow Chart [28] 

	
The designs specifications consist on a list of requirements the design must meet.  The 

requirements may include cost, power consumption, dimensions, functionality, and timing [28].  

In our case, we are only constricted to functionality and cost because we are evaluating the 

performance (throughput).  Our cost constraint is 33, 216 LEs.  In Figure 9 we show a basic 

functionality overview of our TDES pipelined encrypting design.  The functionality details of 

this design and all other designs are presented in Chapter 3. 
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Figure 9: TDES Pipelined Functionality Diagram 

	
 The Functional Design makes use of High Level Synthesis (HLS) to implement the 

functional description of the design and generate the VDHL code.  High-level languages such as 

C, C++ and Matlab are used in his process [29].  In industry, the functionalities of the designs are 

complex and HLS is required to minimize human error when generating the VHDL code.  In our 

case, we don’t use HLS and we directly go to the Register Transfer Level (RTL) Design.  The 

Register Transfer Level consists of the VHDL code that describes the digital logic and sequential 

elements.  The RTL Verification assures that the VHDL code functions as expected.  Synthesis 

and Optimization looks in more detail at the gate level, sequential level and the netlist of the 

design to optimize for the requirements given.  The RTL vs. Gates Verification ensures that, after 

optimizing the design, it still functions as expected with the requirements.  The complete digital 

design flow chart continues to physical design/IC layout, fabrication and validation.  For this 

thesis, we won’t send our design for fabrication and therefore are not concerned with these other 

processes. 

The Electronic Design Automation (EDA) tools aide in the implementation of the digital 

design flow.  In this thesis we use Altera Quartus II software and the Altera University Program 
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(UP) Simulator.  The version of Quartus used for implementing DES and TDES is Quartus II 

Web Edition Service Pack 1.  The Quartus II software is installed on an iMac Mid 2011.  The 

iMac is equipped with an Intel i5 core 2.5 GHz Processor.   The operating system is Windows 8 

Enterprise.  See Figure 10.  The RTL design and the Synthesis were done in Quartus II.  Quartus 

II also provides the cost information for the designs we implemented.  The cost information 

includes the number of Logic Elements (LEs), memory elements, pins and other information that 

is used to implement our design in the FPGA.  We compare the cost information of our designs 

in Chapter 5.  The verification was implemented in an extension program of Quartus II called the 

University Program Simulator (Altera U.P. Simulator).  The simulator outputs a waveform image 

in which we visually analyze the time delays and propagation times as the inputs traverse the 

stages of the algorithms.  The version of Altera’s U.P. Simulator we use is the edition compatible 

with Quartus II 12 Web Edition Service Pack 1.   Both of these Altera Programs can be 

downloaded from the Altera website free of charge.  See reference [30]. 

 

 

Figure 10: Equipment And EDA Tools 
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1.3 Cryptography 
 
 

Cryptography seeks to maintain the confidentiality of information.  Confidentiality is one 

of the main components in the security triad [31] [32].  A system must ensure that the user’s 

information is maintained inclusive to the parties that legitimately share it.  Other users that seek 

to access the data without the adequate permission should only see an encrypted form of the data, 

which does not permit the non-legitimate user (hacker) to utilize the actual data.  

Cryptography involves encryption and decryption.  Encryption is the process of 

converting data to cipher data.   Cipher data is an encrypted form of the data that is unreadable to 

anyone.  Decryption is the process of converting cipher data to readable data that anyone can 

utilize.   See Figure 11 below. 

 

 

Figure 11: Alice, Bob and Eve Encrypted Communication Example 

	
Alice seeks to send confidential data to Bob.  Lets assume that the data is simple plain text.  At 

Alice’s end, her system encrypts the plain text using key K and is rendered unreadable.  This 

cipher text is sent to Bob.  Because Bob possesses the proper key K, he is able to decrypt the 

cipher text into plain text.  Bob is now able read Alice’s plain text.  Eve is an eavesdropper that 
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gains access to the cipher text.  However, since Eve does not have the proper key, Eve is not able 

to decrypt and read the message.  To Eve, the intercepted cipher text is only a handful of random 

characters that make no sense. 

To encrypt and decrypt, a key is needed.  There exist two types of cryptography: 

symmetric and asymmetric key cryptography.  Symmetric key cryptography requires the same 

key for the encryption and decryption processes and it is also known as the secret key 

cryptography [33].  Symmetric key cryptography schemes include the Data Encryption Standard 

(DES), Triple Dada Encryption Standard (TDES), Advanced Encryption Standard (AES) and 

Blowfish.  Symmetric schemes can be implemented as a stream cipher or a block cipher.  E.g. 

DES implemented in Electronic Codebook mode is considered a stream cipher but DES 

implemented in Cipher Block Chaining (CBC) mode is considered a block cipher.  Applications 

for symmetric cryptography include government documents, email applications and securing 

credit card information (#!include reference).  These ciphers are mainly used to encrypt large 

quantities of data because their required computation cost is less than the required computation 

cost for asymmetric schemes [31].  Asymmetric key cryptography requires different keys for the 

encryption and the decryption processes and it is also known as the public key cryptography.  

Asymmetric key cryptography schemes include Rivest Shamir Adleman (RSA) and Digital 

Signature Standard (DSS).  A well known asymmetric scheme application is the communication 

over a public network environment.  DSS is used to establish a secure network connection 

because it only requires small amounts of data to be encrypted. 

 
1.3.1 Cryptography Current Events And History 

 
 
Attacks in Paris, France and San Bernardino, California have triggered an ongoing debate 
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between tech companies and the government regarding the user’s privacy.  The topic in concern 

is encryption [34] [35].  With the ongoing election of 2016, the presidential candidates of the 

United States have demonstrated their concern regarding end-to-end encryption for social apps in 

mobile devices.  End-to-end encrypted communication in mobile devices provides 

confidentiality and authenticity.  Taking advantage of this features, attackers used encrypted apps 

such as Whatsapp and Telegram to communicate, plan and ultimately perpetrate the terrorist 

attacks of November 13, 2015 in Paris, which resulted in lost lives and hospitalized victims [36].  

These events lead a position, mainly supported by the government and the 2016 US presidential 

candidates, that contemplates enforcing a backdoor on the security for mobile devices.  As 

expected, the majority of the tech companies do not support this notion.  Arguments for opposing 

a backdoor include users’ privacy, undermining the purpose of technology and business 

diminution for domestic apps.  Enforcing a backdoor would require developers to adhere to the 

domestic policy, thus, driving users to international platforms that don’t append to the backdoor 

policy [37].  CEOs of top tech companies such as Tim cook, CEO of Apple, have been brought 

forth to congressional hearings regarding the possibility of implementing a backdoor on their 

devices [37].  Tim Cook states that without a warrant, his tech company has no intention or 

desire to give out its users data to anyone [38].  The strong opposition to a backdoor has led the 

government to seek other means of accessing a devices data in its decrypted form.  In March 28 

2016, the FBI announced they successfully decrypted the encrypted smartphone that belonged to 

the assassin of the San Bernardino attack after the smartphone maker refused to create software 

to decrypt the device [39]. 

The war between cryptographers and cryptanalysts has been ongoing.  Among the first 

identified methods of encryption are coded messages.  Caesar’s cipher, named after Julius 
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Caesar, is one method that was used for encoding a message that consisted on replacing each 

letter with another by shifting down the alphabet.  These early alphabetic methods are also 

known as substitution ciphers.  To decrypt the encoded message the shift in the reverse direction 

is applied.  This is the equivalent of decrypting a message using the same key that was used to 

encrypt it.  Cryptography schemes that require the same key for encryption and decryption are 

known as symmetric key schemes.  The method of encoding a message is simple to decrypt due 

to the low maximum number of possible combinations.  As the complexity of encoding messages 

progressed, the methods evolved to substituting words by using mathematical schemes.  The 

Advanced Encryption Standard (AES), an algebraic cryptographic scheme, along with the Triple 

Data Encryption Standard, have been set as the encryption standard by the National Institute of 

Systems and Technology (NIST) [40]. 

Decrypting messages has become as crucial as encrypting messages.  Decryption has 

played an important role in changing the course of history.  The US involvement in World War I 

was due to the interception and decryption of the Zimmerman telegraph.  The Zimmerman 

telegram, intercepted by Britain, intended to encourage Mexico to raise arms against the US with 

the guarantee that Germany would provide them with full support and resources [41].  Offended 

by the German proposition, US entered the World War I and sided with the Allies.  The US’s 

involvement leaned the balance towards the Allies side and, needless to say, the Allies won the 

war.  In World War II, the Germans communicated by radio communication.  Since anyone was 

able to intercept the over the air communication, the Enigma machine was used to encrypt the 

messages.  However, the British found a method for decrypting their messages [42].  By leaning 

the balance to the Allies side once more, the Allies won the war and it is estimated that this 

helped shorten the war by about two years. 
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Among the many applications for cryptography, one application that stands out is 

information safekeeping.  Information safekeeping has changed from file cabinets and locks to 

online databases and automated tools for protecting them [43].  The advantage to safekeeping in 

databases is the feasibility to analyze the data at a fast rate and use it to increase productivity.  

The new business model infrastructure concerning computer consulting firms and computer 

architecture companies like Intel, IBM, Apple, Microsoft and Google includes the cloud market, 

processing and interpreting massive amounts of data [44].  Online databases undoubtedly 

provide a more convenient form of storing and accessing data, but keeping a database, makes the 

need for interconnects via a collection of interconnected networks.  Thus, resulting in the need to 

establish secure encrypted connections. 

As the computation power has increased over the last century, so has the complexity of 

the cryptography schemes.  The field of cryptography is broad due to the many components 

associated with it.  Components in this field include: key distribution, algorithms, cryptanalysis 

and hardware implementation.  The work presented here focuses on hardware implementation.  

We implement and evaluate the cost and performance of two commonly used schemes: The Data 

Encryption Standard (DES) and the Triple Data Encryption Standard (TDES).  We successfully 

validate the implementation, in Electronic Codebook mode, of these two schemes in VHDL as 

described in [45] and [46]. 

 
1.3.2 DES & TDES History 
 
 

The work presented in this thesis focuses on the symmetric DES and TDES cryptography 

schemes in Electronic Codebook (EBC) mode.  Electronic payment systems are known to use the 

TDES scheme for the encryption/decryption of data, and hence faster implementations are of 
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great significance [3] [4]. Mail applications, such as Microsoft Outlook, make use of this scheme 

as well [5] The National Bureau of Standards (NBS) issued a request for an encryption standard 

in 1973.  International Business Machines (IBM) Corporation originally introduced DES as 

LUCIFER in the 1960s.  With the consultation of the National Security Agency (NSA) along 

with other outside consultants, and some adjustments, DES was eventually adopted as the Data 

Encryption Standard (DES) in 1976.  Some of the modifications include the reduced bit size of 

the key from 128 to 56 bits and the design of the S-boxes that perform the non-linear bit 

substitutions was also kept classified.  In 1999 DES was reaffirmed for the fourth time as triple 

DES (3DES) after DES was proven susceptible to a brute force attack in less than 24 hours.  The 

triple DES increased the key size from 56 bits to 128 bits if two different keys are used [47] [48].  

If three different keys are used in the scheme, the key size increases to 192 bits.  The current 

cryptography schemes affirmed as the standards are TDES and Advanced Encryption Standard 

(AES).  Although AES and 3DES have been reaffirmed as the standard now days, DES is still 

being used where a strong encryption in not needed. 

 
1.3.3 Exhaustive Key Search Analysis 

 
 

 A brute force attack is a well-known method of cryptanalysis.  The objective of the brute 

force attack is to run an exhaustive key search analysis, with all possible key combinations, on a 

cryptographic algorithm.  An exhaustive search on DES would require a total of 256 = 7.2 X 1016 

combinations.  As the size of the key increases, the number of combination also increases 

exponentially. 
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Table 2: Computation Power And Time For Exhaustive Search [49] 

 

 As seen in Table 2, a computation power of 1013 decryptions/s would complete an 

exhaustive search on DES in 1 hour [49].  However, an exhaustive search on TDES would take 

5.8 X 1029 years.  It is safe to say that TDES is a symmetric cipher that is unbreakable by means 

of a brute force attack. 

 
1.4 Survey On Exiting Work And Expected Results 

 
 

 The performance of our implementation will be measured with throughput.  We define 

throughput as the number of fully processed bits per second.  In other words, the encrypted or 

decrypted bits per second.  The cost is determined by the number of Logic Elements (LEs) 

needed to implement our designs.  In Table 3 we compare the cost of the implementations 

presented in several publications. 

We define the operable clock frequency as the frequency of one full encryption or 

decryption.  In [53], the authors claim that their frequency for the DES 8 stage pipelined design 

is 20.79 MHz but their throughput is 665.28 Mbps.  This means that the operable frequency is 

20.79 MHz / 2 = 10.4q MHz.  The highest DES non-pipelined throughput, 4.8 Gbps, is seen in 

[55].  From the information provided, in their publication, we can assume they implemented 1 

permutation-substitution stage at 71.12 MHz.  They also achieve the highest DES 16-stage 
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pipelined throughput of 18.2 Gbps at 294.031 MHz.  From Table 2, we conclude that, to increase 

the throughput we can increase the operational frequency and increase the number of stages in 

the pipeline.  The frequency threshold depends on the technology of the FPGA because of the 

propagation delay and time violations.  The throughput is also proportional to the cost.  To 

increase the throughput, more stages must be implemented, which means more logic elements or 

blocks. 

Table 3: Cost and Performance Comparison 

 

We cannot determine what the throughput of our non-pipelined designs would be because 

we don’t have propagation delay data for implementing one permutation-substitution DES stage 

in the EP2C35F672C6 platform.  However, we know that this platform has an internal 50 MHz 

clock.  If we implement a 16-stage DES pipeline, we output 64 bits or processed data every 20 

ns.  We can achieve an approximate throughput of 64 bits / 20 ns = 3.2 Gbps.  If we implement a 

48-stage TDES pipeline we can also achieve an approximate throughput of 3.2 Gbps. 
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Regarding the cost of implementing our designs, we will gather this data from the 

synthesis of the EDA tools we discussed in Section 1.2.3.  However, based on the results seen in 

[53], if we implement a 16-stage DES we expect the cost of our DES to be approximately 5,991 

LEs and greater for the pipelined design.  For our TDES design we expect the cost to be 

approximately 3 * 5,991 LEs = 17,973 LEs and greater for the pipelined design. 

 
1.5 Thesis Outline 

 
 

In this thesis we present a Non-Pipelined and Pipelined implementation in VHDL of two 

commonly used symmetric cryptography schemes: Data Encryption Standard (DES) and Triple 

Data Encryption Standard (TDES).  We also evaluate the cost and performance of our 

implementations Using Altera’s Quartus II and University Program (UP) simulator.  The 

platform, for testing our designs, is based on Altera Cyclone II FPGA technology.  This thesis 

report contains six chapters.  Chapter 1 is the introduction.  This chapter contains our statement 

of the problem, a background on cryptography, a description of the tools we used to implement 

and evaluate our schemes and our expected results.  In chapter 2 we present a detailed 

description of our non-pipelined encryption and decryption schemes.  In Chapter 3 we present in 

detail our pipelined schemes.  Chapter 4 details the validation implementation and the results of 

the validation design schemes in Electronic Codebook (ECB) mode.  In chapter 5 we present and 

evaluate the results obtained: the cost and performance of our schemes.  We also compare our 

results to the ones presented in our literature reviews.  Finally, chapter 6 contains our conclusion 

and future work.  
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CHAPTER II 
 
 

DES & TDES NON-PIPELINED DESIGNS IN VHDL 
 
 

In this chapter we present our DES & TDES Non-Pipelined designs.  The DES scheme 

makes use of various techniques: permutation, XOR, substitution/transformation, and expansion.  

To encrypt data, the data and a 56-bit key are required.  The actual length of the key is 64 bits, 

but in the first permutation in the key scheduling, 8 bits are discarded from the original 64-bit 

key, which leaves a 56-bit key standing.  The discarded 8 bits are used for error detection. 

Most discussions of the DES algorithm index the string of bits from left right.  The indexing for 

a 64-bit string would be [1 2 3 4 5 6 7 8 9 10 11 . . . 64].  However, in VHDL, indexing is quite 

the opposite.  The indexing is done from right to left.  The indexing for the key string of bits in 

VHDL is [63 62 61 . . . 10 9 8 7 6 5 4 3 2 1 0].  Note that VHDL begins with index 63 and ends 

with index 0.  In this report we will abandon the indexing convention in most discussions and we 

will adopt the VHDL bit indexing convention.  Further knowledge in VHDL is can be attained in 

[58] and [59]. 

The organization of this chapter is as follows: In Section 2.1 and 2.2 we present our DES 

non-pipelined designs and in Section 2.3 we present our TDES non-pipelined designs.  In these 

sections we include our encryption schemes, decryption schemes and the specifications that our 

designs must meet.  As mentioned earlier in Section1.2.2, a note of interest in this chapter is our
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DES decryption key scheduling design.  We perform right rotations in order to make our design 

coherent with our DES pipelined design in Chapter 3.  The VHDL code for each component in 

the encryption and decryption designs is referenced in the text and provided in Appendix A. 

 
2.1 DES Non-Pipelined Design For Encryption 

 
 

Our DES non-pipelined encryption design has a key scheduling component, an initial 

permutation, a final permutation and 16 Feistel Function rounds.  We present the algorithm in a 

similar way to [60].  The specifications for the DES non-pipelined encryption design are the 

following: 

• The inputs to the top-level component are a 64-bit Key and 64-bit Data. 

• The output to the top-level component is a 64-bit Cipher Data. 

• The cost must be less than 33,216 Logic Elements. 

 
2.1.1 DES Key Schedule Component For Encryption 
 
 

The first part of the encryption algorithm involves scheduling 16 48-bit sub keys from the 

64-bit key.  These sub keys are introduced in order into the heart of the DES algorithm, which 

are called Feistel Function rounds.  As seen in Figure 12, the key scheduler is presented in five 

steps: initial key permutation (PC_1), split into left and right halves (c0 and d0), left shift-rotate, 

concatenation and final key permutation (PC_2).  The specifications for the DES key schedule 

component for encryption are the following: 

• The input to the top-level key schedule component is the 64-bit Key. 

• The outputs are 16-sub keys k1, k2, k3, …, k16. 
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Figure 12: Top Key Schedule Component For DES Encryption. 

Refer to the Appendix A section to view the VHDL code for the top key schedule 

component for encryption in DES_encrypt.vhd.   

To provide a numerical example, lets assume the input key is 133457799BBCDFF1 in 

hexadecimal [D]. The 64-bit binary string is as follows: 

Key  =  [0001 0011 0011 0100 0101 0111 0111 1001 1001 1011 1011 1100 1101 1111 

1111 0001] 

The permutation choice 1 is implemented as seen in Figure 13.  A permutation is a 

scrambling of the bits.  The initial key permutation reduces the key from the original 64 bits to 

56 bits.  The remaining 8 bits are not used in the key scheduling process but are rather used for 

error detection. 
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Figure 13: Permutation Choice 1 Diagram [60]. 

From the numerical example stated above, the Key = 133457799BBCDFF1 in hex, the 

initial permutation would yield in the following 56-bit string: 

[1111000011001100101010101111 0101010101100110011110001111] 

The numbers inside the cells of Figure 13 represent the position of the bit in “Key”.  E.g.  bit7 = 

1, bit15 = 1, bit23 = 1, bit31 = 1, bit39 = 0, bit47 = 0, . . . , bit60 = 1.   

The initial key permutation, which is implemented in the PC_1.vhd file, can be found in the 

appendix section of this report.  The resulting 56-bit string is split in two halves c0 and d0.  

Continuing the example, c0 and d0 would yield the following: 

c0 = [1111000011001100101010101111] 

d0 = [0101010101100110011110001111] 

c0 and d0 are 28-bit strings.  These two strings of bits are left rotated by the amounts specified in 

Table 4. 
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Table 4: Left Rotations 

 

Once the rotation is applied, each pair cn & dn is denoted as: c1, d1, c2, d2, c3, d3, c4, 

d4, . . . c15, d15.  Each shift-rotation yields the sets of strings seen in Figure 14.  The VHDL 

components for 1 left rotation and 2 left rotations are in Appendix A under SRL_1.vhd and 

SRL_2.vhd. 
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Figure 14: Left Rotation Outputs 

Each cn, dn pair is concatenated resulting in a 56-bit string.  A final permutation (PC_2) 

is applied to each cn, dn concatenated pair.  This permutation, as seen in Figure 15, reduces the 

bit string from 56 bits to 48 bits.  The concatenation and permutation are processed in the 

PC_2.vhd file and can be found in Appendix A. 
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Figure 15: Permutation Choice 2 Diagram. 

The final permutation to the string pairs yield the following sixteen sub keys that are used 

in the Feistel functions of the DES scheme. 

k1 = [000110110000001011101111111111000111000001110010] 

k2 = [011110011010111011011001110110111100100111100101] 

k3 = [010101011111110010001010010000101100111110011001] 

k4 = [011100101010110111010110110110110011010100011101] 

k5 = [011111001110110000000111111010110101001110101000] 

k6 = [011000111010010100111110010100000111101100101111] 

k7 = [111011001000010010110111111101100001100010111100] 

k8 = [111101111000101000111010110000010011101111111011] 

k9 = [111000001101101111101011111011011110011110000001] 

k10 = [101100011111001101000111101110100100011001001111] 

k11 = [001000010101111111010011110111101101001110000110] 

k12 = [011101010111000111110101100101000110011111101001] 

k13 = [100101111100010111010001111110101011101001000001] 

k14 = [010111110100001110110111111100101110011100111010] 
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k15 = [101111111001000110001101001111010011111100001010] 

k16 = [110010110011110110001011000011100001011111110101] 

 
2.1.2 DES Encryption Initial Permutation, Final Permutation and 16 Rounds 
 
 

The encryption process includes an initial permutation (IP), split into the left and right 

halves (L0, R0), 16 rounds of substitution (Feistel function, f) and XOR, and a final permutation 

(FP).  Figure 16 depicts the top component in our DES encryption design.  The DES encryption 

VHDL component is found in Appendix A under DES_encrypt.vhd.   

 

Figure 16: DES Encryption Top Component. 

To provide a numerical example, lets assume the input data is 012345679ABCDEF in 

hexadecimal. The 64-bit binary string is as follows: 
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data = [0000 0001 0010 0011 0100 0101 0110 0111 1001 1010 1011 1100 1101 1110 

1111] 

The initial permutation is performed as seen in Figure 17. 

 

Figure 17: Initial Permutation. 

It is important to note that in the initial permutation, no bits are dropped because this is 

the actual data that is encrypted.  If we set the data equal to   012345679ABCDEF, in hex, as 

stated earlier, the initial permutation yields the following string of bits: 

[1100110000000000110011001111111111110000101010101111000010101010] 

The permuted data is split into the left and right 32-bit strings.  These strings of bits are 

32-bit long strings and we label them as L0 and R0 respectively.  L0 and R0 are as follows: 

L0 = [11001100000000001100110011111111]  

R0 = [11110000101010101111000010101010] 

The initial permutation VHDL code is found in the appendix section under 

init_permutation.vhd. 

The Feistel function, denoted as f(Rn-1,kn) in Figure 18, is what makes the scheme 

nearly unbreakable.  The Feistel function can be narrowed into 4 steps:  Expansion Permutation, 

XOR with the sub key kn, Substitution/Transformation and P-Permutation.  
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Figure 18: Feistel Function Design. 

There are ten components in the Feistel Function Design: the expansion permutation, the 

permutation and eight substitution boxes.  The Feistel function mapping in VHDL is provided in 

feistel_func.vhd in Appendix A. 

The right side (Rn - 1), which is a 32-bit string, is expanded and permuted to 48 bits, E(Rn - 1).  

The expansion permutation is done as shown in Figure 19 and the VHDL code is under 

expan_perm.vhd in Appendix A. 
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Figure 19: Expansion Permutation. 

The expansion permutation stage results in a 48-bit string.  The XOR operation is applied 

to this string along with its corresponding sub key kn.  The expansion permutation stage and the 

XOR operation with the sub key kn is denoted as “kn XOR E(Rn-1).”   

The result of the XOR is a 48-bit string that is divided into 8-6 bits strings as seen in 

Figure 18.  The 6-bit strings are fed to the boxes S1 through S8.  Every box has a 6-bit input and 

a 4-bit output.  Lets take as an example the S1 Box.  The six incoming bits are bits 47, 46, 45, 44, 

43, 42.  Bits 47 and 42 will determine the row in box 1 (box 1 is shown in Figure 20).  Bits 46, 

45, 44 and 43 will determine the column in box 1.  The substitution box 1 is shown in Figure 20.  

E.g. if bits [47 42] = [0 0] and bits [46 45 44 43] = [1 1 0 0], then the chosen cell contains 

decimal value 5.  5 is [0101] in binary.  Therefore [011000] will be replaced by [0101].  The 

similar scenario applies for all the eight substitution boxes.  Figures 20 though 27 show the 

content of the remaining substitution boxes. 
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Figure 20: Substitution Box S1 [60]. 

 

Figure 21: Substitution Box S2 [60]. 

 

Figure 22: Substitution Box S3 [60]. 
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Figure 23: Substitution Box S4 [60]. 

 

Figure 24: Substitution Box S5 [60]. 

 

Figure 25: Substitution Box S6 [60]. 
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Figure 26: Substitution Box S7 [60]. 

 

Figure 27: Substitution Box S8 [60]. 

Lets assume that the 48-bit string input to the S-boxes is [0110 0001 0001 0111 1011 

1010 1000 0110 0110 0101 0010 0111].  Then the string will be divided as follows: 

[011000 010001 011110 111010 100001 100110 010100 100111] 

The result of the S-boxes will yield the following 32-bit string: 

[0101 1100 1000 0010 1011 0101 1001 0111] 

In this report, the resulting 32-bit string of the S-boxes is denoted as S(kn XOR E(Rn-1)).  

The implementation in VHDL of the all eight boxes can be found in Appendix A.  Refer to the 

VHDL files S1.vhd, S2.vhd, S3.vhd, S4.vhd, S5.vhd, S6.vhd, S7.vhd and S8.vhd. 

This 32-bit string S(kn XOR E(Rn-1)) will undergo another permutation (p-permutation) 

before it exists the Feistel function for the current round.  The permutation is applied as shown in 

Figure 28. 
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Figure 28: Feistel Permutation 

The implementation of the P-Permutation in VHDL and the update of Rn can be found in 

the permutation.vhd file in the appendix section of this report. 

The result of this permutation we call f(kn,Rn-1), which is also the output of the Feistel function.  

In order to proceed to the next round, Ln and Rn must be updated.  Rn = f(kn,Rn-1) XOR Ln-1.  

Ln = Rn-1.  The new Rn and Ln are fed to the Feistel function in the next round. The sixteen 

rounds of the Feistel function yield sixteen left and right pair of 32-bit strings (L1, R1, L2, R2, 

L3, R3, . . . L16, R16).  Continuing the example from above, the following left and right pairs, 

seen in Figure 29, are the results. 
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Figure 29: Left and Right 16 Round Outputs 

Once the 16th round is executed, the final permutation, already discussed in Figure 16, is 

applied to the concatenation of L16 and R16 and the result is the 64-bit cipher data.  The 

permutation is applied as seen in Figure 30. 
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Figure 30: Final Permutation 

The final result is a 64-bit string that we call cipher data.  In our example, where the key 

is 133457799BBCDFF1 and the data is 012345679ABCDEF, the final permutation yields the 

cipher data to be 85E813540F0AB405 in hex.  The binary representation of the cipher data is: 

cipher data =  [1000 0101 1110 1000 0001 0011 0101 0100 0000 1111 0000 1010 1011 

0100 0000 0101] 

The implementation of the final permutation in VHDL is achieved in the file 

inv_init_permutation.vhd that can be found in Appendix A. 

