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Background: ACSMs play critical roles in lipid metabolism; however, their
immunological function within the tumor microenvironment (TME) remains
unclear, especially that of ACSM6. In this study, we investigate the latent effect
of ACSM6 on bladder cancer (BLCA).

Methods: Several real-world cohorts, including the Xiangya (in-house), The
Cancer Genome Atlas (TCGA-BLCA), and IMvigor210 cohorts, with TCGA-
BLCA cohort serving as the discovery cohort were compared. We investigated
the potential immunological effects of ACSM6 in regulating the BLCA tumor
microenvironment by analyzing its correlation with immunomodulators, anti-
cancer immune cycles, immune checkpoints, tumor-infiltrating immune cells,
and the T-cell inflamed score (TIS). Additionally, we assessed the precision of
ACSM6 in predicting BLCA molecular subtypes and responses to several
treatments using ROC analysis. To ensure the robustness of our findings, all
results were confirmed in two independent external cohorts: the
IMvigor210 and Xiangya cohorts.

Results: ACSM6 expression was markedly upregulated in BLCA. Our analysis
suggests that ACSM6 might have significant impact to promote the formation
of a non-inflamed tumor microenvironment because of its negative correlation
with immunomodulators, anticancer immune cycles, immune checkpoints,
tumor-infiltrating immune cells, and the T-cell inflamed score (TIS).
Additionally, high ACSM6 expression levels in BLCA may predict the luminal
subtype, which is typically associated with resistance to chemotherapy,
neoadjuvant chemotherapy, and radiotherapy. These findings were consistent
across both the IMvigor210 and Xiangya cohorts.
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Conclusion: ACSM6 has the potential to serve as a valuable predictor of the tumor
microenvironment phenotypes and treatment outcomes in BLCA, thereby
contributing to more precise treatment.
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Introduction

According to GLOBOCAN’s 2020 estimates, bladder cancer
(BLCA) accounts for approximately 573,278 new cases and
212,536 fatalities worldwide, making it the 10th most
frequently diagnosed cancer (Sung et al., 2021). Urothelium
carcinoma is the main histological type of BLCA and non-
muscle invasive BC (NMIBC) patients account for about 75%
of BLCA cases, with obvious heterogeneity and the risk of
recurrence and progression to muscle invasive BC (MIBC)
(van Rhijn et al., 2009). Therefore, despite the high 5-year
survival rate of NMIBC (>90%), most patients have to accept
long-term cystoscope monitoring and multiple treatment
interventions, resulting in lower quality of life (Catto et al.,
2021) and huge medical burden, so BLCA is considered to be
the most expensive malignant tumor (Svatek et al., 2014).

Although chemotherapy is commonly used as the first course
of treatment for advanced or metastatic BLCA, the discouraging
objective response rate and consequent poor five-year survival
rate indicate the need for alternative therapies (Liu et al., 2022).
Currently, the FDA has only approved FGFR3 inhibitors, PD-1/
PD-L1-based immune checkpoint inhibitors, and antibody-drug
conjugates for the immunological treatment of BLCA, which are
especially suitable for platinum-resistant or non-platinum
locally advanced or metastatic urothelial cancer. Recent
studies suggest that precision therapy may offer superior
efficacy compared with either treatment alone (Morales-
Barrera et al., 2020; Chang et al., 2021; Grivas et al., 2021).
Considering the limitations of chemotherapeutic drugs and
surgery (Feng et al., 2020; Feng et al., 2022a; Feng et al.,
2022b), precise and personalized treatment based on
biomarkers is also becoming increasingly important for
urinary system tumors (Hu et al., 2021a; Hu et al., 2021b; Hu
et al., 2022; Cai et al., 2023).

Liposomal coenzyme A synthetase is an enzyme that catalyzes
the activation of fatty acids and participates in the 1st step of fatty
acid metabolism, which is divided into four categories containing
medium-chain acyl-CoA synthetase (ACSM). Primarily, ACSMs
are located on human chromosome 16p12, which contains six
members: ACSM1–ACSM6. However, the connection between
the ACSM family and cancer has rarely been reported, especially
for ACSM6.

Through multi-omics analysis, we identified ACSM6 as a
novel target for BLCA immunotherapy. We conducted a
comprehensive investigation to examine the association
between ACSM6 and the tumor microenvironment (TME) in
BLCA. Our findings revealed that ACSM6 shaped the non-
inflammatory TME in BLCA and enabled the prediction of
BLCA molecular subtypes.

