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Objective: Evidences show that there may be a link between SLE and COVID-19.

The purpose of this study is to screen out the diagnostic biomarkers of systemic

lupus erythematosus (SLE) with COVID-19 and explore the possible related

mechanisms by the bioinformatics approach.

Methods: SLE and COVID-19 datasets were extracted separately from the NCBI

Gene Expression Omnibus (GEO) database. The limma package in R was used to

obtain the differential genes (DEGs). The protein interaction network information

(PPI) and core functional modules were constructed in the STRING database

using Cytoscape software. The hub genes were identified by the Cytohubba

plugin, and TF-gene together with TF-miRNA regulatory networks were

constructed via utilizing the Networkanalyst platform. Subsequently, we

generated subject operating characteristic curves (ROC) to verify the

diagnostic capabilities of these hub genes to predict the risk of SLE with

COVID-19 infection. Finally, a single-sample gene set enrichment (ssGSEA)

algorithm was used to analyze immune cell infiltration.

Results: A total of 6 common hub genes (CDC6, PLCG1, KIF15, LCK, CDC25C,

and RASGRP1) were identified with high diagnostic validity. These gene

functional enrichments were mainly involved in cell cycle, and inflammation-

related pathways. Compared to the healthy controls, abnormal infiltration of

immune cells was found in SLE and COVID-19, and the proportion of immune

cells linked to the 6 hub genes.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1179664/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1179664/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1179664/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1179664/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1179664/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1179664/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1179664&domain=pdf&date_stamp=2023-06-22
mailto:15986686048@139.com
https://doi.org/10.3389/fimmu.2023.1179664
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1179664
https://www.frontiersin.org/journals/immunology


Zeng et al. 10.3389/fimmu.2023.1179664

Frontiers in Immunology
Conclusion: Our research logically identified 6 candidate hub genes that could

predict SLE complicated with COVID-19. This work provides a foothold for

further study of potential pathogenesis in SLE and COVID-19.
KEYWORDS

bioinformatics, system lupus erythematosus, COVID-19, diagnostic biomarkers,
immune cells infiltration
Introduction

The disease caused by the novel coronavirus (SARS-CoV-2) is

known as COVID-19 (1). COVID-19 has become a global

pandemic disease and brought a tremendous impact around

the world since 2019 and remains at high risk of transmission,

with the ongoing emergence of SARS-CoV-2 variants leading to the

recurrence of continued spreading in many countries (2). As of

January 24, 2023, the latest updated data from the World Health

Organization (WHO) reached 664,618,938 confirmed cases of

COVID-19 infection, with 6,722,949 deaths worldwide (3). Nearly

half of the patients hospitalized with severe COVID-19 develop one

or more complications including cardiovascular manifestations,

acute respiratory distress syndrome, liver injury, anemia, and

brain fog (4).

Systemic lupus erythematosus (SLE) is a heterogeneous chronic

autoimmune disease with varied clinical manifestations (5). The

pathogenesis of SLE is still unclear, and there is a lack of biomarkers

and specific and effective tailored treatments (6). The prevalence

varies from approximately 50 to 100 cases per 100 000 people in

China, and the risk of death for patients with SLE is still 2 times

higher than that of the general population (7). The COVID-19

pathophysiology has uncovered that it could lead to the emergence

or exacerbation of autoimmune diseases (8).

SLE and COVID-19 infection are the focus of widely discussed

during the COVID-19 epidemic, these two diseases share certain

similarities in pathogenesis (9). Patients with SLE are at increased

risk of COVID-19 infection, and SLE patients may be at increased

risk of adverse outcomes from treatment with anti-SARS-CoV-2

(10, 11). There are reports analyzing cases of the worsening clinical

course of SLE or inducing new-onset SLE during COVID-19

infection (12, 13). However, a definitive explanation for the

pathogenetic basis of co-morbidity between SLE and COVID-19

is still lacking. Although hypotheses regarding dysfunctional

immune response related to cytokine dysregulation resulted in the

loss of tolerance to auto-antigens are promising.