 
2.2 DES Non-Pipelined Design For Decryption 

 
 

Our DES decryption non-pipelined design is very similar to the encryption design.  The 

main difference is key scheduling process.  The 16 Feistel rounds, the initial permutation and 

final permutation remain unchanged.  The specifications for the DES non-pipelined encryption 

design are the following: 

• The inputs to the top-level component are a 64-bit Key and 64-bit Cipher. 
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• The output to the top-level component is a 64-bit Data. 

• The cost must be less than 33,216 Logic Elements. 

2.2.1 DES Key Schedule Component For Encryption 

The first part of the decryption algorithm involves scheduling 16 48-bit sub keys from the 

64-bit key.  These sub keys are supposed to be introduced in reverse order, into the heart of the 

DES algorithm, if the keys are generated as discussed in Section 2.1.1.  As seen in Figure 31, the 

key scheduling performs right rotations instead.  The specifications for the DES key schedule 

component for encryption are the following: 

• The input to the top-level key schedule component is the 64-bit Key. 

• The outputs are 16-sub keys k1, k2, k3, …, k16. 

There are four components in the top key schedule component. Components PC_1 and 

PC_2 are discussed in Section 2.1.1.1.  However, Right Rotate 1 and Right Rotate 2 replace the 

Left Rotate components.  Refer to Appendix section to view the VHDL code of the top key 

schedule component for decryption DES_decrypt.vhd, the Right Rotate 1 component SRR_1.vhd 

and the Right Rotate 2 component SRR_2.vhd.  Implementing right rotates in the decryption key 

schedule maintains a coherent mapping between the 16 sub keys and the 16 rounds in DES.  This 

consistency makes it simple to implement our DES Pipelined decryption design seen in Section 

3.1.2. 

 



41	
	

 

Figure 31: Top Key Schedule Component For DES Decryption. 

It is important to note that the amount by which cn and dn right rotate is also changed as 

seen in Figure 31.  The 16 48-bit sub keys generated with the decryption key scheduler are 

shown bellow.  The decryption key schedule VHDL code is in Appendix A under KS_D.vhd. 

k16 = [110010110011110110001011000011100001011111110101] 

k15 = [101111111001000110001101001111010011111100001010] 

k14 = [010111110100001110110111111100101110011100111010] 

k13 = [100101111100010111010001111110101011101001000001] 

k12 = [011101010111000111110101100101000110011111101001] 

k11 = [001000010101111111010011110111101101001110000110] 

k10 = [101100011111001101000111101110100100011001001111] 

k9 = [111000001101101111101011111011011110011110000001] 
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k8 = [111101111000101000111010110000010011101111111011] 

k7 = [111011001000010010110111111101100001100010111100] 

k6 = [011000111010010100111110010100000111101100101111] 

k5 = [011111001110110000000111111010110101001110101000] 

k4 = [011100101010110111010110110110110011010100011101] 

k3 = [010101011111110010001010010000101100111110011001] 

k2 = [011110011010111011011001110110111100100111100101] 

k1 = [000110110000001011101111111111000111000001110010] 

 
2.2.2 DES Decryption Initial Permutation, Final Permutation and 16 Rounds 
 
 

Figure 32 depicts the top component in our DES decryption design.  The DES decryption 

component is found in the appendix section under DES_decrypt.vhd.  As seen in Figure 30, the 

16 Feistel rounds, the initial permutation and the final permutation remain unchanged.  The only 

change is the order in which the keys are fed in each round.  The keys are fed in the reverse order 

from the way they were fed in the encryption process.  Following the previous example, if the 

input Cipher Data is 85E813540F0AB405 in hex, then the output Data is 012345679ABCDEF in 

hex. 
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Figure 32: DES Decryption Top Component. 

2.3 TDES Non-Pipelined Design For Encryption and Decryption 
 
 
 We present the TDES algorithms as described in [58].  The TDES top component for 

encrypting consists of three linked DES components as seen in Figure 33.  The specification of 

the TDES encryption design must be the following: 

• The inputs to the top-level component are 3 64-bit keys and 64-bit Data. 

• The output to the top-level component is a 64-bit Cipher Data. 

• The cost must be less than 33,216 Logic Elements. 
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Figure 33: TDES Non-Pipelined Encryption. 

The TDES encryption design is composed of a DES encryption component whose output 

is fed to a second DES decryption component whose output is fed to third DES encryption 

component.  DES 1 is encrypted using key1, DES 2 is decrypted using key2 and DES 3 is 

encrypted using key 3.  The output of DES 3 is the cipher data.  The VHDL code, 

TDES_encrypt.vhd, for our TDES encryption component is in the Appendix A section. 

Similarly, the TDES top component for decrypting consists of three linked DES components as 

seen in Figure 34. The specification of the TDES decryption design must be the following: 

• The inputs to the top-level component are 3 64-bit keys and 64-bit Cipher. 

• The output to the top-level component is a 64-bit Data. 

• The cost must be less than 33,216 Logic Elements. 

 

 

Figure 34: TDES Non-Pipelined Decryption. 

The TDES decryption design is composed of a DES decryption component whose output 

is fed to a second DES encryption component whose output is fed to third DES decryption 

component.  DES 1 is decrypted using key3, DES 2 is encrypted using key2 and DES 3 is 
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decrypted using key 1.  The output of DES 3 is the data.  The VHDL code, TDES_decrypt.vhd, 

for our TDES decryption component is in the Appendix A section. 

An important note, made in [62], is that certain keys reduce the security provided by DES 

and TDES.  The following keys, in hex, are considered weak keys: 

• 01010101 01010101 

• FEFEFEFE FEFEFEFE 

• E0E0E0E0 F1F1F1F1 

• 1F1F1F1F 0E0E0E0E 

There are also 6 keys considered semi-weak and 48 possibly weak keys.  These keys 

either generate 16 identical sub-keys or generate 4 distinct sub-keys.  The outcome of the 

encryption and decryption, by using these keys, is identical.  These keys should be avoided.  The 

list of all the weak keys, semi-weak keys and possibly weak keys is found in [62]. 
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CHAPTER III  
 
 

DES & TDES PIPELINED DESINGS IN VHDL 
 
 

In Chapter II we presented our non-pipelined designs.  In this chapter, we continue 

optimizing the performance of the designs by means of pipelining.  Without pipelining, the 

frequency at which the input is fed to the algorithm must be lower than the frequency at which 

the input propagates the entire logic of the scheme.  By pipelining our design, we don’t have to 

wait until the input propagates the entire logic to feed the next input.  We only wait until the 

input reaches the next stage.  In general, pipelining reduces the propagation time from one stage 

to the next.  Increasing the depth of the pipeline decreases the propagation delay between stages.  

A pipeline stage in the design is achieved by applying a buffer, also known as a set of memory 

elements or registers, at the place in logic where the stage is desired.  Increasing the pipeline 

depth increases the hardware cost by increasing the number of registers.  Further information on 

pipelining can be obtained in [63]. 

To pipeline our designs we take advantage of the 16 Feistel function rounds in DES.  We 

pipeline after every Feistel function round.  The pipeline is also applied to the key schedules 

presented in Chapter 2.  The pipelined depth of our DES design is 16 stages and the depth of our 

TDES design is 48 stages.  This chapter is organized as follows: In Section 3.1 and 3.2 we 

present our DES Pipelined designs and in Section 3.3 we present our TDES pipelined designs.  

We also present a key bank that buffers the 3 input keys and feeds them to each DES component 

in the proper clock cycle.
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In these sections we include our encryption scheme, decryption scheme and the 

specifications that our designs must meet.  The VHDL code for each component in the 

encryption and decryption designs is referenced in the text and provided in Appendix A. 

 
3.1 DES Pipelined Design For Encryption 

 
 

The main change from the non-pipelined to the pipelined architecture is the buffers after 

every Feistel function round.  The specifications for the DES pipelined encryption design are the 

following: 

• The inputs to the top-level component are a 64-bit Key and 64-bit Data. 

• The output to the top-level component is a 64-bit Cipher Data. 

• The pipeline depth must be 16 stages and coherent to the 16 sub keys. 

• The pipeline depth of the key scheduler must be 15 stages. 

• The time propagations must meet the requirement for a 50 MHz clock. 

• The cost must be less than 33,216 Logic Elements 

 
3.1.1 DES Key Schedule Component For Encryption 
 
 

To implement our encryption pipelined design, our DES non-pipelined design must incur 

two mayor modifications.  The first modification concerns the key scheduler.  The specifications 

for the key scheduler are the following: 

• The input to the top-level key schedule component is the 64-bit Key. 

• The outputs are 16-sub keys k1, k2, k3, …, k16. 

• The pipeline depth of the key scheduler must be 15 stages. 

• The time propagations must meet the requirement for a 50 MHz clock 
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Figure 35 shows the modification made to the key schedule component. 

 

Figure 35: Key Schedule Pipelined Design for Encryption. 

As seen in Figure 35, we pipelined the key schedule component by implementing 15 48-

bit registers.  We named these reg1, reg2, …, reg15.  The frequency requirement is discussed in 

Chapter 5.  Refer to Appendix A to view the VHDL code of the pipelined key schedule 

encryption design under KS_E_P.vhd. 

 
3.1.2 16 Stages In The DES Encryption Pipeline  
 
 
 The second mayor modification is done on the top component in DES where the 16 

Feistel function rounds are executed.  Figure 36 shows the modifications made to the DES 

Encryption design. 
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Figure 36: DES Pipelined Encryption Top Component. 
 
 

 As seen in Figure 36, we achieve the 16-stage pipeline by implementing 30 32-bit 

registers and one 64-bit buffer.  These registers are L1 through L15 and R1 through R15.  The 

buffer is cipher_buffer.  The 16 sub keys are properly mapped to the 16 Feistel function rounds.  

The frequency requirement is discussed in Chapter 5.  Refer to Appendix A to view the VHDL 

implementation of the pipelined DES encryption component under DES_encrypt_P.vhd. 
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3.2 DES Pipelined Design For Decryption 
 
 

The specifications for the DES pipelined decryption design are the following: 

• The inputs to the top-level component are a 64-bit Key and 64-bit Cipher. 

• The output to the top-level component is a 64-bit Data. 

• The pipeline depth must be 16 stages and coherent to the 16 sub keys. 

• The pipeline depth of the key scheduler must be 15 stages. 

• The time propagations must meet the requirement for a 50 MHz clock. 

• The cost must be less than 33,216 Logic Elements 

 
3.2.1 DES Key Schedule Component For Encryption 

 
 

To implement our encryption pipelined design, our DES non-pipelined design must incur 

two mayor modifications.  The first modification concerns the key scheduler.  The specifications 

for the key scheduler are the following: 

• The input to the top-level key schedule component is the 64-bit Key. 

• The outputs are 16-sub keys k1, k2, k3, …, k16. 

• The pipeline depth of the key scheduler must be 15 stages. 

• The time propagations must meet the requirement for a 50 MHz clock 

Figure 37 shows the modification made to the key schedule component. 
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Figure 37: Key Schedule Pipelined Design for Decryption. 

	
As seen in Figure 37, we pipelined the key schedule component by implementing 15 48-

bit registers.  We named these reg1, reg2, …, reg15.  The left rotations, on cn and dn, as 

discussed in Chapter 2, allow the coherent mapping of the key to the proper Feistel round.  The 

frequency requirement is discussed in Chapter 5.  Refer to Appendix A to view the VHDL code 

of the pipelined key schedule encryption design under KS_D_P.vhd. 

 
3.2.2 16 Stages In The DES Decryption Pipeline  
 
 
 The pipelined DES decryption top component remains the same as the component 

presented in 3.1.2.  The only difference is the order in which the sub keys are fed to the 16 

Feistel function rounds.  See Figure 38.  The order of the sub keys is discussed in Section 3.2.1.  
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The frequency requirement is discussed in Chapter 5.  Refer to Appendix A to view the VHDL 

implementation of the DES decryption component under DES_decryption_P.vhd. 

 

Figure 38: DES Pipelined Decryption Top Component. 

3.3 TDES Pipelined Design For Encryption and Decryption 
 
 

The specifications for the TDES pipelined encryption design must be the following: 

• The inputs to the top-level component are 3 64-bit keys and 64-bit Data. 

• The output to the top-level component is a 64-bit Cipher Data. 

• The pipeline depth must be 48 stages. 

• The time propagations must meet the requirement for a 50 MHz clock. 
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• The cost must be less than 33,216 Logic Elements 

To implement our pipelined TDES encryption design, first we link 3 Pipelined DES 

components as shown in Figure 39. 

 

Figure 39: DES Components Linked To Implement The TDES Encryption. 

From Figure 39 we see that it takes 16 cycles for Data to reach Data1, the output of DES 

1 Pipelined Encrypt.  It takes 32 cycles for Data to reach Data 2 and it takes 48 cycles to reach 

Cipher Data.  Key1, Key2 and Key3 must be appropriately buffered before they are fed to their 

respective DES component, otherwise, Key2 and Key3 would be encrypting the incorrect input.  

Key1 is fed into DES 1 along with Data and therefore no buffering is needed for Key1.  However 

Key2 must wait (be buffered) 15 cycles before it is fed to DES 2.  Key3 must be buffered 31 

cycles before it is fed to DES 3.  This ensures that Data is processed with the correct key at the 3 

stages of DES.  Figure 40 shows how we buffer Key2 and Key3 in the key bank.  Refer to 

Appendix A to view the VHDL implementation of the key bank component under key_bank.vhd.  

The frequency requirements and the timing analysis are discussed in Chapter 5. 
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Figure 40: Key Bank Component For The TDES Design. 

 

Figure 41 shows the mapping of the components TDES and the key bank.  

 

Figure 41: TDES And Key Bank Top Component Mapping For Encryption. 

 

Refer to Appendix A to view the VHDL code of the TDES Encryption top component 

TDES_encrypt_P.vhd. 

The TDES decryption is very similar to the encryption.  To implement the decryption, the 

encrypting processes must be reversed.  The keys must be inserted starting with the third key, 
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second key and first key.  Figure 42 shows the map of the 3 DES components.  The 

specifications for the TDES pipelined decryption design must be the following: 

• The inputs to the top-level component are 3 64-bit keys and 64-bit Data. 

• The output to the top-level component is a 64-bit Cipher Data. 

• The pipeline depth must be 48 stages. 

• The time propagations must meet the requirement for a 50 MHz clock. 

The cost must be less than 33,216 Logic Elements 

 

 

Figure 42: DES Components Linked To Implement The TDES Decryption. 

Figure 43 shows the mapping of the components TDES and the key bank. 

 

 

Figure 43: TDES And Key Bank Top Component Mapping For Decryption. 
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Refer to Appendix A to view the VHDL code of the TDES Decryption top component 

under TDES_decrypt_P.vhd.  The frequency requirements and the timing analysis are discussed 

in Chapter 5. 



	 57	

CHAPTER IV 
 
 

ECB MODE OF OPERATION VALIDATION SYSTEM FOR 3DES & DES 
 
 

DES and TDES can be implemented in several modes: Electronic Codebook (ECB), 

Cipher Block Chaining (CBC), Cipher Feedback (CFB) and the Output Feedback (OFB).  The 

Electronic Codebook (ECB) mode of operation validation for DES and 3DES is presented in this 

chapter.  We also present the validation results for ECB mode.  ECB mode only requires a key 

and the data as inputs.  This mode of operation does not require additional input vector(s).  ECB, 

being a non-feedback operation mode, does not require the scheme to perform a full 

cryptographic operation before proceeding to the next operation.  This allows us to validate the 

non-pipelined and pipelined schemes presented in Chapter 3. 

The validation, in this chapter, is presented as described in the National Institute of 

Standards and Technology (NIST) special publications 800-17 and 800-20 Modes of Operation 

Validation Systems (MOVS): Requirements and Procedures. “The MOVS is designed to perform 

automated testing on Implementations Under Test (IUTs)” [26] [27].  We implement the 

following six tests to validate our design: 

• Test 1: Variable Plaintext KAT (Known Answer Test) 

• Test 2: Inverse Permutation KAT 

• Test 3: Permutation Operation KAT for Encryption/Decryption 

• Test 4: Permutation Operation KAT for Encryption/Decryption
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• Test 5: Substitution table KAT for Encryption/Decryption 

• Test 6: Modes Test for Encrypt/Decrypt (MONTECARLO) 

Each test is designed to validate a specific portion of the algorithm.  E.g. the Variable 

Plaintext KAT validates the Initial and Final permutations of the schemes.  It is important to note 

that in this work, we implement a slight variation of Tests 2 and 6.  We discuss these variations 

in sections 4.3 and 4.6. respectively. 

Figure 44 shows the setup for validating the ECB mode of operation for the encryption 

process. 

 
Figure 44: ECB Mode of Operation for DES/TES Encryption 

 
In ECB mode of operation for encryption, the data block is defined as D0, D1, D2,…,Dn 

and the input block is defined as I0, I1, I2,…,In.  The data block is directly used as the input 

block, which means that D0, D1, D2,…,Dn = I0, I1, I2,…,In.  The input block is encrypted using 

the encryption scheme.  The output block of the encryption scheme is defined as the O0, O1, 

O2,…,On and is the direct cipher block defined as C0, C1, C2,…,Cn.  The ECB mode is 

straightforward.  No additional input vectors are required and no feedback configuration is 

needed. 
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Figure 45 shows the setup for validating the ECB mode of operation for the decryption 

process.  The setup is very similar to the encryptions setup.  No additional input vectors and a 

feedback configuration are needed. 

 
Figure 45: ECB Mode of Operation for DES/TDES Decryption 

 
The organization of this chapter is presented by each validation test mentioned above.  

For each validation test section we overview the test scheme and present the results obtained 

using the EDA tool, Altera U.P. Simulator.  For each test, we only show the results for our 

pipelined schemes to prevent this document from populating with many redundant figures.  We 

are more concerned with validating the pipelined schemes due to the timing violations and 

delays.  The only change made from the non-pipelined to the pipelined designs, are the addition 

of registers.  If our pipelined designs successfully passed the validation tests, so will our non-

pipelined designs. 

 
4.1 Variable Plaintext KAT 

 
 

 The Variable Plaintext KAT consists on setting the key to zero and maintaining this value 
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though out the encryption of all the 64 data input vectors.  The data consists of 64-64 bit vectors, 

provided in the lookup Table 5, and each vector is encrypted utilizing the initialized key.  The 

standard definition of a vector applies here.  One of the 64 bits is set to 1 and all other bits are set 

to zero. 

Table 5:  Variable Plaintext KAT for Encryption Cipher Results 

Resulting Cipher Text for DES/TDES Variable Plaintext KAT 

key = 0x0000000000000000  
  

Plain Text (Data) Cipher Text 
D0 = 0x8000000000000000 C0 = 0x9A90BC0B75C73703 

D1 = 0x4000000000000000 C1 = 0xCC6843598C732BBE 

D2 = 0x2000000000000000 C2 = 0x1372953509B3C14C 

D3 = 0x1000000000000000 C3 = 0x70AAAA8418E48930 

. . 

. . 

. . 
D60 = 0x0000000000000008 C60 = 0x96B491C1FE443E9A  

D61 = 0x0000000000000004 C61 = 0xD0E014CFEE94589D 

D62 = 0x0000000000000002 C62 = 0x0B9E44B537AF2879 

D63 = 0x0000000000000001 C63 = 0x22F428E3EC491E60 

 
As seen in Table 5, encrypting the 64-64 bit data vectors with key 0x0000000000000000 

yields 64-64 bit cipher text results.  In Table 5 we show a few results, but the NIST publications 

800-17 and 800-20 contain the list of all the 64 cipher results.  In Figures 46 and 47 show partial 

cipher data results of Test 1 for our DES and TDES designs. 
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Figure 46: DES Pipelined Encryption MOV Test 1 

 

 
Figure 47: TDES Pipelined Encryption MOV Test 1 Part 2 

	
As seen in Figures 46 and 47, the cipher results match the expected ciphers from Table 5.  

MOV Test 1 passed. 

 
4.2 Inverse Permutation KAT for Encryption 

 
 

The Inverse Permutation KAT consists on setting the key to zero and maintaining this 

value though out the encryption of all the 64 data inputs.  The input data consists of the 64 cipher 

texts generated from the Variable Plaintext KAT. 
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Table 6: Inverse Permutation KAT for Encryption Cipher Results 

Resulting Cipher Text for DES/TDES Variable Plaintext KAT 

key = 0x0000000000000000  
  

Plain Text (Data) Cipher Text 
D0 = 0x9A90BC0B75C73703 C0 = 0x8000000000000000 

D1 = 0xCC6843598C732BBE C1 = 0x4000000000000000 

D2 = 0x1372953509B3C14C C2 = 0x2000000000000000 

D3 = 0x70AAAA8418E48930 C3 = 0x1000000000000000 

. . 

. . 

. . 
D60 = 
0x96B491C1FE443E9A 

C60 = 0x0000000000000008 

D61 = 
0xD0E014CFEE94589D 

C61 = 0x0000000000000004 

D62 = 
0x0B9E44B537AF2879 

C62 = 0x0000000000000002 

D63 = 0x22F428E3EC491E60 C63 = 0x0000000000000001 

 
As seen in Table 6, encrypting the 64-64 bit data inputs with key 0x0000000000000000 

yield 64-64 bit vectors.  In Table 6 we only show a few results but NIST publications 800-17 and 

800-20 contain the full results table.  Figures 48 and 49 show partial cipher data results of Test 2 

for our DES and TDES designs. 

 

 
Figure 48: DES Pipelined Encryption MOV Test 2 
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Figure 49: TDES Pipelined Encryption MOV Test 2 Part 2 

As seen in Figures 5 and 6, the cipher results match the expected ciphers from Table 6.  

MOV Test 2 passed. 

 
4.3 Variable Key KAT 

 
 

The Variable Key KAT consists on setting the input data to zero and maintaining this 

value though out the encryption with all the 64 key input vectors.  It is not necessary to input 64 

key vectors.  Since 8 bits in the key are used as parity, the key vectors containing a value vector 

in the parity can be discarded.  This yields in 56 keys that produce 56 different ciphers.  

Encrypting with key vectors, whose value is in the parity, produce the same cipher as encrypting 

with key 0x0000000000000000.  For the validation of Test 3, we encrypt using all 64 key 

vectors. 

 

 

 

 

 

 



	 64	

Table 7: Variable Key KAT for Encryption Cipher Results 

Resulting Cipher Text for DES/TDES Variable Plaintext KAT 

D0,…,D63 = 
0x0000000000000000 

 

  
Plain Text (Data) Cipher Text 

key0 = 0x8000000000000000 C0 = 
0x95A8D72813DAA94D 

key1 = 0x4000000000000000 C1 = 
0x0EEC1487DD8C26D5 

key2 = 0x2000000000000000 C2 = 0x7AD16FFB79C45926 

key3 = 0x1000000000000000 C3 = 0xD3746294CA6A6CF3 

. . 

. . 

. . 
key60 = 0x0000000000000008 C60 = 

0x5A594528BEBEF1CC 

key61 = 0x0000000000000004 C61 = 
0xFCDB3291DE21F0C0 

key62 = 0x0000000000000002 C62 = 
0x869EFD7F9F265A09 

key63 = 0x0000000000000001 C63 = 
0x8CA64DE961B123A7 

 
As seen in Table 7, encrypting the data 0x0000000000000000 with the 64 key vectors 

yield corresponding cipher text results.  NIST publications 800-17 and 800-20 contain the full 

cipher text results table.  The tables in publications 800-17 and 800-20 only contain 56 ciphers 

because the ciphers generated with keys containing a parity bit as the vector are not taken into 

account.  As mentioned before, 8 bits are removed from the key for parity purposes.  Figures 50 

and 51 show partial cipher data results of Test 3 for our DES and TDES designs. 
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Figure 50: DES Pipelined Encryption MOV Test 3 

 

 
Figure 51: TDES Pipelined Encryption MOV Test 3 Part 2 

As seen in Figures 50 and 51, the cipher results match the expected ciphers from Table 7.  

MOV Test 3 passed. 

 
4.4 Permutation Operation KAT for Encryption 

 
 

The Permutation Operation KAT for Encryption consists on setting input data to zero and 

maintaining this value though out the encryption with all the 32 different keys seen in Table 8. 

 

 

 

 

 

 



	 66	

Table 8: Permutation Operation KAT for Encryption Cipher Results 

Resulting Cipher Text for DES/TDES Variable Plaintext KAT 

D0,…,D63 = 
0x0000000000000000 

 

  
Plain Text (Data) Cipher Text 

key0 = 0x1046913489980131 C0 = 0x88D55E54F54C97 B4 

key1 = 0x1007103489988020 C1 = 0x0C0CC00C83EA48 
FD 

key2 = 0x10071034C8980120 C2 = 0x83BC8EF3A6570183 

key3 = 0x1046103489988020 C3 = 
0xDF725DCAD94EA2E9 

. . 

. . 

. . 
Key28 = 0x1002911598100104 C28 = 

0xB3E35A5EE53E7B8D 

Key29 = 0x1002911598190104 C29 = 
0x61C79C71921A2EF8 

Key30 = 0x1002911598100201 C30 = 0xE2F5728F0995013C 

Key31 = 0x1002911698100101 C31 = 
0x1AEAC39A61F0A464 

 
As seen in Table 8, encrypting the data 0x0000000000000000 with the 32 different keys 

yields 32 cipher text results.  NIST publications 800-17 and 800-20 contain the full cipher text 

results table.  Figures 52 and 53 show partial cipher data results of Test 4 for our DES and TDES 

designs. 
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Figure 52: DES Pipelined Encryption MOV Test 4 

 

 
Figure 53: TDES Pipelined Encryption MOV Test 4 Part 2 

 
As seen in Figures 52 and 53, the cipher results match the expected ciphers from Table 8.  

MOV Test 4 passed. 

 
4.5 Substitution Table KAT for Encryption 

 
 

The Substitution Table KAT for Encryption consists on validating the encryption with the 

respective data and key given in Table 9. 

Table 9: Substitution Table KAT for Encryption Cipher Results 

 Resulting Cipher Text for DES/TDES Variable Plaintext 
KAT 

   
Plain Text (Data) key Cipher Text 

key0 = 0x01A1D6D039776742 key0 = 0x7CA110454A1A6E57 C0 = 0x690F5B0D9A26939B 

key1 = 0x5CD54CA83DEF57DA key1 = 0x0131D9619DC1376E C1 = 0x7A389D10354BD271 
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key2 = 0x0248D43806F67172 key2 = 0x07A1133E4A0B2686 C2 = 0x868EBB51CAB4599A 

key3 = 0x51454B582DDF440A key3 = 0x3849674C2602319E C3 = 0x7178876E01F19B2A  

. . . 

. . . 

