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Introduction: Identification of keymicrobiome components has been suggested

to help address themaintenance of oral and intestinal health in humans. The core

microbiome is similar in all individuals, whereas the diverse microbiome varies

across individuals, based on their unique lifestyles and phenotypic and genotypic

determinants. In this study, we aimed to predict the metabolism of core

microorganisms in the gut and oral environment based on enterotyping and

orotyping.

Materials and methods: Gut and oral samples were collected from 83 Korean

women aged 50 years or older. The extracted DNA was subjected to next-

generation sequencing analysis of 16S rRNA hypervariable regions V3–V4.

Results: Gut bacteria were clustered into three enterotypes, while oral bacteria

were clustered into three orotypes. Sixty-three of the core microbiome between

the gut and oral population were correlated, and different metabolic pathways

were predicted for each type. Eubacterium_g11, Actinomyces, Atopobium, and

Enterococcus were significantly positively correlated between the gut and oral

abundance. The four bacteria were classified as type 3 in orotype and type 2 in

enterotype.

Conclusion: Overall, the study suggested that collapsing the human body’s

multidimensional microbiome into a few categories may help characterize the

microbiomes better and address health issues more deeply.

KEYWORDS

oral-gut axis, oral microbiome, gut microbiome, core microbiome, Eubacterium_g11,
Actinomyces, Atopobium, Enterococcus
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1 Introduction

The total number of microbial cells in the gut is approximately

1013–1014 (Ley et al., 2006). More than 1,000 species of bacteria are

known to inhabit the human gut (Qin et al., 2010). The entire gut

microbiome contains approximately 150 times more genes than the

human genome (Qin et al., 2010). The intestinal microbial ecology is

diverse and dynamic, and all the members of intestinal

microorganisms cannot permanently inhabit the intestines (Li

et al., 2016). Most bacteria in the gut belong to the phyla

Bacteroidetes and Firmicutes (Backhed et al., 2005; Eckburg et al.,

2005). The relationship between common microorganisms and their

hosts leads to the development of numerous mechanisms, such as

metabolic diseases (Li et al., 2016). Previous studies had defined

numerous functional features of the gut microbial community, such

as fermentation of indigestible dietary polysaccharides, synthesis of

essential amino acids, and vitamin metabolism (Gill et al., 2006,

Yatsunenko et al., 2012; Cabreiro et al., 2013).

The oral cavity is one of the most densely colonized parts of the

human body and has the second most diverse microbiome (Kilian

et al., 2016; Willis et al., 2018). Previous studies had estimated the

presence of approximately 108 microbial cells per milliliter of saliva,

of which up to 700 species of bacteria cannot be cultured (Chen and

Jiang, 2014; He et al., 2015; Hajishengallis et al., 2017). Although

there are significant differences in oral microbial groups, in terms of

being affected by various factors, the salivary microbial group is

stable over the short term (Lazarevic et al., 2010; Crielaard et al.,

2011). Saliva can collect bacteria and metabolites from different oral

niches and appears to be representative of the entire oral microbial

community (Yamashita and Takeshita, 2017). Unlike the gut

microbiome, which is highly influenced by diet and the

environment, the oral bacterial composition is minimally

influenced by them (Schroeder and Bäckhed, 2016; Lu et al.,

2019). The oral community mainly includes Streptococcus,

Prevotella, Haemophilus, Rothia, Veillonellaceae, Neisseria, and

Fusobacterium (Yamashita and Takeshita, 2017). The oral cavity

is a connecting channel between the external environment and the

respiratory and digestive tracts. Mechanisms underlying the effects

of these factors on the oral microbiome and oral health have not

been fully elucidated yet (Zaura et al., 2009).

Overlapping oral and fecal bacteria were found in 45% of the

Human Microbiome Project subjects (Turnbaugh et al., 2007).

Therefore, oral bacteria are considered to commonly migrate to

the gut (Olsen and Yamazaki, 2019). Members of the oral and

oropharyngeal microbiota reach the stomach via saliva, nutrients,

and beverages. This might lead to systemic inflammation due to

pre-existing periodontal diseases. In general, the core microbiome

refers to taxa shared by two or more microbial communities in a

particular host species or environment (Olsen and Yamazaki, 2019).

The core microbiome is similar in all individuals, and the rare

microbiome varies across individuals based on their unique

lifestyles and phenotypic and genotypic determinants.

Identification of the key microbiome components could help

address the maintenance of oral and intestinal health in humans

(Zaura et al., 2009; Bäckhed et al., 2012).
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Gut microbiota varies significantly across individuals on

temporal and spatial scales (Yatsunenko et al., 2012). A previous

study reported that gut microbiota can be stratified into three distinct

and robust clusters, namely Bacteroides (enterotype 1), Prevotella

(enterotype 2), and Ruminococcus (enterotype 3) (Arumugam et al.,

2011). The essence of enterotyping is to stratify the human gut

microbiome, acting as a dimensionality reduction process that

reduces overall microbiome variation into a few categories. These

categories, termed “enterotypes,” were initially reported as “highly

populated regions in the multidimensional space of community

organization” (Arumugam et al., 2011). Among the follow-up

studies, a study in Taiwan, China, identified a third enterotype of

enterobacteria besides Bacteroides and Prevotella (Liang et al., 2017).

This suggested the possibility of novel enterotypes in Asian

populations (Cheng and Ning, 2019). The presence of enterotypes

has far-reaching implications in studying microbiome-related human

diseases. For example, if patients nucan be grouped according to gut

type (much like blood type), personalized microbiome-based

diagnostics and therapies will be easier to pursue (Knights et al.,

2014). The oral cavity is inhabited by the most abundant

microorganisms in the human body, and few studies have classified

them as orotypes. Most previous oral microbiome studies have

focused on adults or very young infants (Willis et al., 2018).