The goal of this study was to explore the co-pathogenesis of

SLE and COVID-19. We identified hub genes associated with the

pathogenesis of SLE combined with COVID-19, and analyzed

their enriched functions by integrating bioinformatics

approaches. We further constructed the TF-gene regulatory

network and TF-miRNA regulatory network of the hub genes.

Simultaneously, we performed immune cell infiltration analysis

and mined hub genes related to therapeutic drug prediction. The
02
hub genes between SLE and COVID-19 identified in this study

are expected to provide new insights into the biological

mechanisms of both diseases.
Methods

Data collection and source

The SLE dataset (GSE22098) based on the Illumina HumanHT-

12 V3.0 expression bead chip is downloaded from GEO (Gene

Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo/) database,

and includes information from 28 SLE and 80 healthy control

individuals with whole blood samples. The COVID-19 dataset

(GSE171110) contained data on whole-blood gene expression

profiles of 44 COVID-19 infection patients and 10 healthy

controls, which used high throughput sequencing technology

based on the Illumina HiSeq 2500 (Homo sapiens) platform (See

Figure 1 for the study flow).
Differential expression genes identification
between SLE and COVID-19

We used and normalized the data by implementing the R 3.6.1

software package “Limma”, and to explore the expression of

differential genes (DEGs) in GSE171110 and GSE22098 between

disease groups and the healthy controls samples, respectively (14,

15). Genes with adjusted P-value less than 0.05 and |log2-fold

change (log2FC)| more than 1.0 were defined as statistically DEGs.

The volcano plots of shared DEGs for COVID-19 and SLE were

depicted using the pheatmap and ggplot2 R packages. The

VennDiagram R package was used to detect overlapped DEGs in

the two datasets.
Functional enrichment analysis

To further reveal the potential functions of the shared DEGs,

enrichment analysis of the shared DEGs was illustrated by

ClusterProfiler in R. Gene Ontology analysis (GO) was performed

to identify the top six GO terms including molecular functions

(MF), biological processes (BP), and cellular components (CC). The

threshold set for the shared DEGs was considered statistically
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significant with a false discovery rate (FDR) of < 0.1 and a P

value < 0.05.
Construction of protein-protein interaction
network and hub genes selection

Protein-protein Interaction (PPI) networks are essential for the

development of functional biology research. It maps DEGs to PPI data

from publicly available databases to identify the pathways in which

DEGs are involved (16). Cytoscape is an open-source software for

visualizing, analyzing, and modeling biological networks (17).

Using STRING (https://string-db.org) database (version 11.5), a

PPI network for the shared DEGs was constructed. We carried out a

co-expression network using the Cytoscape software (version 3.9.1).

Cytoscape molecular complex detection (MCODE) is used to pick

out PPI interacting sub-networks in shared DEGs. The default

parameters are as follows: Degree Cutoff: 2, Node Score Cutoff: 0.2,

K-Core: 2, Max Depth: 100.

The CytoHubba plugin algorithm is used to searched for hub genes

in the PPI network through seven topological analysis algorithms

(Closeness, MCC, Degree, MNC, Radiality, Stress, and EPC), which

were visualized by Venndiagram R package. The online Hiplot

platform (https://hiplot.com.cn/cloud-tool) was used to obtain co-

hub genes between the candidate genes obtained from plug-in

CytoHubba and MCODE. We incorporated the co-hub genes into
Frontiers in Immunology 03
the online tool GeneMANIA (http://genemania.org) to conduct a gene

co-expression network, in which an analysis of genes interacting with

the co-hub genes on COVID-19 and SLE and the gene set function

predictions were carried out and visualized (18).
Identification of relevant transcription
factors and TF-miRNAs regulatory network

Transcription Factors (TFs) are proteins that bind DNA in a

sequence-specific manner and regulate transcription. TFs can control

chromatin and transcription by recognizing specific DNA sequences to

form a complex system that directs genome expression (19). To explore

the potential TFs which may regulate the hub genes, we used the

NetworkAnalyst 3.0 online tool (https://www.networkanalyst.ca/) by

H. sapiens to predict TFs through the ENCODE database which

contains chip-seq data for many TFs and complete a TF-gene

regulatory network map using Cytoscape (20). The TF-miRNA

coregulation network was obtained using the RegNetwork web tool.
Validation of shared DEGs on COVID-19
and SLE

