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Introduction: Optogenetics is a rapidly developing field combining optics and 
genetics, with promising applications in neuroscience and beyond. However, 
there is currently a lack of bibliometric analyses examining publications in this 
area.

Method: Publications on optogenetics were gathered from the Web of Science 
Core Collection Database. A quantitative analysis was conducted to gain insights 
into the annual scientific output, and distribution of authors, journals, subject 
categories, countries, and institutions. Additionally, qualitative analysis, such as 
co-occurrence network analysis, thematic analysis, and theme evolution, were 
performed to identify the main areas and trends of optogenetics articles.

Results: A total of 6,824 publications were included for analysis. The number 
of articles has rapidly grown since 2010, with an annual growth rate of 52.82%. 
Deisseroth K, Boyden ES, and Hegemann P were the most prolific contributors to 
the field. The United States contributed the most articles (3,051 articles), followed 
by China (623 articles). A majority of optogenetics-related articles are published 
in high-quality journals, including NATURE, SCIENCE, and CELL. These articles 
mainly belong to four subjects: neurosciences, biochemistry and molecular 
biology, neuroimaging, and materials science. Co-occurrence keyword network 
analysis identified three clusters: optogenetic components and techniques, 
optogenetics and neural circuitry, optogenetics and disease.

Conclusion: The results suggest that optogenetics research is flourishing, 
focusing on optogenetic techniques and their applications in neural circuitry 
exploration and disease intervention. Optogenetics is expected to remain a hot 
topic in various fields in the future.
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1. Introduction

Optogenetics is a rapidly developing field combining optics and genetics to control cellular 
activity with high spatial and temporal resolution using light (Editorial, 2010). The procedures 
of optogenetics include directing the light-sensitive proteins to specific cells, delivering light to 
specific tissues, and measuring the resulting changes at the cellular, tissue, or organ level. In 
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2010, optogenetics was named “Method of the Year” by Nature 
Methods and has since attracted wide attention (Editorial, 2010). 
Overall, optogenetics has become a powerful tool for elucidating the 
mechanisms of neural circuitry and has promising applications in 
both basic and clinical research. Bibliometric analysis is a powerful 
tool for tracking research trends within a particular field (Wang et al., 
2022). By statistical analysis, it can objectively identify research 
contributions from various countries, institutions, journals, and 
authors and provide insights into the direction of future research, such 
as hotspots and emerging issues. However, it is noted that no 
bibliometric analysis of optogenetics has been conducted, and limited 
attention has been given to predicting frontiers and research hotspots 
in this field. Therefore, we preformed this bibliometric analysis to get 
a better understanding of this emerging area.

2. Method

We downloaded relevant literatures from the Web of Science Core 
Collection Database on April 30th, 2023 (Figure 1). “Optogenetic*” was 
the only topic term, and the period was set from 2002 to 2022. Language 
type was not restricted for the search. Two reviewers independently 
reviewed the titles and abstracts of the records. Any disagreements during 
the screening process were resolved through discussion or consulting a 
third reviewer if required. The online literature including both full 

documents and cited references was exported to plain text format and 
imported into R software (version 4.2.0). The R package bibliometrix was 
utilized to conduct an extensive analysis of the optogenetics literature 
(Aria and Cuccurullo, 2017). The quantitative analysis was performed to 
outline the annual scientific production and distribution of authors, 
journals, categories, countries, and institutions. A collaboration network 
was established to illustrate the cooperative relationships in this field. 
Furthermore, we performed qualitative analysis utilizing co-occurrence 
network analysis, thematic analysis, and theme evolution to identify the 
main areas and trends of optogenetics articles.

3. Results

3.1. General data

A total of 8,458 papers were collected from the WOS database 
(Figure 1). Of these, 1,634 papers, including book chapters, retracted 
publications, proceedings papers, editorial materials, and irrelevant 
papers were excluded. After exclusions, 6,824 publications, including 
5,759 original research (84.39%) and 1,065 reviews (15.61%), 
remained for analysis. The number of articles has exhibited a rapid 
growth trend since 2010, with an annual growth rate of 52.82%, and 
the year 2021 reached a peak of 922 publications, indicating the field 
is a hotspot with explosive growth (Figure 2).