We examined the gut and oral microbiota of 83 middle-aged

Korean women. Our primary objective was to identify the core

microbiomes of the intestine and oral cavity and to observe the

correlation between the two. The secondary purpose was to predict

the metabolic pathways of the core microbiomes based on

enterotypes and orotypes.
2 Materials and methods

2.1 Subjects and study information

Eighty-three participants from the Miraeseum Seongnam

Senior Complex in Seongnam City, Gyeonggi-do Province, Korea,

were included in the study. The participants submitted an informed

consent form. The inclusion criterion was women over 50 years of

age. The exclusion criteria were as follows: (1) People who are

currently suffering from gastrointestinal diseases, (2) people who

are suffering from periodontal diseases, and (3) people who are

suffering from autoimmune diseases or cancer. The study was

conducted in accordance with the Declaration of Helsinki

protocol and was approved by the Eulji University Internal

Review Board (IRB no. EUIRB 2019-53). The basic information

about participants is summarized in Supplementary Table 1.
2.2 Sample collection

Saliva was collected between 9 and 10 a.m. Participants were

asked not to eat for at least two hours before sample collection.

Before collecting saliva, the participants washed their mouths with

bottled water in order to remove food residues from the mouth; 2
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mL of saliva was collected in a 15 mL sterilized plastic tube.

Immediately after saliva collection, it was centrifuged at 1,500 × g

for 2 min, and the pellet was moved to the laboratory within 2 h

until further use (Costa et al., 2021).

Stool containers were provided to the participants before the visit,

and stool samples were freshly collected (0.25 g) at night or morning

before the visit. They were stored for less than 2 h in a household

refrigerator at 4°C before being transferred to the laboratory. AndWe

surveyed the stool characteristic for the stool consistency and

frequency of bowel movements, respectively. The stool consistency

was evaluated by classification using the Bristol Stool Form Scale

(BSFS) (Blake et al., 2016). The BSFS is an ordinal scale of edge types

1 to 7, with 1 being the most difficult;cult variable. Types 1 and 2 are

considered unusually hard stools, and types 6 and 7 are considered

unusually thin liquid stools. Types 3, 4, and 5 are generally considered

the most “normal” form of stool, and type 4 is the baseline for cross-

sectional studies of healthy adults (Langille et al., 2013).

Blood samples were collected from the participants on an empty

stomach. Venipuncture was performed using a vacuum collection

tube, and the blood was stored in a blood collection tube, EDTA

vacutainer, and serum separator tube (Becton Dickinson, Franklin

Lakes, NJ, USA). Blood samples were centrifuged at 1,500 x g for

15 min at 4 °C. Standard laboratory methods and certified

biochemical and hematological tests were performed using an

automated analyzer (Roche Diagnostics, Mannheim, Germany).
2.3 DNA extraction

DNA extraction from fecal samples was performed using the

QIAamp PowerFecal Pro DNA Kit (Qiagen, Hilden, Germany),

following the manufacturer’s instructions. Briefly, a 250-mg aliquot

of the fecal sample was transferred to a dry bead tube provided with

the kit. Next, 800 µL of C1 solution was added, and the sample was

vortexed for 10 min. The rest of the protocol was performed in

accordance with the manufacturer’s instructions. DNA was eluted

in 65 µL of C6 elution buffer. The extracted DNA samples were

stored at −80°C until library preparation and sequencing

(Gutiérrez-Repiso et al., 2021). DNA extraction from saliva

samples was performed using the DNeasy PowerSoil Pro Kit

(Qiagen, Hilden, Germany), following the manufacturer’s

instructions. Briefly, 800 µL of C1 solution was added to the

saliva pellet, and the sample was vortexed for 10 min at the

maximum speed. The rest of the protocol was performed in

accordance with the manufacturer’s instructions. DNA was eluted

in 65 µL of C6 elution buffer. The extracted DNA samples were

stored at −80°C until library preparation and sequencing.
2.4 Polymerase chain reaction
amplification of the 16S rRNA genes

The extracted DNA was used as a template for PCR amplification

of the V3–V4 region of bacterial 16S rRNA genes using the following

adapter sequences, index sequence, and general-purpose primers:

341F (5′-CCT ACG GGN GGCWGC AG-3′) with a sample-specific
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6–8-bp tag sequence and 805R (5′-GAC TAC HVG GGT ATC TAA

TCC-3′). PCR was performed using the Platinum PCR SuperMix

High Fidelity system (Thermo Fisher Scientific, Waltham, MA, USA)

using 2.5 ng of template DNA and each primer at a final

concentration of 50 nM in a 27 µL final reaction volume. The

following cycling conditions were used for the PCR: 94°C for

3 min, followed by 30 cycles at 94°C for 30 s, 50°C for 30 s, and

72°C for 30 s. The amplicon libraries were further purified to remove

residual primer dimers and any contaminants using the Agencourt

AMPure XP DNA Purification Kit (Beckman Coulter, Brea, CA,

USA), following the manufacturer’s instructions. The samples were

eluted in 15 µL of low-EDTA Tris-EDTA buffer. DNA concentration,

quality, and amplicon library concentrations were assessed using the

dsDNA HS (High Sensitivity) Assay Kit on a Qubit 4 Fluorometer

instrument (Thermo Fisher Scientific, Waltham, MA, USA). The

fragment size and quality of the pooled DNA were assessed using

Agilent 2100 Bioanalyzer system (Agilent Technologies, Palo Alto,

CA, USA). The enriched particles were loaded onto the Ion 530 Chip

Kit (Thermo Fisher Scientific, Waltham, MA, USA), and sequencing

was performed using Ion GeneStudio S5 (Thermo Fisher Scientific,

Waltham, MA, USA), according to the manufacturer’s instructions

(Gu et al., 2010; Moore et al., 2015; Morou-Bermúdez et al., 2022;