. . . 

key60 = 0x072D43A077075292 key60 = 0x4FB05E1515AB73A7 C60 = 0x2F22E49BAB7CA1AC 

key61 = 0x02FE55778117F12A key61 = 0x49E95D6D4CA229BF C61 = 0x5A6B612CC26CCE4A 

key62 = 0x1D9D5C5018F728C2 key62 = 0x018310DC409B26D6 C62 = 0x5F4C038ED12B2E41 

key63 = 0x305532286D6F295A key63 = 0x1C587F1C13924FEF C63 = 0x63FAC0D034D9F793  

 
NIST publications 800-17 and 800-20 contain the full cipher text results table.  Figures 

54 and 55 show partial cipher data results of Test 5 for our DES and TDES designs. 

 
Figure 54: DES Pipelined Encryption MOV Test 5 

 

 
Figure 55: TDES Pipelined Encryption MOV Test 5 Part 2 

	
As seen in Figures 53 and 54, the cipher results match the expected ciphers seen in Table 
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9.  MOV Test 5 passed. 

 
4.6 Modes Test for encrypt (MONTECARLO) 

 
 

The Modes Test for Encrypt consists on initializing a 64-bit key and a 64-bit data input.  

In our case, we initialize the key to 0x0000000800000000 and the input data to 

0x0000000000000000.  The cipher data that yields from processing these two, 

0x4F644C92E192DFED, is fed back to the encryption algorithm as the next 64-bit data input.  

Which means that, now the data input is 0x4F644C92E192DFED.  This operation is performed 

10000 times.  At the 10000th time the key is updated by XOR-ing the current key with the 

current cipher.  This operation is repeated for 400 keys.  This yields four million ciphers that 

must be validated.  These are too many ciphers.  Instead of updating the key every 10000 

ciphers, in our implementation of MONTECARLO, we update the key every 128 ciphers.  

Bellow, we show our MONTECARLO implementations and simulation results for our DES and 

TDES pipelined schemes. 

Figure 13 shows how we implement the MONTECARLO simulation for the pipelined 

DES encryption scheme. 
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Figure 56: DES Montecarlo Test For Encryption 

 
As seen in Figure 56, we feed the cipher back into the scheme every 16 clock cycles.  Our 

pipelined scheme takes 16 clock cycles to process a 64-data input.  Clock_16 clocks a D-Flip 

Flop every 16 cycles allowing us to feed the cipher back into the encryption scheme.  Clock_128 

clocks a D-Flip Flop every 128 clock_16 cycles.  This means that every 128 clock_16 cycles, the 

key is updated.  The new key equals to the current key XOR-ed with the current cipher.  If at any 

time the reset is set, the key and the data input are reset to the initialized values.  Figure 57 shows 

partial results of our MONTECARLO DES simulation. 
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Figure 57: DES Montecarlo Test Results For Encryption 

 
Figure 57 shows that the initial data input is 0x0000000000000000 and the initial key is 

0x0000000800000000.  The MONTECARLO simulation executes as expected.  Every 16 clock 

cycles the cipher feedbacks to the input of the scheme.  Once clk_int128 counts 128 clk_16 

cycles, the key also updates.  For the simulation shown in Figure 57, we also initialize clk_int128 

to 125 clk_16 clock cycles.  This allows us to see a key update at 50 ns. 

Figure 58 shows how we implement the MONTECARLO simulation for the pipelined 

TDES encryption scheme. 
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Figure 58: TDES Montecarlo Test For Encryption 

 
As seen in Figure 58, we feed the cipher back into the scheme every 48 clock cycles.  Our 

pipelined scheme takes 48 clock cycles to process a 64-data input.  Clock_48 clocks a D-Flip 

Flop every 48 cycles allowing us to feed the cipher back into the encryption scheme.  Clock_128 

clocks a D-Flip Flop every 128 clock_48 cycles.  This means that every 128 clock_48 cycles, the 

key is updated.  The new key equals to the current key XOR-ed with the current cipher.  If at any 

time the reset is set, the key and the data input are resent to the initialized values.  Figure 59 

shows partial results of our MONTECARLO TDES simulation. 
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Figure 59: TDES Montecarlo Test Results For Encryption 

 
Figure 59 shows that the initial data input is 0x0000000000000000 and the initial key is 

0x0000000800000000.  The MONTECARLO simulation executes as expected.  Every 48 clock 

cycles the cipher feedbacks to the input of the scheme.  Once clk_int128 counts 128 clk_48 

cycles, the key also updates.  For the simulation shown in Figure 59, we also initialize clk_int128 

to 125 clk_48 clock cycles.  This allows us to see a key update at 640 ns. 



	 74	

CHAPTER V 
 
 

DES AND TDES NON-PIPELINED VS PIPELINED PERFORMANCE  

EVALUATION 
 
 

In this chapter, we evaluate the performance and cost of the designs presented in 

Chapters 2 and 3.  We present the performance and cost evaluation of our DES design, TDES 

design, DES Pipelined design and TDES Pipelined design.  We compare our designs’ 

performances and costs to those presented in [50] through [57].  To demonstrate our performance 

and cost results, we show the simulation results in Quartus II and the Altera University Program 

(U.P.) Simulator.  The compilation results, in Quartus II, provide the cost to implement our 

design in hardware (Altera DE2 Board EP2C35F672C6). The waveform simulations, in the 

Altera U.P. Simulator, provide the throughput and delays in the hardware. 

 
5.1 Hardware Setup and EDA Tools 

 
 

The cost and performance tests took place in the controlled environment of the NRL 

(Network Research Lab) of Electrical/Computer Engineering at The University Of Texas Rio 

Grande Valley.  Although our project does not pose a threat to networks outside of our controlled 

environment, the necessary EDA tools need to be available in the computer where the 

simulations are executed.  An iMac was the element in which the performance of DES and 

TDES was evaluated.  The iMac runs on Windows 8 Enterprise operating system.
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Installed are the two applications that allow to the code to be generated, checked/verified, 

compiled, simulated and finally programed into the DE2hardware.  These two programs are 

Quartus II Web Service Pack 1 edition and the Altera University Program Simulator.  Once the 

blaster driver is installed in the computer, the DE2 Board can be linked to the computer via a 

USB connector.  The setup is seen in Figure 60 below. 

 

 

Figure 60: Design’s Cost and Performance Evaluation Set Up. 

The Quartus II program allows us to generate the VHDL code, test the code for errors, 

receive warning messages, compile the code and finally program the DE2 Board with the 

compiled code.  The compilation results outputs information regarding the hardware’s internal 

components such the total number of Logic Elements (LEs) and how many of them are utilized 

in our design. 

The Altera U.P. Simulation shows the timing analysis for the input and output signals.  

By selecting functional simulation over timing simulation, simulations over many more clock 

cycles can be tested to ensure that the system works as it is intended.  This setup is beneficial 

when simulating a Montecarlo simulation.  By selecting timing simulation over functional 
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simulation, timing violations such as setup time violations and hold time violations can be 

troubleshoot and propagation delays can be analyzed. Making observations on the timing graphs 

allow us to ensure that our scheme will operate properly once it is implemented in hardware.  

Based on these observations we can calculate the throughput of our system. 

 
5.2 Parameters of Performance Evaluation 

 
 
 To evaluate the performance of our DES and TDES designs, we discuss the observations 

in the EDA tools in which we built, simulated and tested our designs: the Quartus II software, the 

Altera University Program Simulator and the Altera DE2 board.  The parameters that we analyze 

from the Quartus II software are the Total Logic Elements, the Total Combinational Functions, 

the Dedicated Logic Registers, the Total Registers, the Total Pins, the Total Memory bits and the 

time it takes Quartus II to run the Analysis and Synthesis.  From the Altera U.P. Simulator, the 

parameters that we analyze are the time delays and signal propagation delays.  Based on the 

Altera U.P. Simulator and the DE2 Board specs we also analyze the throughput of our designs. 

 
5.3 Results and Discussion 

 
 

The evaluation results from Quartus II, the Altera U.P. Simulator and the DE2 platform 

show the cost and performance of our designs.  We begin by discussing the cost and performance 

of each design individually.  Finally we compare our cost and performance against other designs 

mentioned in [50] through [57]. 
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5.3.1 DES Encryption and Decryption Non Pipelined 
 
 
Our DES Encryption and Decryption schemes are implemented in 22 VHDL files in 

Quartus II.  The Implementation is previously discussed in Chapter 2.  The Analysis and 

Synthesis on the Encryption and Decryption schemes, in Quartus II, generates the following 

report windows seen in Figures 61 & 62. 

 

 

 

Figure 61: DES Encryption Analysis & Synthesis Cost Results. 
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Figure 62: DES Decryption Analysis & Synthesis Cost Results. 

As seen in Figures 61 and 62, the DES encryption and decryption schemes utilize 12% of 

the Total Logic Elements: this is 4,059 of 33,216.  0% of the Dedicated Logic Registers were 

utilized: that is 0 of 33,216.  The Total registers utilized were also 0.  The total number of pins 

utilized was 320 of 475, which is 67%.  And the Total Memory Bits utilized were 0 of 483,840, 

which is 0%.  According to the Analysis and Synthesis, other parameters mentioned in the 

compilation report are Virtual pins, Embedded Multiplier 9-bit elements and PLLs (Phase Lock 

Loops).  We didn’t make used of these elements throughout our designs and we will not take 

these parameters into consideration in further discussions.  

 An observation made when running the Analysis and Synthesis is the amount it takes 

Quartus II to complete the analysis and synthesis process.  Running the Analysis and Synthesis 

on the DES Non Pipelined encryption and decryption schemes takes about 3 minutes as seen in 

Figures 63 and 64.  In Section 5.3.6 we compare the Analysis and Synthesis running time of all 

our designs. 
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Figure 63: DES Encryption Analysis & Synthesis Running Time. 

 

Figure 64: DES Decryption Analysis & Synthesis Running Time. 

 The timing diagrams from the Altera U.P. Simulator, seen in Figures 65 and 66, are 

obtained by running the Substitution Table Known Answer Test (Test 5) as stated in Chapter 4.  

From these timing diagrams we can make several observations. 
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Figures 65 and 66 depict three outputs, the data with its corresponding key and cipher 

data.  The output of our encryption and decryption designs depend on the input data and cipher 

data respectively, and the input key.  In the timing simulation results shown in the above Figures 

65 and 66, we set the both input elements to change at the same time so that we can obtain the 

longest delay time.   

As seen in Figures 67 and 68, we update the inputs at 100 ns.  The output begins to 

update at 110 ns, 10ns after the inputs are updated and it displays unstable signals for about 80 

ns.  The output signal reaches stability after 90 ns.  This information lets us know that our DES 

Non Pipelined system design has a propagation delay of 90 ns.  This is the time it takes the input 

signal to propagate through the design from the time it is fed into the system until it reaches the 

output.  A time period of 100 ns ensures that the output will be stable by time the next 64 input 

bits updates our system.  Therefore, if T is the period at which we update the inputs, and T is 100 

ns then the estimated throughput of our design is 640 Megabits per second as shown in Equation 

1. 
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𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = !" !"#$
!

=  !" !"#$
!"" !"

= 640 𝑀𝑒𝑔𝑎𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 Equation 1 

Another observation from the Altera U.P. Simulator is the time the simulator takes to run 

the node finder, and the time it takes to execute the simulation.  These times increase or decrease 

in our different designs.  We also note that the time to execute functional simulation is greater 

than executing a time simulation.  In Section 5.3.6 we compare the execution times of our 

various designs.  

For this non-pipelined design, the node finder time for both the encryption and decryption 

is about 4 minutes.  These results can be seen in Figures 69 and 70 respectively. 

 

Figure 69: DES Encryption Node Finder Time. 
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Figure 70: DES Decryption Node Finder Time. 

 To execute the simulation in functional mode, the simulation takes about 30 seconds to 

generate the netlist as seen in Figures 71 and 72. 
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Figure 71: DES Encryption Generate Simulation Netlist Time. 
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Figure 72: DES Decryption Generate Simulation Netlist Time. 

After generating the netlist, the simulation spends about 4 minutes executing the 

simulation as seen in Figures 73 and 74. 
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Figure 73: DES Encryption Functional Simulation Time. 
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Figure 74: DES Decryption Functional Simulation Time. 

 Executing the simulation in timing mode only takes about 15 seconds as seen in Figures 

75 and 76. 
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Figure 75: DES Encryption Timing Simulation Time. 
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Figure 76: DES Decryption Timing Simulation Time. 

 Because the implementations for the encryption and decryption are very similar, we 

obtain results that are almost equal for both.  We see the same relationship between the 

encryption and decryption for all our designs: that is DES pipelined encryption and decryption, 

TDES encryption and decryption and TDES pipelined encryption and decryption.  In the 

following sections we only show the results for encryption and we keep in mind that the same 

results apply for the decryption scheme. 

 
5.3.2 TDES Encryption and Decryption Non Pipelined 
 
 

Our TDES Encryption and Decryption schemes are implemented in 25 VHDL files in 

Quartus II.  The Implementation is previously discussed in Chapter 3.  The Analysis and 
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Synthesis on the Encryption and Decryption schemes, in Quartus II, generates the following 

report window seen in Figure 77. 

 

 

Figure 77: TDES Analysis & Synthesis Cost Results. 

As seen in Figure 77, the TDES encryption and decryption schemes utilize 37% of the 

Total Logic Elements, which are 12,285 of 33,216.  37% of the Total Combinational Functions 

are utilized: that is 12,285 of 33,216.  0% of the Dedicated Logic Registers were utilized: that is 

0 of 33,216.  The Total registers utilized are also 0.  The total number of pins utilized is 448 of 

475, which is 94%.  And the Total Memory Bits utilized are 0 of 483,840, which is 0%.  

 Running the Analysis and Synthesis on the TDES Non Pipelined encryption and 

decryption schemes takes about 13 minutes as seen in Figure 78.  In Section 5.3.6 we compare 

the Analysis and Synthesis running time to the other designs we implemented. 
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Figure 78: TDES Analysis & Synthesis Running Time. 

 The timing diagram from the Altera U.P. Simulator, seen in Figure 79, is obtained by 

running part of the Substitution Table Known Answer Test (Test 5) as stated in Chapter 4.  From 

these timing diagrams we can make several observations. 
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Figure 79 depicts three outputs, the data with its corresponding key and cipher data.  The 

outputs of our encryption and decryption designs depend on the input data and cipher data 

respectively and the three input keys.  In the timing simulation results shown in the above Figure 

79 we set the all input elements to change at the same time so that we can obtain the longest 

delay time.   

As seen in Figure 80 we update the inputs at 270 ns.  The cipher data output begins to 

update at 280 ns, 10ns after the inputs are updated and it displays unstable signals for about 235 

ns.  The output signal reaches stability after 245 ns at the 515 ns mark.  This information lets us 

know that our DES Non Pipelined system design has a propagation delay of 245 ns.  Note that 

this delay is about three times more than our DES non-pipelined design.  Since TDES is three 

times the hardware of DES we expect this increase in delay.  A time period of 270 ns ensures 

that the output will be stable by time the next 64 input bits updates our system.  Therefore, if T is 

the period at which we update the inputs, and T is 270 ns then the estimated throughput of our 

design is 237 Megabits per second as shown in Equation 2. 
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𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = !" !"#$
!

=  !" !"#$
!"# !"

= 237 𝑀𝑒𝑔𝑎𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑  Equation 2 

In this non-pipelined design, the node finder time for both the encryption and decryption 

is about 15 minutes.  This result can be seen in Figure 81. 

 

 

Figure 81: TDES Node Finder Time. 

To execute the simulation in functional mode, the simulation takes about 1 minute and 15 

seconds to generate the netlist as seen in Figure 82. 
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Figure 82: TDES Generate Simulation Netlist Time. 

After generating the netlist, the simulation spends about 13 minutes executing the 

simulation as seen in Figure 83. 
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Figure 83: TDES Functional Simulation Time. 

Executing the simulation in timing mode only takes about 1 minute as seen in Figure 84. 
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Figure 84: TDES Timing Simulation Time. 

5.3.3 DES Pipelined Encryption and Decryption 
 
 
Our DES Pipelined Encryption and Decryption schemes are implemented in 22 VHDL 

files in Quartus II.  The Implementation is previously discussed in Chapter 4.  The Analysis and 

Synthesis on the Encryption and Decryption schemes, in Quartus II, generates the following 

report window seen in Figure 85. 
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Figure 85: DES Pipelined Analysis & Synthesis Cost Results. 

As seen in Figures 85, the DES pipelined encryption and decryption schemes utilize 14% 

of the Total Logic Elements, which is 4,645 and 4,570 of 33,216 respectively.  12% of the Total 

Combinational Functions are utilized: that is 3,842 of 33,216.  6% of the Dedicated Logic 

Registers were utilized: that is 1,996 and 1,988 of 33,216 respectively.  The Total registers 

utilized are also 1,996 and 1,998 respectively.  The total number of pins utilized is 385 of 475, 

which is 81%.  And the Total Memory Bits utilized are 936 and 1,664 of 483,840 respectively, 

which is less than 1%.  

 Running the Analysis and Synthesis, on the DES pipelined encryption and decryption 

schemes, takes about 2 minutes as seen in Figure 86.  In Section 5.3.6 we compare the Analysis 

and Synthesis running time to the other designs we implemented. 

 

 

Figure 86: DES Pipelined Analysis & Synthesis Running Time. 
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 The timing diagram from the Altera U.P. Simulator, seen in Figure 87, is obtained by 

running the Substitution Table Known Answer Test (Test 5) as stated in Chapter 4.  From these 

timing diagrams we can make several observations. 
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Figure 87 depicts three outputs, the data with its corresponding key and cipher data.  The 

output of our encryption and decryption designs depend on the input data and cipher data 

respectively and the input key.  Because these designs are pipelined as presented in Chapter 3, 

we update the inputs at the same time that our clock strikes the positive edge.  Since both, our 

encryption and decryption designs are negative edge triggered, to avoid any set up time or hold 

time violations we modify the inputs on the positive edge of the clock.  After the negative edge 

strikes, the input data will go through our pipelined design.  Since there are 16 rounds in the 

encryption/decryption scheme, and we have pipelined our design at every round, it will take 16 

clock cycles for the input data to reach the output of our design.  After the initial 16-cycle delay, 

our systems outputs at every clock cycle.  Therefore, if T is the period for one clock cycle, and T 

is 20 ns (since the DE2 board’s internal clock is 20 ns), then the estimated throughput of our 

design is 3.2 Gigabits per second as shown in Equation 3. 

 

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ≈ !" !"#$
!

 ≈  !" !"#$
!" !"

≈ 3.2 𝐺𝑖𝑔𝑎𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 Equation 3 

As seen in Figure 88, the negative edge of the clock triggers at 330 ns.  The output begins 

to update 6 ns after the clock triggers the negative edge, and displays unstable signals for about 2 

ns seconds.  The output signal reaches stability after 8 ns seconds at the 338 ns mark.  This 

information lets us know that our DES pipelined system design has a propagation delay of 8 ns 

seconds.  Note that this delay is much less than our non-pipelined designs because the amount of 

hardware that processes the input signal in every pipelined stage is much less.  In the case of the 

non-pipelined designs, the input signal must traverse the entire designs.  Every clock cycle, the 

pipeline design only processes the signal to an equivalent of one round of hardware in DES.  

This allows us to achieve a shorter delay and a higher throughput. 
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In this Pipelined design, the node finder time for both the encryption and decryption is 

about 3 minutes.  This result can be seen in Figure 89. 

 

 

Figure 89: DES Pipelined Node Finder Time. 

To execute the simulation in functional mode, the simulation takes about 26 seconds to 

generate the netlist as seen in Figure 90. 
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Figure 90: DES Pipelined Generate Simulation Netlist Time. 

After generating the netlist, the simulation spends about 1 minute to execute the 

simulation as seen in Figure 91. 
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Figure 91: DES Pipelined Functional Simulation Time. 

Executing the simulation in timing mode only takes a few seconds as seen in Figure 92. 
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Figure 92: DES Pipelined Timing Simulation Time. 

5.3.4 TDES Pipelined Encryption and Decryption 

Our TDES Pipelined Encryption and Decryption schemes are implemented in 25 VHDL 

files in Quartus II.  The Implementation is previously discussed in Chapter 4.  The Analysis and 

Synthesis on the Encryption and Decryption schemes, in Quartus II, generates the compilation 

report window seen in Figure 93. 

 



	 109	

 

Figure 93: TDES Pipelined Analysis & Synthesis Cost Results. 

As seen in Figure 93, the TDES pipelined encryption and decryption schemes utilize 42% 

of the Total Logic Elements, which is 13,216 of 33,216.  35% of the Total Combinational 

Functions are utilized: that is 11,544 of 33,216.  18% of the Dedicated Logic Registers are 

utilized: that is 5,848 of 33,216.  The Total registers utilized are also 5,848.  The total number of 

pins utilized is 449 of 475, which is 95%.  And the Total Memory Bits utilized are 5,496 of 

483,840, which is 1%.  

 Running the Analysis and Synthesis, on the TDES pipelined encryption and decryption 

schemes, takes about 4 minutes as seen in Figure 94.  In Section 5.3.6 we compare the Analysis 

and Synthesis running time to the other designs we implemented. 

 

 

Figure 94: TDES Pipelined Analysis & Synthesis Running Time. 
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 The timing diagram from the Altera U.P. Simulator, seen in Figure 95, is obtained by 

running part of the Substitution Table Known Answer Test (Test 5) as stated in Chapter 4.  From 

these timing diagrams we can make several observations. 
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Figure 95 depicts three outputs, the data with its corresponding key and cipher data.  

Notice that only one key is shown since all three keys are the same in this example.  The outputs 

of our encryption and decryption designs depend on the input data and cipher data respectively 

and the three input keys.  Because these designs are pipelined as presented in Chapter 3, we 

update the inputs at the same time that our clock strikes the positive edge.  Since both, our 

encryption and decryption designs are negative edge triggered, to avoid any set up time or hold 

time violations we modify the inputs on the positive edge of the clock.  After the negative edge 

strikes, the input data will be go through our pipelined design.  Since there are 48 rounds in the 

encryption/decryption scheme, and we have pipelined our design at every round in the DES 

scheme, it will take 48 clock cycles for the input data to reach the output of our design.  After the 

initial 48-cycle delay, our systems outputs at every clock cycle.  Therefore, if T is the period for 

one clock cycle, and T is 20 ns (since the DE2 board’s internal clock is 20 ns), then the estimated 

throughput of our design is 3.2 Gigabits per second as shown in Equation 4. 

 

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ≈ !" !"#$
!

 ≈  !" !"#$
!" !"

≈ 3.2 𝐺𝑖𝑔𝑎𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 Equation 4 

As seen in Figure 86, the negative edge of the clock triggers at 960 ns.  The output begins 

to update 6 ns after the clock triggers the negative edge, and displays unstable signals for about 3 

ns seconds.  The output signal reaches stability after 9 ns seconds at about 969 ns.  This 

information lets us know that our DES pipelined system design has a propagation delay of 9 ns 

seconds.  Again it is important to note that this delay is much less than our non-pipelined designs 

because the amount of hardware that processes the input signal in every pipelined stage is much 

less as discussed in Section 5.3.4. 
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In this Pipelined design, the node finder time for both the encryption and decryption is 

about seven and a half minutes.  This result can be seen in Figure 97. 

 

 

Figure 97: TDES Pipelined Node Finder Time. 

To execute the simulation in functional mode, the simulation takes about a minute and a 

half to generate the netlist as seen in Figure 98. 
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Figure 98: TDES Pipelined Generate Simulation Netlist Time. 

After generating the netlist, the simulation spends about two and a half minutes to 

execute the simulation as seen in Figure 99. 
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Figure 99: TDES Pipelined Functional Simulation Time. 

 Executing the simulation in timing mode only takes a few seconds as seen in Figure 100. 
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Figure 100: TDES Pipelined Timing Simulation Time. 

5.3.5 DES and TDES Cost and Performance Comparison 
 
 

In the previous sections, 5.3.1 through 5.3.5, we discuss the cost and performance of each 

of our designs separately.  In Table 10 we compare each design side by side. 
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Table 10: DES & TDES Hardware Cost Comparison. 

 

 

The total number of logic elements in our device lets us know how much hardware space 

our design occupies.  In the non-pipelined design, we only used about 4,000 logic elements from 

the 33,000 total to implement the DES encryption.  If we wish to implement both, the encryption 

and decryption, a total of about 8,000 logic elements would be used.  Since TDES is the DES 

scheme three times, we see that the space triples as well for the TDES scheme.  Implementing 

both TDES encryption and decryption would take about 25,000 logic elements. 

Comparing our non-pipelined vs. our pipelined designs, the number of logic elements 

used increases by 600 in DES and by 1,600 in TDES.  The number of logic elements increase 

because our pipelined designs implements registers at every round in the DES scheme.  As seen 

in Table 10, the total number of registers is zero in our non-pipelined designs, but in our 

pipelined DES and TDES designs the total number of registers is 1,196 and 5,848 registers 

respectively. 

The throughput performances of our designs vary from the non-pipelined to the pipelined 

designs as seen in Table 11.  TDES has the lowest throughput with 237 Mbps.  This throughput 

is about 1/3 of the throughput achieved with DES.  DES achieves a throughput of 640 Mbps.  
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Pipelining both designs, TDES and DES, greatly increased the throughput to 3.2 Gbps.  That is 

13.5 times more than the non-pipelined TDES design and 5 times more than the non-pipelined 

DES design.  The throughput of our designs is based on the time delays and propagation delays 

obtained. 

 

Table 11: DES & TDES Delay Analysis and Throughput Comparison. 

 

 

5.3.6 Quartus II and Altera U.P. Simulator Observations 
 
 

In Table 12 we compare the time executions for the Analysis and Synthesis in Quartus II. 

Table 12: DES & TDES Analysis and Synthesis Times. 

 

  

It takes 3 minutes for Quartus II to execute the Analysis and Synthesis on our DES code 

and the time quadruples for the TDES code.  TDES executes in about 13 minutes.  However, the 

time decreases for the DES and TDES pipelined designs to 2 minutes and 4 minutes respectively. 



	 120	

 In Table 13 we compare the times it took the Altera U.P. Simulator to execute the first 

five validation tests mentioned in Chapter 4.  We executed the simulations in functional mode. 

 

Table 13: DES & TDES Validation Simulation Times In Functional Mode 

 

 

We notice that the time it takes to execute a simulation in our non-pipelined designs take 

longer than our pipelined designs.  To execute the first three tests in the TDES non-pipelined 

design take more than three hours each.  However, this time decreased to three minutes in our 

TDES pipelined design. 

Executing the validation tests in timing mode only takes a minute or two.  However, the 

zoom in function in the wave figure windows has a very large delay.  Zooming into the 

waveform causes a stall for about a minute and a simple scroll produces stalls of about the same 

time.  It is inconvenient to check the waveforms this way because of the stall time.  It is 

convenient to check the waveforms in functional mode because we don’t have stalls.  Referring 

to the execution times seen in Table 13, to check the tests results of our designs we prefer 

running the simulation in timing mode for our TDES non-pipelined design.  We prefer running 

the simulation in functional mode for our DES non-pipelined, DES pipelined and TDES 

pipelined. 
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5.3.7 Performance and Cost Literature Review Comparisons 
 
 

In this section we compare our design’s cost and performance to the designs discussed in 

[50] through [57].  In Table 14 we see the cost and performance of various designs, including 

ours, side by side. 