FIGURE 1

Flow chart of the bibliometric search on optogenetics.
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3.2. Distribution of authors

We analyzed the distribution of authors to identify the top 
contributors to the field (Figure 3). Over 24,445 authors contributed to 
the 6,824 optogenetics-related studies. After some pioneers designed and 
implemented optogenetic approaches, a large number of researchers 
flooded into this field, especially after 2010. Deisseroth K had the highest 
publication count with 140 articles, followed by Boyden ES and 
Hegemann P with 56 and 49 articles, respectively. The Author’s Local 
Impact can be measured by the H-index, with Deisseroth K ranking first 
(H-index: 80), followed by Boyden ES (H-index: 37), Ramakrishnan C 
(H-index: 32), Hegemann P (H-index: 30), and Rogers JA (H-index: 30).

3.3. Distribution of journals and subject 
categories

The articles on optogenetics were published in more than 954 
journals (Figure 4). JOURNAL OF NEUROSCIENCE published 375 
articles, which accounted for 5.50% of all articles, followed by NATURE 
COMMUNICATIONS (307 articles, 4.50%), NEURON (287 articles, 
4.10%), and ELIFE (281 articles, 4.16%), and SCIENTIFIC REPORT (205 
articles, 3.00%). Research on optogenetics in these journals showed a 
rapid growth trend after 2012–2014. Journal impact factor (IF) and 
Journal Citation Reports (JCR) partition are important indicators 
measuring the academic impact of a journal and the quality of its 
publications. NATURE had the highest IF in 2021 (IF = 69.504, JCR Q1, 
117 articles), followed by CELL (IF = 66.850, JCR Q1, 75 articles), 
SCIENCE (IF = 63.832, JCR Q1, 79 articles), NATURE NEUROSCIENCE 
(IF = 28.771, JCR Q1, 157 articles), and NEURON (IF = 18.688, JCR Q1, 
287 articles). A majority of articles have been published in high-quality 
neuroscience or multidisciplinary life science journals. We conducted an 
analysis of the research categories and found that these articles mainly 

belong to four subjects: neurosciences (blue), biochemistry and molecular 
biology (green), neuroimaging (pink), and materials science/
multidisciplinary (red).

3.4. Distribution of countries and 
institutions

The authors of the included publications were affiliated with 51 
countries/regions (Figure 5). The United States was the country with 
the highest number of publications (3,051 articles, 44.71%), followed 
by China (623 articles, 9.13%), Germany (616 articles, 9.03%), Japan 
(470 articles, 6.89%), and United Kingdom (313 articles, 5.25%). There 
were 3,439 institutes involved in the field of optogenetics. Stanford 
University ranked first with 832 articles (12.19%), followed by 
Northwestern University (307 articles, 4.50%), the University of 
California, San Francisco (294 articles, 4.31%), Columbia University 
(287 articles, 4.21%), and University of Freiburg (262 articles, 3.84%). 
The dominance of the United States in optogenetics is undeniable, 
according to the number of publications and article citations. The 
percentage of international co-authorships is 30.01%, indicating a 
significant level of collaboration between researchers from different 
countries. Although China ranks second in publication output, its 
article citation rate ranks only 20th globally. Zhejiang University (167 
articles, 2.45%) was the leading institution in China regarding the 
number of optogenetics articles and ranked 23rd globally.