Zhang et al., 2022). After PCR amplification, paired-end sequencing

was performed using an Ion GeneStudio S5 next-generation

sequencing system (Thermo Fisher Scientific, Waltham, MA, USA).
2.5 16S rRNA gene sequencing
data processing and identification
of microbial taxa

The FASTQ file, which contains the raw data of 16S rRNA

sequences, was obtained using the Torrent Suite Software version

5.14.1.1. (Thermo Fisher Scientific, Waltham, MA, USA). We

performed amplicon sequence variant (ASV) inference by applying

the standard DADA2 pipeline in Qiime2. Additionally, reads shorter

than 500 bp or improperly paired and chimeras were excluded from

the analysis. The 16S rRNA workflow module in the EzBioCloud

software (ChunLab, Seoul, Korea) was used to classify individual

reads by combining the Basic Local Alignment Search Tool with the

curated Greengenes Database, which contains a high-quality library

of full-length 16S rRNA sequences. Sequences were 3,612,748 total

read counts and 66,902 average counts per sample were obtained.
2.6 Clustering of enterotypes and orotypes

We analyzed enterotyping and orotyping data using previously

published methods (Arumugam et al., 2011). Samples were clustered

based on relative genus abundances using the Jensen-Shannon

divergence (JSD) distance and partitioning around medoids (PAM)

clustering algorithm. Results were assessed for the optimal number of

clusters using the Calinski-Harabasz (CH) index (Caliński and

Harabasz, 1974). Further, we evaluated the statistical significance of

optimal clustering by comparing the silhouette coefficient of the

optimal clustering to a distribution of silhouette coefficients derived
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from a simulation, which models the null distribution with no

clustering (Rousseeuw, 1987). Genus abundance profiles

(phylogenetic) and OG abundance profiles (functional) were

normalized to generate probability distributions (called abundance

distributions hereafter). We used a probability distribution distance

metric related to JSD to cluster the samples. We used the PAM

clustering algorithm to cluster the abundance profiles. Between-class

analysis (BCA) was performed to support clustering and identify the

drivers of enterotypes. Analysis was performed in R using the ade4

package. Before the analysis, genus with very low abundance in our

dataset was removed to decrease noise if their average abundance

across all samples was below 0.01%.
2.7 Statistical analyses

An alluvial diagram analysis was performed to show the

correlation across category dimensions, represented as a flow, by

visually linking categories with shared items. The alluvial diagram was

drawn using RAWGraphs (https://rawgraphs.io) (Mauri et al., 2017).

Arc diagram analysis was performed using RAWGraphs to visualize

the relationship between nodes using a specific type of network graph.

Heatmapper software (http://heatmapper.ca/expression/) was used to

visualize clustering and correlation, and a heatmap was used to

perform the average linkage method. Spearman’s correlation

analysis was performed. R 4.2.2 was used to visualize enterotyping

and orotyping clustering with PERMANOVA analysis. Comparison

of the classified enterotype and orotype bacteria was performed

through Kruskal-Wallis analysis (SPSS version 20.0; SPSS, Chicago,

IL, USA). Phylogenetic Investigation of Communities by
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Reconstruction of Unobserved States (PICRUSt) was conducted to

predict the metagenome from 16S rRNA gene data (Langille et al.,

2013; Kanehisa et al., 2021). Predictive analysis of gene family

abundance was performed using the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway by mapping reads to references in the

Greengenes database.
3 Results

3.1 Core and rare microbiomes of the gut
and oral cavity

We performed alluvial diagram analysis, which visually

connected categories with shared items and displayed them as

flows (Figure 1). The gut and oral categories are far to the left. In

the gut, 519 genera were specified, and in the oral cavity, 342 genera

were specified.

The core microbiome was identified taxonomically through the

occurrence of multiple microbial taxa in the same criterion for ASV

following previous methods (D Ainsworth et al., 2015; Sweet et al.,

2017). This is because when adopting the core OTU abundance in

previous studies, phylotypes present at less than 30% were considered

to represent individual variability of colonies, and 30% filtering was

performed. In this study, ASV was also performed using 30% filtering,

the minimum incidence criterion, in the entire sample population.

The gut, oral, and core categories are shown on the far right side

after 30% filtering. The filtered gut had 154 specified genera, the oral

cavity had 60 specified ASV, and the core had 63 specified genera.

From the far left, more than half of the gut and oral population
FIGURE 1

Alluvial Diagram showing the composition of the gut and oral microbiome as a visual connection flow. Nodes represent the level of bacterial taxa
targeting ASV possessed by all participants. The leftmost column represents gut and oral, and the rightmost column represents gut, oral and core.
The middle columns represent the phylum, order and class of bacteria phylogenetic classification. The height of each column is proportional to the
abundance of bacteria.
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belonged to the phylum Firmicutes, class Clostridia, and order

Clostridiales. More than half of the oral microbiome mentioned

here was classified as core (far right). The remaining rare oral

bacteria, classified as cores, belonged mainly to the phyla

Bacteroides and Proteobacteria.
3.2 Correlation between gut and oral
core microbiomes

We performed an arc diagram analysis to identify the

relationship between nodes through the network graph of the gut,

oral cavity, and core at the family level (Figure 2A). An arc above

the nodes indicates a connection from left to right, whereas that

below indicates a connection from right to left. Rare gut bacteria

correlated with core bacteria but not with rare oral bacteria. Rare

oral bacteria were partially correlated with rare gut bacteria,

whereas core bacteria were relatively strongly correlated with both

gut and oral bacteria. We analyzed the correlation between the gut

microbiome and the oral core microbiome at the genus level

(Figure 2B). The 63 core microbiota from the gut samples showed

high similarity among the community within the gut. The 63 core

microbiota, derived from oral samples, also showed high cluster

similarity within the oral cavity. Some of the core microbiota

derived from the gut sample and those derived from the oral

sample were similar, whereas some were observed to be less

similar owing to the distance. We observed that 63 core
Frontiers in Cellular and Infection Microbiology 05
microbiomes within the same site were similar and inter-

correlated (Figures 2A, B). The correlation between the core

microbiota from the gut and oral samples was analyzed by a heat

map using the Spearman’s correlation analysis (Figure 2C).