Table 14: DES & TDES Designs Comparisons 

 

As seen in Table 14, not all publications contain the cost or performance of their designs.  

In [52], the authors did not provide information relating to the cost and performance of their 

TDES design. 

For the most part, we found publications in which DES, DES pipelined and TDES 

designs are implemented.  Publications in which TDES pipelined designs are implemented are 

scarce. 
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Form Table 14, we see that the performance of DES varies from 59.56 Mbps to 4.8 Gbps.  

The throughput performance depends on the system’s delay and the number of stages 

implemented.  The system’s delay is inversely proportional to the systems operable clock speed 

and frequency.  The operable frequency is the frequency at which the system outputs a 64-bit 

cipher block.  Faster operable clock speeds and a higher number of stages results in higher 

throughput.  Our design’s performance is 640 Mbps.  We achieve this throughput by 

implementing a 16-stage design at an operable frequency of 10 MHz.  Although a faster clock is 

implemented in [40], the authors implement only one stage.  This yields the low throughput of 

347.1Mbps and their operable frequency is 5.69 MHz.  [53] has the lowest throughput of 69.56 

Mbps because their operable frequency is 17.39 MHz and the design is one-stage also.  In [55] 

the authors claim that the clock speed is 1201.923 MHz, but their throughput is 4.8 Gbps.  This 

means that their operable frequency is 75.120 MHz = 1201.923 MHz / 16.  We can infer from 

this that and the information provided that their system is a one-stage.  Also, the authors in [55] 

do not provide any cost information on their design.  In [50] the cost of their design is 596 CLBs.  

The cost in [53] is 851 LCs.  Our cost is 4,059 LEs.  Our cost is higher because we implement 16 

stages as opposed to one in [50] and [53]. 

The performance of DES Pipelined varies from 138.88 Mbps to 18.2 Gbps.  Our design’s 

performance is 3.2 Gbps.  We achieve this throughput by implementing a 16-stage pipelined 

design at an operable frequency of 50 MHz.  In [53], the authors implemented several pipelined 

stages designs from 2 to 16.  A two stage pipelined design yields a low throughput of 138.88 

Mbps.  A 16 stage pipelined design yields a throughput of 1.054 Gbps and their operable 

frequency is about 17 MHz.  In [55], a high throughput of 18.2 Gbps is seen and the operable 

frequency is 294.031 MHz.  No information regarding the cost of the design in [55] is provided.  
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In [53], the cost varies from 1305 LCs for the two-stage to 5991 LCs for the 16-stage design.  

Our cost is 4645 LEs.  More stages available in the design yield a higher cost and a higher 

throughput. 

Our TDES design achieves a throughput of 237 Mbps and has a cost of 12,285 LEs.  Our 

operating frequency is 3.7 MHz.  In [50], a throughput of 115.7 Mbps is achieved, and their 

design has a cost of 596 CLBs.  Their cost is low because only one DES stage is implemented as 

opposed to our 16 DES stage.  [52] only mentions that they implement the TDES design but no 

information regarding the performance and cost of their system is given. 

Our TDES pipelined design achieves a throughput of 3.2 Gbps and has a cost of 13,915 

LEs.  Our operating frequency is 50 MHz.  In [60] the authors claim that the clock speed is 

215.165 MHz, but their throughput is 800.66 Gbps.  This means that their operable frequency is 

about 13.45 MHz ≈ 215.165 MHz / 16. 
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CHAPTER VI 
 
 

CONCLUSIONS AND FUTURE WORK 
 
 

Undoubtedly, cryptography maintains the confidentiality component of the security triad.  

Without confidentiality, the black hat hacker community would have their way with ease, 

implementing attacks on computer systems around the world gaining personal information and 

causing great financial losses.  In March 2015, Target was ordered to compensate 10 million 

dollars to the victims affected by Target’s security breach in 2013.  “The data breach at Target, 

which took place during the height of the 2013 holiday shopping season, was one of the largest 

in U.S. corporate history [64].”  In this breach, the personal and financial information of 

approximately 40 million customers was exposed yielding in card frauds, inconvenient charges 

and fees.  Target was not the only company that suffered losses; most card companies offer to 

reimburse 100% of card frauds and they also experienced a loss.  Sony also suffered millions in 

loss due to a breach by a famous hack group, named Anonymous, in 2014.  Anonymous hacked 

Sony, threatened to leak information, incur higher damages and acts of terror if Sony’s film, The 

Interview, was released.  The release only yielded revenue of 31 million by January 2015 as the 

budget for the film was 44 million [65].  The market demands include reliability, security and 

fast performance.  Although the cost increases with performance, more concern is given to 

acquiring higher performance and security, 
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rather than saving some extra cash.  The results of not having a strong security outweighs saving 

on the cost. 

In this thesis we focused on improving the performance of two commonly used 

encryption schemes: DES and TDES.  Alteras DE2 board technology EP2C35F672C6 is the 

hardware platform that allowed us to measure the performance of our implementations, which 

were coded and tested in Altera’s Quartus II software and Altera’s University Program 

Simulator.  These programs also provided information regarding the cost of our implementations. 

In Chapter I we demonstrated the common Alice, Bob and Eve eavesdropping scenario 

that shows the need for secure communications.  We overviewed the importance of 

cryptography, the up to day relevance, the history, the applications and how it has chanced the 

course of history.  In Table 2 we compared the computational power and the time required to run 

a brute force attack on these schemes.  The chart shows that DES and TDES are still reliable.  

DES is the only scheme that has been susceptible to a successful brute force attack in less than 

24 hours.  However, this is achieved at the expense of great cost and resources, and since this 

scheme is only used for applications of minor importance, a brute force attack on this scheme is 

not worth the hassle.  TDES, on the other hand, is not susceptible to brute force attack.  It would 

take thousands of years to traverse through all the possible key combinations.  Further more, we 

discussed the EDA tools we used to code and test the logic designs: Altera’s Quartus II and 

Altera’s University Program Simulator.  We also showed that, even though the technology of our 

hardware platform, Altera’s EP2C35F672C6, only supports a 50 MHz clock speed, we may be 

able achieve a throughput of 3.2 Gbps if we experience no setup time or hold time violations. 

We presented the logic designs of our non-pipelined implementations of DES and TDES 

in Chapter 2 for both, the encryption and decryption processes.  We presented all the different 
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components of the cryptography schemes including the components in the key scheduling as 

presented in [60] and [62].  In [60] and [62], the authors show the key scheduling for the 

encryption processes only.  They state that, for the decryption, the keys are applied in reverse 

order.  Instead of using the same encryption key-scheduling scheme, for the decryption key 

scheduling, we implemented a right rotation on the half strings of bits.  By applying the right 

rotations, we had flexibility to pipeline our designs as presented in chapter 3. The logic designs 

of all our components in VHDL, for the non-pipelined designs, are overviewed in this chapter as 

well.  Every VHDL file is referenced in Appendix A.  We also followed though the schemes 

with a numerical example using the key 0x133457799BBCDFF1 and the data input 

0x012345679ABCDEF.  At every stage of the key scheduling processes and the 

encryption/decryption processes we show the results as the inputs traverse the algorithms.  The 

total number of VHDL files generated to implement our non-pipelined schemes is 25. 

In Chapter 3 we covered in detail the logic designs in VHDL, the components and the 

modifications incurred to achieve the pipelined designs for DES and TDES.  The VHDL files are 

referenced in the appendix section.  The main changes in the DES pipelined design only 

concerned the addition of memory elements (Flip Flops) also known as sequential elements or 

registers.  These registers buffered the data as it traversed the 16 rounds of DES.  This means that 

the pipeline of our DES design was 16 stages.  As discussed in chapter 2, our LEFT shifts 

implementation, in the decryption key scheduling process, allowed us to pipeline through the 48 

rounds of TDES with ease.  The pipeline for our TDES design is 48 stages.  The literature we 

have reviewed shows that the pipeline depth for their TDES is 3 stages [57].  They pipelined 

after every DES component and did not sub-pipeline the DES components.  Three keys were 

required for TDES.  To properly match the keys with each DES component in TDES pipelined, 
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we implemented a key bank that buffers the keys for either zero cycles, 15 cycles or 31 cycles.  

The total number of VHDL files generated to implement our pipelined schemes is 25. 

We successfully validated our encryption and decryption schemes as specified in the 

NIST special publications 800-17 and 800-20 [26] [27].   In chapter 4 we demonstrated that the 

results of our simulations were consistent with the expected results given in 800-17 and 800-20.  

Using Altera’s University Program Simulator, we showed the timing waveforms of the six 

validation tests.  To prevent this document from rapidly populating with many figures, we 

showed the figures for the pipelined schemes only.  The only validation test that required extra 

logic design, to implement, was the MONTECARLO test.  We demonstrated the feedback logic 

configuration that updates the input data and the key.  A scaled down version of the 

MONTECARLO presented in the NIST publications was implemented.  Instead of updating the 

key every 10000 ciphers, we updated the key every 128 ciphers.  Our pipelined logic designs 

passed the MONTECARLO validation test along with the other five validation tests. 

We presented the cost and performance of our implementation in Chapter 5.  Based on 

the cost information gathered from Altera’s Quartus II software compilation results, the cost 

tripled from DES to TDES logic implementation in VHDL.  The cost information yielded a cost 

of 4,059 Logic Elements for DES non-pipelined and a cost of 12,285 Logic Elements for TDES 

non-pipelined.  This is consistent with what we know because TDES involves 3 DES 

components.  The cost from DES to TDES triples.  In our pipelined designs we saw an increase 

in the cost due to the memory elements we added in every stage of the pipeline.  The cost for our 

DES pipelined is 4,645 and our TDES pipelined is 13,915.  From the cost results seen in Table 

14, we see that the cost of our logic designs is higher that those seen in the other literatures.  

However, their low cost designs yield a lower performance even when their clock frequency is 
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higher.  As explained before, the low cost designs require more cycles per full encryption, thus 

decreasing the throughput.  Altera’s EP2C35F672C6 technology allowed us run the clock at the 

maximum speed of 50 Mhz.  This is a lower frequency compared to the clock speed of the 

devices in the other literatures.  Our non-pipelined designs achieved low throughputs of 640 

Mbps and 237 Mbps for our DES and TDES.  Pipelining both designs allowed us to achieved a 

higher throughput of 3.2 Gbps.  In Table 14, we see that our DES performed better than most of 

the designs in the other literatures while our TDES outperformed all the other designs. 

In this thesis we have successfully implemented, and evaluated two common encryption 

schemes in ECB mode: DES and TDES.  Even though our designs operate at the low clock speed 

of 50 MHz, by increasing the cost (adding more stages), we were able to increase the throughput 

up to 3.2 Gbps.  Future work for this thesis will be to implement, validate and test the DES and 

TDES schemes in Cipher Block Chaining (CBC) mode.  CBC mode takes advantage of the 

feedback configuration and extra input vectors to create a more secure encryption.  CBC 

guarantees that, as long the input vector is different, the cipher generated will be different even 

when the same data is encrypted again. 
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APPENDIX A 
 
 

VHDL FILES 
 
 

DES_decrypt.vhd 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY DES_decrypt IS 
 PORT(cipher_data: IN std_logic_vector(63 DOWNTO 0); 
   K: IN std_logic_vector(63 DOWNTO 0); 
    
   cipher_out: OUT std_logic_vector(63 DOWNTO 0); 
   K_out: OUT std_logic_vector(63 DOWNTO 0); 
   data: OUT std_logic_vector(63 DOWNTO 0)); 
END DES_decrypt; 
 
ARCHITECTURE decryption OF DES_decrypt IS 
 
 COMPONENT KS_D 
 PORT( KEY: IN std_logic_vector(63 DOWNTO 0); 
  
 K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16: OUT 
std_logic_vector(47 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT init_permutation 
 PORT(data: IN std_logic_vector(63 DOWNTO 0); 
   Ln: OUT std_logic_vector(31 DOWNTO 0); 
   Rn: OUT std_logic_vector(31 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT feistel_func 
 PORT(Rn: IN std_logic_vector(31 DOWNTO 0); 
   keyx: IN std_logic_vector(47 DOWNTO 0); 
   Rn_1: OUT std_logic_vector(31 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT inv_init_permutation 
 PORT(Ln: IN std_logic_vector(31 DOWNTO 0); 
   Rn: IN std_logic_vector(31 DOWNTO 0); 
   cipher_data: OUT std_logic_vector(63 DOWNTO 0)); 
 END COMPONENT; 
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SHARED VARIABLE 
K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16: 
std_logic_vector(47 DOWNTO 0); 
 
 SHARED VARIABLE 
fR0_K1,fR1_K2,fR2_K3,fR3_K4,fR4_K5,fR5_K6,fR6_K7,fR7_K8,fR8_K9,fR9_K
10,fR10_K11,fR11_K12,fR12_K13,fR13_K14,fR14_K15,fR15_K16: 
std_logic_vector(31 DOWNTO 0); 
  
 SIGNAL 
L0,L1,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13,L14,L15,L16: 
std_logic_vector(31 DOWNTO 0); 
 SIGNAL 
R0,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16: 
std_logic_vector(31 DOWNTO 0); 
 SIGNAL data_int: std_logic_vector(63 DOWNTO 0); 
 
BEGIN 
 
 Key_schedule : KS_D PORT 
MAP(K,K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16); 
  
 Inital_Perm : init_permutation PORT MAP(cipher_data,L0,R0); 
  
 ---------------------------16 ROUNDS--------------------------
---------- 
 Round1 : feistel_func PORT MAP(R0,K1,fR0_K1); 
 R1 <= L0 XOR fR0_K1; 
        L1 <= R0; 
  
 Round2 : feistel_func PORT MAP(R1,K2,fR1_K2); 
 R2 <= L1 XOR fR1_K2; 
        L2 <= R1; 
         
 Round3 : feistel_func PORT MAP(R2,K3,fR2_K3); 
 R3 <= L2 XOR fR2_K3; 
        L3 <= R2; 
         
 Round4 : feistel_func PORT MAP(R3,K4,fR3_K4); 
 R4 <= L3 XOR fR3_K4; 
        L4 <= R3; 
  
 Round5 : feistel_func PORT MAP(R4,K5,fR4_K5); 
 R5 <= L4 XOR fR4_K5; 
        L5 <= R4; 
  
 Round6 : feistel_func PORT MAP(R5,K6,fR5_K6); 
 R6 <= L5 XOR fR5_K6; 
        L6 <= R5; 
  
 Round7 : feistel_func PORT MAP(R6,K7,fR6_K7); 
 R7 <= L6 XOR fR6_K7; 
        L7 <= R6; 
  
 Round8 : feistel_func PORT MAP(R7,K8,fR7_K8); 
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 R8 <= L7 XOR fR7_K8; 
        L8 <= R7; 
  
 Round9 : feistel_func PORT MAP(R8,K9,fR8_K9); 
 R9 <= L8 XOR fR8_K9; 
        L9 <= R8; 
  
 Round10 : feistel_func PORT MAP(R9,K10,fR9_K10); 
 R10 <= L9 XOR fR9_K10; 
        L10 <= R9; 
  
 Round11 : feistel_func PORT MAP(R10,K11,fR10_K11); 
 R11 <= L10 XOR fR10_K11; 
        L11 <= R10; 
  
 Round12 : feistel_func PORT MAP(R11,K12,fR11_K12); 
 R12 <= L11 XOR fR11_K12; 
        L12 <= R11; 
  
 Round13 : feistel_func PORT MAP(R12,K13,fR12_K13); 
 R13 <= L12 XOR fR12_K13; 
        L13 <= R12; 
  
 Round14 : feistel_func PORT MAP(R13,K14,fR13_K14); 
 R14 <= L13 XOR fR13_K14; 
        L14 <= R13; 
  
 Round15 : feistel_func PORT MAP(R14,K15,fR14_K15); 
 R15 <= L14 XOR fR14_K15; 
        L15 <= R14; 
  
 Round16 : feistel_func PORT MAP(R15,K16,fR15_K16); 
 R16 <= L15 XOR fR15_K16; 
 L16 <= R15; 
 ------------------------------------------------------------ 
  
 Inverse_Init_Perm : inv_init_permutation PORT MAP 
(R16,L16,data_int); 
  
 data<=data_int; 
 cipher_out <= cipher_data; 
 K_out <= K; 
  
END decryption; 
 

DES_decrypt_P.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY DES_decrypt_P IS 
 PORT( clk: IN std_logic; 
   cipher_data: IN std_logic_vector(63 DOWNTO 0); 
   cipher_in: IN std_logic_vector(63 DOWNTO 0); 
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   K: IN std_logic_vector(63 DOWNTO 0); 
    
   cipher_out: OUT std_logic_vector(63 DOWNTO 0); 
   K_out: OUT std_logic_vector(63 DOWNTO 0); 
   data: OUT std_logic_vector(63 DOWNTO 0)); 
END DES_decrypt_P; 
 
ARCHITECTURE decryption OF DES_decrypt_P IS 
 
 COMPONENT KS_D_P 
 PORT( clk: IN std_logic; 
   KEY: IN std_logic_vector(63 DOWNTO 0); 
  
 K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16: OUT 
std_logic_vector(47 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT init_permutation 
 PORT(data: IN std_logic_vector(63 DOWNTO 0); 
   Ln: OUT std_logic_vector(31 DOWNTO 0); 
   Rn: OUT std_logic_vector(31 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT feistel_func 
 PORT(Rn: IN std_logic_vector(31 DOWNTO 0); 
   keyx: IN std_logic_vector(47 DOWNTO 0); 
   Rn_1: OUT std_logic_vector(31 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT inv_init_permutation 
 PORT(Ln: IN std_logic_vector(31 DOWNTO 0); 
   Rn: IN std_logic_vector(31 DOWNTO 0); 
   cipher_data: OUT std_logic_vector(63 DOWNTO 0)); 
 END COMPONENT; 
  
 SHARED VARIABLE 
K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16: 
std_logic_vector(47 DOWNTO 0); 
 SHARED VARIABLE 
fR0_K1,fR1_K2,fR2_K3,fR3_K4,fR4_K5,fR5_K6,fR6_K7,fR7_K8,fR8_K9,fR9_K
10,fR10_K11,fR11_K12,fR12_K13,fR13_K14,fR14_K15,fR15_K16: 
std_logic_vector(31 DOWNTO 0); 
  
 SIGNAL 
L0,L1,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13,L14,L15,L16: 
std_logic_vector(31 DOWNTO 0); 
 SIGNAL 
R0,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16: 
std_logic_vector(31 DOWNTO 0); 
 SIGNAL data_int,data_buffer: std_logic_vector(63 DOWNTO 0); 
  
 SIGNAL n: INTEGER := 0; 
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 SIGNAL 
cipher_int,cipher_int1,cipher_int2,cipher_int3,cipher_int4,cipher_in
t5,cipher_int6,cipher_int7, 
   
 cipher_int8,cipher_int9,cipher_int10,cipher_int11,cipher_int12
,cipher_int13,cipher_int14,cipher_int15: std_logic_vector(63 DOWNTO 
0); 
     
 SIGNAL K_int,K_int1,K_int2,K_int3,K_int4,K_int5,K_int6,K_int7, 
   
 K_int8,K_int9,K_int10,K_int11,K_int12,K_int13,K_int14,K_int15: 
std_logic_vector(63 DOWNTO 0); 
 
BEGIN 
 
 Key_schedule : KS_D_P PORT 
MAP(clk,K,K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16); 
  
 Inital_Perm : init_permutation PORT MAP(cipher_data,L0,R0); 
  
 ---------------------------16 ROUNDS--------------------------
---------- 
 Round1 : feistel_func PORT MAP(R0,K1,fR0_K1); 
  
 Round2 : feistel_func PORT MAP(R1,K2,fR1_K2); 
  
 Round3 : feistel_func PORT MAP(R2,K3,fR2_K3); 
  
 Round4 : feistel_func PORT MAP(R3,K4,fR3_K4); 
  
 Round5 : feistel_func PORT MAP(R4,K5,fR4_K5); 
  
 Round6 : feistel_func PORT MAP(R5,K6,fR5_K6); 
  
 Round7 : feistel_func PORT MAP(R6,K7,fR6_K7); 
  
 Round8 : feistel_func PORT MAP(R7,K8,fR7_K8); 
  
 Round9 : feistel_func PORT MAP(R8,K9,fR8_K9); 
  
 Round10 : feistel_func PORT MAP(R9,K10,fR9_K10); 
  
 Round11 : feistel_func PORT MAP(R10,K11,fR10_K11); 
  
 Round12 : feistel_func PORT MAP(R11,K12,fR11_K12); 
  
 Round13 : feistel_func PORT MAP(R12,K13,fR12_K13); 
  
 Round14 : feistel_func PORT MAP(R13,K14,fR13_K14); 
  
 Round15 : feistel_func PORT MAP(R14,K15,fR14_K15); 
  
 Round16 : feistel_func PORT MAP(R15,K16,fR15_K16); 
 R16 <= L15 XOR fR15_K16; 
 L16 <= R15; 
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 ------------------------------------------------------------ 
  
 Inverse_Init_Perm : inv_init_permutation PORT MAP 
(R16,L16,data_int); 
  
 Process(clk,cipher_data) 
 BEGIN 
  IF(falling_edge(clk)) THEN 
   FOR n IN 0 TO 15 LOOP 
    CASE n IS 
     WHEN 0 => R1 <= L0 XOR fR0_K1; 
        L1 <= R0; 
        cipher_int1 <= 
cipher_in; 
        K_int1 <= K; 
     WHEN 1 => R2 <= L1 XOR fR1_K2; 
        L2 <= R1; 
        cipher_int2 <= 
cipher_int1; 
        K_int2 <= K_int1; 
     WHEN 2 => R3 <= L2 XOR fR2_K3; 
        L3 <= R2; 
        cipher_int3 <= 
cipher_int2; 
        K_int3 <= K_int2; 
     WHEN 3 => R4 <= L3 XOR fR3_K4; 
        L4 <= R3; 
        cipher_int4 <= 
cipher_int3; 
        K_int4 <= K_int3; 
     WHEN 4 => R5 <= L4 XOR fR4_K5; 
        L5 <= R4; 
        cipher_int5 <= 
cipher_int4; 
        K_int5 <= K_int4; 
     WHEN 5 => R6 <= L5 XOR fR5_K6; 
        L6 <= R5; 
        cipher_int6 <= 
cipher_int5; 
        K_int6 <= K_int5; 
     WHEN 6 => R7 <= L6 XOR fR6_K7; 
        L7 <= R6; 
        cipher_int7 <= 
cipher_int6; 
        K_int7 <= K_int6; 
     WHEN 7 => R8 <= L7 XOR fR7_K8; 
        L8 <= R7; 
        cipher_int8 <= 
cipher_int7; 
        K_int8 <= K_int7; 
     WHEN 8 => R9 <= L8 XOR fR8_K9; 
        L9 <= R8; 
        cipher_int9 <= 
cipher_int8; 
        K_int9 <= K_int8; 
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     WHEN 9 => R10 <= L9 XOR fR9_K10; 
        L10 <= R9; 
        cipher_int10 <= 
cipher_int9; 
        K_int10 <= K_int9; 
     WHEN 10 => R11 <= L10 XOR fR10_K11; 
        L11 <= R10; 
        cipher_int11 <= 
cipher_int10; 
        K_int11 <= K_int10; 
     WHEN 11 => R12 <= L11 XOR fR11_K12; 
        L12 <= R11; 
        cipher_int12 <= 
cipher_int11; 
        K_int12 <= K_int11; 
     WHEN 12 => R13 <= L12 XOR fR12_K13; 
        L13 <= R12; 
        cipher_int13 <= 
cipher_int12; 
        K_int13 <= K_int12; 
     WHEN 13 => R14 <= L13 XOR fR13_K14; 
        L14 <= R13; 
        cipher_int14 <= 
cipher_int13; 
        K_int14 <= K_int13; 
     WHEN 14 => R15 <= L14 XOR fR14_K15; 
        L15 <= R14; 
        cipher_int15 <= 
cipher_int14; 
        K_int15 <= K_int14; 
     WHEN 15 => data_buffer <= data_int; 
        cipher_int <= 
cipher_int15; 
        K_int <= K_int15; 
    END CASE; 
   END LOOP; 
  END IF; 
 END PROCESS; 
  
 data<=data_buffer; 
 cipher_out <= cipher_int; 
 K_out <= K_int; 
  
END decryption; 
 

DES_encrypt.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY DES_encrypt IS 
 PORT(data: IN std_logic_vector(63 DOWNTO 0); 
   K: IN std_logic_vector(63 DOWNTO 0); 
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   data_out: OUT std_logic_vector(63 DOWNTO 0); 
   K_out: OUT std_logic_vector(63 DOWNTO 0); 
   cipher_data: OUT std_logic_vector(63 DOWNTO 0)); 
END DES_encrypt; 
 
ARCHITECTURE encryption OF DES_encrypt IS 
 
 COMPONENT KS_E 
 PORT(KEY: IN std_logic_vector(63 DOWNTO 0); 
  
 K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16: OUT 
std_logic_vector(47 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT init_permutation 
 PORT(data: IN std_logic_vector(63 DOWNTO 0); 
   Ln: OUT std_logic_vector(31 DOWNTO 0); 
   Rn: OUT std_logic_vector(31 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT feistel_func 
 PORT(Rn: IN std_logic_vector(31 DOWNTO 0); 
   keyx: IN std_logic_vector(47 DOWNTO 0); 
   Rn_1: OUT std_logic_vector(31 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT inv_init_permutation 
 PORT(Ln: IN std_logic_vector(31 DOWNTO 0); 
   Rn: IN std_logic_vector(31 DOWNTO 0); 
   cipher_data: OUT std_logic_vector(63 DOWNTO 0)); 
 END COMPONENT; 
  
 SHARED VARIABLE 
K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16: 
std_logic_vector(47 DOWNTO 0); 
 SHARED VARIABLE 
fR0_K1,fR1_K2,fR2_K3,fR3_K4,fR4_K5,fR5_K6,fR6_K7,fR7_K8,fR8_K9,fR9_K
10,fR10_K11,fR11_K12,fR12_K13,fR13_K14,fR14_K15,fR15_K16: 
std_logic_vector(31 DOWNTO 0); 
  
 SIGNAL 
L0,L1,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13,L14,L15,L16: 
std_logic_vector(31 DOWNTO 0); 
 SIGNAL 
R0,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16: 
std_logic_vector(31 DOWNTO 0); 
 SIGNAL cipher_int: std_logic_vector(63 DOWNTO 0); 
  
 SIGNAL n: INTEGER := 0; 
  
 SIGNAL 
data_int,data_int1,data_int2,data_int3,data_int4,data_int5,data_int6
,data_int7, 
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 data_int8,data_int9,data_int10,data_int11,data_int12,data_int1
3,data_int14,data_int15: std_logic_vector(63 DOWNTO 0); 
  
 SIGNAL K_int,K_int1,K_int2,K_int3,K_int4,K_int5,K_int6,K_int7, 
   
 K_int8,K_int9,K_int10,K_int11,K_int12,K_int13,K_int14,K_int15: 
std_logic_vector(63 DOWNTO 0); 
 
BEGIN 
 
 Key_schedule : KS_E PORT 
MAP(K,K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16); 
  
 Inital_Perm : init_permutation PORT MAP(data,L0,R0); 
  
 ---------------------------16 ROUNDS--------------------------
---------- 
 Round1 : feistel_func PORT MAP(R0,K1,fR0_K1); 
 R1 <= L0 XOR fR0_K1; 
 L1 <= R0; 
  