Methods

Data acquisition and preprocessing of three
real-world cohorts

We retrieved BLCA mRNA data using the mRNA expression
data (FPKM) values and related clinicopathological messages from
TCGA (https://portal.gdc.cancer.gov/). The cohort consisted of
410 BLCA samples and 19 normal urothelial tissue samples.
Before analysis, the FPKM values in the TCGA cohort were
converted to transcripts per kilobase million (TPM).

The cohort used for validation included patients who underwent
surgical treatment for BLCA at Xiangya Hospital. The Xiangya
cohort comprised 57 BLCA samples and 13 normal bladder
epithelial tissue samples. Data from this cohort were uploaded to
the GEO database (GSE188715) (Hu et al., 2021a; Hu et al., 2021b).

The IMvigor210 cohort comprised of patients with BLCA who
underwent anti-PD-1 therapy as part of an immunotherapy study.
The mRNA expression data and corresponding clinicopathological
information were obtained under the Creative Commons 3.0 License
(Mariathasan et al., 2018).

Describing the immunological features of
BLCA TME

Anticancer immunity has a lot to do with the cancer immune
cycle, the expression of immunomodulatory factors, the level of
infiltration of tumor-infiltrating lymphocytes (TILs), and the
expression of inhibitory immune checkpoints in the TME. We
collected 122 immunomodulatory factors from previous studies
and compared differentially expressed immunomodulatory
factors, including chemokines, immunostimulatory factors,
receptors, and MHC, in the low and high ACSM6 groups
(Charoentong et al., 2017; Hu et al., 2021a; Hu et al., 2021b; Liu
et al., 2021; Hu et al., 2022; Cai et al., 2023). Subsequently, we
investigated the impact of ACSM6 on the cancer immune cycle,
which comprises seven crucial steps that determine how the tumor
cells take effect in BLCA (Chen and Mellman, 2013). Consequently,
we employed five distinct algorithms: TIMER, CIBERSORT-ABS,
xCell, quanTlseq, and MCP-counter, to calculate the correlation
between the level of TIL infiltration and the expression of ACSM6 in
the TME (Newman et al., 2015; Becht et al., 2016; Li et al., 2016; Xu
et al., 2018; Finotello et al., 2019; Li et al., 2020). Additionally, we
studied the relation between ACSM6 and the corresponding effector
genes of the TILs. Furthermore, we examined the correlation
between ACSM6 expression and 22 common immune checkpoint
inhibitors (ICIs), such as PD-1, PD-L1, CTLA-4, and LAG-3
(Auslander et al., 2018). Finally, we examined the TIS in the
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TME, its related effector genes, and its effect on the clinical response
to immune checkpoint blockade (ICB) (Ayers et al., 2017).

Predicting BLCA molecular subtypes and
treatment response

Owing to the high heterogeneity of BLCA, the treatment
response and prognosis of different types are different. There are
several molecular classification systems for BLCA, including TCGA,
Baylor, UNC, Lund, CIT, MDA and Consensus classification
systems (Sassoli et al., 2019). In this study, we used the BLCA
subtyping R software package and Consensus MIBC to predict the
molecular subtype system and describe the correlation between
ACSM6 expression and specific markers of the molecular
subtypes. The accuracy of ACSM6 in predicting BLCA molecular
subtypes was evaluated using ROC curves. We also evaluated
differences in neoadjuvant chemotherapy-related mutations
between the high and low ACSM6 groups. Additionally, we
explored the prognosis of several treatments such as
immunotherapy, targeted therapy, and radiotherapy. Finally, we
collected and analyzed drug target genes from the Drug Bank
database.

Statistical analysis

We calculated Pearson’s or Spearman’s coefficients to identify
correlations between variables. The t-test was used to compare the
differences between binary groups for normally distributed
variables, whereas the chi-square test or Fisher’s exact test was
used for categorical variables. Statistical significance was determined
using a two-sided p-value of <0.05. We evaluated the accuracy of the
molecular subtype prediction using ROC curves. Statistical analyses
and visualizations were conducted using R software version 4.2.2.

Result

The immunological function of ACSM6 in
pan-cancer analysis

The immunological role of ACSM6 was determined and the
cancer types most affected by ACSM6 were screened using pan-
cancer analysis. Figure 1A shows the relationship between
ACSM6 expression and immunomodulatory factors in various
cancer types. We found that in most cancers, ACSM6 was
positively correlated with a variety of immunomodulatory factors.
However, in BLCA, ACSM6 was negatively correlated with a variety
of immunomodulatory factors, including chemokines, receptors,
MHC, immunosuppressants, and immunoactivators.
Subsequently, we examined the correlation between
ACSM6 expression and several pivotal immune checkpoints.
Notably, negative associations were observed between
ACSM6 and four immune checkpoints in BLCA: CTLA-4, PD-
L1, PD-1, and LAG-3 (Figures 1B–E). Furthermore, we found that
ACSM6 was inversely related to the ESTIMATE, immune, and
matrix scores in BLCA (Figures 2A–C). In summary, ACSM6 is

a potential biomarker for predicting tumor microenvironment
status in BLCA. In BLCA, high ACSM6 expression may lead to a
non-inflammatory TME because of decreased immunomodulatory
factors, immune cells, immune checkpoints, and stromal cells in
the TME.