Fourteen of 63 bacteria were significantly observed at different

sites. In particular, we observed that Actinomyces, Atopobium, and

PAC001041_g correlated with the core microbiota derived from

oral samples more differently when present in the gut than when

present in the oral cavity. We observed that Enterococcus and

Eubacterium correlated more with core microbiota from different

gut samples when present in the oral cavity than when present in

the gut. Thus, we concluded that the core microbiota not only

correlated with other bacteria within the same site but also

correlated with the same bacteria in different sites.
3.3 Gut enterotyping and oral orotyping

We performed PCoA to observe the gut and oral microbial

communities and patterns within a particular site (Figure 3A).

Through PCoA, we confirmed that gut and oral microbial

communities are different, and that patterns are divided within

each site. Between-class analysis (BCA) was performed next, and

both the gut and oral cavity were separated into three clusters

(Figure 3B). First, the gut was enterotyped with Bifidobacterium

(enterotype 1), Ruminococcus (enterotype 2), and Prevotella

(enterotype 3) (Figure 3C). Enterotype 1 is referred to as “E1”,
A

B

C

FIGURE 2

Analysis of 63 core microbiome networking. (A) Arc diagram visualizing the co-occurrence network of gut and oral and both core microbiomes. The
source node is the gut, oral and core microbiome, and the target node is the bacteria family level. Nodes are displayed on the horizontal axis, and
links as clockwise arcs. An arc above the nodes means a connection from the left to the right, while below means a connection from the right node
to the left one. (B) Heatmap of pairwise distance values of 63 core microbiome. Distance analysis was performed using the relative abundance of
bacteria in gut and oral samples. Euclidean distance was used as a distance measurement. The color scale represents far distances from blue and
near distances from red. (C) Heatmap of correlation values of 63 core microbiome. Community clustering analysis was performed using the relative
abundance of bacteria in gut and oral samples. Average linkage was used as a clustering method, and Spearman’s correlation analysis was used as a
distance measurement. Color scales mark high positive correlation in blue and negative correlation in red. *p < 0.05. **p < 0.01.
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enterotype 2 as “E2”, and enterotype 3 as “E3”. The oral cavity was

then orotyped withNeisseria (orotype 1), Prevotella (orotype 2), and

Streptococcus (orotype 3) (Figure 3D). Orotype 1 is referred to as

“O1”, orotype 2 as “O2”, and orotype 3 as “O3”.
3.4 Characteristics of communities
according to enterotype and orotype

We measured basic information characteristics based on the

clusters of participants (Supplementary Tables 1, 2). When the

participants were classified by enterotype, there was a significant
Frontiers in Cellular and Infection Microbiology 06
difference in BMI level, and E1 was the lowest at 22.33. Also, BSFS

was 4.18 in E2, which is closest to the level of 4. When the

participants were classified by Orotype, there was no significant

difference in each group.

We performed blood chemistry tests based on the cohort of

participants (Tables 1, 2). When classified as enterotype, fasting

glucose was the highest at 87.87 in E2 and the lowest at 81.89 in E3.

Cholesterol was the highest in E1 with 218.37 and the lowest in E2

with 191.23. When classified as Orotype, TP was observed the

highest at O2 at 7.46 and Albumin at the lowest at 4.09. ALP was the

lowest at 66.78 in O3. ALT was the highest at 26.21 in O2. LDH was

the highest at 189.81 in O3 and the lowest at 166.50 in O2.
D

A

B

E

C

FIGURE 3

Enterotyping and Orotyping. (A) 3D Principal coordinate analysis (PCoA) between gut and oral samples. Comparison of communities between Gut
samples (E1, E2, E3) and Oral samples (O1, O2, O3) using Bray-Curtis matrices. The distance between symbols in the ordination plot, described by
the PCoA axis, reflects the relative differences in the structure of each microbial community. (B) Microbial community classification of gut samples.
Samples were clustered based on relative bacteria abundances using JSD distance and the Partitioning Around Medoids (PAM) clustering algorithm.
PERMANOVA analysis R 4.2.2 (R Core Team, 2018) was used to visualize enterotyping and orotyping clustering. Between-class analysis (BCA) was
performed to support the clustering and identify the drivers for the enterotypes (coloured ellipses). Black dots represent the abundance distribution
of bacterial genus in individual ASV and numbered squares mark the centroid of each enterotype. (C) Representative bacteria ratio of Enterotype.
Relative abundances of the three bacterial taxa that are principally responsible for the separation of enterotypes. Shown are means, ranges and first
and third quartiles. Color coding of enterotypes follows that in (B). (D) Microbial community classification of oral samples. Samples were clustered
based on relative genus abundances using JSD distance and the Partitioning Around Medoids (PAM) clustering algorithm. Between-class analysis
(BCA) was performed to support the clustering and identify the drivers for the enterotypes (coloured ellipses). Black dots represent the abundance
distribution of bacterial genus in individual ASV and numbered squares mark the centroid of each enterotype. (E) Representative bacteria ratio of
Orotype. Relative abundances of the three bacterial taxa that are principally responsible for the separation of enterotypes. Shown are means, ranges
and first and third quartiles. Color coding of enterotypes follows that in (D).
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TABLE 1 Chemical blood tests of participants according to enterotype.