The expression level and diagnostic value of the obtained hub

genes were constructed by receiver operating characteristic (ROC)
FIGURE 1

Study flow. The symbol * represents P < 0.05; ** represents P < 0.01; *** represents P < 0.001.
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curves and the area under the curve (AUC) with 95% confidence

intervals (CI) to assess the levels of hub genes distinguishing on

COVID-19 and SLE using the qROC package in R software. The

AUC parameter over 0.60 is defined as optimal shared diagnostic

biomarkers for predicting SLE with COVID-19.
Immune cell infiltration analysis

The box line plots visualized the 28 types of immune relative

infiltration cells with the expression of GSE171110 and GSE22098

datasets by using the single-sample gene set enrichment analysis

(ssGSEA) algorithm, the assembled gene set of 782 marker genes in

28 immune cell types was used to evaluate 28 immune cells’

infiltration levels based on reference gene set (21). Violin plots

were visualized and correlated to screen the differential expression

levels of the 28 immune infiltrating cells. Spearman correlation was

used to perform the relationship between hub genes and infiltrating

immune cells. The “ggplot2” package was employed to exhibit the

results. P-value < 0.05 was confirmed to be statistically different.

The relative infiltration levels of 28 immune cells in the GSE171110

and GSE22098 datasets were quantified using the ssGSEA algorithm.

Box plots were drawn to demonstrate the differential expression levels
Frontiers in Immunology 04
of the 28 immune infiltrating cells. Spearman’s correlation was

calculated for the 28 immune infiltrating cells with central genes and

then visualized using the ‘ggplot2’ package.
Result

Identification of differential
expressed genes

In our work, GSE171110 and GSE22098 were obtained from GEO

database, and we uncovered the DEGs using the limma tool. The DEGs

between SLE and COVID-19 selected datasets were input to

VennDiagram R package for the identification of overlapped genes

among these microarray datasets. A total of 3581 DEGs were obtained

in COVID-19 dataset, including 2264 up-regulated genes and 1317

down-regulated genes (Figure 2A). As for the SLE dataset, we identified

3792 DEGs, including 1,416 upregulated genes and 2,376

downregulated genes (Figure 2B). By comparing these two datasets,

we obtained 163 shared DEGs in SLE and COVID-19 total (Figures 2C,

D). Of these common genes, 136 were up-regulated and 27 were down-

regulated. The results suggest that there might have molecular

similarity between COVID-19 and SLE.
D

A B

C

FIGURE 2

Volcano map of differentially expressed gene (DEGs) and shared gene identification (A) Represents DEGs from dataset GSE171110. (B) Represents
DEGs from dataset GSE22098. Red represents up-regulated genes, green represents down-regulated genes, and grey represents genes that are not
differentially expressed. (C) Venn’diagram of the down-regulated DEGs with GSE171110 and GSE22098 dataset. (D) Venn’diagram of the up-regulated
DEGs with GSE171110 and GSE22098 dataset.
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Functional enrichment analysis of gene set

To further explore the possible molecular mechanisms in SLE

associated with COVID-19 co-morbidity, we integrated gene

ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway annotations as features to characterize 163 shared

target genes obtained in the above screening step.

Many of these GO items were associated with immunity, with

the top 6 most significantly GO-enriched pathways (Figure 3A).

Molecular function (MF) for shared genes analysis showed that

immune receptor activity (GO: 0140375), and non-membrane

spanning protein tyrosine kinase activity (GO: 0004715) were

identified. As to cellular component (CC) ontology, these genes

were mainly situated in the cytosolic ribosome (GO: 0022626). In

the biological process (BP) category, the genes were primarily

enriched in regulating T cell activation (GO: 0050863), natural

killer cell-mediated immunity(GO: 0002228), and T cell co-

stimulation (GO: 0031295). Pathways for the shared target genes

were verified by KEGG enrichment analysis (Figure 3B). Genes in

the KEGG category were enriched in the natural killer cell-mediated
Frontiers in Immunology 05
cytotoxicity signaling pathway, antigen processing, and

presentation signaling pathway.
Protein-protein interaction and gene
modules analysis

We mapped the shared target genes to the Protein-Protein

Interaction (PPI) network for further exploring their potential

interactions. This PPI contained a total of 82 nodes and 92 edges,

in which the PPI interaction score is higher than 0.4 (Figure 4). the

PPI network was constructed via the online search tool STRING.