ACSM6 is related to the non-inflammatory
tumor microenvironment of BLCA

ACSM6 was highly expressed in the Xiangya cohort
(Figure 3A) and was negatively correlated with multiple
immunomodulatory factors (Figure 3B). Most chemokines,
including CCL24, CCL26, CXCL9, CXCL10, and CCL8, were
significantly reduced in the high ACSM6 group, and immune
activators, including TNESF9, TNFRSF18, and TNFRSF8, were
negatively correlated with ACSM6. Vast major steps in the tumor
immune cycle in the high ACSM6 group were downregulated,
including cancer cell antigen release, immune cell activation and
recruitment, and cancer cell killing (Figure 3C).

To further verify the relation between ACSM6 and TILs in the
TME, we used five independent algorithms to calculate the
infiltration levels of TILs. Results showed that ACSM6 expression
negatively had to do with the infiltration levels of NK cells, CD8+

T cells, macrophages, Th1 cells, and dendritic cells (Figure 3D).
Additionally, ACSM6 negatively correlated with TIL effector genes,
including NK cells, CD8+ T cells, macrophages, dendritic cell-related
genes, and Th1 cells (Figure 3E). Furthermore, the relationship
between ACSM6 and immune checkpoint inhibitors in the TMEwas
explored, which showed that ACSM6 negatively had to do with the
most common immune checkpoint inhibitors, including C10orf54,
CD86, CTLA4, HAVCR2, LAG-3, and PVR (Figure 3F).
Additionally, ACSM6 negatively had to do with the TIS and its
related TIS effector genes (Figures 4A, B). Collectively, these results
demonstrate that ACSM6 promotes a non-inflammatory TME
in BLCA.

ACSM6 predicts molecular subtypes and
drug sensitivity

Notably BLCA is a highly heterogeneous tumor and different
molecular subtypes exhibit different sensitivities to different
treatment regimens. Consequently, we distinguished the
expression of ACSM6 among the BLCA molecular subtypes in
TCGA. As shown in Figure 4C, patients with low
ACSM6 expression developed the basal subtype, which
characterized in EMT differentiation, basal differentiation,
keratinization, and immune differentiation. Conversely, people
with high ACSM6 expression were classified into the luminal/
differentiated subtype, exhibiting Ta pathway and urothelial and
supraluminal differentiation. Furthermore, ROC analysis was
employed to evaluate the predictive precision of ACSM6 for
molecular subtypes, with the area under the ROC curve ranging
from 0.81 to 0.95 (Figure 4D).

Additional investigation of the association between ACSM6 and
neoadjuvant chemotherapy (NAC) revealed that the low expression
group of ACSM6 better turned to carry mutations related to NAC,
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such as ERBB2 (15%), RB1 (26%) and ATM (10%). Additionally, the
high expression group of ACSM6 had higher mutation rates in ATM
(16%), RB1 (9%), and ERBB2 (8%) (Figure 4E). Importantly,
RB1 chemotherapy-related mutations were significantly higher in

the low ACSM6 group, indicating that tumors with low
ACSM6 expression were more likely to be sensitive to NAC. In
addition, in the low ACSM6 group, the radiotherapy prediction
pathway and EGFR ligand enrichment scores were higher

FIGURE 1
Immunological characteristics in pan-cancers correlated with ACSM6. (A) Correlation of ACSM6 with immunomodulators, including chemokines,
receptors, MHC, and immunostimulators. (B–E) Correlation of ACSM6 expression with PD-L1, CTLA-4, PD-1, and LAG-3.
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(Figure 4F). Furthermore, the high ACSM6 group exhibited
significantly higher enrichment scores for some
immunosuppressive and carcinogenic pathways, including IDH1,
WNT-β-catenin pathway, and PPARG co-expressed genes,

suggesting the presence of a non-inflammatory TME in BLCA.
Moreover, we utilized the Drug Bank database to identify the
sensitivity of different groups to various therapies. Our results
indicated that the low ACSM6 group was more responsive to