E1 E2 E3 p-value

FG (mg/dL) 83.96 (8.36) 87.87 (11.35) 81.89 (8.25) 0.049

TG (mg/dL) 174.67 (138.72) 129.36 (48.05) 148.00 (78.51) 0.287

CHOL (mg/dL) 218.37 (43.79) 191.23 (30.03) 213.83 (21.21) 0.038

LDL (mg/dL) 115.73 (26.71) 105.58 (26.23) 117.36 (15.7) 0.188

HDL (mg/dL) 56.19 (12.48) 54.60 (9.21) 52.15 (13.86) 0.821

BUN (mg/dL) 15.45 (4.61) 16.78 (3.39) 14.67 (3.19) 0.262

Cr (mg/dL) 0.57 (0.09) 0.57 (0.07) 0.56 (0.08) 0.538

UA (mg/dL) 4.63 (1.23) 4.46 (1.16) 4.62 (0.76) 0.550

AST (U/L) 27.85 (9) 26.10 (5.45) 24.56 (5.67) 0.438

ALT (U/L) 21.63 (9.76) 21.72 (10.36) 20.61 (5.96) 0.962

GGT (U/L) 22.07 (9.49) 24.18 (21.67) 22.67 (10.17) 0.929

ALP (U/L) 68.26 (13.53) 73.72 (19.34) 73.11 (14.82) 0.383

T Bil (mg/dL) 0.74 (0.27) 0.68 (0.22) 0.72 (0.28) 0.899

Alb (g/dL) 4.20 (0.16) 4.22 (0.23) 4.22 (0.23) 0.738

A/G % 1.32 (0.21) 1.43 (0.23) 1.41 (0.26) 0.108

BUN/Cr % 27.26 (7.87) 29.95 (5.58) 26.39 (6.55) 0.203

TP (g/dL) 7.47 (0.46) 7.22 (0.27) 7.29 (0.36) 0.134

LDH (U/L) 182.37 (42) 187.85 (36.24) 179.22 (27.93) 0.592

CRP (mg/dL) 0.08 (0.07) 0.14 (0.25) 0.15 (0.21) 0.252
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FG, Fasting blood glucose; BUN, Blood urea nitrogen; Cr, Creatinine; UA, Uric acid; TP, Total protein; Alb, Albumin; ALP, Alkaline phosphatase; AST, Aspartate transaminase; ALT, Alanine
transaminase; T Bil, Total bilirubin; CHOL, Cholesterol; TG, Triglyceride; GGT, Gamma glutamyl transferase; HDL, High density lipoprotein; LDH, Lactate dehydrogenase; CRP, C-reactive
protein; LDL, Low density lipoprotein; A/G, Albumin/Globulin Ratio; BUN/Cr, BUN creatinine ratio.
TABLE 2 Chemical blood tests of participants according to orotype.

O1 O2 O3 p-value

FG (mg/dL) 83.65 (8.55) 87.71 (7.73) 86.00 (10.05) 0.755

TG (mg/dL) 126.74 (49.99) 169.36 (49.37) 159.58 (45.83) 0.136

CHOL (mg/dL) 204.03 (39.29) 205.71 (47.26) 205.17 (44.39) 0.850

LDL (mg/dL) 110.18 (30.12) 112.94 (30.46) 111.88 (30.31) 0.871

HDL (mg/dL) 56.34 (10.92) 52.27 (11.18) 53.83 (11.92) 0.373

BUN (mg/dL) 15.81 (4.33) 15.93 (4.45) 15.98 (4.05) 0.984

Cr (mg/dL) 0.57 (0.07) 0.55 (0.09) 0.57 (0.08) 0.748

UA (mg/dL) 4.35 (1.04) 4.91 (0.83) 4.59 (1.16) 0.230

AST (U/L) 26.06 (7.1) 26.14 (10.28) 26.67 (4.6) 0.625

ALT (U/L) 20.21 (5.56) 26.21 (8.02) 20.78 (7.15) 0.037

GGT (U/L) 19.79 (12.14) 33.21 (10.16) 22.47 (12.38) 0.138

ALP (U/L) 74.56 (13.71) 78.21 (14.99) 66.78 (14.53) 0.042

T Bil (mg/dL) 0.64 (0.28) 0.74 (0.2) 0.76 (0.21) 0.195

Alb (g/dL) 4.21 (0.22) 4.09 (0.2) 4.26 (0.16) 0.011

(Continued)
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3.5 Enterotyping and orotyping based on
the core microbiome

We listed 63 core microbiomes based on enterotypes and

orotypes using a stacked bar plot (Figure 4). According to the

type of the 83 subjects, the abundance of 63 bacteria was different,

expressed as a 100% cumulative bar. The stacked bar graphs are

sorted in descending order by E1 for enterotype and O1 for orotype.

Core bacteria in the gut were most abundantly possessed by subjects
Frontiers in Cellular and Infection Microbiology 08
belonging to E2 (Figure 4A). In the oral cavity, subjects belonging to

O1 and O3 possessed the most (Figure 4B).
3.6 Metabolic pathway prediction based on
enterotyping and orotyping

We performed metabolic pathway analysis of the core microbiome

to observe differences in gut and oral metabolism, as well as differences
TABLE 2 Continued

O1 O2 O3 p-value

A/G % 1.45 (0.26) 1.21 (0.24) 1.41 (0.19) 0.001

BUN/Cr % 28.12 (8.03) 29.21 (8.76) 28.17 (6.85) 0.829

TP (g/dL) 7.20 (0.5) 7.46 (0.39) 7.38 (0.33) 0.037

LDH (U/L) 185.65 (23.87) 166.50 (28.25) 189.81 (32.53) 0.048

CRP (mg/dL) 0.12 (0.13) 0.21 (0.13) 0.09 (0.12) 0.477
fron
FG, Fasting blood glucose; BUN, Blood urea nitrogen; Cr, Creatinine; UA, Uric acid; TP, Total protein; Alb, Albumin; ALP, Alkaline phosphatase; AST, Aspartate transaminase; ALT, Alanine
transaminase; T Bil, Total bilirubin; CHOL, Cholesterol; TG, Triglyceride; GGT, Gamma glutamyl transferase; HDL, High density lipoprotein; LDH, Lactate dehydrogenase; CRP, C-reactive
protein; LDL, Low density lipoprotein; A/G, Albumin/Globulin Ratio; BUN/Cr, BUN creatinine ratio.
A