3.5. Most cited documents and 
co-occurring keywords

As shown in Table 1, the 20 most globally cited documents have 
been identified, and Deisseroth K accounts for 7 of them. All of them 

FIGURE 2

Annual scientific production from 2002 to 2022.
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were published in high-quality journals, including NATURE and 
SCIENCE. The most cited document, “Parvalbumin neurons and 
gamma rhythms enhance cortical circuit performance” was published 
by Deisseroth K in NATURE in 2009 (Sohal et al., 2009). These 20 
articles primarily focus on the following topics: improvements to 
optogenetic techniques, including channelrhodopsins functions, 
wireless light delivery devices, upconversion nanoparticle-mediated 
optogenetics, et al.; neural function and pathways, involving vision, 
anxiety, memory, et  al.; optogenetics and diseases, including 
Parkinson’s disease, pain, depression, et  al. These research topics 
reflect the forefront and hotspots worldwide. We  have furtherly 
executed a co-occurrence network analysis and identified three 
clusters related to optogenetics research: optogenetic components and 
techniques (red), optogenetics and neural circuitry (blue), 
optogenetics and disease (green) (Figure 6). Thematic map analysis 
was conducted to demonstrate the development degree (density) and 
relevance degree (centrality) of the identified topics. This strategic 
diagram enabled the identification of the following categories: hot 
topics located in the upper-right quadrant (rhodopsins, neural 
interface, neural projections, et al.), basic topics in the lower-right 
quadrant (electrophysiology, interneuron, ChR2, AAV, et al.), niche 

topics in the upper-left quadrant (which have been strongly developed 
but still hold a marginal position in the domain under investigation, 
including synthetic biology, photoreceptor, et  al.), and peripheral 
topics in the lower-left quadrant (which have not been fully developed, 
including vision restoration, neuromodulation, Parkinson’s disease, 
motor cortex, et  al.). When taking the time dimension into the 
analysis, vision restoration, wireless, projections, sense, close-loop, 
protein engineering, et al., were top keywords in the past 5 years, while 
neural interface, neural circuitry, AAV, memory, interneuron, 
electrophysiology, et al., were hot topics 5 years ago.

4. Discussion

This bibliometric analysis explored optogenetics-related literature 
over the past 20 years (2002–2022). Certain elements that are now 
essential to optogenetics were identified in earlier forms and different 
contexts as far back as 50 years ago. However, they were not 
conceptualized or developed as a means of controlling cellular 
function. In 1971, Oesterhelt D described bacteriorhodopsin as a 
light-activated ion pump (Oesterhelt and Stoeckenius, 1971). This 

FIGURE 3

Distribution of authors in the field of optogenetics. (A) The top 20 most productive authors. (B) Map of the collaboration network analysis of the 
authors. (C) Publications of the top 20 authors over time.
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discovery laid the foundation for the original theme of optogenetics 
that continued with the identification of other members of this protein 
family, including halorhodopsin in Matsuno-Yagi and Mukohata 
(1977), and channelrhodopsin (ChR) in Nagel et al. (2002). It was not 
until the 21st century that scientists successfully explored the precise 
control of neuron activity using these proteins. In 2005, Deisseroth K 
(Boyden et al., 2005) first reported that Channelrhodopsin-2, a rapidly 
gated light-sensitive cation channel, allows for the use of light to alter 
neural processing at the level of single spikes and synaptic events; by 
2010, multiple opsins, such as channelrhodopsin, bacteriorhodopsin, 
and halorhodopsin, had demonstrated their ability to rapidly and 
safely activate or inhibit neurons, paving the way for a new era in 
optogenetics. This breakthrough opened up new possibilities for 
controlling and understanding neural circuits in intact tissues, leading 
to a wide range of applications in neuroscience and beyond. The 
bibliometric analysis results show an explosive growth of optogenetics-
related papers after 2010, and the number of publications reached 
nearly a thousand in 2020, suggesting that optogenetics is a rapidly 
evolving and exciting field of research. Many optogenetics-related 
papers have been published in high-quality journals, such as 
NATURE, SCIENCE, and CELL, and have received significant 
attention from the scientific community. These papers have advanced 
our understanding of neural information processing and 

revolutionized the way we  explore and treat neurological and 
psychiatric disorders. Moreover, these papers regarding optogenetics 
often have high citation rates, indicating their importance and impact 
on the scientific community. Some authors, such as Deisseroth K, 
Boyden ES, and Hegemann P et al., have become leading figures in the 
field, and their contributions have inspired and influenced many 
researchers worldwide. Optogenetics encompasses a wide range of 
fields, including neurosciences, molecular biology, neuroimaging, and 
materials science, where it contributes its value in distinct ways. With 
continued advances in optogenetics technology and applications, the 
field is expected to grow and contribute to our understanding of 
physiological and pathological processes.