 Round2 : feistel_func PORT MAP(R1,K2,fR1_K2); 
 R2 <= L1 XOR fR1_K2; 
 L2 <= R1; 
  
 Round3 : feistel_func PORT MAP(R2,K3,fR2_K3); 
 R3 <= L2 XOR fR2_K3; 
 L3 <= R2; 
  
 Round4 : feistel_func PORT MAP(R3,K4,fR3_K4); 
 R4 <= L3 XOR fR3_K4; 
 L4 <= R3; 
  
 Round5 : feistel_func PORT MAP(R4,K5,fR4_K5); 
 R5 <= L4 XOR fR4_K5; 
 L5 <= R4; 
  
 Round6 : feistel_func PORT MAP(R5,K6,fR5_K6); 
 R6 <= L5 XOR fR5_K6; 
 L6 <= R5; 
  
 Round7 : feistel_func PORT MAP(R6,K7,fR6_K7); 
 R7 <= L6 XOR fR6_K7; 
 L7 <= R6; 
  
 Round8 : feistel_func PORT MAP(R7,K8,fR7_K8); 
 R8 <= L7 XOR fR7_K8; 
 L8 <= R7; 
  
 Round9 : feistel_func PORT MAP(R8,K9,fR8_K9); 
 R9 <= L8 XOR fR8_K9; 
 L9 <= R8; 
  
 Round10 : feistel_func PORT MAP(R9,K10,fR9_K10); 
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 R10 <= L9 XOR fR9_K10; 
 L10 <= R9; 
  
 Round11 : feistel_func PORT MAP(R10,K11,fR10_K11); 
 R11 <= L10 XOR fR10_K11; 
 L11 <= R10; 
  
 Round12 : feistel_func PORT MAP(R11,K12,fR11_K12); 
 R12 <= L11 XOR fR11_K12; 
 L12 <= R11; 
  
 Round13 : feistel_func PORT MAP(R12,K13,fR12_K13); 
 R13 <= L12 XOR fR12_K13; 
 L13 <= R12; 
  
 Round14 : feistel_func PORT MAP(R13,K14,fR13_K14); 
 R14 <= L13 XOR fR13_K14; 
 L14 <= R13; 
  
 Round15 : feistel_func PORT MAP(R14,K15,fR14_K15); 
 R15 <= L14 XOR fR14_K15; 
 L15 <= R14; 
  
 Round16 : feistel_func PORT MAP(R15,K16,fR15_K16); 
 R16 <= L15 XOR fR15_K16; 
 L16 <= R15; 
 
 ------------------------------------------------------------ 
  
 Inverse_Init_Perm : inv_init_permutation PORT MAP 
(R16,L16,cipher_int); 
  
 cipher_data<=cipher_int; 
 data_out <= data; 
 K_out <= K; 
  
END encryption; 
 

DES_encrypt_P.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY DES_encrypt_P IS 
 PORT( clk: IN std_logic; 
   data: IN std_logic_vector(63 DOWNTO 0); 
   data_in: IN std_logic_vector(63 DOWNTO 0); 
   K: IN std_logic_vector(63 DOWNTO 0); 
    
   data_out: OUT std_logic_vector(63 DOWNTO 0); 
   K_out: OUT std_logic_vector(63 DOWNTO 0); 
   cipher_data: OUT std_logic_vector(63 DOWNTO 0)); 
END DES_encrypt_P; 
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ARCHITECTURE encryption OF DES_encrypt_P IS 
 
 COMPONENT KS_E_P 
 PORT( clk: IN std_logic; 
   KEY: IN std_logic_vector(63 DOWNTO 0); 
  
 K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16: OUT 
std_logic_vector(47 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT init_permutation 
 PORT(data: IN std_logic_vector(63 DOWNTO 0); 
   Ln: OUT std_logic_vector(31 DOWNTO 0); 
   Rn: OUT std_logic_vector(31 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT feistel_func 
 PORT(Rn: IN std_logic_vector(31 DOWNTO 0); 
   keyx: IN std_logic_vector(47 DOWNTO 0); 
   Rn_1: OUT std_logic_vector(31 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT inv_init_permutation 
 PORT(Ln: IN std_logic_vector(31 DOWNTO 0); 
   Rn: IN std_logic_vector(31 DOWNTO 0); 
   cipher_data: OUT std_logic_vector(63 DOWNTO 0)); 
 END COMPONENT; 
  
 SHARED VARIABLE 
K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16: 
std_logic_vector(47 DOWNTO 0); 
 SHARED VARIABLE 
fR0_K1,fR1_K2,fR2_K3,fR3_K4,fR4_K5,fR5_K6,fR6_K7,fR7_K8,fR8_K9,fR9_K
10,fR10_K11,fR11_K12,fR12_K13,fR13_K14,fR14_K15,fR15_K16: 
std_logic_vector(31 DOWNTO 0); 
  
 SIGNAL 
L0,L1,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13,L14,L15,L16: 
std_logic_vector(31 DOWNTO 0); 
 SIGNAL 
R0,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16: 
std_logic_vector(31 DOWNTO 0); 
 SIGNAL cipher_int,cipher_buffer: std_logic_vector(63 DOWNTO 
0); 
  
 SIGNAL n: INTEGER := 0; 
  
 SIGNAL 
data_int,data_int1,data_int2,data_int3,data_int4,data_int5,data_int6
,data_int7, 
   
 data_int8,data_int9,data_int10,data_int11,data_int12,data_int1
3,data_int14,data_int15: std_logic_vector(63 DOWNTO 0); 
  
 SIGNAL K_int,K_int1,K_int2,K_int3,K_int4,K_int5,K_int6,K_int7, 
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 K_int8,K_int9,K_int10,K_int11,K_int12,K_int13,K_int14,K_int15: 
std_logic_vector(63 DOWNTO 0); 
 
BEGIN 
 
 Key_schedule : KS_E_P PORT 
MAP(clk,K,K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16); 
  
 Inital_Perm : init_permutation PORT MAP(data,L0,R0); 
  
 ---------------------------16 ROUNDS--------------------------
---------- 
 Round1 : feistel_func PORT MAP(R0,K1,fR0_K1); 
  
 Round2 : feistel_func PORT MAP(R1,K2,fR1_K2); 
  
 Round3 : feistel_func PORT MAP(R2,K3,fR2_K3); 
  
 Round4 : feistel_func PORT MAP(R3,K4,fR3_K4); 
  
 Round5 : feistel_func PORT MAP(R4,K5,fR4_K5); 
  
 Round6 : feistel_func PORT MAP(R5,K6,fR5_K6); 
  
 Round7 : feistel_func PORT MAP(R6,K7,fR6_K7); 
  
 Round8 : feistel_func PORT MAP(R7,K8,fR7_K8); 
  
 Round9 : feistel_func PORT MAP(R8,K9,fR8_K9); 
  
 Round10 : feistel_func PORT MAP(R9,K10,fR9_K10); 
  
 Round11 : feistel_func PORT MAP(R10,K11,fR10_K11); 
  
 Round12 : feistel_func PORT MAP(R11,K12,fR11_K12); 
  
 Round13 : feistel_func PORT MAP(R12,K13,fR12_K13); 
  
 Round14 : feistel_func PORT MAP(R13,K14,fR13_K14); 
  
 Round15 : feistel_func PORT MAP(R14,K15,fR14_K15); 
  
 Round16 : feistel_func PORT MAP(R15,K16,fR15_K16); 
 R16 <= L15 XOR fR15_K16; 
 L16 <= R15; 
 
 ------------------------------------------------------------ 
  
 Inverse_Init_Perm : inv_init_permutation PORT MAP 
(R16,L16,cipher_int); 
  
 Process(clk,data) 
 BEGIN 
  IF(falling_edge(clk)) THEN 
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   FOR n IN 0 TO 15 LOOP 
    CASE n IS 
     WHEN 0 => R1 <= L0 XOR fR0_K1; 
        L1 <= R0; 
        data_int1 <= data_in; 
        K_int1 <= K; 
     WHEN 1 => R2 <= L1 XOR fR1_K2; 
        L2 <= R1; 
        data_int2 <= 
data_int1; 
        K_int2 <= K_int1; 
     WHEN 2 => R3 <= L2 XOR fR2_K3; 
        L3 <= R2; 
        data_int3 <= 
data_int2; 
        K_int3 <= K_int2; 
     WHEN 3 => R4 <= L3 XOR fR3_K4; 
        L4 <= R3; 
        data_int4 <= 
data_int3; 
        K_int4 <= K_int3; 
     WHEN 4 => R5 <= L4 XOR fR4_K5; 
        L5 <= R4; 
        data_int5 <= 
data_int4; 
        K_int5 <= K_int4; 
     WHEN 5 => R6 <= L5 XOR fR5_K6; 
        L6 <= R5; 
        data_int6 <= 
data_int5; 
        K_int6 <= K_int5; 
     WHEN 6 => R7 <= L6 XOR fR6_K7; 
        L7 <= R6; 
        data_int7 <= 
data_int6; 
        K_int7 <= K_int6; 
     WHEN 7 => R8 <= L7 XOR fR7_K8; 
        L8 <= R7; 
        data_int8 <= 
data_int7; 
        K_int8 <= K_int7; 
     WHEN 8 => R9 <= L8 XOR fR8_K9; 
        L9 <= R8; 
        data_int9 <= 
data_int8; 
        K_int9 <= K_int8; 
     WHEN 9 => R10 <= L9 XOR fR9_K10; 
        L10 <= R9; 
        data_int10 <= 
data_int9; 
        K_int10 <= K_int9; 
     WHEN 10 => R11 <= L10 XOR fR10_K11; 
        L11 <= R10; 
        data_int11 <= 
data_int10; 
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        K_int11 <= K_int10; 
     WHEN 11 => R12 <= L11 XOR fR11_K12; 
        L12 <= R11; 
        data_int12 <= 
data_int11; 
        K_int12 <= K_int11; 
     WHEN 12 => R13 <= L12 XOR fR12_K13; 
        L13 <= R12; 
        data_int13 <= 
data_int12; 
        K_int13 <= K_int12; 
     WHEN 13 => R14 <= L13 XOR fR13_K14; 
        L14 <= R13; 
        data_int14 <= 
data_int13; 
        K_int14 <= K_int13; 
     WHEN 14 => R15 <= L14 XOR fR14_K15; 
        L15 <= R14; 
        data_int15 <= 
data_int14; 
        K_int15 <= K_int14; 
     WHEN 15 => cipher_buffer <= cipher_int; 
        data_int <= 
data_int15; 
        K_int <= K_int15; 
    END CASE; 
   END LOOP; 
  END IF; 
 END PROCESS; 
  
 cipher_data<=cipher_buffer; 
 data_out <= data_int; 
 K_out <= K_int; 
  
END encryption; 
 

expan_perm.vhd 

--EDNI DEL ROSAL----expan_perm.vhd--------------- 
--Thesis Spring 2015----------------------------- 
--This file performs the expansion permutation of 
--Rn, E(Rn), in the Feistel function.  It also--- 
--performs the XOR between the expanded Rn, E(Rn), 
--and the sub key kn.---------------------------- 
--The inputs are Rn and kn and the output is----- 
--Rn_expan, E(Rn)--------------------- 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY expan_perm IS 
 PORT(Rn: IN std_logic_vector(31 DOWNTO 0); 
  Rn_expan: OUT std_logic_vector(47 DOWNTO 0)); 
END expan_perm; 
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ARCHITECTURE expansion OF expan_perm IS 
  
BEGIN 
     
 Rn_expan <= Rn(0) & Rn(31) & Rn(30) & Rn(29) & Rn(28) & Rn(27) 
& 
    Rn(28) & Rn(27) & Rn(26) & Rn(25) & Rn(24) & 
Rn(23) & 
    Rn(24) & Rn(23) & Rn(22) & Rn(21) & Rn(20) & 
Rn(19) & 
    Rn(20) & Rn(19) & Rn(18) & Rn(17) & Rn(16) & 
Rn(15) & 
    Rn(16) & Rn(15) & Rn(14) & Rn(13) & Rn(12) & 
Rn(11) & 
    Rn(12) & Rn(11) & Rn(10) & Rn(9) & Rn(8) & 
Rn(7) & 
    Rn(8) & Rn(7) & Rn(6) & Rn(5) & Rn(4) & Rn(3) 
& 
    Rn(4) & Rn(3) & Rn(2) & Rn(1) & Rn(0) & 
Rn(31); 
  
END expansion; 
 

Feistel_func.vhd 

--EDNI DEL ROSAL----feistel_func.vhd------------- 
--Thesis Spring 2015----------------------------- 
--This file performs the Feistel function and---- 
--updates the right side Rn.--------------------- 
--The inputs are Ln, Rn, keyx and the output is-- 
--Rn_1------------------------------------------- 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY feistel_func IS 
 PORT(Rn: IN std_logic_vector(31 DOWNTO 0); 
   keyx: IN std_logic_vector(47 DOWNTO 0); 
   Rn_1: OUT std_logic_vector(31 DOWNTO 0)); 
END feistel_func; 
 
ARCHITECTURE func OF feistel_func IS 
  
 COMPONENT expan_perm 
 PORT(Rn: IN std_logic_vector(31 DOWNTO 0); 
  Rn_expan: OUT std_logic_vector(47 DOWNTO 0)); 
 END COMPONENT; 
  
 COMPONENT S1 
 PORT(B1: IN std_logic_vector(5 DOWNTO 0); 
   S_B1: OUT std_logic_vector(3 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT S2 
 PORT(B2: IN std_logic_vector(5 DOWNTO 0); 
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   S_B2: OUT std_logic_vector(3 DOWNTO 0)); 
 END COMPONENT; 
  
 COMPONENT S3 
 PORT(B3: IN std_logic_vector(5 DOWNTO 0); 
   S_B3: OUT std_logic_vector(3 DOWNTO 0)); 
 END COMPONENT; 
  
 COMPONENT S4 
 PORT(B4: IN std_logic_vector(5 DOWNTO 0); 
   S_B4: OUT std_logic_vector(3 DOWNTO 0)); 
 END COMPONENT; 
  
 COMPONENT S5 
 PORT(B5: IN std_logic_vector(5 DOWNTO 0); 
   S_B5: OUT std_logic_vector(3 DOWNTO 0)); 
 END COMPONENT; 
  
 COMPONENT S6 
 PORT(B6: IN std_logic_vector(5 DOWNTO 0); 
   S_B6: OUT std_logic_vector(3 DOWNTO 0)); 
 END COMPONENT; 
  
 COMPONENT S7 
 PORT(B7: IN std_logic_vector(5 DOWNTO 0); 
   S_B7: OUT std_logic_vector(3 DOWNTO 0)); 
 END COMPONENT; 
  
 COMPONENT S8 
 PORT(B8: IN std_logic_vector(5 DOWNTO 0); 
   S_B8: OUT std_logic_vector(3 DOWNTO 0)); 
 END COMPONENT; 
  
 COMPONENT permutation 
 PORT(S_concat: IN std_logic_vector(31 DOWNTO 0); 
  Rn_1: OUT std_logic_vector(31 DOWNTO 0)); 
 END COMPONENT; 
  
 SHARED VARIABLE E_Rn: std_logic_vector(47 DOWNTO 0); 
 SIGNAL E_xor_keyx: std_logic_vector(47 DOWNTO 0); 
 SHARED VARIABLE S_out: std_logic_vector(31 DOWNTO 0); 
  
 
BEGIN 
  
 expansionPerm: expan_perm PORT MAP(Rn,E_Rn); 
  
 E_xor_keyx <= E_Rn XOR keyx; 
  
 BOX1: S1 PORT MAP(E_xor_keyx(47 DOWNTO 42),S_out(31 DOWNTO 
28)); 
 BOX2: S2 PORT MAP(E_xor_keyx(41 DOWNTO 36),S_out(27 DOWNTO 
24)); 
 BOX3: S3 PORT MAP(E_xor_keyx(35 DOWNTO 30),S_out(23 DOWNTO 
20)); 



	 152	

 BOX4: S4 PORT MAP(E_xor_keyx(29 DOWNTO 24),S_out(19 DOWNTO 
16)); 
 BOX5: S5 PORT MAP(E_xor_keyx(23 DOWNTO 18),S_out(15 DOWNTO 
12)); 
 BOX6: S6 PORT MAP(E_xor_keyx(17 DOWNTO 12),S_out(11 DOWNTO 
8)); 
 BOX7: S7 PORT MAP(E_xor_keyx(11 DOWNTO 6),S_out(7 DOWNTO 4)); 
 BOX8: S8 PORT MAP(E_xor_keyx(5 DOWNTO 0),S_out(3 DOWNTO 0)); 
  
 Perm: permutation PORT MAP(S_out,Rn_1); 
  
  
  
END func; 
 

init_permutation.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY init_permutation IS 
 PORT(data: IN std_logic_vector(63 DOWNTO 0); 
   Ln: OUT std_logic_vector(31 DOWNTO 0); 
   Rn: OUT std_logic_vector(31 DOWNTO 0)); 
END init_permutation; 
 
ARCHITECTURE permutation OF init_permutation IS 
BEGIN 
 
 Ln <= data(6) & data(14) & data(22) & data(30) & data(38) & 
data(46) & data(54) & data(62) & 
  data(4) & data(12) & data(20) & data(28) & data(36) & 
data(44) & data(52) & data(60) & 
  data(2) & data(10) & data(18) & data(26) & data(34) & 
data(42) & data(50) & data(58) & 
  data(0) & data(8) & data(16) & data(24) & data(32) & 
data(40) & data(48) & data(56); 
   
 Rn <= data(7) & data(15) & data(23) & data(31) & data(39) & 
data(47) & data(55) & data(63) & 
  data(5) & data(13) & data(21) & data(29) & data(37) & 
data(45) & data(53) & data(61) & 
  data(3) & data(11) & data(19) & data(27) & data(35) & 
data(43) & data(51) & data(59) & 
  data(1) & data(9) & data(17) & data(25) & data(33) & 
data(41) & data(49) & data(57); 
   
END permutation; 
 

inv_init_permutation.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
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ENTITY inv_init_permutation IS 
 PORT(Ln: IN std_logic_vector(31 DOWNTO 0); 
   Rn: IN std_logic_vector(31 DOWNTO 0); 
   cipher_data: OUT std_logic_vector(63 DOWNTO 0)); 
END inv_init_permutation; 
 
ARCHITECTURE permutation OF inv_init_permutation IS 
 SHARED VARIABLE Ln_Rn: std_logic_vector(63 DOWNTO 0) := Ln & 
Rn; 
BEGIN 
 
  cipher_data <= Ln_Rn(24) & Ln_Rn(56) & Ln_Rn(16) & Ln_Rn(48) 
& Ln_Rn(8) & Ln_Rn(40) & Ln_Rn(0) & Ln_Rn(32) & 
  Ln_Rn(25) & Ln_Rn(57) & Ln_Rn(17) & Ln_Rn(49) & Ln_Rn(9) 
& Ln_Rn(41) & Ln_Rn(1) & Ln_Rn(33) & 
  Ln_Rn(26) & Ln_Rn(58) & Ln_Rn(18) & Ln_Rn(50) & Ln_Rn(10) 
& Ln_Rn(42) & Ln_Rn(2) & Ln_Rn(34) & 
  Ln_Rn(27) & Ln_Rn(59) & Ln_Rn(19) & Ln_Rn(51) & Ln_Rn(11) 
& Ln_Rn(43) & Ln_Rn(3) & Ln_Rn(35) & 
   
  Ln_Rn(28) & Ln_Rn(60) & Ln_Rn(20) & Ln_Rn(52) & Ln_Rn(12) 
& Ln_Rn(44) & Ln_Rn(4) & Ln_Rn(36) & 
  Ln_Rn(29) & Ln_Rn(61) & Ln_Rn(21) & Ln_Rn(53) & Ln_Rn(13) 
& Ln_Rn(45) & Ln_Rn(5) & Ln_Rn(37) & 
  Ln_Rn(30) & Ln_Rn(62) & Ln_Rn(22) & Ln_Rn(54) & Ln_Rn(14) 
& Ln_Rn(46) & Ln_Rn(6) & Ln_Rn(38) & 
  Ln_Rn(31) & Ln_Rn(63) & Ln_Rn(23) & Ln_Rn(55) & Ln_Rn(15) 
& Ln_Rn(47) & Ln_Rn(7) & Ln_Rn(39); 
   
END permutation; 
 

key_bank.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY key_bank IS 
 PORT( clk: IN std_logic; 
   key1_in,key2_in,key3_in: IN std_logic_vector(63 
DOWNTO 0); 
   key1_out,key2_out,key3_out: OUT std_logic_vector(63 
DOWNTO 0)); 
END key_bank; 
 
ARCHITECTURE bank OF key_bank IS 
 
 SIGNAL 
key2_1,key2_2,key2_3,key2_4,key2_5,key2_6,key2_7,key2_8, 
   
 key2_9,key2_10,key2_11,key2_12,key2_13,key2_14,key2_15,key2_16
: 
    std_logic_vector(63 DOWNTO 0); 
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 SIGNAL 
key3_1,key3_2,key3_3,key3_4,key3_5,key3_6,key3_7,key3_8, 
   
 key3_9,key3_10,key3_11,key3_12,key3_13,key3_14,key3_15,key3_16
, 
   
 key3_17,key3_18,key3_19,key3_20,key3_21,key3_22,key3_23,key3_2
4, 
   
 key3_25,key3_26,key3_27,key3_28,key3_29,key3_30,key3_31,key3_3
2: 
    std_logic_vector(63 DOWNTO 0); 
  
BEGIN 
 
 key1_out <= key1_in; 
 key2_out <= key2_15; 
 key3_out <= key3_31; 
 
 PROCESS(clk) 
 BEGIN 
  IF(falling_edge(clk)) THEN 
   FOR n IN 0 TO 31 LOOP 
    CASE n IS 
     WHEN 0 => key2_1 <= key2_in; 
         key3_1 <= 
key3_in; 
     WHEN 1 => key2_2 <= key2_1; 
         key3_2 <= key3_1; 
     WHEN 2 => key2_3 <= key2_2; 
         key3_3 <= key3_2; 
     WHEN 3 => key2_4 <= key2_3; 
         key3_4 <= key3_3; 
     WHEN 4 => key2_5 <= key2_4; 
         key3_5 <= key3_4; 
     WHEN 5 => key2_6 <= key2_5; 
         key3_6 <= key3_5; 
     WHEN 6 => key2_7 <= key2_6; 
         key3_7 <= key3_6; 
     WHEN 7 => key2_8 <= key2_7; 
         key3_8 <= key3_7; 
     WHEN 8 => key2_9 <= key2_8; 
         key3_9 <= key3_8; 
     WHEN 9 => key2_10 <= key2_9; 
         key3_10 <= 
key3_9; 
     WHEN 10 => key2_11 <= key2_10; 
         key3_11 <= 
key3_10; 
     WHEN 11 => key2_12 <= key2_11; 
         key3_12 <= 
key3_11; 
     WHEN 12 => key2_13 <= key2_12; 
         key3_13 <= 
key3_12; 
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     WHEN 13 => key2_14 <= key2_13; 
         key3_14 <= 
key3_13; 
     WHEN 14 => key2_15 <= key2_14; 
         key3_15 <= 
key3_14; 
     WHEN 15 => key2_16 <= key2_15; 
         key3_16 <= 
key3_15; 
          
     WHEN 16 => key3_17 <= key3_16; 
     WHEN 17 => key3_18 <= key3_17; 
     WHEN 18 => key3_19 <= key3_18; 
     WHEN 19 => key3_20 <= key3_19; 
     WHEN 20 => key3_21 <= key3_20; 
     WHEN 21 => key3_22 <= key3_21; 
     WHEN 22 => key3_23 <= key3_22; 
     WHEN 23 => key3_24 <= key3_23; 
     WHEN 24 => key3_25 <= key3_24; 
     WHEN 25 => key3_26 <= key3_25; 
     WHEN 26 => key3_27 <= key3_26; 
     WHEN 27 => key3_28 <= key3_27; 
     WHEN 28 => key3_29 <= key3_28; 
     WHEN 29 => key3_30 <= key3_29; 
     WHEN 30 => key3_31 <= key3_30; 
     WHEN 31 => key3_32 <= key3_31; 
    END CASE; 
   END LOOP; 
  END IF; 
 END PROCESS; 
 
END bank; 
 

KS_D.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY KS_D IS 
 PORT( KEY: IN std_logic_vector(63 DOWNTO 0); 
  
 K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16: OUT 
std_logic_vector(47 DOWNTO 0)); 
END KS_D; 
 
ARCHITECTURE keys OF KS_D IS 
 
 COMPONENT PC_1 
 PORT( key: IN std_logic_vector(63 DOWNTO 0); 
   c0: OUT std_logic_vector(27 DOWNTO 0); 
   d0: OUT std_logic_vector(27 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT SRR_1 



	 156	

  PORT( C,D: IN std_logic_vector(27 DOWNTO 0); 
    CS,DS: OUT std_logic_vector(27 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT SRR_2 
  PORT( C,D: IN std_logic_vector(27 DOWNTO 0); 
    CS,DS: OUT std_logic_vector(27 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT PC_2 
 PORT(CS,DS: IN std_logic_vector(27 DOWNTO 0); 
  K: OUT std_logic_vector(47 DOWNTO 0)); 
 END COMPONENT; 
  
 SHARED VARIABLE 
C0,C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16: 
std_logic_vector(27 DOWNTO 0); 
 SHARED VARIABLE 
D0,D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16: 
std_logic_vector(27 DOWNTO 0); 
  
 SIGNAL 
Reg1,Reg2,Reg3,Reg4,Reg5,Reg6,Reg7,Reg8,Reg9,Reg10,Reg11,Reg12,Reg13
,Reg14,Reg15: std_logic_vector(55 DOWNTO 0); 
 SIGNAL cipher_int: std_logic_vector(63 DOWNTO 0); 
  
BEGIN 
 
 PermChoice_1: PC_1 PORT MAP(KEY,C0,D0); 
 PermChoice1_2: PC_2 PORT MAP(C0,D0,K1); 
 Reg1 <= C0 & D0; 
  
 ShiftRotate1_1 : SRR_1 PORT MAP(Reg1(55 DOWNTO 28),Reg1(27 
DOWNTO 0),C1,D1); 
 PermChoice2_2: PC_2 PORT MAP(C1,D1,K2); 
 Reg2 <= C1 & D1; 
  
 ShiftRotate2_2 : SRR_2 PORT MAP(Reg2(55 DOWNTO 28),Reg2(27 
DOWNTO 0),C2,D2); 
 PermChoice3_2: PC_2 PORT MAP(C2,D2,K3); 
 Reg3 <= C2 & D2; 
  
 ShiftRotate3_2 : SRR_2 PORT MAP(Reg3(55 DOWNTO 28),Reg3(27 
DOWNTO 0),C3,D3); 
 PermChoice4_2: PC_2 PORT MAP(C3,D3,K4); 
 Reg4 <= C3 & D3; 
  
 ShiftRotate4_2 : SRR_2 PORT MAP(Reg4(55 DOWNTO 28),Reg4(27 
DOWNTO 0),C4,D4); 
 PermChoice5_2: PC_2 PORT MAP(C4,D4,K5); 
 Reg5 <= C4 & D4; 
  