Hub gene modules were obtained using the Molecular Complex

Detection (MCODE) plug-in in the Cytoscape tool, and four core

modules including 22 shared DEGs were finally utilized

(Figure 5A). Functional enrichment analysis revealed that these

module genes were mainly enriched concerning regulation of T cell

differentiation in the thymus, and regulation of T cell activation,

microtubule-associated complexes, etc (Figure 5B). KEGG pathway

analysis revealed that microtubule associated complex, kinase
A

B

FIGURE 3

Functional enrichment analysis (A) The top 6 items of GO enrichment analysis. (B) The top 10 items of KEGG enrichment analysis.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1179664
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zeng et al. 10.3389/fimmu.2023.1179664
FIGURE 4

Visualization of the protein-protein interaction (PPI) network was constituted by STRING.
A

B C

FIGURE 5

Significant modules and roles of PPI network (A) The top four key gene modules identified by MCODE plug-in of Cytoscape. (B) Bubble plots of
Gene ontology (GO) enrichment for modules associated with the biological processes (GO-BP, blue), the cellular components (GO-CC, red), and
the molecular functions (GOMF, green). (C) Bubble plots of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis.
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binding, nuclear-transcribed mRNA catabolic process, regulation of

T cell differentiation in the thymus, and regulation of T cell

activation signaling pathways were involved in these shared

genes (Figure 5C).
Identification of hub genes by MCODE
and CytoHubba

CytoHubba plug-in in Cytoscape tool was integrated for

topological analysis to identify hub genes using seven algorithms.

Finally, a total of 16 common DEGs obtained from the intersection

of CytoHubba were visualized through the intersection of Venn

diagrams, including YES1, SH2D2A, PTPN13, RASGRP1, PLCG1,

SH2D1B, KIF15, KLRC1, KIR3DL1, LCK, KLRF1, CDC6, DCC,

CACNA1I, FASLG, and CDC25C (Figure 6A).
Frontiers in Immunology 07
The intersection of CytoHubba candidate DEGs with the 22

shared DEGs in the four modules was then taken, and 6 shared

genes were revealed overlapping and visualized by Venn diagram

(Figure 6B). A GeneMANIA biological function analysis was

adopted to investigate the genes with common properties and

similar functions to the above 6 shared DEGs, as well as to

demonstrate the interactive functional association network

between genes. A total of 20 molecules were most associated with

the 6 common DEGs. The results revealed that 44.33% co-

expression between genes, physical interactions of 5.71%, co-

localization of 8.85%, prediction of 20.30%, and pathway of

18.97% (Figure 6C). These genes functions were mainly

associated with immune response-regulating cell surface receptor

signaling pathway involved in phagocytosis, Fc receptor-mediated

stimulatory signaling pathway, protein autophosphorylation,

protein tyrosine kinase activity, cytoplasmic side of the plasma
A B

C

FIGURE 6

Shared hub genes identification and functional interactions network diagram (A) Venn diagram showing the identification of common hub genes by
seven algorithms (Closeness, MCC, Degree, MNC, Radiality, Stress, and EPC) using the Cytohubba plug-in. (B) Venn diagram showing the 6
crossover hub genes between the candidate genes of CytoHubba and MCODE. (C) The GeneMANIA diagram shows the co-expression interactions
between the 6 identified shared hub genes and their neighboring genes. Color codes indicate functions shared by genes.
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membrane, Fc receptor signaling pathway, and extrinsic component

of plasma membrane.
Construction of transcriptional level
regulatory networks

The analysis of the interactions among integrative transcription

factors (TF), miRNAs, and hub genes helps to unravel the biological

processes of disease pathogenesis. In our study, we separately

analyzed the interactions between the Networkanalyst platform

containing the ENCODE (https://www.encodeproject.org/)