B

FIGURE 4

Stacked bar chart of the relative abundance of gut and oral core microbiome. The X axis lists 63 core microbiome, and the Y ratio shows the ratio
occupied by each type. (A) Stacked bar chart showing the relative abundance according to Enterotype in the core microbiome derived from gut
samples. (B) Stacked bar chart showing the relative abundance according to Enterotype in the core microbiome derived from oral samples.
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in metabolism based on enterotype and orotype (Figure 5). We

observed 268 metabolic pathways in the Gut and 218 metabolic

pathways in the Oral. Then, the metabolic pathways involved in

abundance were listed for each site in order. We identified the top

20 metabolic pathways in the intestine using KEGG analysis

(Figure 5A). Eight belonged to the genes and proteins category, three

belonged to the genetic information processing category, seven

belonged to the metabolism category, and two belonged to the

environmental information processing category. The top 20

metabolic pathways in the oral cavity were identified (Figure 5E);

seven belonged to the genes and proteins category, three belonged to

the genetic information processing category, eight belonged to the

metabolism category, and two belonged to the environmental

information processing category. Among the top 20 metabolic

pathways in the gut and oral cavity, 17 were common, and 3 were

different. Starch and sucrose metabolism, glycolysis/gluconeogenesis,

and arginine/proline metabolism were observed only in the gut.

Bacterial motility proteins, secretion systems, and pyruvate

metabolism were only observed in the oral cavity. We observed the

differences in metabolism by classifying bacteria into three classes

according to the enterotype, and the ratio of the most abundant type

among them was displayed as a representative.

We observed 268 metabolic pathways in the gut through Picrust

metabolic pathway prediction. Among them, 43 pathways with

significant differences between enterotypes were observed. 218

metabolic pathways were observed in the oral cavity. Among them,

39 pathways with significant differences between orotypes were
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observed. These pathways belong to several sections of the KEGG

pathway database maps, including class metabolism, cellular processes,

and organismal systems. We have grouped many categories and

reduced them to three unified categories. Cellular processes and

organismal system classes are integrated and shown in B and F of

Figure 5. And Metabolism of cofactors and vitamins class and Amino

acid metabolism class were grouped in C and G. And Carbohydrate

metabolism and Lipid metabolism class, which are organic polymers,

are grouped in D and H.

First, 14 pathways were observed in the Organismal Systems and

Cellular Processes class, and E1 was observed in nine pathways, E2 in

three pathways, and E3 in two pathways (Figure 5B). Lachnospiraceae,

Agathobacter showed a positive correlation with significantly enriched

pathways in E2, and the bacteria were enriched in E2. Conversely,

Lachnospiraceae showed a negative correlation with the enriched

pathways in E1. Prevotella showed a positive correlation with the

mineral uptake pathway, which was significantly enriched in E3, and

the bacterium was abundant in E3. Bifidobacterium showed a positive

correlation with eight significantly enriched pathways in E1 and a

negative correlation with enriched pathways in E2 and E3; the

bacterium was enriched in E1.

Second, in the Metabolism: Cofactors, Vitamins, and Amino

Acid Metabolism class, 17 pathways were observed, of which E1 was

significantly observed in 15 pathways, E2 in one pathway, and E3 in

one pathway (Figure 5C). Eubacterium_g5, Blautia, and

Anaerostipes were significantly positively correlated with the

phenylpropanoid biosynthesis pathway, which was significantly
DA B

E F G H

C

FIGURE 5

Prediction of metabolic pathways and analysis between specific bacteria. Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt) -based prediction metagenome was performed using Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations.
KEGG pathways were grouped using class categories. (A, E) Bars in the chart were calculated as abundance-based averages, which were converted
to log values. (B-D, F-H) On the right side of the bar graph, significant ET values are indicated as representative. The number on the left of the bar
graph is the serial number assigned to the pathway, which is the same as the number on the left of the heat map. Correlation of heatmap performed
Spearman’s correlation analysis. In the heatmap, positive correlations are marked in green and negative correlations are marked in red. *p < 0.05.
**p < 0.01. (A) Top 20 KEGG pathway predictions of Gut-derived samples. (B) Analysis of organismal systems and cellular processes pathways by
enterotype of Gut-derived samples and correlation between pathways and specific bacteria. (C) Analysis of Metabolism cofactors, vitamins and
amino acid metabolism pathways by enterotype of Gut-derived samples and correlation between pathways and specific bacteria. (D) Analysis of
Carbohydrate and lipid metabolism pathways by enterotype of Gut-derived samples and correlation between pathways and specific bacteria. (E) Top
20 KEGG pathway predictions of Oral-derived samples. (F) Analysis of organismal systems and cellular processes pathways by enterotype of Oral-
derived samples and correlation between pathways and specific bacteria. (G) Analysis of Metabolism cofactors, vitamins and amino acid metabolism
pathways by enterotype of Oral-derived samples and correlation between pathways and specific bacteria. (H) Analysis of Carbohydrate and lipid
metabolism pathways by enterotype of Oral-derived samples and correlation between pathways and specific bacteria.
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enriched in E2; the bacteria were abundant in E2. Conversely,

Eubacterium_g5 and Blautia were negatively correlated with the

enriched pathways in E1 and E3. Gemella and Bifidobacterium

showed a significant positive correlation with significantly enriched

pathways in E1, and the bacteria were enriched in E1. Conversely,

Bifidobacterium showed a negative correlation with the enriched

flavone and flavanol biosynthesis pathways in E3.