 ShiftRotate5_2 : SRR_2 PORT MAP(Reg5(55 DOWNTO 28),Reg5(27 
DOWNTO 0),C5,D5); 
 PermChoice6_2: PC_2 PORT MAP(C5,D5,K6); 
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 Reg6 <= C5 & D5; 
  
 ShiftRotate6_2 : SRR_2 PORT MAP(Reg6(55 DOWNTO 28),Reg6(27 
DOWNTO 0),C6,D6); 
 PermChoice7_2: PC_2 PORT MAP(C6,D6,K7); 
 Reg7 <= C6 & D6; 
  
 ShiftRotate7_2 : SRR_2 PORT MAP(Reg7(55 DOWNTO 28),Reg7(27 
DOWNTO 0),C7,D7); 
 PermChoice8_2: PC_2 PORT MAP(C7,D7,K8); 
 Reg8 <= C7 & D7; 
  
 ShiftRotate8_1 : SRR_1 PORT MAP(Reg8(55 DOWNTO 28),Reg8(27 
DOWNTO 0),C8,D8); 
 PermChoice9_2: PC_2 PORT MAP(C8,D8,K9); 
 Reg9 <= C8 & D8; 
  
 ShiftRotate9_2 : SRR_2 PORT MAP(Reg9(55 DOWNTO 28),Reg9(27 
DOWNTO 0),C9,D9); 
 PermChoice10_2: PC_2 PORT MAP(C9,D9,K10); 
 Reg10 <= C9 & D9; 
  
 ShiftRotate10_2 : SRR_2 PORT MAP(Reg10(55 DOWNTO 28),Reg10(27 
DOWNTO 0),C10,D10); 
 PermChoice11_2: PC_2 PORT MAP(C10,D10,K11); 
 Reg11 <= C10 & D10; 
  
 ShiftRotate11_2 : SRR_2 PORT MAP(Reg11(55 DOWNTO 28),Reg11(27 
DOWNTO 0),C11,D11); 
 PermChoice12_2: PC_2 PORT MAP(C11,D11,K12); 
 Reg12 <= C11 & D11; 
  
 ShiftRotate12_2 : SRR_2 PORT MAP(Reg12(55 DOWNTO 28),Reg12(27 
DOWNTO 0),C12,D12); 
 PermChoice13_2: PC_2 PORT MAP(C12,D12,K13); 
 Reg13 <= C12 & D12; 
  
 ShiftRotate13_2 : SRR_2 PORT MAP(Reg13(55 DOWNTO 28),Reg13(27 
DOWNTO 0),C13,D13); 
 PermChoice14_2: PC_2 PORT MAP(C13,D13,K14); 
 Reg14 <= C13 & D13; 
  
 ShiftRotate14_2 : SRR_2 PORT MAP(Reg14(55 DOWNTO 28),Reg14(27 
DOWNTO 0),C14,D14); 
 PermChoice15_2: PC_2 PORT MAP(C14,D14,K15); 
 Reg15 <= C14 & D14; 
  
 ShiftRotate15_1 : SRR_1 PORT MAP(Reg15(55 DOWNTO 28),Reg15(27 
DOWNTO 0),C15,D15); 
 PermChoice16_2: PC_2 PORT MAP(C15,D15,K16); 
  
END keys; 
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KS_D_P.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY KS_D_P IS 
 PORT( clk: IN std_logic; 
   KEY: IN std_logic_vector(63 DOWNTO 0); 
  
 K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16: OUT 
std_logic_vector(47 DOWNTO 0)); 
END KS_D_P; 
 
ARCHITECTURE keys OF KS_D_P IS 
 
 COMPONENT PC_1 
 PORT( key: IN std_logic_vector(63 DOWNTO 0); 
   c0: OUT std_logic_vector(27 DOWNTO 0); 
   d0: OUT std_logic_vector(27 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT SRR_1 
  PORT( C,D: IN std_logic_vector(27 DOWNTO 0); 
    CS,DS: OUT std_logic_vector(27 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT SRR_2 
  PORT( C,D: IN std_logic_vector(27 DOWNTO 0); 
    CS,DS: OUT std_logic_vector(27 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT PC_2 
 PORT(CS,DS: IN std_logic_vector(27 DOWNTO 0); 
  K: OUT std_logic_vector(47 DOWNTO 0)); 
 END COMPONENT; 
  
 SHARED VARIABLE 
C0,C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16: 
std_logic_vector(27 DOWNTO 0); 
 SHARED VARIABLE 
D0,D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16: 
std_logic_vector(27 DOWNTO 0); 
  
 SIGNAL 
Reg1,Reg2,Reg3,Reg4,Reg5,Reg6,Reg7,Reg8,Reg9,Reg10,Reg11,Reg12,Reg13
,Reg14,Reg15: std_logic_vector(55 DOWNTO 0); 
 SIGNAL cipher_int: std_logic_vector(63 DOWNTO 0); 
  
BEGIN 
 
 PermChoice_1: PC_1 PORT MAP(KEY,C0,D0); 
 PermChoice1_2: PC_2 PORT MAP(C0,D0,K1); 
  
 ShiftRotate1_1 : SRR_1 PORT MAP(Reg1(55 DOWNTO 28),Reg1(27 
DOWNTO 0),C1,D1); 
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 PermChoice2_2: PC_2 PORT MAP(C1,D1,K2); 
  
 ShiftRotate2_2 : SRR_2 PORT MAP(Reg2(55 DOWNTO 28),Reg2(27 
DOWNTO 0),C2,D2); 
 PermChoice3_2: PC_2 PORT MAP(C2,D2,K3); 
  
 ShiftRotate3_2 : SRR_2 PORT MAP(Reg3(55 DOWNTO 28),Reg3(27 
DOWNTO 0),C3,D3); 
 PermChoice4_2: PC_2 PORT MAP(C3,D3,K4); 
  
 ShiftRotate4_2 : SRR_2 PORT MAP(Reg4(55 DOWNTO 28),Reg4(27 
DOWNTO 0),C4,D4); 
 PermChoice5_2: PC_2 PORT MAP(C4,D4,K5); 
  
 ShiftRotate5_2 : SRR_2 PORT MAP(Reg5(55 DOWNTO 28),Reg5(27 
DOWNTO 0),C5,D5); 
 PermChoice6_2: PC_2 PORT MAP(C5,D5,K6); 
  
 ShiftRotate6_2 : SRR_2 PORT MAP(Reg6(55 DOWNTO 28),Reg6(27 
DOWNTO 0),C6,D6); 
 PermChoice7_2: PC_2 PORT MAP(C6,D6,K7); 
  
 ShiftRotate7_2 : SRR_2 PORT MAP(Reg7(55 DOWNTO 28),Reg7(27 
DOWNTO 0),C7,D7); 
 PermChoice8_2: PC_2 PORT MAP(C7,D7,K8); 
  
 ShiftRotate8_1 : SRR_1 PORT MAP(Reg8(55 DOWNTO 28),Reg8(27 
DOWNTO 0),C8,D8); 
 PermChoice9_2: PC_2 PORT MAP(C8,D8,K9); 
  
 ShiftRotate9_2 : SRR_2 PORT MAP(Reg9(55 DOWNTO 28),Reg9(27 
DOWNTO 0),C9,D9); 
 PermChoice10_2: PC_2 PORT MAP(C9,D9,K10); 
  
 ShiftRotate10_2 : SRR_2 PORT MAP(Reg10(55 DOWNTO 28),Reg10(27 
DOWNTO 0),C10,D10); 
 PermChoice11_2: PC_2 PORT MAP(C10,D10,K11); 
  
 ShiftRotate11_2 : SRR_2 PORT MAP(Reg11(55 DOWNTO 28),Reg11(27 
DOWNTO 0),C11,D11); 
 PermChoice12_2: PC_2 PORT MAP(C11,D11,K12); 
  
 ShiftRotate12_2 : SRR_2 PORT MAP(Reg12(55 DOWNTO 28),Reg12(27 
DOWNTO 0),C12,D12); 
 PermChoice13_2: PC_2 PORT MAP(C12,D12,K13); 
  
 ShiftRotate13_2 : SRR_2 PORT MAP(Reg13(55 DOWNTO 28),Reg13(27 
DOWNTO 0),C13,D13); 
 PermChoice14_2: PC_2 PORT MAP(C13,D13,K14); 
  
 ShiftRotate14_2 : SRR_2 PORT MAP(Reg14(55 DOWNTO 28),Reg14(27 
DOWNTO 0),C14,D14); 
 PermChoice15_2: PC_2 PORT MAP(C14,D14,K15); 
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 ShiftRotate15_1 : SRR_1 PORT MAP(Reg15(55 DOWNTO 28),Reg15(27 
DOWNTO 0),C15,D15); 
 PermChoice16_2: PC_2 PORT MAP(C15,D15,K16); 
  
 PROCESS(clk,KEY) 
 BEGIN 
  IF (falling_edge(clk)) THEN 
   FOR n IN 0 TO 14 LOOP 
    CASE n IS 
     WHEN 0 => Reg1 <= C0 & D0; 
     WHEN 1 => Reg2 <= C1 & D1; 
     WHEN 2 => Reg3 <= C2 & D2; 
     WHEN 3 => Reg4 <= C3 & D3; 
     WHEN 4 => Reg5 <= C4 & D4; 
     WHEN 5 => Reg6 <= C5 & D5; 
     WHEN 6 => Reg7 <= C6 & D6; 
     WHEN 7 => Reg8 <= C7 & D7; 
     WHEN 8 => Reg9 <= C8 & D8; 
     WHEN 9 => Reg10 <= C9 & D9; 
     WHEN 10 => Reg11 <= C10 & D10; 
     WHEN 11 => Reg12 <= C11 & D11; 
     WHEN 12 => Reg13 <= C12 & D12; 
     WHEN 13 => Reg14 <= C13 & D13; 
     WHEN 14 => Reg15 <= C14 & D14; 
    END CASE; 
   END LOOP; 
  END IF; 
 END PROCESS; 
END keys; 
 

KS_E.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY KS_E IS 
 PORT(KEY: IN std_logic_vector(63 DOWNTO 0); 
  
 K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16: OUT 
std_logic_vector(47 DOWNTO 0)); 
END KS_E; 
 
ARCHITECTURE keys OF KS_E IS 
 
 COMPONENT PC_1 
 PORT( key: IN std_logic_vector(63 DOWNTO 0); 
   c0: OUT std_logic_vector(27 DOWNTO 0); 
   d0: OUT std_logic_vector(27 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT SRL_1 
  PORT( C,D: IN std_logic_vector(27 DOWNTO 0); 
    CS,DS: OUT std_logic_vector(27 DOWNTO 0)); 
 END COMPONENT; 
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 COMPONENT SRL_2 
  PORT( C,D: IN std_logic_vector(27 DOWNTO 0); 
    CS,DS: OUT std_logic_vector(27 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT PC_2 
 PORT(CS,DS: IN std_logic_vector(27 DOWNTO 0); 
  K: OUT std_logic_vector(47 DOWNTO 0)); 
 END COMPONENT; 
  
 SHARED VARIABLE 
C0,C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16: 
std_logic_vector(27 DOWNTO 0); 
 SHARED VARIABLE 
D0,D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16: 
std_logic_vector(27 DOWNTO 0); 
  
 SIGNAL 
Reg1,Reg2,Reg3,Reg4,Reg5,Reg6,Reg7,Reg8,Reg9,Reg10,Reg11,Reg12,Reg13
,Reg14,Reg15: std_logic_vector(55 DOWNTO 0); 
 SIGNAL cipher_int: std_logic_vector(63 DOWNTO 0); 
  
BEGIN 
 
 PermChoice_1: PC_1 PORT MAP(KEY,C0,D0); 
  
 ShiftRotate1_1 : SRL_1 PORT MAP(C0,D0,C1,D1); 
 PermChoice1_2: PC_2 PORT MAP(C1,D1,K1); 
 Reg1 <= C1 & D1; 
  
 ShiftRotate2_1 : SRL_1 PORT MAP(Reg1(55 DOWNTO 28),Reg1(27 
DOWNTO 0),C2,D2); 
 PermChoice2_2: PC_2 PORT MAP(C2,D2,K2); 
 Reg2 <= C2 & D2; 
  
 ShiftRotate3_2 : SRL_2 PORT MAP(Reg2(55 DOWNTO 28),Reg2(27 
DOWNTO 0),C3,D3); 
 PermChoice3_2: PC_2 PORT MAP(C3,D3,K3); 
 Reg3 <= C3 & D3; 
  
 ShiftRotate4_2 : SRL_2 PORT MAP(Reg3(55 DOWNTO 28),Reg3(27 
DOWNTO 0),C4,D4); 
 PermChoice4_2: PC_2 PORT MAP(C4,D4,K4); 
 Reg4 <= C4 & D4; 
  
 ShiftRotate5_2 : SRL_2 PORT MAP(Reg4(55 DOWNTO 28),Reg4(27 
DOWNTO 0),C5,D5); 
 PermChoice5_2: PC_2 PORT MAP(C5,D5,K5); 
 Reg5 <= C5 & D5; 
  
 ShiftRotate6_2 : SRL_2 PORT MAP(Reg5(55 DOWNTO 28),Reg5(27 
DOWNTO 0),C6,D6); 
 PermChoice6_2: PC_2 PORT MAP(C6,D6,K6); 
 Reg6 <= C6 & D6; 
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 ShiftRotate7_2 : SRL_2 PORT MAP(Reg6(55 DOWNTO 28),Reg6(27 
DOWNTO 0),C7,D7); 
 PermChoice7_2: PC_2 PORT MAP(C7,D7,K7); 
 Reg7 <= C7 & D7; 
  
 ShiftRotate8_2 : SRL_2 PORT MAP(Reg7(55 DOWNTO 28),Reg7(27 
DOWNTO 0),C8,D8); 
 PermChoice8_2: PC_2 PORT MAP(C8,D8,K8); 
 Reg8 <= C8 & D8; 
  
 ShiftRotate9_1 : SRL_1 PORT MAP(Reg8(55 DOWNTO 28),Reg8(27 
DOWNTO 0),C9,D9); 
 PermChoice9_2: PC_2 PORT MAP(C9,D9,K9); 
 Reg9 <= C9 & D9; 
  
 ShiftRotate10_2 : SRL_2 PORT MAP(Reg9(55 DOWNTO 28),Reg9(27 
DOWNTO 0),C10,D10); 
 PermChoice10_2: PC_2 PORT MAP(C10,D10,K10); 
 Reg10 <= C10 & D10; 
  
 ShiftRotate11_2 : SRL_2 PORT MAP(Reg10(55 DOWNTO 28),Reg10(27 
DOWNTO 0),C11,D11); 
 PermChoice11_2: PC_2 PORT MAP(C11,D11,K11); 
 Reg11 <= C11 & D11; 
  
 ShiftRotate12_2 : SRL_2 PORT MAP(Reg11(55 DOWNTO 28),Reg11(27 
DOWNTO 0),C12,D12); 
 PermChoice12_2: PC_2 PORT MAP(C12,D12,K12); 
 Reg12 <= C12 & D12; 
  
 ShiftRotate13_2 : SRL_2 PORT MAP(Reg12(55 DOWNTO 28),Reg12(27 
DOWNTO 0),C13,D13); 
 PermChoice13_2: PC_2 PORT MAP(C13,D13,K13); 
 Reg13 <= C13 & D13; 
  
 ShiftRotate14_2 : SRL_2 PORT MAP(Reg13(55 DOWNTO 28),Reg13(27 
DOWNTO 0),C14,D14); 
 PermChoice14_2: PC_2 PORT MAP(C14,D14,K14); 
 Reg14 <= C14 & D14; 
  
 ShiftRotate15_2 : SRL_2 PORT MAP(Reg14(55 DOWNTO 28),Reg14(27 
DOWNTO 0),C15,D15); 
 PermChoice15_2: PC_2 PORT MAP(C15,D15,K15); 
 Reg15 <= C15 & D15; 
  
 ShiftRotate16_1 : SRL_1 PORT MAP(Reg15(55 DOWNTO 28),Reg15(27 
DOWNTO 0),C16,D16); 
 PermChoice16_2: PC_2 PORT MAP(C16,D16,K16); 
  
END keys; 
 

KS_E_P.vhd 
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library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY KS_E_P IS 
 PORT( clk: IN std_logic; 
   KEY: IN std_logic_vector(63 DOWNTO 0); 
  
 K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16: OUT 
std_logic_vector(47 DOWNTO 0)); 
END KS_E_P; 
 
ARCHITECTURE keys OF KS_E_P IS 
 
 COMPONENT PC_1 
 PORT( key: IN std_logic_vector(63 DOWNTO 0); 
   c0: OUT std_logic_vector(27 DOWNTO 0); 
   d0: OUT std_logic_vector(27 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT SRL_1 
  PORT( C,D: IN std_logic_vector(27 DOWNTO 0); 
    CS,DS: OUT std_logic_vector(27 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT SRL_2 
  PORT( C,D: IN std_logic_vector(27 DOWNTO 0); 
    CS,DS: OUT std_logic_vector(27 DOWNTO 0)); 
 END COMPONENT; 
 
 COMPONENT PC_2 
 PORT(CS,DS: IN std_logic_vector(27 DOWNTO 0); 
  K: OUT std_logic_vector(47 DOWNTO 0)); 
 END COMPONENT; 
  
 SHARED VARIABLE 
C0,C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16: 
std_logic_vector(27 DOWNTO 0); 
 SHARED VARIABLE 
D0,D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16: 
std_logic_vector(27 DOWNTO 0); 
  
 SIGNAL 
Reg1,Reg2,Reg3,Reg4,Reg5,Reg6,Reg7,Reg8,Reg9,Reg10,Reg11,Reg12,Reg13
,Reg14,Reg15: std_logic_vector(55 DOWNTO 0); 
 SIGNAL cipher_int: std_logic_vector(63 DOWNTO 0); 
  
BEGIN 
 
 PermChoice_1: PC_1 PORT MAP(KEY,C0,D0); 
  
 ShiftRotate1_1 : SRL_1 PORT MAP(C0,D0,C1,D1); 
 PermChoice1_2: PC_2 PORT MAP(C1,D1,K1); 
  
 ShiftRotate2_1 : SRL_1 PORT MAP(Reg1(55 DOWNTO 28),Reg1(27 
DOWNTO 0),C2,D2); 
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 PermChoice2_2: PC_2 PORT MAP(C2,D2,K2); 
  
 ShiftRotate3_2 : SRL_2 PORT MAP(Reg2(55 DOWNTO 28),Reg2(27 
DOWNTO 0),C3,D3); 
 PermChoice3_2: PC_2 PORT MAP(C3,D3,K3); 
  
 ShiftRotate4_2 : SRL_2 PORT MAP(Reg3(55 DOWNTO 28),Reg3(27 
DOWNTO 0),C4,D4); 
 PermChoice4_2: PC_2 PORT MAP(C4,D4,K4); 
  
 ShiftRotate5_2 : SRL_2 PORT MAP(Reg4(55 DOWNTO 28),Reg4(27 
DOWNTO 0),C5,D5); 
 PermChoice5_2: PC_2 PORT MAP(C5,D5,K5); 
  
 ShiftRotate6_2 : SRL_2 PORT MAP(Reg5(55 DOWNTO 28),Reg5(27 
DOWNTO 0),C6,D6); 
 PermChoice6_2: PC_2 PORT MAP(C6,D6,K6); 
  
 ShiftRotate7_2 : SRL_2 PORT MAP(Reg6(55 DOWNTO 28),Reg6(27 
DOWNTO 0),C7,D7); 
 PermChoice7_2: PC_2 PORT MAP(C7,D7,K7); 
  
 ShiftRotate8_2 : SRL_2 PORT MAP(Reg7(55 DOWNTO 28),Reg7(27 
DOWNTO 0),C8,D8); 
 PermChoice8_2: PC_2 PORT MAP(C8,D8,K8); 
  
 ShiftRotate9_1 : SRL_1 PORT MAP(Reg8(55 DOWNTO 28),Reg8(27 
DOWNTO 0),C9,D9); 
 PermChoice9_2: PC_2 PORT MAP(C9,D9,K9); 
  
 ShiftRotate10_2 : SRL_2 PORT MAP(Reg9(55 DOWNTO 28),Reg9(27 
DOWNTO 0),C10,D10); 
 PermChoice10_2: PC_2 PORT MAP(C10,D10,K10); 
  
 ShiftRotate11_2 : SRL_2 PORT MAP(Reg10(55 DOWNTO 28),Reg10(27 
DOWNTO 0),C11,D11); 
 PermChoice11_2: PC_2 PORT MAP(C11,D11,K11); 
  
 ShiftRotate12_2 : SRL_2 PORT MAP(Reg11(55 DOWNTO 28),Reg11(27 
DOWNTO 0),C12,D12); 
 PermChoice12_2: PC_2 PORT MAP(C12,D12,K12); 
  
 ShiftRotate13_2 : SRL_2 PORT MAP(Reg12(55 DOWNTO 28),Reg12(27 
DOWNTO 0),C13,D13); 
 PermChoice13_2: PC_2 PORT MAP(C13,D13,K13); 
  
 ShiftRotate14_2 : SRL_2 PORT MAP(Reg13(55 DOWNTO 28),Reg13(27 
DOWNTO 0),C14,D14); 
 PermChoice14_2: PC_2 PORT MAP(C14,D14,K14); 
  
 ShiftRotate15_2 : SRL_2 PORT MAP(Reg14(55 DOWNTO 28),Reg14(27 
DOWNTO 0),C15,D15); 
 PermChoice15_2: PC_2 PORT MAP(C15,D15,K15); 
  



	 165	

 ShiftRotate16_1 : SRL_1 PORT MAP(Reg15(55 DOWNTO 28),Reg15(27 
DOWNTO 0),C16,D16); 
 PermChoice16_2: PC_2 PORT MAP(C16,D16,K16); 
  
 PROCESS(clk,KEY) 
 BEGIN 
  IF (falling_edge(clk)) THEN 
   FOR n IN 0 TO 14 LOOP 
    CASE n IS 
     WHEN 0 => Reg1 <= C1 & D1; 
     WHEN 1 => Reg2 <= C2 & D2; 
     WHEN 2 => Reg3 <= C3 & D3; 
     WHEN 3 => Reg4 <= C4 & D4; 
     WHEN 4 => Reg5 <= C5 & D5; 
     WHEN 5 => Reg6 <= C6 & D6; 
     WHEN 6 => Reg7 <= C7 & D7; 
     WHEN 7 => Reg8 <= C8 & D8; 
     WHEN 8 => Reg9 <= C9 & D9; 
     WHEN 9 => Reg10 <= C10 & D10; 
     WHEN 10 => Reg11 <= C11 & D11; 
     WHEN 11 => Reg12 <= C12 & D12; 
     WHEN 12 => Reg13 <= C13 & D13; 
     WHEN 13 => Reg14 <= C14 & D14; 
     WHEN 14 => Reg15 <= C15 & D15; 
    END CASE; 
   END LOOP; 
  END IF; 
 END PROCESS; 
END keys; 
 

PC_1.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY PC_1 IS 
PORT( key: IN std_logic_vector(63 DOWNTO 0); 
  c0: OUT std_logic_vector(27 DOWNTO 0); 
  d0: OUT std_logic_vector(27 DOWNTO 0)); 
END PC_1; 
 
ARCHITECTURE permutation OF PC_1 IS 
BEGIN 
 c0 <= key(7) & key(15) & key(23) & key(31) & key(39) & key(47) 
& key(55) & 
      key(63) & key(6) & key(14) & 
key(22) & key(30) & key(38) & key(46) & 
      key(54) & key(62) & key(5) & 
key(13) & key(21) & key(29) & key(37) & 
      key(45) & key(53) & key(61) & 
key(4) & key(12) & key(20) & key(28); 
       
 d0 <= key(1) & key(9) & key(17) & key(25) & key(33) & key(41) 
& key(49) & 
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      key(57) & key(2) & key(10) & 
key(18) & key(26) & key(34) & key(42) & 
      key(50) & key(58) & key(3) & 
key(11) & key(19) & key(27) & key(35) & 
      key(43) & key(51) & key(59) & 
key(36) & key(44) & key(52) & key(60); 
END 
permutation;166166166166166166166166166166166166166166166166166166
166166 
 

PC_2.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY PC_2 IS 
PORT(CS,DS: IN std_logic_vector(27 DOWNTO 0); 
 K: OUT std_logic_vector(47 DOWNTO 0)); 
END PC_2; 
 
ARCHITECTURE permutation OF PC_2 IS 
 
 SHARED VARIABLE CS_DS: std_logic_vector(55 DOWNTO 0) := CS & 
DS; 
  
BEGIN 
  K <= CS_DS(42) & CS_DS(39) & CS_DS(45) & CS_DS(32) & 
CS_DS(55) & CS_DS(51) & 
   CS_DS(53) & CS_DS(28) & CS_DS(41) & CS_DS(50) & 
CS_DS(35) & CS_DS(46) & 
   CS_DS(33) & CS_DS(37) & CS_DS(44) & CS_DS(52) & 
CS_DS(30) & CS_DS(48) & 
   CS_DS(40) & CS_DS(49) & CS_DS(29) & CS_DS(36) & 
CS_DS(43) & CS_DS(54) & 
   CS_DS(15) & CS_DS(4) & CS_DS(25) & CS_DS(19) & 
CS_DS(9) & CS_DS(1) & 
   CS_DS(26) & CS_DS(16) & CS_DS(5) & CS_DS(11) & 
CS_DS(23) & CS_DS(8) & 
   CS_DS(12) & CS_DS(7) & CS_DS(17) & CS_DS(0) & 
CS_DS(22) & CS_DS(3) & 
   CS_DS(10) & CS_DS(14) & CS_DS(6) & CS_DS(20) & 
CS_DS(27) & CS_DS(24); 
     
END permutation; 
 

S1.vhd 

--EDNI DEL ROSAL----S1.vhd----------------------- 
--Thesis Spring 2015----------------------------- 
--This file performs the substitution of the box- 
--S1.-------------------------------------------- 
--The input is B1 and the output is S_B1--------- 
library IEEE; 
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use IEEE.std_logic_1164.all; 
 
ENTITY S1 IS 
 PORT(B1: IN std_logic_vector(5 DOWNTO 0); 
   S_B1: OUT std_logic_vector(3 DOWNTO 0)); 
END S1; 
 
ARCHITECTURE substitute OF S1 IS 
  
  TYPE mem IS ARRAY (0 to 15) OF std_logic_vector (3 DOWNTO 
0); 
  constant sub_out : mem := ( 
  0 => "0000", 
  1 => "0001", 
  2 => "0010", 
  3 => "0011", 
  4 => "0100", 
  5 => "0101", 
  6 => "0110", 
  7 => "0111", 
  8 => "1000", 
  9 => "1001", 
  10 => "1010", 
  11 => "1011", 
  12 => "1100", 
  13 => "1101", 
  14 => "1110", 
  15 => "1111"); 
   