database and the RegNetwork (http://www.regnetworkweb.org)

database to construct the TF-gene interaction network and TF-

miRNA co-regulatory networks. The regulatory networks were then

imported into Cytoscape 3.7.2 for visualization and analysis. There

were 140 TFs, 6 hub genes, and 193 edges were included in the TF-

genes network (Figure 7), while a total of 111 edges, 46 miRNAs,

and 45 TF genes interacted with the 6 hub genes in the TF-miRNA

co-regulatory network (Figure 8).
Validation of hub genes

To evaluate the diagnostic accuracy of the 6 shared hub genes in

predicting disease-related outcomes, we performed ROC analyses
Frontiers in Immunology 08
for SLE and COVID-19, respectively. The area under the curve

(AUC) values for 6 shared hub genes (CDC6, PLCG1, KIF15, LCK,

CDC25C, and RASGRP1) in the SLE dataset to discriminate

between patients and healthy controls were greater than 0.61

(Figure 9B), while those for the COVID-19 dataset were greater

than 0.91 (Figure 9A). The ROC curves indicated that the 6 shared

hub genes can helpfully predict the risk of COVID-19 with SLE. The

results provided a rationale for targeting these hub genes in

developing novel targeted therapies for SLE and COVID-19.
Assessment and visualized analysis of the
immune infiltration

We used the one-sample GSEA (ssGSEA) algorithm to quantify

the distribution (Figures 10A, 11A) and relative proportions

(Figures 10B, 11B) of the relative infiltration levels of 28 immune

cells in the GSE171110 and GSE22098 datasets. The correlation

between immune cell infiltration and the shared hub genes were

analyzed (Figures 10C, 11C) to evaluate the differences in the

immune micro-environment and characteristic pathways between

the disease and healthy controls.

There were significant differences in the distribution and

proportions of a variety of immune cells between COVID-19 and

healthy controls, including activated CD4 T cells, macrophages,

neutrophils, activated B cells, activated CD8 T cells, CD56 bright
FIGURE 7

Differentially expressed TF-gene coregulatory network in SLE and COVID-19 interaction of TF with shared hub genes.
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natural killer cells, eosinophils, etc. Analysis of the differences

between SLE and healthy controls revealed a significantly higher

infiltration of neutrophils in the peripheral blood of SLE. Immune

cell ratios differed between the two groups and included: activated B

cells, macrophages, natural killer cells, regulatory T cells,

neutrophils, type 1 T helper cells, and type 17 T helper cells. As

for the correlation analysis of 28 immune cells containing the 6
Frontiers in Immunology 09
biomarkers showed that in the COVID-19 dataset, LCK, PLCG1,

and RASGRP1 were most significantly positively correlated with

effector memory CD4 T cells, central memory CD4 T cells, and

central memory CD8 T cells, respectively (P < 0.001). These

biomarkers were the most significant negative correlation (P <

0.001) with activated dendritic cells and neutrophils (Figure 10C)

conversely. In contrast, in the SLE dataset, LCK, PLCG1, and
FIGURE 8

MiRNA-TF-gene co-regulatory network contributed to SLE and COVID-19 shared hub genes. (red nodes represent hub genes; blue nodes represent
TFs; green nodes represent miRNAs; TFs: transcription factors).
A B

FIGURE 9

ROC curve for testing the diagnostic validity of shared hub genes in both datasets (A) ROC curve of shared hub genes in GSE171110 for diagnosis
and efficacy verification. (B) ROC curve of shared hub genes in GSE22098 for diagnosis and efficacy verification.
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RASGRP1 were positively correlated with activated CD8 T cells,

effector memory CD4 T cells, central memory CD4 T cells, central

memory CD8 T cells and effector memory CD8 T cells (P < 0.01),

and negatively correlated with neutrophils (P < 0.05) (Figure 11C).

These results provide further evidence for the critical role of these

immune cells in the co-morbidity of COVID-19 and SLE.
Discussion

Viral infection is an important environmental factor in the

pathogenesis of SLE, and is strongly associated with disease onset

and relapse (22). Previous studies have shown that Epstein-Barr

virus (EBV), B19 virus (B19V), and human endogenous

retroviruses (HERVs) were associated with the development of

SLE (23–25). The viruses can induce a loss of immune tolerance,

for one thing; For another, it may be related to the fact that long-

term immunosuppressive therapy increases the risk of infection in

patients with SLE (22).