Finally, in Metabolism: Carbohydrate and Lipid Metabolism

class, 12 pathways were observed; E1 was significantly observed in

nine pathways, E2 in two pathways, and E3 in one pathway

(Figure 5D). Eubacterium_g5 showed a significant positive

correlation with the starch and sucrose metabolism pathway, a

pathway significantly enriched in E2, and bacteria were enriched in

E2. Conversely, Eubacterium_g5 and Faecalibacterium showed a

negative correlation with the abundant glycan biosynthesis

metabolic pathway in E3. Bifidobacterium was abundant in E1

and negatively correlated with the starch and sucrose metabolic

pathways in E2. Prevotella was enriched in E3 and showed a

negative correlation with pathways enriched in E1 and E2.

We observed the differences in metabolism according to orotype

and classified them into three classes; the ratio of the most abundant

type was displayed as a representative. First, in the Organismal Systems

and Cellular Processes class, 12 pathways were observed, with 8

significant pathways for O1, 2 pathways for O2, and 2 pathways for

O3 (Figure 5F). Lachnoanaerobaculum,Mogibacterium, andAtopobium

showed positive correlations with carbohydrate digestion and

absorption pathways, which were significantly enriched in O3, and

the bacteria were abundant in O3. Conversely, Lachnoanaerobaculum,

Mogibacterium, and Atopobium were negatively correlated with the

enriched pathways in O1. Neisseria showed a positive correlation with

significantly enriched pathways in O1, and the bacterium was enriched

in O1. Conversely, Neisseria negatively correlated with abundant

carbohydrate digestion and absorption pathways in O3.

Second, in the Metabolism: Cofactors, Vitamins, and Amino Acid

Metabolism class, 15 pathways were observed; O1 was significantly

observed in eight pathways, O2 in two pathways, and O3 in five

pathways (Figure 5G). Neisseria and Fusobacterium were positively

correlated with significantly enriched pathways in O1, and the bacteria

were enriched in O1. Conversely,Neisseria showed negative correlations

with enriched pathways in O1 and O2. Prevotella showed a positive

correlation with significantly enriched pathways in O2, and the bacteria

were enriched in O2. Conversely, Prevotella showed a negative

correlation with pathways enriched in O1 and O3. Streptococcus

showed a positive correlation with significantly enriched pathways in

O2 and a negative correlation with enriched pathways in O1 and O2.

Finally, in the Metabolism: Carbohydrate and Lipid Metabolism

classes, 12 pathways were observed; O1 was significantly observed

in nine pathways, O2 in two pathways, and O3 in one pathway

(Figure 5H). Prevotella was enriched in O2 and showed a negative

correlation with pathways enriched in O1.Howardella was enriched

in O3, and Atopobium showed a negative correlation with the

enriched pathway in O1.Neisseria was positively correlated with the

significantly enriched pathways in O1, and the bacteria were

enriched in O1. Conversely, Neisseria was negatively correlated

with the enriched sphingolipid metabolic pathway in O3.
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3.7 Metabolic pathway prediction based
on the typing of the same bacteria in
different sites

It was observed that four bacteria in the core microbiome had

positive correlations with each other in the gut and oral. All of them

belonged to E2 in gut and O3 in oral. These in gut were observed to

have significant correlations with specific pathways enriched in E2.

It was observed that oral ones had a significant correlation with

specific pathways enriched in O3.

First, Eubacterium_11 had the highest abundance in subjects of

enterotype 2 in the gut. In the oral cavity, abundance was highest in

type 3 subjects (Figure 6A). Enterobacterium_g11 in the gut and

Enterobacterium _g11 in the oral environment showed a significant

positive correlation. Gut Enterobacterium _g11 was positively

correlated with abundant pathways in E2, including starch and

sucrose metabolism. Oral Enterobacterium_g11 was positively

correlated with pathways rich in O3, including retinol metabolism.

Actinomyces was the most abundant in subjects with enterotype

2 in the gut. In the oral cavity, the abundance was highest in type 3

subjects (Figure 6B). Actinomyces in the gut and Actinomyces in the

oral cavity had a significant positive correlation. Actinomyces in the

gut was positively correlated with abundant pathways in E2,

including starch and sucrose metabolism. Actinomyces in the oral

environment was positively correlated with pathways rich in O3,

including glycosphingolipid biosynthesis and metabolism.

Atopobium was the most abundant in subjects of enterotype 2 in

the gut. In the oral cavity, its abundance was highest in type 3

subjects (Figure 6C). Atopobium in the gut and Atopobium in the

oral environment showed a significant positive correlation.

Atopobium in the gut was positively correlated with pathways

rich in E2, including butirosin and neomycin biosynthesis and

metabolism. Atopobium in the oral cavity had a positive correlation

with rich pathways in O3, including carbohydrate digestion and

absorption metabolism.

Enterococcuswas the most abundant in subjects with enterotype 2

in the gut. In the oral cavity, abundance was highest in type 3 subjects

(Figure 6D). Enterococcus in the gut and in the oral cavity had a

significant positive correlation. Enterococcus in the gut was positively

correlated with abundant pathways in E2, including steroid hormone

biosynthesis. Enterococcus in the oral environment was positively

correlated with pathways rich in O3, including retinol metabolism.
4 Discussion

In this study, we identified the core gut and oral microbiota of 83

middle-aged Korean women and observed their correlations; 63 core

microbiomes in the same space were correlated, 4 of which were

directly positively correlated with the same strain in two sites. Three

enterotypes of intestinal microorganisms and three orotypes of oral

microorganisms were clustered, and the core microbiome was

classified based on these clusters. In metabolic prediction based on

enterotypes and orotypes, different metabolic pathways were observed

for each type. Currently, Eubacterium_g11, Actinomyces, Atopobium,
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and Enterococcus, among the 14, had a positive correlation between

gut and oral population, and all belonged to E3 and O2.