BEGIN 
  PROCESS (B1) 
  BEGIN 
   CASE B1 IS 
    WHEN "000000" => S_B1 <= sub_out(14); 
    WHEN "000010" => S_B1 <= sub_out(4); 
    WHEN "000100" => S_B1 <= sub_out(13); 
    WHEN "000110" => S_B1 <= sub_out(1); 
    WHEN "001000" => S_B1 <= sub_out(2); 
    WHEN "001010" => S_B1 <= sub_out(15); 
    WHEN "001100" => S_B1 <= sub_out(11); 
    WHEN "001110" => S_B1 <= sub_out(8); 
    WHEN "010000" => S_B1 <= sub_out(3); 
    WHEN "010010" => S_B1 <= sub_out(10); 
    WHEN "010100" => S_B1 <= sub_out(6); 
    WHEN "010110" => S_B1 <= sub_out(12); 
    WHEN "011000" => S_B1 <= sub_out(5); 
    WHEN "011010" => S_B1 <= sub_out(9); 
    WHEN "011100" => S_B1 <= sub_out(0); 
    WHEN "011110" => S_B1 <= sub_out(7); 
    
    WHEN "000001" => S_B1 <= sub_out(0); 
    WHEN "000011" => S_B1 <= sub_out(15); 
    WHEN "000101" => S_B1 <= sub_out(7); 
    WHEN "000111" => S_B1 <= sub_out(4); 
    WHEN "001001" => S_B1 <= sub_out(14); 
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    WHEN "001011" => S_B1 <= sub_out(2); 
    WHEN "001101" => S_B1 <= sub_out(13); 
    WHEN "001111" => S_B1 <= sub_out(1); 
    WHEN "010001" => S_B1 <= sub_out(10); 
    WHEN "010011" => S_B1 <= sub_out(6); 
    WHEN "010101" => S_B1 <= sub_out(12); 
    WHEN "010111" => S_B1 <= sub_out(11); 
    WHEN "011001" => S_B1 <= sub_out(9); 
    WHEN "011011" => S_B1 <= sub_out(5); 
    WHEN "011101" => S_B1 <= sub_out(3); 
    WHEN "011111" => S_B1 <= sub_out(8); 
      
    WHEN "100000" => S_B1 <= sub_out(4); 
    WHEN "100010" => S_B1 <= sub_out(1); 
    WHEN "100100" => S_B1 <= sub_out(14); 
    WHEN "100110" => S_B1 <= sub_out(8); 
    WHEN "101000" => S_B1 <= sub_out(13); 
    WHEN "101010" => S_B1 <= sub_out(6); 
    WHEN "101100" => S_B1 <= sub_out(2); 
    WHEN "101110" => S_B1 <= sub_out(11); 
    WHEN "110000" => S_B1 <= sub_out(15); 
    WHEN "110010" => S_B1 <= sub_out(12); 
    WHEN "110100" => S_B1 <= sub_out(9); 
    WHEN "110110" => S_B1 <= sub_out(7); 
    WHEN "111000" => S_B1 <= sub_out(3); 
    WHEN "111010" => S_B1 <= sub_out(10); 
    WHEN "111100" => S_B1 <= sub_out(5); 
    WHEN "111110" => S_B1 <= sub_out(0); 
      
    WHEN "100001" => S_B1 <= sub_out(15); 
    WHEN "100011" => S_B1 <= sub_out(12); 
    WHEN "100101" => S_B1 <= sub_out(8); 
    WHEN "100111" => S_B1 <= sub_out(2); 
    WHEN "101001" => S_B1 <= sub_out(4); 
    WHEN "101011" => S_B1 <= sub_out(9); 
    WHEN "101101" => S_B1 <= sub_out(1); 
    WHEN "101111" => S_B1 <= sub_out(7); 
    WHEN "110001" => S_B1 <= sub_out(5); 
    WHEN "110011" => S_B1 <= sub_out(11); 
    WHEN "110101" => S_B1 <= sub_out(3); 
    WHEN "110111" => S_B1 <= sub_out(14); 
    WHEN "111001" => S_B1 <= sub_out(10); 
    WHEN "111011" => S_B1 <= sub_out(0); 
    WHEN "111101" => S_B1 <= sub_out(6); 
    WHEN "111111" => S_B1 <= sub_out(13); 
   END CASE;  
  END PROCESS; 
END architecture substitute; 
 

S2.vhd 

--EDNI DEL ROSAL----S2.vhd----------------------- 
--Thesis Spring 2015----------------------------- 
--This file performs the substitution of the box- 
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--S2.-------------------------------------------- 
--The input is B2 and the output is S_B2--------- 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY S2 IS 
 PORT(B2: IN std_logic_vector(5 DOWNTO 0); 
   S_B2: OUT std_logic_vector(3 DOWNTO 0)); 
END S2; 
 
ARCHITECTURE substitute OF S2 IS 
  
  TYPE mem IS ARRAY (0 to 15) OF std_logic_vector (3 DOWNTO 
0); 
  constant sub_out : mem := ( 
  0 => "0000", 
  1 => "0001", 
  2 => "0010", 
  3 => "0011", 
  4 => "0100", 
  5 => "0101", 
  6 => "0110", 
  7 => "0111", 
  8 => "1000", 
  9 => "1001", 
  10 => "1010", 
  11 => "1011", 
  12 => "1100", 
  13 => "1101", 
  14 => "1110", 
  15 => "1111"); 
   
BEGIN 
  PROCESS (B2) 
  BEGIN 
   CASE B2 IS 
    WHEN "000000" => S_B2 <= sub_out(15); 
    WHEN "000010" => S_B2 <= sub_out(1); 
    WHEN "000100" => S_B2 <= sub_out(8); 
    WHEN "000110" => S_B2 <= sub_out(14); 
    WHEN "001000" => S_B2 <= sub_out(6); 
    WHEN "001010" => S_B2 <= sub_out(11); 
    WHEN "001100" => S_B2 <= sub_out(3); 
    WHEN "001110" => S_B2 <= sub_out(4); 
    WHEN "010000" => S_B2 <= sub_out(9); 
    WHEN "010010" => S_B2 <= sub_out(7); 
    WHEN "010100" => S_B2 <= sub_out(2); 
    WHEN "010110" => S_B2 <= sub_out(13); 
    WHEN "011000" => S_B2 <= sub_out(12); 
    WHEN "011010" => S_B2 <= sub_out(0); 
    WHEN "011100" => S_B2 <= sub_out(5); 
    WHEN "011110" => S_B2 <= sub_out(10); 
    
    WHEN "000001" => S_B2 <= sub_out(3); 
    WHEN "000011" => S_B2 <= sub_out(13); 
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    WHEN "000101" => S_B2 <= sub_out(4); 
    WHEN "000111" => S_B2 <= sub_out(7); 
    WHEN "001001" => S_B2 <= sub_out(15); 
    WHEN "001011" => S_B2 <= sub_out(2); 
    WHEN "001101" => S_B2 <= sub_out(8); 
    WHEN "001111" => S_B2 <= sub_out(14); 
    WHEN "010001" => S_B2 <= sub_out(12); 
    WHEN "010011" => S_B2 <= sub_out(0); 
    WHEN "010101" => S_B2 <= sub_out(1); 
    WHEN "010111" => S_B2 <= sub_out(10); 
    WHEN "011001" => S_B2 <= sub_out(6); 
    WHEN "011011" => S_B2 <= sub_out(9); 
    WHEN "011101" => S_B2 <= sub_out(11); 
    WHEN "011111" => S_B2 <= sub_out(5); 
      
    WHEN "100000" => S_B2 <= sub_out(0); 
    WHEN "100010" => S_B2 <= sub_out(14); 
    WHEN "100100" => S_B2 <= sub_out(7); 
    WHEN "100110" => S_B2 <= sub_out(11); 
    WHEN "101000" => S_B2 <= sub_out(10); 
    WHEN "101010" => S_B2 <= sub_out(4); 
    WHEN "101100" => S_B2 <= sub_out(13); 
    WHEN "101110" => S_B2 <= sub_out(1); 
    WHEN "110000" => S_B2 <= sub_out(5); 
    WHEN "110010" => S_B2 <= sub_out(8); 
    WHEN "110100" => S_B2 <= sub_out(12); 
    WHEN "110110" => S_B2 <= sub_out(6); 
    WHEN "111000" => S_B2 <= sub_out(9); 
    WHEN "111010" => S_B2 <= sub_out(3); 
    WHEN "111100" => S_B2 <= sub_out(2); 
    WHEN "111110" => S_B2 <= sub_out(15); 
      
    WHEN "100001" => S_B2 <= sub_out(13); 
    WHEN "100011" => S_B2 <= sub_out(8); 
    WHEN "100101" => S_B2 <= sub_out(10); 
    WHEN "100111" => S_B2 <= sub_out(1); 
    WHEN "101001" => S_B2 <= sub_out(3); 
    WHEN "101011" => S_B2 <= sub_out(15); 
    WHEN "101101" => S_B2 <= sub_out(4); 
    WHEN "101111" => S_B2 <= sub_out(2); 
    WHEN "110001" => S_B2 <= sub_out(11); 
    WHEN "110011" => S_B2 <= sub_out(6); 
    WHEN "110101" => S_B2 <= sub_out(7); 
    WHEN "110111" => S_B2 <= sub_out(12); 
    WHEN "111001" => S_B2 <= sub_out(0); 
    WHEN "111011" => S_B2 <= sub_out(5); 
    WHEN "111101" => S_B2 <= sub_out(14); 
    WHEN "111111" => S_B2 <= sub_out(9); 
   END CASE;  
  END PROCESS; 
END architecture substitute; 
 

S3.vhd 
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--EDNI DEL ROSAL----S3.vhd----------------------- 
--Thesis Spring 2015----------------------------- 
--This file performs the substitution of the box- 
--S3.-------------------------------------------- 
--The input is B3 and the output is S_B3--------- 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY S3 IS 
 PORT(B3: IN std_logic_vector(5 DOWNTO 0); 
   S_B3: OUT std_logic_vector(3 DOWNTO 0)); 
END S3; 
 
ARCHITECTURE substitute OF S3 IS 
  
  TYPE mem IS ARRAY (0 to 15) OF std_logic_vector (3 DOWNTO 
0); 
  constant sub_out : mem := ( 
  0 => "0000", 
  1 => "0001", 
  2 => "0010", 
  3 => "0011", 
  4 => "0100", 
  5 => "0101", 
  6 => "0110", 
  7 => "0111", 
  8 => "1000", 
  9 => "1001", 
  10 => "1010", 
  11 => "1011", 
  12 => "1100", 
  13 => "1101", 
  14 => "1110", 
  15 => "1111"); 
   
BEGIN 
  PROCESS (B3) 
  BEGIN 
   CASE B3 IS 
    WHEN "000000" => S_B3 <= sub_out(10); 
    WHEN "000010" => S_B3 <= sub_out(0); 
    WHEN "000100" => S_B3 <= sub_out(9); 
    WHEN "000110" => S_B3 <= sub_out(14); 
    WHEN "001000" => S_B3 <= sub_out(6); 
    WHEN "001010" => S_B3 <= sub_out(3); 
    WHEN "001100" => S_B3 <= sub_out(15); 
    WHEN "001110" => S_B3 <= sub_out(5); 
    WHEN "010000" => S_B3 <= sub_out(1); 
    WHEN "010010" => S_B3 <= sub_out(13); 
    WHEN "010100" => S_B3 <= sub_out(12); 
    WHEN "010110" => S_B3 <= sub_out(7); 
    WHEN "011000" => S_B3 <= sub_out(11); 
    WHEN "011010" => S_B3 <= sub_out(4); 
    WHEN "011100" => S_B3 <= sub_out(2); 
    WHEN "011110" => S_B3 <= sub_out(8); 
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    WHEN "000001" => S_B3 <= sub_out(13); 
    WHEN "000011" => S_B3 <= sub_out(7); 
    WHEN "000101" => S_B3 <= sub_out(0); 
    WHEN "000111" => S_B3 <= sub_out(9); 
    WHEN "001001" => S_B3 <= sub_out(3); 
    WHEN "001011" => S_B3 <= sub_out(4); 
    WHEN "001101" => S_B3 <= sub_out(6); 
    WHEN "001111" => S_B3 <= sub_out(10); 
    WHEN "010001" => S_B3 <= sub_out(2); 
    WHEN "010011" => S_B3 <= sub_out(8); 
    WHEN "010101" => S_B3 <= sub_out(5); 
    WHEN "010111" => S_B3 <= sub_out(14); 
    WHEN "011001" => S_B3 <= sub_out(12); 
    WHEN "011011" => S_B3 <= sub_out(11); 
    WHEN "011101" => S_B3 <= sub_out(15); 
    WHEN "011111" => S_B3 <= sub_out(1); 
      
    WHEN "100000" => S_B3 <= sub_out(13); 
    WHEN "100010" => S_B3 <= sub_out(6); 
    WHEN "100100" => S_B3 <= sub_out(4); 
    WHEN "100110" => S_B3 <= sub_out(9); 
    WHEN "101000" => S_B3 <= sub_out(8); 
    WHEN "101010" => S_B3 <= sub_out(15); 
    WHEN "101100" => S_B3 <= sub_out(3); 
    WHEN "101110" => S_B3 <= sub_out(0); 
    WHEN "110000" => S_B3 <= sub_out(11); 
    WHEN "110010" => S_B3 <= sub_out(1); 
    WHEN "110100" => S_B3 <= sub_out(2); 
    WHEN "110110" => S_B3 <= sub_out(12); 
    WHEN "111000" => S_B3 <= sub_out(5); 
    WHEN "111010" => S_B3 <= sub_out(10); 
    WHEN "111100" => S_B3 <= sub_out(14); 
    WHEN "111110" => S_B3 <= sub_out(7); 
      
    WHEN "100001" => S_B3 <= sub_out(1); 
    WHEN "100011" => S_B3 <= sub_out(10); 
    WHEN "100101" => S_B3 <= sub_out(13); 
    WHEN "100111" => S_B3 <= sub_out(0); 
    WHEN "101001" => S_B3 <= sub_out(6); 
    WHEN "101011" => S_B3 <= sub_out(9); 
    WHEN "101101" => S_B3 <= sub_out(8); 
    WHEN "101111" => S_B3 <= sub_out(7); 
    WHEN "110001" => S_B3 <= sub_out(4); 
    WHEN "110011" => S_B3 <= sub_out(15); 
    WHEN "110101" => S_B3 <= sub_out(14); 
    WHEN "110111" => S_B3 <= sub_out(3); 
    WHEN "111001" => S_B3 <= sub_out(11); 
    WHEN "111011" => S_B3 <= sub_out(5); 
    WHEN "111101" => S_B3 <= sub_out(2); 
    WHEN "111111" => S_B3 <= sub_out(12); 
   END CASE;  
  END PROCESS; 
END architecture substitute; 
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S4.vhd 

--EDNI DEL ROSAL----S4.vhd----------------------- 
--Thesis Spring 2015----------------------------- 
--This file performs the substitution of the box- 
--S4.-------------------------------------------- 
--The input is B4 and the output is S_B4--------- 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY S4 IS 
 PORT(B4: IN std_logic_vector(5 DOWNTO 0); 
   S_B4: OUT std_logic_vector(3 DOWNTO 0)); 
END S4; 
 
ARCHITECTURE substitute OF S4 IS 
  
  TYPE mem IS ARRAY (0 to 15) OF std_logic_vector (3 DOWNTO 
0); 
  constant sub_out : mem := ( 
  0 => "0000", 
  1 => "0001", 
  2 => "0010", 
  3 => "0011", 
  4 => "0100", 
  5 => "0101", 
  6 => "0110", 
  7 => "0111", 
  8 => "1000", 
  9 => "1001", 
  10 => "1010", 
  11 => "1011", 
  12 => "1100", 
  13 => "1101", 
  14 => "1110", 
  15 => "1111"); 
   
BEGIN 
  PROCESS (B4) 
  BEGIN 
   CASE B4 IS 
    WHEN "000000" => S_B4 <= sub_out(7); 
    WHEN "000010" => S_B4 <= sub_out(13); 
    WHEN "000100" => S_B4 <= sub_out(14); 
    WHEN "000110" => S_B4 <= sub_out(3); 
    WHEN "001000" => S_B4 <= sub_out(0); 
    WHEN "001010" => S_B4 <= sub_out(6); 
    WHEN "001100" => S_B4 <= sub_out(9); 
    WHEN "001110" => S_B4 <= sub_out(10); 
    WHEN "010000" => S_B4 <= sub_out(1); 
    WHEN "010010" => S_B4 <= sub_out(2); 
    WHEN "010100" => S_B4 <= sub_out(8); 
    WHEN "010110" => S_B4 <= sub_out(5); 
    WHEN "011000" => S_B4 <= sub_out(11); 
    WHEN "011010" => S_B4 <= sub_out(12); 
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    WHEN "011100" => S_B4 <= sub_out(4); 
    WHEN "011110" => S_B4 <= sub_out(15); 
    
    WHEN "000001" => S_B4 <= sub_out(13); 
    WHEN "000011" => S_B4 <= sub_out(8); 
    WHEN "000101" => S_B4 <= sub_out(11); 
    WHEN "000111" => S_B4 <= sub_out(5); 
    WHEN "001001" => S_B4 <= sub_out(6); 
    WHEN "001011" => S_B4 <= sub_out(15); 
    WHEN "001101" => S_B4 <= sub_out(0); 
    WHEN "001111" => S_B4 <= sub_out(3); 
    WHEN "010001" => S_B4 <= sub_out(4); 
    WHEN "010011" => S_B4 <= sub_out(7); 
    WHEN "010101" => S_B4 <= sub_out(2); 
    WHEN "010111" => S_B4 <= sub_out(12); 
    WHEN "011001" => S_B4 <= sub_out(1); 
    WHEN "011011" => S_B4 <= sub_out(10); 
    WHEN "011101" => S_B4 <= sub_out(14); 
    WHEN "011111" => S_B4 <= sub_out(9); 
      
    WHEN "100000" => S_B4 <= sub_out(10); 
    WHEN "100010" => S_B4 <= sub_out(6); 
    WHEN "100100" => S_B4 <= sub_out(9); 
    WHEN "100110" => S_B4 <= sub_out(0); 
    WHEN "101000" => S_B4 <= sub_out(12); 
    WHEN "101010" => S_B4 <= sub_out(11); 
    WHEN "101100" => S_B4 <= sub_out(7); 
    WHEN "101110" => S_B4 <= sub_out(13); 
    WHEN "110000" => S_B4 <= sub_out(15); 
    WHEN "110010" => S_B4 <= sub_out(1); 
    WHEN "110100" => S_B4 <= sub_out(3); 
    WHEN "110110" => S_B4 <= sub_out(14); 
    WHEN "111000" => S_B4 <= sub_out(5); 
    WHEN "111010" => S_B4 <= sub_out(2); 
    WHEN "111100" => S_B4 <= sub_out(8); 
    WHEN "111110" => S_B4 <= sub_out(4); 
      
    WHEN "100001" => S_B4 <= sub_out(3); 
    WHEN "100011" => S_B4 <= sub_out(15); 
    WHEN "100101" => S_B4 <= sub_out(0); 
    WHEN "100111" => S_B4 <= sub_out(6); 
    WHEN "101001" => S_B4 <= sub_out(10); 
    WHEN "101011" => S_B4 <= sub_out(1); 
    WHEN "101101" => S_B4 <= sub_out(13); 
    WHEN "101111" => S_B4 <= sub_out(8); 
    WHEN "110001" => S_B4 <= sub_out(9); 
    WHEN "110011" => S_B4 <= sub_out(4); 
    WHEN "110101" => S_B4 <= sub_out(5); 
    WHEN "110111" => S_B4 <= sub_out(11); 
    WHEN "111001" => S_B4 <= sub_out(12); 
    WHEN "111011" => S_B4 <= sub_out(7); 
    WHEN "111101" => S_B4 <= sub_out(2); 
    WHEN "111111" => S_B4 <= sub_out(14); 
   END CASE;  
  END PROCESS; 
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END architecture substitute; 
 

S5.vhd 

--EDNI DEL ROSAL----S5.vhd----------------------- 
--Thesis Spring 2015----------------------------- 
--This file performs the substitution of the box- 
--S5.-------------------------------------------- 
--The input is B5 and the output is S_B5--------- 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY S5 IS 
 PORT(B5: IN std_logic_vector(5 DOWNTO 0); 
   S_B5: OUT std_logic_vector(3 DOWNTO 0)); 
END S5; 
 
ARCHITECTURE substitute OF S5 IS 
  
  TYPE mem IS ARRAY (0 to 15) OF std_logic_vector (3 DOWNTO 
0); 
  constant sub_out : mem := ( 
  0 => "0000", 
  1 => "0001", 
  2 => "0010", 
  3 => "0011", 
  4 => "0100", 
  5 => "0101", 
  6 => "0110", 
  7 => "0111", 
  8 => "1000", 
  9 => "1001", 
  10 => "1010", 
  11 => "1011", 
  12 => "1100", 
  13 => "1101", 
  14 => "1110", 
  15 => "1111"); 
   
BEGIN 
  PROCESS (B5) 
  BEGIN 
   CASE B5 IS 
    WHEN "000000" => S_B5 <= sub_out(2); 
    WHEN "000010" => S_B5 <= sub_out(12); 
    WHEN "000100" => S_B5 <= sub_out(4); 
    WHEN "000110" => S_B5 <= sub_out(1); 
    WHEN "001000" => S_B5 <= sub_out(7); 
    WHEN "001010" => S_B5 <= sub_out(10); 
    WHEN "001100" => S_B5 <= sub_out(11); 
    WHEN "001110" => S_B5 <= sub_out(6); 
    WHEN "010000" => S_B5 <= sub_out(8); 
    WHEN "010010" => S_B5 <= sub_out(5); 
    WHEN "010100" => S_B5 <= sub_out(3); 
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    WHEN "010110" => S_B5 <= sub_out(15); 
    WHEN "011000" => S_B5 <= sub_out(13); 
    WHEN "011010" => S_B5 <= sub_out(0); 
    WHEN "011100" => S_B5 <= sub_out(14); 
    WHEN "011110" => S_B5 <= sub_out(9); 
    
    WHEN "000001" => S_B5 <= sub_out(14); 
    WHEN "000011" => S_B5 <= sub_out(11); 
    WHEN "000101" => S_B5 <= sub_out(2); 
    WHEN "000111" => S_B5 <= sub_out(12); 
    WHEN "001001" => S_B5 <= sub_out(4); 
    WHEN "001011" => S_B5 <= sub_out(7); 
    WHEN "001101" => S_B5 <= sub_out(13); 
    WHEN "001111" => S_B5 <= sub_out(1); 
    WHEN "010001" => S_B5 <= sub_out(5); 
    WHEN "010011" => S_B5 <= sub_out(0); 
    WHEN "010101" => S_B5 <= sub_out(15); 
    WHEN "010111" => S_B5 <= sub_out(10); 
    WHEN "011001" => S_B5 <= sub_out(3); 
    WHEN "011011" => S_B5 <= sub_out(9); 
    WHEN "011101" => S_B5 <= sub_out(8); 
    WHEN "011111" => S_B5 <= sub_out(6); 
      
    WHEN "100000" => S_B5 <= sub_out(4); 
    WHEN "100010" => S_B5 <= sub_out(2); 
    WHEN "100100" => S_B5 <= sub_out(1); 
    WHEN "100110" => S_B5 <= sub_out(11); 
    WHEN "101000" => S_B5 <= sub_out(10); 
    WHEN "101010" => S_B5 <= sub_out(13); 
    WHEN "101100" => S_B5 <= sub_out(7); 
    WHEN "101110" => S_B5 <= sub_out(8); 
    WHEN "110000" => S_B5 <= sub_out(15); 
    WHEN "110010" => S_B5 <= sub_out(9); 
    WHEN "110100" => S_B5 <= sub_out(12); 
    WHEN "110110" => S_B5 <= sub_out(5); 
    WHEN "111000" => S_B5 <= sub_out(6); 
    WHEN "111010" => S_B5 <= sub_out(3); 
    WHEN "111100" => S_B5 <= sub_out(0); 
    WHEN "111110" => S_B5 <= sub_out(14); 
      
    WHEN "100001" => S_B5 <= sub_out(11); 
    WHEN "100011" => S_B5 <= sub_out(8); 
    WHEN "100101" => S_B5 <= sub_out(12); 
    WHEN "100111" => S_B5 <= sub_out(7); 
    WHEN "101001" => S_B5 <= sub_out(1); 
    WHEN "101011" => S_B5 <= sub_out(14); 
    WHEN "101101" => S_B5 <= sub_out(2); 
    WHEN "101111" => S_B5 <= sub_out(13); 
    WHEN "110001" => S_B5 <= sub_out(6); 
    WHEN "110011" => S_B5 <= sub_out(15); 
    WHEN "110101" => S_B5 <= sub_out(0); 
    WHEN "110111" => S_B5 <= sub_out(9); 
    WHEN "111001" => S_B5 <= sub_out(10); 
    WHEN "111011" => S_B5 <= sub_out(4); 
    WHEN "111101" => S_B5 <= sub_out(5); 
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    WHEN "111111" => S_B5 <= sub_out(3); 
   END CASE;  
  END PROCESS; 
END architecture substitute; 
 

S6.vhd 

--EDNI DEL ROSAL----S6.vhd----------------------- 
--Thesis Spring 2015----------------------------- 
--This file performs the substitution of the box- 
--S6.-------------------------------------------- 
--The input is B6 and the output is S_B6--------- 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY S6 IS 
 PORT(B6: IN std_logic_vector(5 DOWNTO 0); 
   S_B6: OUT std_logic_vector(3 DOWNTO 0)); 
END S6; 
 
ARCHITECTURE substitute OF S6 IS 
  
  TYPE mem IS ARRAY (0 to 15) OF std_logic_vector (3 DOWNTO 
0); 
  constant sub_out : mem := ( 
  0 => "0000", 
  1 => "0001", 
  2 => "0010", 
  3 => "0011", 
  4 => "0100", 
  5 => "0101", 
  6 => "0110", 
  7 => "0111", 
  8 => "1000", 
  9 => "1001", 
  10 => "1010", 
  11 => "1011", 
  12 => "1100", 
  13 => "1101", 
  14 => "1110", 
  15 => "1111"); 
   
BEGIN 
  PROCESS (B6) 
  BEGIN 
   CASE B6 IS 
    WHEN "000000" => S_B6 <= sub_out(12); 
    WHEN "000010" => S_B6 <= sub_out(1); 
    WHEN "000100" => S_B6 <= sub_out(10); 
    WHEN "000110" => S_B6 <= sub_out(15); 
    WHEN "001000" => S_B6 <= sub_out(9); 
    WHEN "001010" => S_B6 <= sub_out(2); 
    WHEN "001100" => S_B6 <= sub_out(6); 
    WHEN "001110" => S_B6 <= sub_out(8); 
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    WHEN "010000" => S_B6 <= sub_out(0); 
    WHEN "010010" => S_B6 <= sub_out(13); 
    WHEN "010100" => S_B6 <= sub_out(3); 
    WHEN "010110" => S_B6 <= sub_out(4); 
    WHEN "011000" => S_B6 <= sub_out(14); 
    WHEN "011010" => S_B6 <= sub_out(7); 
    WHEN "011100" => S_B6 <= sub_out(5); 
    WHEN "011110" => S_B6 <= sub_out(11); 
    