The Coronavirus disease 2019 (COVID‐19) has progressed into a

pandemic rapidly worldwide since it was first reported in December

2019. Not only can normal individuals suffer from COVID-19

infection, but patients with other chronic diseases are also affected,

including SLE (26). SLE patients appear to be at higher risk of
Frontiers in Immunology 10
developing severe COVID-19 outcomes (27). Co-morbidity studies

have demonstrated an increased risk of death and a poorer prognosis

for SLE in combination with COVID-19 infection (28). SLE and

COVID-19 have similar clinical phenotypes and molecular

alterations, both of which can cause multiple organs and tissues,

and their etiology is closely related to inflammatory pathways (29,

30). For example, both pathologies showed significantly dysregulated

interferon (IFN) response and excessive inflammation. SARS-CoV-2

proteins block type I and type III IFN responses, further inducing

monocyte and macrophage accumulation and activation, leading to

massive IFN and pro-inflammatory cytokine production (31). On the

other hand, SLE is characterized by activation of the IFN system,

which results in increased expression of IFN-regulated genes, and

IFN-I has been labeled as a biomarker and drug target of SLE (32).

There may be a link between SLE and COVID-19. To the best of our

knowledge, blood transcriptomic data have not been applied to

analyze the value of diagnostic potential between SLE, COVID-19

and healthy controls. Therefore, we integrated independent datasets

of the two diseases for bioinformatics and enrichment analysis and

determined the relationship between SLE and COVID-19.

In our study, we first screened for 163 overlapped genes that

may be involved in SLE and COVID‐19, which may be potential

targets for SLE combined with COVID-19 infection treatment.

Functional enrichment analysis of these common genes were
A

B

C

FIGURE 10

Immune cell infiltration analysis in COVID-19 dataset based on ssGSEA scores and an estimation of their association with shared hub genes (A)
Hierarchical clustering of the distribution of the 28 immune cells in the GSE171110 (Figure 10A) samples. (B) Box plots of the proportions of different
immune cells in the disease and healthy control, respectively in the GSE171110 (Figure 10B) samples. (C) Heatmap of correlation analysis between
immune cell infiltration and 6 shared hub genes in the GSE171110 (Figure 11C) samples. The symbol * represents P < 0.05; ** represents P < 0.01;
*** represents P < 0.001.
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primarily involved in immune cell activation functions, and KEGG

signaling pathways mainly involved natural killer cell-mediated

cytotoxic signaling pathways, nuclear factor-kB (NF-kB) signaling
pathway, and Th17 cell differentiation. Previous blood

transcriptomics studies have found that sustained activation of

cytotoxic T cells and increased numbers of B cells are associated

with COVID-19 infection and lung involvement, which is

consistent with our findings (33, 34).

We finally identified 6 common hub candidate genes (LCK,

PLCG1, RASGRP1, CDC6, CDC25C, and KIF15) and confirmed

their diagnostic potency in two diseases by ROC curve. PLCG1,

encoding the phospholipase C g (PLCg) 1 isoform, is a gene in the

TCR cycle signaling pathway associated with mast cell activation in

body-acquired immune function. PLCG1 may act through the

activation of mitogen-activated protein kinase and NF-kB
signaling pathways (35). This is an important factor in the

development of local histopathological changes in SLE. Therefore,

targeted inhibition of this gene may be a new target for SLE therapy.

Engagement of CD95 ligand (CD95) in response to calcium

signaling via docking with PLCG1 can induce the clustering of

Th17 cells and exacerbate local histopathological changes in SLE

(36). Therefore, targeted inhibition of this gene may be a novel

therapeutic target for SLE.

Natalia, Cheshenko et al. have reported the importance of

extracellular kinase function/phosphorylation events in viral
Frontiers in Immunology 11
infections, and that abnormal extracellular phosphorylation of

PLCg is involved in triggering COVID-19 (37).