4.1. Optogenetic components and 
techniques

Optogenetic components and techniques, optogenetics and neural 
circuitry, and optogenetics and disease were three clusters identified 
by co-occurring analysis. The wide-ranging impact of optogenetics is 
inseparable from the advancement of optogenetic techniques. Opsins 
is one of the three elements of optogenetics. The thematic map 
indicates that opsins is a hot keyword, while trend topic analysis shows 

FIGURE 4

Distribution of journals and subject categories in the field of optogenetics. (A) The top 20 most relevant sources. (B) Publications of the top 5 sources 
over time. (C) Co-citation network of journals. (D) Co-occurrence network of subject categories.
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that protein engineering has been a frequent topic in recent years. The 
family size of microbial rhodopsins, including ion pump, ion channel, 
and signaling/enzyme rhodopsins, has been expanding. 
Channelrhodopsin-2 (ChR2) is the first opsin successfully employed 
in freely moving mammals, followed by inhibitory halorhodopsin 
from Natronomonas pharaonis (NpHR). Various rhodopsins that 
possess specific or enhanced properties have been discovered or 
developed through engineering and genomic modifications in the past 

decade, such as highly expressing opsins (Berndt et al., 2011; Mattis 
et  al., 2011; Yizhar et  al., 2011), faster kinetics opsins for high-
frequency excitation (Lin et al., 2009; Gunaydin et al., 2010; Klapoetke 
et al., 2014), spectrally shifted opsins for deep tissue projection (Zhang 
et al., 2008; Lin et al., 2013; Urmann et al., 2017), step-function opsins 
for chronic neuromodulation (Yizhar et al., 2011; Berndt et al., 2016), 
opsins with altered ion selectivity for inhibition (Berndt et al., 2014; 
Wietek et  al., 2014; Govorunova et  al., 2017, 2018, 2020, 2022), 

FIGURE 5

Distribution of countries and institutions in the field of optogenetics. (A) The top 20 most productive countries divided by single country publications 
(SCPs) and multiple country publications (MCPs). (B) Map of national collaborations. (C) The top 20 most influential countries ranked by average article 
citations. (D) Map of the collaboration network analysis of the countries. (E) The top 20 most productive institutions. (F) Map of the collaboration 
network analysis of the institutions.
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bidirectional regulation opsins for both activation and inhibition 
(Carus-Cadavieco et al., 2017; Vierock et al., 2021), and opsins for 
biochemical control (Airan et al., 2009; Yoshida et al., 2017; Henss 
et al., 2022). In earlier years, the discovery and study of opsins were in 
line with the development of optogenetics. This, in turn, resulted in a 
reverse translation of basic science, where optogenetics provided a 
new driving force for the study of microbial opsins. There is still a 
great demand for developing photosensitive opsins with improved 
properties to achieve cell regulation under different circumstances, 
leading to a sustained research interest in this area.

Optical neural interface or light delivery approach, another 
component of optogenetics, is also a hot theme according to our 
analysis. Previously, for optogenetic stimulation in cultured neuronal 
and acute slice preparations, an arc lamp could be used to deliver light 
through the imaging objective, allowing for full-field stimulation 
(Zhang et al., 2007). In 2007, the first instance of optical manipulation 
of behavior in freely moving rodents was shown through an 
intracranial optical fiber that was directly connected to a laser-diode 
light source (Adamantidis et al., 2007). Further research has improved 
upon this method, enabling long-term, stable placement of the optical 

TABLE 1 List of the 20 most global cited documents.