    WHEN "000001" => S_B6 <= sub_out(10); 
    WHEN "000011" => S_B6 <= sub_out(15); 
    WHEN "000101" => S_B6 <= sub_out(4); 
    WHEN "000111" => S_B6 <= sub_out(2); 
    WHEN "001001" => S_B6 <= sub_out(7); 
    WHEN "001011" => S_B6 <= sub_out(12); 
    WHEN "001101" => S_B6 <= sub_out(9); 
    WHEN "001111" => S_B6 <= sub_out(5); 
    WHEN "010001" => S_B6 <= sub_out(6); 
    WHEN "010011" => S_B6 <= sub_out(1); 
    WHEN "010101" => S_B6 <= sub_out(13); 
    WHEN "010111" => S_B6 <= sub_out(14); 
    WHEN "011001" => S_B6 <= sub_out(0); 
    WHEN "011011" => S_B6 <= sub_out(11); 
    WHEN "011101" => S_B6 <= sub_out(3); 
    WHEN "011111" => S_B6 <= sub_out(8); 
      
    WHEN "100000" => S_B6 <= sub_out(9); 
    WHEN "100010" => S_B6 <= sub_out(14); 
    WHEN "100100" => S_B6 <= sub_out(15); 
    WHEN "100110" => S_B6 <= sub_out(5); 
    WHEN "101000" => S_B6 <= sub_out(2); 
    WHEN "101010" => S_B6 <= sub_out(8); 
    WHEN "101100" => S_B6 <= sub_out(12); 
    WHEN "101110" => S_B6 <= sub_out(3); 
    WHEN "110000" => S_B6 <= sub_out(7); 
    WHEN "110010" => S_B6 <= sub_out(0); 
    WHEN "110100" => S_B6 <= sub_out(4); 
    WHEN "110110" => S_B6 <= sub_out(10); 
    WHEN "111000" => S_B6 <= sub_out(1); 
    WHEN "111010" => S_B6 <= sub_out(13); 
    WHEN "111100" => S_B6 <= sub_out(11); 
    WHEN "111110" => S_B6 <= sub_out(6); 
      
    WHEN "100001" => S_B6 <= sub_out(4); 
    WHEN "100011" => S_B6 <= sub_out(3); 
    WHEN "100101" => S_B6 <= sub_out(2); 
    WHEN "100111" => S_B6 <= sub_out(12); 
    WHEN "101001" => S_B6 <= sub_out(9); 
    WHEN "101011" => S_B6 <= sub_out(5); 
    WHEN "101101" => S_B6 <= sub_out(15); 
    WHEN "101111" => S_B6 <= sub_out(10); 
    WHEN "110001" => S_B6 <= sub_out(11); 
    WHEN "110011" => S_B6 <= sub_out(14); 
    WHEN "110101" => S_B6 <= sub_out(1); 
    WHEN "110111" => S_B6 <= sub_out(7); 
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    WHEN "111001" => S_B6 <= sub_out(6); 
    WHEN "111011" => S_B6 <= sub_out(0); 
    WHEN "111101" => S_B6 <= sub_out(8); 
    WHEN "111111" => S_B6 <= sub_out(13); 
   END CASE;  
  END PROCESS; 
END architecture substitute; 
 

S7.vhd 

--EDNI DEL ROSAL----S7.vhd----------------------- 
--Thesis Spring 2015----------------------------- 
--This file performs the substitution of the box- 
--S7.-------------------------------------------- 
--The input is B7 and the output is S_B7--------- 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY S7 IS 
 PORT(B7: IN std_logic_vector(5 DOWNTO 0); 
   S_B7: OUT std_logic_vector(3 DOWNTO 0)); 
END S7; 
 
ARCHITECTURE substitute OF S7 IS 
  
  TYPE mem IS ARRAY (0 to 15) OF std_logic_vector (3 DOWNTO 
0); 
  constant sub_out : mem := ( 
  0 => "0000", 
  1 => "0001", 
  2 => "0010", 
  3 => "0011", 
  4 => "0100", 
  5 => "0101", 
  6 => "0110", 
  7 => "0111", 
  8 => "1000", 
  9 => "1001", 
  10 => "1010", 
  11 => "1011", 
  12 => "1100", 
  13 => "1101", 
  14 => "1110", 
  15 => "1111"); 
   
BEGIN 
  PROCESS (B7) 
  BEGIN 
   CASE B7 IS 
    WHEN "000000" => S_B7 <= sub_out(4); 
    WHEN "000010" => S_B7 <= sub_out(11); 
    WHEN "000100" => S_B7 <= sub_out(2); 
    WHEN "000110" => S_B7 <= sub_out(14); 
    WHEN "001000" => S_B7 <= sub_out(15); 
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    WHEN "001010" => S_B7 <= sub_out(0); 
    WHEN "001100" => S_B7 <= sub_out(8); 
    WHEN "001110" => S_B7 <= sub_out(13); 
    WHEN "010000" => S_B7 <= sub_out(3); 
    WHEN "010010" => S_B7 <= sub_out(12); 
    WHEN "010100" => S_B7 <= sub_out(9); 
    WHEN "010110" => S_B7 <= sub_out(7); 
    WHEN "011000" => S_B7 <= sub_out(5); 
    WHEN "011010" => S_B7 <= sub_out(10); 
    WHEN "011100" => S_B7 <= sub_out(6); 
    WHEN "011110" => S_B7 <= sub_out(1); 
    
    WHEN "000001" => S_B7 <= sub_out(13); 
    WHEN "000011" => S_B7 <= sub_out(0); 
    WHEN "000101" => S_B7 <= sub_out(11); 
    WHEN "000111" => S_B7 <= sub_out(7); 
    WHEN "001001" => S_B7 <= sub_out(4); 
    WHEN "001011" => S_B7 <= sub_out(9); 
    WHEN "001101" => S_B7 <= sub_out(1); 
    WHEN "001111" => S_B7 <= sub_out(10); 
    WHEN "010001" => S_B7 <= sub_out(14); 
    WHEN "010011" => S_B7 <= sub_out(3); 
    WHEN "010101" => S_B7 <= sub_out(5); 
    WHEN "010111" => S_B7 <= sub_out(12); 
    WHEN "011001" => S_B7 <= sub_out(2); 
    WHEN "011011" => S_B7 <= sub_out(15); 
    WHEN "011101" => S_B7 <= sub_out(8); 
    WHEN "011111" => S_B7 <= sub_out(6); 
      
    WHEN "100000" => S_B7 <= sub_out(1); 
    WHEN "100010" => S_B7 <= sub_out(4); 
    WHEN "100100" => S_B7 <= sub_out(11); 
    WHEN "100110" => S_B7 <= sub_out(13); 
    WHEN "101000" => S_B7 <= sub_out(12); 
    WHEN "101010" => S_B7 <= sub_out(3); 
    WHEN "101100" => S_B7 <= sub_out(7); 
    WHEN "101110" => S_B7 <= sub_out(14); 
    WHEN "110000" => S_B7 <= sub_out(10); 
    WHEN "110010" => S_B7 <= sub_out(15); 
    WHEN "110100" => S_B7 <= sub_out(6); 
    WHEN "110110" => S_B7 <= sub_out(8); 
    WHEN "111000" => S_B7 <= sub_out(0); 
    WHEN "111010" => S_B7 <= sub_out(5); 
    WHEN "111100" => S_B7 <= sub_out(9); 
    WHEN "111110" => S_B7 <= sub_out(2); 
      
    WHEN "100001" => S_B7 <= sub_out(6); 
    WHEN "100011" => S_B7 <= sub_out(11); 
    WHEN "100101" => S_B7 <= sub_out(13); 
    WHEN "100111" => S_B7 <= sub_out(8); 
    WHEN "101001" => S_B7 <= sub_out(1); 
    WHEN "101011" => S_B7 <= sub_out(4); 
    WHEN "101101" => S_B7 <= sub_out(10); 
    WHEN "101111" => S_B7 <= sub_out(7); 
    WHEN "110001" => S_B7 <= sub_out(9); 
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    WHEN "110011" => S_B7 <= sub_out(5); 
    WHEN "110101" => S_B7 <= sub_out(0); 
    WHEN "110111" => S_B7 <= sub_out(15); 
    WHEN "111001" => S_B7 <= sub_out(14); 
    WHEN "111011" => S_B7 <= sub_out(2); 
    WHEN "111101" => S_B7 <= sub_out(3); 
    WHEN "111111" => S_B7 <= sub_out(12); 
   END CASE;  
  END PROCESS; 
END architecture substitute; 
 

S8.vhd 

--EDNI DEL ROSAL----S8.vhd----------------------- 
--Thesis Spring 2015----------------------------- 
--This file performs the substitution of the box- 
--S8.-------------------------------------------- 
--The input is B8 and the output is S_B8--------- 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY S8 IS 
 PORT(B8: IN std_logic_vector(5 DOWNTO 0); 
   S_B8: OUT std_logic_vector(3 DOWNTO 0)); 
END S8; 
 
ARCHITECTURE substitute OF S8 IS 
  
  TYPE mem IS ARRAY (0 to 15) OF std_logic_vector (3 DOWNTO 
0); 
  constant sub_out : mem := ( 
  0 => "0000", 
  1 => "0001", 
  2 => "0010", 
  3 => "0011", 
  4 => "0100", 
  5 => "0101", 
  6 => "0110", 
  7 => "0111", 
  8 => "1000", 
  9 => "1001", 
  10 => "1010", 
  11 => "1011", 
  12 => "1100", 
  13 => "1101", 
  14 => "1110", 
  15 => "1111"); 
   
BEGIN 
  PROCESS (B8) 
  BEGIN 
   CASE B8 IS 
    WHEN "000000" => S_B8 <= sub_out(13); 
    WHEN "000010" => S_B8 <= sub_out(2); 



	 182	

    WHEN "000100" => S_B8 <= sub_out(8); 
    WHEN "000110" => S_B8 <= sub_out(4); 
    WHEN "001000" => S_B8 <= sub_out(6); 
    WHEN "001010" => S_B8 <= sub_out(15); 
    WHEN "001100" => S_B8 <= sub_out(11); 
    WHEN "001110" => S_B8 <= sub_out(1); 
    WHEN "010000" => S_B8 <= sub_out(10); 
    WHEN "010010" => S_B8 <= sub_out(9); 
    WHEN "010100" => S_B8 <= sub_out(3); 
    WHEN "010110" => S_B8 <= sub_out(14); 
    WHEN "011000" => S_B8 <= sub_out(5); 
    WHEN "011010" => S_B8 <= sub_out(0); 
    WHEN "011100" => S_B8 <= sub_out(12); 
    WHEN "011110" => S_B8 <= sub_out(7); 
    
    WHEN "000001" => S_B8 <= sub_out(1); 
    WHEN "000011" => S_B8 <= sub_out(15); 
    WHEN "000101" => S_B8 <= sub_out(13); 
    WHEN "000111" => S_B8 <= sub_out(8); 
    WHEN "001001" => S_B8 <= sub_out(10); 
    WHEN "001011" => S_B8 <= sub_out(3); 
    WHEN "001101" => S_B8 <= sub_out(7); 
    WHEN "001111" => S_B8 <= sub_out(4); 
    WHEN "010001" => S_B8 <= sub_out(12); 
    WHEN "010011" => S_B8 <= sub_out(5); 
    WHEN "010101" => S_B8 <= sub_out(6); 
    WHEN "010111" => S_B8 <= sub_out(11); 
    WHEN "011001" => S_B8 <= sub_out(0); 
    WHEN "011011" => S_B8 <= sub_out(14); 
    WHEN "011101" => S_B8 <= sub_out(9); 
    WHEN "011111" => S_B8 <= sub_out(2); 
      
    WHEN "100000" => S_B8 <= sub_out(7); 
    WHEN "100010" => S_B8 <= sub_out(11); 
    WHEN "100100" => S_B8 <= sub_out(4); 
    WHEN "100110" => S_B8 <= sub_out(1); 
    WHEN "101000" => S_B8 <= sub_out(9); 
    WHEN "101010" => S_B8 <= sub_out(12); 
    WHEN "101100" => S_B8 <= sub_out(14); 
    WHEN "101110" => S_B8 <= sub_out(2); 
    WHEN "110000" => S_B8 <= sub_out(0); 
    WHEN "110010" => S_B8 <= sub_out(6); 
    WHEN "110100" => S_B8 <= sub_out(10); 
    WHEN "110110" => S_B8 <= sub_out(13); 
    WHEN "111000" => S_B8 <= sub_out(15); 
    WHEN "111010" => S_B8 <= sub_out(3); 
    WHEN "111100" => S_B8 <= sub_out(5); 
    WHEN "111110" => S_B8 <= sub_out(8); 
      
    WHEN "100001" => S_B8 <= sub_out(2); 
    WHEN "100011" => S_B8 <= sub_out(1); 
    WHEN "100101" => S_B8 <= sub_out(14); 
    WHEN "100111" => S_B8 <= sub_out(7); 
    WHEN "101001" => S_B8 <= sub_out(4); 
    WHEN "101011" => S_B8 <= sub_out(10); 
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    WHEN "101101" => S_B8 <= sub_out(8); 
    WHEN "101111" => S_B8 <= sub_out(13); 
    WHEN "110001" => S_B8 <= sub_out(15); 
    WHEN "110011" => S_B8 <= sub_out(12); 
    WHEN "110101" => S_B8 <= sub_out(9); 
    WHEN "110111" => S_B8 <= sub_out(0); 
    WHEN "111001" => S_B8 <= sub_out(3); 
    WHEN "111011" => S_B8 <= sub_out(5); 
    WHEN "111101" => S_B8 <= sub_out(6); 
    WHEN "111111" => S_B8 <= sub_out(11); 
   END CASE;  
  END PROCESS; 
END architecture substitute; 
 

SRL_1.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY SRL_1 IS 
 PORT( C,D: IN std_logic_vector(27 DOWNTO 0); 
   CS,DS: OUT std_logic_vector(27 DOWNTO 0)); 
END SRL_1; 
  
ARCHITECTURE shift OF SRL_1 IS 
 
 SHARED VARIABLE Cint: bit_vector(27 DOWNTO 0):= 
to_bitvector(C); 
 SHARED VARIABLE Dint: bit_vector(27 DOWNTO 0):= 
to_bitvector(D); 
  
BEGIN 
 
 CS <= to_stdlogicvector(Cint rol 1); 
 DS <= to_stdlogicvector(Dint rol 1); 
  
END shift; 
 

SRL_2.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY SRL_2 IS 
 PORT( C,D: IN std_logic_vector(27 DOWNTO 0); 
   CS,DS: OUT std_logic_vector(27 DOWNTO 0)); 
END SRL_2; 
 
ARCHITECTURE shift OF SRL_2 IS 
  
 SHARED VARIABLE Cint: bit_vector(27 DOWNTO 0) := 
to_bitvector(C); 
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 SHARED VARIABLE Dint: bit_vector(27 DOWNTO 0) := 
to_bitvector(D); 
  
BEGIN 
 
 CS <= to_stdlogicvector(Cint rol 2); 
 DS <= to_stdlogicvector(Dint rol 2); 
  
END shift; 
 

SRR_1.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY SRR_1 IS 
 PORT( C,D: IN std_logic_vector(27 DOWNTO 0); 
   CS,DS: OUT std_logic_vector(27 DOWNTO 0)); 
END SRR_1; 
  
ARCHITECTURE shift OF SRR_1 IS 
 
 SHARED VARIABLE Cint: bit_vector(27 DOWNTO 0):= 
to_bitvector(C); 
 SHARED VARIABLE Dint: bit_vector(27 DOWNTO 0):= 
to_bitvector(D); 
  
BEGIN 
 
 CS <= to_stdlogicvector(Cint ror 1); 
 DS <= to_stdlogicvector(Dint ror 1); 
  
END shift; 
 

SRR_2.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY SRR_2 IS 
 PORT( C,D: IN std_logic_vector(27 DOWNTO 0); 
   CS,DS: OUT std_logic_vector(27 DOWNTO 0)); 
END SRR_2; 
 
ARCHITECTURE shift OF SRR_2 IS 
  
 SHARED VARIABLE Cint: bit_vector(27 DOWNTO 0) := 
to_bitvector(C); 
 SHARED VARIABLE Dint: bit_vector(27 DOWNTO 0) := 
to_bitvector(D); 
  
BEGIN 
 



	 185	

 CS <= to_stdlogicvector(Cint ror 2); 
 DS <= to_stdlogicvector(Dint ror 2); 
  
END shift; 
 

TDES_decrypt.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY TDES_decrypt IS 
PORT( cipher_data: IN std_logic_vector(63 DOWNTO 0); 
  key1,key2,key3: IN std_logic_vector(63 DOWNTO 0); 
   
  key_out: OUT std_logic_vector(63 DOWNTO 0); 
  cipher_out: OUT std_logic_vector(63 DOWNTO 0); 
  data: OUT std_logic_vector(63 DOWNTO 0)); 
END TDES_decrypt; 
 
ARCHITECTURE encrypt OF TDES_decrypt IS 
 
 SIGNAL data_1,data_2,data_3: std_logic_vector(63 DOWNTO 0); 
  
 SIGNAL cipher_out1,cipher_out2,cipher_out3: 
std_logic_vector(63 DOWNTO 0); 
 SIGNAL key_out1,key_out2,key_out3: std_logic_vector(63 DOWNTO 
0); 
  
 COMPONENT DES_encrypt 
  PORT( data: IN std_logic_vector(63 DOWNTO 0); 
    K: IN std_logic_vector(63 DOWNTO 0); 
    
    data_out: OUT std_logic_vector(63 DOWNTO 0); 
    K_out: OUT std_logic_vector(63 DOWNTO 0); 
    cipher_data: OUT std_logic_vector(63 DOWNTO 
0)); 
 END COMPONENT; 
  
 COMPONENT DES_decrypt 
  PORT( cipher_data: IN std_logic_vector(63 DOWNTO 0); 
    K: IN std_logic_vector(63 DOWNTO 0); 
    
    cipher_out: OUT std_logic_vector(63 DOWNTO 
0); 
    K_out: OUT std_logic_vector(63 DOWNTO 0); 
    data: OUT std_logic_vector(63 DOWNTO 0)); 
 END COMPONENT; 
 
BEGIN 
 
 DES_1 : DES_decrypt PORT 
MAP(cipher_data,key3,cipher_out3,key_out3,data_3); 
 DES_2 : DES_encrypt PORT 
MAP(data_3,key2,cipher_out2,key_out2,data_2); 



	 186	

 DES_3 : DES_decrypt PORT 
MAP(data_2,key1,cipher_out1,key_out1,data_1); 
  
   data <= data_1; 
   cipher_out <= cipher_data; 
   key_out <= key1; 
 
END encrypt; 
 

TDES_decrypt_P.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY TDES_decrypt_P IS 
PORT(clk: IN std_logic; 
  cipher_data: IN std_logic_vector(63 DOWNTO 0); 
  key1,key2,key3: IN std_logic_vector(63 DOWNTO 0); 
   
  key_out: OUT std_logic_vector(63 DOWNTO 0); 
  cipher_out: OUT std_logic_vector(63 DOWNTO 0); 
  data: OUT std_logic_vector(63 DOWNTO 0)); 
END TDES_decrypt_P; 
 
ARCHITECTURE encrypt OF TDES_decrypt_P IS 
 
 SIGNAL data_1,data_2,data_3: std_logic_vector(63 DOWNTO 0); 
  
 SIGNAL key1_int,key2_int,key3_int: std_logic_vector(63 DOWNTO 
0); 
  
 SIGNAL cipher_out1,cipher_out2,cipher_out3: 
std_logic_vector(63 DOWNTO 0); 
 SIGNAL key_out1,key_out2,key_out3,key_buffer_1: 
std_logic_vector(63 DOWNTO 0); 
  
 COMPONENT key_bank 
  PORT( clk: IN std_logic; 
    key1_in,key2_in,key3_in: IN 
std_logic_vector(63 DOWNTO 0); 
    key1_out,key2_out,key3_out: OUT 
std_logic_vector(63 DOWNTO 0)); 
 END COMPONENT; 
  
 COMPONENT DES_encrypt_P 
  PORT( clk: IN std_logic; 
    data: IN std_logic_vector(63 DOWNTO 0); 
    data_in: IN std_logic_vector(63 DOWNTO 0); 
    K: IN std_logic_vector(63 DOWNTO 0); 
    
    data_out: OUT std_logic_vector(63 DOWNTO 0); 
    K_out: OUT std_logic_vector(63 DOWNTO 0); 
    cipher_data: OUT std_logic_vector(63 DOWNTO 
0)); 
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 END COMPONENT; 
  
 COMPONENT DES_decrypt_P 
  PORT( clk: IN std_logic; 
    cipher_data: IN std_logic_vector(63 DOWNTO 
0); 
    cipher_in: IN std_logic_vector(63 DOWNTO 0); 
    K: IN std_logic_vector(63 DOWNTO 0); 
    
    cipher_out: OUT std_logic_vector(63 DOWNTO 
0); 
    K_out: OUT std_logic_vector(63 DOWNTO 0); 
    data: OUT std_logic_vector(63 DOWNTO 0)); 
 END COMPONENT; 
  
 
BEGIN 
 
 KEYS_BANK : key_bank PORT 
MAP(clk,key3,key2,key1,key3_int,key2_int,key1_int); 
 DES_1 : DES_decrypt_P PORT 
MAP(clk,cipher_data,cipher_data,key3_int,cipher_out3,key_out3,data_3
); 
 DES_2 : DES_encrypt_P PORT 
MAP(clk,data_3,cipher_out3,key2_int,cipher_out2,key_out2,data_2); 
 DES_3 : DES_decrypt_P PORT 
MAP(clk,data_2,cipher_out2,key1_int,cipher_out1,key_out1,data_1); 
  
 Process(clk) 
 BEGIN 
  IF(falling_edge(clk)) THEN 
   key_buffer_1 <= key_out1; 
  END IF; 
 END PROCESS; 
  
   data <= data_1; 
   cipher_out <= cipher_out1; 
   key_out <= key_buffer_1; 
 
END encrypt; 
 
 
TDES_encrypt.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY TDES_encrypt IS 
PORT( data: IN std_logic_vector(63 DOWNTO 0); 
  key1,key2,key3: IN std_logic_vector(63 DOWNTO 0); 
   
  key_out: OUT std_logic_vector(63 DOWNTO 0); 
  data_out: OUT std_logic_vector(63 DOWNTO 0); 
  cipher_data: OUT std_logic_vector(63 DOWNTO 0)); 
END TDES_encrypt; 
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ARCHITECTURE encrypt OF TDES_encrypt IS 
 
 SIGNAL cipher_1,cipher_2,cipher_3: std_logic_vector(63 DOWNTO 
0); 
  
 SIGNAL data_out1,data_out2,data_out3: std_logic_vector(63 
DOWNTO 0); 
 SIGNAL key_out1,key_out2,key_out3: std_logic_vector(63 DOWNTO 
0); 
  
 COMPONENT DES_encrypt 
  PORT( data: IN std_logic_vector(63 DOWNTO 0); 
    K: IN std_logic_vector(63 DOWNTO 0); 
    
    data_out: OUT std_logic_vector(63 DOWNTO 0); 
    K_out: OUT std_logic_vector(63 DOWNTO 0); 
    cipher_data: OUT std_logic_vector(63 DOWNTO 
0)); 
 END COMPONENT; 
  
 COMPONENT DES_decrypt 
  PORT( cipher_data: IN std_logic_vector(63 DOWNTO 0); 
    K: IN std_logic_vector(63 DOWNTO 0); 
    
    cipher_out: OUT std_logic_vector(63 DOWNTO 
0); 
    K_out: OUT std_logic_vector(63 DOWNTO 0); 
    data: OUT std_logic_vector(63 DOWNTO 0)); 
 END COMPONENT; 
  
 
BEGIN 
 
 DES_1 : DES_encrypt PORT 
MAP(data,key1,data_out1,key_out1,cipher_1); 
 DES_2 : DES_decrypt PORT 
MAP(cipher_1,key2,data_out2,key_out2,cipher_2); 
 DES_3 : DES_encrypt PORT 
MAP(cipher_2,key3,data_out3,key_out3,cipher_3); 
   
  
   cipher_data <= cipher_3; 
   data_out <= data; 
   key_out <= key1; 
 
END encrypt; 
 

TDES_encrypt_P.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
ENTITY TDES_encrypt_P IS 
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PORT(clk: IN std_logic; 
  data: IN std_logic_vector(63 DOWNTO 0); 
  key1,key2,key3: IN std_logic_vector(63 DOWNTO 0); 
   
  key_out: OUT std_logic_vector(63 DOWNTO 0); 
  data_out: OUT std_logic_vector(63 DOWNTO 0); 
  cipher_data: OUT std_logic_vector(63 DOWNTO 0)); 
END TDES_encrypt_P; 
 
ARCHITECTURE encrypt OF TDES_encrypt_P IS 
 
 SIGNAL cipher_1,cipher_2,cipher_3: std_logic_vector(63 DOWNTO 
0); 
  
 SIGNAL key1_int,key2_int,key3_int,key_buffer_1: 
std_logic_vector(63 DOWNTO 0); 
  
 SIGNAL data_out1,data_out2,data_out3: std_logic_vector(63 
DOWNTO 0); 
 SIGNAL key_out1,key_out2,key_out3: std_logic_vector(63 DOWNTO 
0); 
  
 COMPONENT key_bank 
  PORT( clk: IN std_logic; 
    key1_in,key2_in,key3_in: IN 
std_logic_vector(63 DOWNTO 0); 
    key1_out,key2_out,key3_out: OUT 
std_logic_vector(63 DOWNTO 0)); 
 END COMPONENT; 
 COMPONENT DES_encrypt_P 
  PORT( clk: IN std_logic; 
    data: IN std_logic_vector(63 DOWNTO 0); 
    data_in: IN std_logic_vector(63 DOWNTO 0); 
    K: IN std_logic_vector(63 DOWNTO 0); 
    
    data_out: OUT std_logic_vector(63 DOWNTO 0); 
    K_out: OUT std_logic_vector(63 DOWNTO 0); 
    cipher_data: OUT std_logic_vector(63 DOWNTO 
0)); 
 END COMPONENT; 
  
 COMPONENT DES_decrypt_P 
  PORT( clk: IN std_logic; 
    cipher_data: IN std_logic_vector(63 DOWNTO 
0); 
    cipher_in: IN std_logic_vector(63 DOWNTO 0); 
    K: IN std_logic_vector(63 DOWNTO 0); 
    
    cipher_out: OUT std_logic_vector(63 DOWNTO 
0); 
    K_out: OUT std_logic_vector(63 DOWNTO 0); 
    data: OUT std_logic_vector(63 DOWNTO 0)); 
 END COMPONENT; 
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BEGIN 
 
 KEYS_BANK : key_bank PORT 
MAP(clk,key1,key2,key3,key1_int,key2_int,key3_int); 
 DES_1 : DES_encrypt_P PORT 
MAP(clk,data,data,key1_int,data_out1,key_out1,cipher_1); 
 DES_2 : DES_decrypt_P PORT 
MAP(clk,cipher_1,data_out1,key2_int,data_out2,key_out2,cipher_2); 
 DES_3 : DES_encrypt_P PORT 
MAP(clk,cipher_2,data_out2,key3_int,data_out3,key_out3,cipher_3); 
   
 Process(clk) 
 BEGIN 
  IF(falling_edge(clk)) THEN 
     key_buffer_1 <= key_out3; 
  END IF; 
 END PROCESS; 
  
   cipher_data <= cipher_3; 
   data_out <= data_out3; 
   key_out <= key_buffer_1; 
 
    
 
END encrypt; 
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