FIGURE 2
(A–C) Correlation between ACSM6 expression and TME scores, including ESTIMATE, immune, and stromal scores.
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FIGURE 3
In BLCA, the tumor immune microenvironment correlates with ACSM6 expression. (A) ACSM6 was highly expressed in the Xiangya cohort. (B)
ACSM6 expression is different in different tissues in BLCA. (C) ACSM6 expression is different in various steps of the anti-tumor immune cycle. (D)
ACSM6 expression correlates with infiltration levels of five tumor-infiltrating immune cell types (TIICs), as measured by various algorithms. (E) High- and
low-ACSM6 tissues in BLCA show differential expression of effector genes of the five TIICs mentioned above. (F) ACSM6 expression correlates with
20 inhibitory immune checkpoints in BLCA.
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FIGURE 4
In BLCA, ACSM6 expression predicts molecular subtype and response tomultiple therapies. (A, B) ACSM6 expression correlates with tumor immune
subtype and their corresponding effector genes. (C) ACSM6 expression correlates with molecular subtypes as defined by seven different subtyping
systems. (D) ROC analysis demonstrates the prediction accuracy of ACSM6 for molecular subtypes using different systems. (E) Mutational profiles of
neoadjuvant chemotherapy-related genes differ between low- and high-ACSM6 tissues. (F) ACSM6 expression correlates with enrichment scores of
therapeutic signatures. (G) ACSM6 expression correlates with drug-target genes for various therapies.
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immunotherapy and ERBB therapy, while the high ACSM6 group
was more responsive to anti-angiogenesis therapy (Figure 4G).
Overall, patients with low ACSM6 expression could be treated
with adjuvant chemotherapy, neoadjuvant chemotherapy,
immunotherapy, or ERBB.

Validation of ACSM6 in Xiangya cohort

We performed additional analyses to explore the clinical
significance of ACSM6 expression in the Xiangya cohort.
ACSM6 was negatively associated with multiple key steps in the

FIGURE 5
Validation of the prediction accuracy of ACSM6 for molecular subtypes and response to therapies in the Xiangya Cohort. (A) ACSM6 expression
correlates with different steps of the anti-cancer immune cycle. (B) ACSM6 expression correlates with multiple ssGSEA immune cells. (C)
ACSM6 expression correlates with 20 immune checkpoints. (D) ACSM6 expression correlates with TIS-related genes.
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anticancer immune cycle, particularly the release of cancer cell
antigens and the recruitment of immune cells (Figure 5A).
Similarly, ACSM6 was negatively associated with various ssGSEA

immune cells including activated dendritic cells, macrophages,
natural killer cells, regulatory T cells, and T follicular helper cells
(Figure 5B). Subsequently, ACSM6 levels were negatively associated

FIGURE 6
ACSM6 expression correlates with TIS-related effector genes. (A) ACSM6 expression correlates with seven different molecular subtyping systems.
(B) The molecular subtype prediction accuracy of ACSM6 is evaluated. (C) ACSM6 expression correlates with enrichment scores of therapeutic
signatures.
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with immune checkpoints in the Xiangya cohort (Figure 5C).
Additionally, it was confirmed that ACSM6 was negatively
related to the expression of effector genes in T cell activation
scores, including CXCL9, LAG-3, and PDCD1LG2 (Figure 5D).
In good line with the prediction of BLCA subtypes by TCGA, the

high ACSM6 group in the Xiangya cohort better turned to be the
luminal subtype, while the low ACSM6 group better turned to be
the basal subtype (Figure 6A). Furthermore, ACSM6 exhibited
higher accuracy in predicting the BLCA molecular subtypes
(Figure 6B). Notably, the high ACSM6 group better turned

FIGURE 7
Validation of prediction for low immune infiltration and molecular subtypes by ACSM6 in the IMvigor210 cohort. (A) ACSM6 expression correlates
with different steps of the anti-cancer immune cycle. (B) ACSM6 expression correlates with several immune-related cells. (C) ACSM6 expression
correlates with immune checkpoint inhibitors effector genes. (D) ACSM6 expression correlates with TIS-related genes.
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FIGURE 8
Correlations between ACSM6 and sevenmolecular subtype systems, three immune phenotypes and the clinical response of tumor immunotherapy
in the desert group. (A, B) ACSM6 expression correlates with seven differentmolecular subtyping systems, and its prediction accuracy is evaluated by ROC
analysis. (C) ACSM6 expression correlates with enrichment scores of therapeutic signatures. (D) ACSM6 expression shows differential expression in
different immune checkpoint groups. (E) ACSM6 expression shows differential expression in different IC groups. (F) ACSM6 expression shows
differential expression in three immune phenotypes: the desert, excluded, and inflamed. (G) ACSM6 expression correlates with the clinical response of
tumor immunotherapy in the desert group.
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to be effected by immunosuppressive tumor therapy
(Figure 6C).