n Year CA Journal IF Title TC TCPY NTC

1 2009 Deisseroth K NATURE 69.5 Parvalbumin neurons and gamma rhythms 

enhance cortical circuit performance

1704 113.60 6.16

2 2011 Deisseroth K NAT METHODS 48.0 Optogenetics 1,237 95.15 10.48

3 2014 Boyden ES; Wong 

GKS

NAT METHODS 48.0 Independent optical excitation of distinct neural 

populations

1,134 113.40 15.00

4 2009 Deisseroth K SCIENCE 63.7 Optical deconstruction of parkinsonian neural 

circuitry

1,102 73.47 3.99

5 2015 Lüthi A NAT REV 

NEUROSCI

38.8 Neuronal circuits for fear and anxiety 900 100.00 12.33

6 2013 Bruchas MR; Rogers 

JA

SCIENCE 63.7 Injectable, cellular-scale optoelectronics with 

applications for wireless optogenetics

820 74.55 9.35

7 2011 Deisseroth K NATURE 69.5 Amygdala circuitry mediating reversible and 

bidirectional control of anxiety

807 62.08 6.84

8 2013 Pfeffer CK; Scanziani 

M

NAT NEUROSCI 28.8 Inhibition of inhibition in visual cortex: the 

logic of connections between molecularly 

distinct interneurons

770 70.00 8.78

9 2013 Han MH NATURE 69.5 Rapid regulation of depression-related behaviors 

by control of midbrain dopamine neurons

717 65.18 8.17

10 2015 Deisseroth K NAT NEUROSCI 28.8 Optogenetics: 10 years of microbial opsins in 

neuroscience

696 77.33 9.54

11 2010 Deisseroth K CELL 66.9 Molecular and cellular approaches for 

diversifying and extending optogenetics

675 48.21 4.20

12 2012 Gottschalk A; Mayer 

G; Heckel A

ANGEW CHEM 

INT EDIT

16.8 Light-controlled tools 666 55.50 8.42

13 2013 Tye KM; Deisseroth 

K

NATURE 69.5 Dopamine neurons modulate neural encoding 

and expression of depression-related behavior

661 60.09 7.54

14 2013 Kepecs A NATURE 69.5 Cortical interneurons that specialize in 

disinhibitory control

657 59.73 7.49

15 2018 Chen S; Liu XG; 

McHugh TJ

SCIENCE 63.7 Near-infrared deep brain stimulation via 

upconversion nanoparticle-mediated 

optogenetics

644 107.33 15.96

16 2018 Bednarkiewic A; Liu 

XG; Jin DY

NAT COMMUN 17.7 Advances in highly doped upconversion 

nanoparticles

630 105.00 15.61

17 2014 Jonas P SCIENCE 63.7 Interneurons. Fast-spiking, parvalbumin+ 

GABAergic interneurons: from cellular design 

to microcircuit function

620 62.00 8.20

18 2015 Ng TN; Bao ZN SCIENCE 63.7 A skin-inspired organic digital mechanoreceptor 595 66.11 8.15

19 2015 Zeng HK NEURON 18.7 Transgenic mice for intersectional targeting of 

neural sensors and effectors with high specificity 

and performance

587 65.22 8.04

20 2014 Malinow R NATURE 69.5 Engineering a memory with LTD and LTP 582 58.20 7.70

CA, corresponding author; IF, impact factor; TC, total citations; TCPY, total citations per year; NTC, normalized total citations.
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fiber for many behavioral studies (Zhang et al., 2010). The delivery of 
light through fiber has mainly been achieved using laser sources or 
light-emitting diodes, with each method having its advantages. The 
drawbacks of optogenetics with optical fibers include the difficulty of 
precise surgery, increased risk of infection, irreversible tissue damage, 
and limitations on some behavioral activities due to attendant 
equipment. Various devices have emerged aiming to achieve wireless 
control (Wentz et al., 2011; Kim et al., 2013; Kathe et al., 2022), which 
is a frequent keyword in recent years according to the trend topic 
analysis. Despite concerns about output power, future technological 
advancements in wireless optogenetics could prove useful, especially 
for handling-sensitive animals, as well as experiments that cannot 
easily accommodate wire couplings. Recently, some interdisciplinary 
studies have combined nanomaterials with optogenetics, providing 
new ideas for research on wireless optogenetics (Chen et al., 2018; 
Hong, 2020). In the years ahead, there will be exciting opportunities 
for developing novel advanced optical neural interfaces. Moreover, 
there is growing interest in clinically inspired devices, such as optical 
cuff for optogenetic control of the peripheral nervous system, which 

are currently being tested in animal models (Michoud et al., 2018; 
Song et al., 2018; Zhang et al., 2019).