RASGRP1 is a Ras activating protein and belongs to the small G

protein Ras guanine nucleotide exchange factors (GEFs) family.

RASGRP1 is mainly expressed in T cells and thymocytes, which can

prevent virus infection and autoimmunity-related activated T cell

proliferation (38). SARS-CoV-2 can damage the immune response

of B and T cells by down-regulating the level of RASGRP1 (39).

RASGRP1 maintains lymphocyte homeostasis and mice are

defective. Mice deficient in RASGRP1 may induce auto-reactive B

cells disrupt immune tolerance through a T-cell mechanism, and

are at increased risk of developing lymphoproliferative disorders

characteristic of human SLE (40). It was observed that the

expression level of RASGRP1 in lymphocytes from SLE patients

was decreased (41), which was consistent with the results of our

analysis. In our study, the levels of CDC6, CDC25C, and KIF15 were

down-regulated in both the COVID-19 and SLE datasets,

suggesting a better prognosis with these genes. The mechanisms

of these potential oncogenes and cell cycle regulators genes in SLE

and COVID-19 need to be further investigated.

In this work, enrichment analysis of the key modular genes were

identified mainly in regulating T cell activation (GO: 0050863),

natural killer cell-mediated immunity(GO: 0002228), T cell co-

stimulation (GO: 0031295), T cell receptor signaling pathway, PD-

L1 expression and PD-1 checkpoint pathway, NF-kB signaling
A

B

C

FIGURE 11

Immune cell infiltration analysis in SLE dataset based on ssGSEA scores and an estimation of their association with shared hub genes (A) Hierarchical
clustering of the distribution of the 28 immune cells in the GSE22098 (Figure 11A) samples. (B) Box plots of the proportions of different immune cells in
the disease and healthy control, respectively in the GSE22098 (Figure 11B) samples. (C) Heatmap of correlation analysis between immune cell infiltration
and 6 shared hub genes in the GSE22098 (12CB) samples. The symbol * represents P < 0.05; ** represents P < 0.01; *** represents P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1179664
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zeng et al. 10.3389/fimmu.2023.1179664
pathway, and Th1 and Th2 cell differentiation. Genetic susceptibility

to the development of SLE is associated with resistance tomechanisms

that limit the activation of T cells and their differentiation to effector

and memory cells (30). Abnormal activation of T cells is involved in

the development of SLE and has been shown to mediate multi-system

damages in SLE (42). COVID-19 is related to the activation of innate

immunity. The increase of neutrophils, mononuclear phagocytes, and

natural killer cells, and the decrease of T cells have been observed

collecting in the affected lungs (43).

Programmed death (PD-1) is an important immunosuppressive

molecule that modulates the immune system and promotes

autoimmune tolerance by suppressing T-cell activity (44). The

PD-1 axis is involved in regulating innate and adaptive immune

sub-populations in SLE (45, 46). The PD-1 signaling pathway

regulates the expression and activation of receptors on immune

cells in the micro-environment, effectively blocking B-cell receptor

signaling, and macrophages in SLE may also express PD-1 as a

biomarker for their reduced ability to clear apoptotic cells (46).

It has been found that PD-1H knockout mice develop SLE-like

manifestations. Meanwhile, activation of PD-1H with monoclonal

antibodies reduced skin symptoms and decreased multiple

autoimmune markers including autoantibodies, inflammatory

cytokines and chemokines in lupus mice, suggesting that

activation of PD-1H has a significant immunosuppressive effect

(47). This study suggests that impaired PD-1H function is a key

mechanism in the development of SLE, and PD-1H is expected to be

a new target for SLE treatment (48). PD-L1 dysregulation is

associated with COVID-19 pathogenesis (49). Patients with severe

and critical COVID-19 infection exhibit dysregulated expression of

the PD-1/PD-1 ligand (PD-L1) axis on the surface of innate

immune cells and T cells, and circulating level of soluble PD-L1

is considered a prognostic biomarker and therapeutic target

(50, 51).

The exertion of T cell function is dependent on the activation of

the T cell receptor (TCR)-mediated signaling pathway. The

corresponding transcription factors are finally activated, which

regulate the expression of effector protein molecules and complete

the activation of T cells in COVID-19 (52, 53). Activation of the

LCK gene is a key part of TCR signaling initiation (54).