ACSM6 predicts the clinical efficacy of ICB

We investigated the predictive value of ACSM6 for the
clinical response to ICB in the IMvigor210 cohort. In the
Xiangya cohort, we observed a negative correlation between
ACSM6 expression and several critical steps in the cancer
immune cycle, which was consistent with our findings
(Figure 7A), suggesting that when ACSM6 is highly expressed,
TIL infiltration in TME is downregulated (Figure 7B).
Additionally, a negative correlation was observed between
ACSM6 expression and the expression of several ICI and TIS
genes (Figures 7C, D). Furthermore, high ACSM6 expression
predicted the luminal subtype of BLCA, which was in line with
the findings in TCGA cohort (Figure 8A). The area under the
ROC curve for predicting molecular subtypes was between
0.72 and 0.97 (Figure 8B). In addition, we found that the
enrichment score for the radiotherapy prediction pathway in
the low ACSM6 group was higher (Figure 8C).

We conducted immunohistochemistry (IHC) on the
IMvigor210 cohort to identify PD-L1 expression in immune
and cancer cells. We classified the immune and cancer cells into
three groups based on their PD-L1 expression levels. We
observed significant ACSM6 expression in the TC0 and
IC0 groups (Figures 8D, E). In addition, ACSM6 was highly
expressed in the non-inflammatory TME compared to that in the
inflammatory TME (Figure 8F). Furthermore, we compared
ACSM6 expression in different ICB clinical responses. In
spite of lower ACSM6 expression in patients with complete
remission (CR) in the non-inflammatory TME,
ACSM6 expression was higher in patients with progressive
disease (PD), stable disease (SD), and partial remission (PR).
However, no significant differences were observed between these
groups (Figure 8G).

Discussion

This study found that ACSM6 may act as a potential
molecular biomarker for assessing the tumor
microenvironment status in various types of cancer,
particularly in BLCA and thymoma, and may lead to the
formation of a non-inflammatory TME in BLCA. Moreover,
ACSM6 can be used to predict the BLCA molecular subtypes.
Low ACSM6 expression was observed in the basal subtype and
exhibited higher sensitivity to ICB immune infiltration levels.
Furthermore, patients with low ACSM6 expression were likely to
respond better to neoadjuvant chemotherapy, adjuvant
chemotherapy, and ERBB treatment.

ACSM6 is a member 6 of the acyl-CoA synthase middle-chain
family; as a new member, no related research has been conducted.
However, ACSM3, which belongs to the same family, has been
found to be associated with tumor progression. The expression of
ACSM3 is significantly reduced in hepatocellular carcinoma
tissues and is associated with the late stage and poor survival

rates of hepatocellular carcinoma (Boomgaarden et al., 2009).
Overexpression of ACSM3 is able to weaken the migration and
invasion of hepatocellular carcinoma cells (Ruan et al., 2017;
Ruan et al., 2021). ACSM3 also has been reported to suppresses
the pathogenesis of high-grade serous ovarian carcinoma via
promoting AMPK activity (Yang et al., 2022). In addition,
krüppel-like factor 10 can upregulate ACSM3 via the PI3K/
Akt signaling pathway to inhibit the malignant progression of
melanoma (Zhao et al., 2022). These reports indicate that
ACSM3 has a high probability of inhibiting tumors. ACSM1
(Guo et al., 2022) and ACSM5 (Ruan et al., 2021) have been
reported to be associated with the progression of prostate and
thyroid cancers, respectively. ACSM1 is usually used as a
molecular marker of apocrine carcinoma of the breast (Celis
et al., 2009). ACSM4 is associated with poor prognosis of triple-
negative breast cancer (Alsaleem et al., 2020). However, there are
few related studies.

This study has some limitations. First, all results were from
bioinformatics analyses, and no in vivo or in vitro experiments
were conducted to investigate the possible mechanisms. Second,
although our results were robust in the Xiangya cohort, the small
sample size (57 patients) cannot be ignored. Third, grouping
into high- and low-expression categories was based on the
median ACSM6 mRNA expression, which might have certain
limitations, and an ideal cutoff value was not identified.
Therefore, this must be verified using additional tumor tissue
data and experiments.

Conclusion

Our study showed that the presence of ACSM6 plays the
promotion to the development of a non-inflammatory TME in
BLCA, which in turn results in resistance to tumor
immunotherapy. ACSM6 may be a predictor of BLCA molecular
subtypes, suggesting a better prognosis treatment.
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