Similar to other gene therapies, optogenetics relies on viral vectors 
to deliver opsins to specific cells, with adeno-associated viruses (AAV) 
being one of the most commonly utilized viral tools in both basic 
research and clinical trials. However, there are still significant 
challenges that need to be addressed, including potential immune 
reactions, transduction specificity, clearance by the liver, and 
packaging capacity. Therefore, developing AAVs with novel features 
has become an important theme in optogenetics research in recent 
years. Capsid engineering, in vivo selection, and directed evolution 
offer promising avenues for improving AAV vectors. To increase the 
efficiency and feasibility of targeting cells using AAV, strategies such 
as developing isolates or serotypes with low immunogenicity or 
modifying the gene sequence of the antigenic part of AAV are being 
pursued (Zhang et al., 2022). The use of AAVs as a delivery vehicle 
may be limited due to their size restriction. Trans-splicing is a recently 
developed approach to increase the capacity of AAVs, achieved by 
splitting the gene of interest and packaging its two portions in separate 

FIGURE 6

Most cited documents and co-occurring keywords in the field of optogenetics. (A) Map of the clustered co-occurrence network analysis based on the 
author’s keywords. (B) Thematic map analysis of author’s keywords. (C) Production of the keywords over time.
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vectors, which are then co-infected into the same cell to form 
concatemers and express the transgene as a single gene (Colella et al., 
2018; Tornabene et  al., 2019; Tornabene and Trapani, 2020). In 
addition, the administration of AAVs to target cells is challenging, 
with current stereotactic techniques carrying infection risks and the 
potential for injury, as well as limited accuracy. Peripheral delivery 
may result in liver accumulation and poor target organ specificity. 
Several AAV serotypes, including PHP.B (Deverman et al., 2016) and 
PHP.S (Challis et al., 2019) or AAV capsid variants (Goertsen et al., 
2022) targeting the central nervous system, have been developed. 
Another option for brain delivery could involve using focused 
ultrasound to disrupt the blood–brain barrier (Chen et al., 2019). 
Besides AAV serotypes, one alternative method to achieve specificity 
for a particular type of cell is using eukaryotic promoters. However, 
there is still a need for further advancements to attain a high degree 
of cell specificity. Improving the performance of AAV is likely to 
remain a crucial and ongoing hot topic in the future.

Optogenetics technology required the development and 
maturation of three distinct technical aspects: microbial opsins, in vivo 
optics, and targeted genetic expression. The broad application of 
optogenetics did not occur until 2010, as its implementation was 
challenging and required collaborative efforts from many scientists 
and laboratories across various fields. Scientists have made sustained 
efforts, and even now, the continued improvement of the relevant 
components remains a hot and critical issue.