The NF-kB signaling pathway is a typical pro-inflammatory

pathway responsible for up-regulating the expression of

inflammatory cytokines, chemokines, etc. It is a vital pathway

that causes cytokine storm and plays an important role in disease

progression and exacerbation in COVID-19 (55). Multiple

cytokines and miRNAs participate in regulating classical and

non-classical NF-kB signaling pathways in the occurrence and

development of SLE (56–58)

Studies have reported that after SARS-CoV-2 infection,

circulating B, T, NK cells, monocytes, the eosinophils/basophils

decreased in severe patients, and the proportion of neutrophils

increased significantly. Cytotoxic T lymphocytes (CTLs) are

involved in the down-regulation of immune activation through

their ability to kill T cells, NK cells, and antigen-presenting cells (59,

60). The bronchoalveolar lavage fluid of patients with severe

COVID-9 contains a large number of macrophages and
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neutrophils derived from pro-inflammatory monocytes, thereby

promoting local inflammation (61).

Neutrophils play a crucial role in innate immunity, serving as

the primary line of defense against microbial infections and helping

to maintain the stability of the body’s internal environment. During

acute inflammation, neutrophils can rapidly reach the site of

infection through chemotaxis, phagocytosis, and degranulation,

effectively combating pathogens. Additionally, neutrophils play a

regulatory role in adaptive immunity (62). One of the bactericidal

mechanisms utilized by neutrophils is the release of neutrophil

extracellular traps (NETs), a reticular structure comprised of

histones and double-stranded deoxyribonucleic acid (dsDNA),

which can immobilize and kill pathogenic microorganisms, a

structure known as neutrophil extracellular traps (NETs) and the

process by which they are generated is known as NETosis (63).

Neutrophils are involved in autoimmune diseases. Some

autoantibodies promote NET release through NETosis and

molecular exocytosis (MPO and double-stranded DNA are

autoantigens in systemic autoimmune diseases) (64).

Interestingly, studies have confirmed the pathogenic role of such

neutrophil-derived NETs in a variety of inflammatory states

including COVID-19 infection and SLE (65–67). In SLE patients,

neutrophils exhibit phenotypic and functional abnormalities such

as failure of C1q/calreticulin and CD91-mediated apoptotic

pathways to clear phagocytic defects, increased aggregation of

abnormal oxidative activity, and increased numbers of circulating

low-density granulocytes (LDGS) (68). This cycle of NETosis and

autoantibody production perpetuates antigen release through NETs

and autoantibody production.

Autoreactive B cell activation drives human SLE initiation and

progression with subsequent breakdown of B cell tolerance followed

by the production of large numbers of auto-antibodies (69).

Aberrant regulation of innate (including macrophages, dendritic

cells, neutrophils, and NK cells) and adaptive immune (including T

and B cells) responses are fundamental features of SLE (70). It has

been demonstrated that the number and cytotoxic function of

peripheral NK cells is reduced, neutrophils are dysregulated,

reactive oxygen species generated during phagocytosis are

reduced, and inflammatory responses are enhanced (71, 72). The

results of our immune in filtration analysis study are consistent with

previous analyses.

There are limitations regarding the current study that need to be

elucidated. Firstly, the sample size of the compliant datasets and

gene sets is small. Secondly, no validation has been performed on

large samples at the single cell or protein level. This study provides

new diagnostic biomarkers for SLE and covid-19 by integrating

bioinformatics approaches, and immune infiltration study models,

and there is a need to confirm the results of this work through

prospective experiments.
Conclusion

We first provided bioinformatic evidence that SLE and COVID-

19 pathogenesis may be linked, and identified 6 common genes as
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diagnostic biomarkers for SLE associated with COVID-19. These

genes were mainly enriched in multiple immune cell activation, cell

cycle, TCR signaling pathway, PD-L1 expression and PD-1

checkpoint pathway, and NF-kB signaling pathway, and are

closely related to the immune cell ratios. This study offers new

research prospects for the diagnosis and treatment of SLE and

COVID-19.
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