4.2. Optogenetics and neural circuitry

Optogenetic methods have revolutionized the field of neuroscience, 
shedding light on how specific cell types and neural projections play a 
causal role in both normal physiological processes and disease-related 
behaviors, such as memory, sense, pain, cognition, stress, vision, action, 
addiction, et  al. (Zhang et  al., 2022). Optogenetics is inherently 
characterized by high resolution in space and time, providing 
opportunities for novel experiments aimed at dissecting the function 
of specific neural patterns, which is not achievable by traditional 
methods. These studies involve analyzing circuit connectivity, 
discriminating cell subtypes and exploring cell functions, monitoring 
the dynamic signals transmission, or generating brain-wide activity 
maps integrated with other imaging techniques such as fMRI or PET 
(Lee et al., 2010). Initially, optogenetic research focused primarily on 
brain or spinal cord neurons. However, the scope of research has 
gradually expanded to include the peripheral nervous system and 
non-neuronal systems, such as skeletal, smooth or cardiac muscles, 
glial, stem cells, endocrine cells, et al. (Jia et al., 2011; Bruegmann et al., 
2015; Park et al., 2017; Xie et al., 2020; Asano et al., 2021; Yang et al., 
2022). Optogenetics has also led to many new discoveries about the 
neural circuitry underlying disease-related symptoms. The exact 
mechanisms at the circuit level of neuropsychiatric diseases have been 
elusive. Optogenetic studies have provided insights into the normal 
functioning of neural circuits and how they are disrupted in disease 
states, such as epilepsy, Parkinson’s disease, Alzheimer’s disease, 
Huntington’s disease, et al. (Roy et al., 2016; Cela and Sjostrom, 2019; 
Barry et  al., 2020; Fougère et  al., 2021). The knowledge can then 
be applied to better understand and treat neurological and psychiatric 
disorders. Optogenetics owes its existence to the unique feature of high 
precision and has since become a prominent and captivating research 

method. As a result, using optogenetics to explore neural circuits and 
projections has remained a trending topic.

4.3. Optogenetics and disease intervention

Despite challenges, ongoing research aimed at exploring the 
potential of optogenetics for clinical applications, which has been a 
burning issue recently. Research has explored the feasibility of 
ophthalmic optogenetics in animal experiments (Chuong et al., 2014; 
Sengupta et al., 2016). The area of vision restoration is the first and 
only field that has entered clinical trials (NCT05294978, 
NCT04945772, NCT05417126, NCT02556736, NCT04919473, 
NCT03326336). Sahel et al. (2021) reported the first clinical case of 
partial recovery of visual function in a neurodegenerative disease 
through intraocular injection AAV encoding ChrimsonR with light 
stimulation via engineered goggles. There is also hope that 
optogenetics can assist in restoring hearing for patients. Researchers 
have designed optical cochlear implants (oCIs), which convert the 
sound signal into an optical signal, thereby replacing traditional 
artificial cochlear implants (Klein et  al., 2018; Dieter et  al., 2020; 
Keppeler et al., 2020; Bali et al., 2021; Zerche et al., 2023). Currently, 
the development of oCIs is still in its early stages, and scientists are 
striving to improve its frequency resolution and sensitivity. Deep brain 
stimulation (DBS), which involves surgically implanted electrodes to 
deliver electrical stimulation to a specific brain region, has been 
approved as a therapeutic intervention for Parkinson’s disease. There 
is research aimed at using opto-DBS to target specific cell types or 
brain regions to address the non-specificity issue of traditional DBS 
(Chen et al., 2015; Gittis and Yttri, 2018). The treatment of Alzheimer’s 
disease (Roy et al., 2016; Etter et al., 2019) and epilepsy (Bentley et al., 
2013) holds great promise as potential application areas. However, 
current optogenetic techniques are not yet sufficiently mature to target 
the entire brain. There are currently no effective methods for 
simultaneously integrating viral sequences into the host genome 
throughout the brain, urging the design of a novel optogenetic 
solution. Studies in preclinical models have successfully explored 
optogenetic treatments for pain relief, but the application in humans 
is still a long way off (Bonin et  al., 2016; Wang et  al., 2016). The 
potential of optogenetics has also been explored in cardiac 
defibrillation (Bingen et al., 2014; Majumder et al., 2020), bladder 
regulation (Mickle et al., 2019), and muscle paralysis (Williams et al., 
2019). Based on the bibliometric analysis, we found that although 
clinical applications are still in their infancy, optogenetics is a 
significant trend for the future and deserves further attention.

5. Conclusion

This study investigated the development patterns, frontiers, and 
research hotspots in optogenetics on a global scale. The number of 
publications related to optogenetics has been on the rise since 2010, 
suggesting that this field of study is growing in importance. Using 
bibliometric analysis, we identified the main areas of research interest, 
which include optogenetic components and techniques, optogenetics 
and neural circuitry, and optogenetics and disease. Our results provide 
an overview of the current state and future research directions of 
optogenetics research.
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