In this study, we identified 63 bacteria common to the gut and

oral cavity that were found in most subjects.We referred to this as the

“core microbiome” in this study. Over the past decade, the number of

studies involving key microbiome components has increased

dramatically, and additional approaches for future studies are being

undertaken (Neu et al., 2021). However, studies on the core

microbiome are still mainly in the discovery stage and identify

shared taxa (Zaura et al., 2014). In addition, although many studies

have confirmed a close correlation between oral microbiota and

digestive diseases, the physiological distance between the oral and

digestive organs cannot be ignored. The oral microbiome is divided

into those that reach the gastrointestinal tract through the esophagus

and those that move throughout the body through the bloodstream

(Lu et al., 2019). Indeed, it has been suggested that identifying the key

microbiome components can help address topics ranging from

maintaining oral and intestinal health in humans to organisms’

responses to anthropogenic climate change (Graves et al., 2019).

In previous studies, the concept of enterotypes, which divides

fecal microorganisms into three enterotypes, namely Bacteroides,

Prevotella, and Ruminococcus, was proposed according to the

dominant bacteria present in the organism (Arumugam et al.,

2011). In these enterotypes, different results may be observed as the

percentage of dominant bacteria varies by country, population, and

region (Cheng and Ning, 2019). Among the various factors that affect

the diversity of enterotypes, eating habits are considered the most

important (Wu et al., 2021b). People who eat a diet rich in animal fats

and proteins, such as the “Western diet,” belong to the Bacteroides
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enterotype, and those who eat a diet rich in carbohydrates, such as

dietary fiber and simple sugars, belong to the Prevotella enterotype. In

addition, people who consume a diet rich in carbohydrates such as

dietary fiber and simple sugars belong to a plant-based diet such as

the ‘Mediterranean diet’, which belongs to the Ruminococcus type

(Noh et al., 2021). Among the three enterotypes, the Prevotella type

was reported to be relatively less affected by host age, sex, and body

mass, and Ruminococcus was suggested to be positively associated

with the diet of Koreans (Lee et al., 2020; Jang et al., 2022). In this

study, Prevotella enterotype and Ruminococcus enterotype were

observed as in the previous study, but Bifidobacterium was

observed instead of Bacteroides. The traditional Korean diet is

characterized by a high intake of fermented vegetables such as

kimchi and legumes such as soybeans (Patra et al., 2016).

Fermented foods are known to contain large amounts of

microorganisms and their strains are phylogenetically similar to

probiotic strains, which may affect the composition and diversity of

the gut microbiome (Bell et al., 2018). In addition, about 40% of the

participants consumed probiotics, especially about 70% of the

participants classified as Bifidobacterium enterotype. A previous

study that showed that Bifidobacterium was also observed as an

intestinal form in individuals from Saudi Arabia and Taiwan,

respectively, and that dietary diversity can vary the composition of

the intestinal form, can support our case study (Mobeen et al., 2018).

In a previous study, oral microorganisms were classified into two

clusters (Neisseria and Prevotella) (Willis et al., 2018). In this study,

they were classified into three clusters (Neisseria, Prevotella, and

Streptococcus). A previous study had reported that Streptococcus is the

most abundant genus in 68% of subjects when colonizing the oral
D
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FIGURE 6

KEGG pathway prediction and analysis of four specific bacteria.Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
(PICRUSt)-based prediction metagenome was performed using Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations. Correlation of
heatmap performed Spearman’s correlation analysis. In the heatmap, positive correlations are marked in green and negative correlations are marked
in red. *p < 0.05. **p < 0.01. (A) KEGG pathway in the intestine and oral cavity of Eubacterium_g11. (B) KEGG pathway in the gut and oral cavity of
Actinomyces. (C) KEGG pathway in the gut and oral cavity of Atopobium. (D) KEGG pathway in the gut and oral cavity of Enterococcus.
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cavity, is associated with early plaque formation, and is not affected by

drinking water.

We observed that the top 20metabolic pathways were enriched in

the oral and intestinal tracts. Starch and sucrose metabolism, and

glycolysis/gluconeogenesis metabolism were abundantly observed in

the intestine. Amylase enzymes secreted in the saliva and small

intestine digest starch and convert it into glucose (Wu et al., 2021).

Approximately 70% of the starch is digested in the intestine (Hasjim

et al., 2010). Glucose, a breakdown product of starch, a high-

molecular-weight carbohydrate, is metabolized by carbohydrate

enzymes in the intestine, followed by glycolysis (Wang et al., 2019).

In addition, arginine and proline metabolism were abundantly

observed in the intestine. The arginine and proline metabolic

pathways describe the biosynthesis and metabolism of several

amino acids, including arginine, ornithine, proline, citrulline, and

glutamate. The synthesis of adult arginine primarily occurs through

the gut-renal axis (Wu et al., 2009). Starch and sucrose metabolism

and glycolysis/gluconeogenesis metabolism were abundantly

observed in the oral cavity. Dental caries occurs when commensal

microorganisms in the oral biofilm (plaque) produce acids (Marsh,

1994). Bacterial motility proteins, such as flagellin, can inhibit biofilm

formation in the oral cavity (Kim et al., 2018).

Lachnospiraceae, Agathobacter, and Ruminococcus_g2 were

abundant in E2 subjects and were predicted to be involved in

bacterial chemotaxis metabolism of Organismal Systems and

Cellular process classes among the abundant metabolic pathways

in E2 subjects. Chemotaxis may be related to pathogenicity,

commensalism, biofilm formation, and stability, maintaining

bacteria in optimal environmental niches (Auletta, 2013).

Prevotella was observed in abundance in E3 subjects and was

positively correlated with the abundant mineral absorption

pathways in E3, with most mineral absorption occurring in the

small intestine, and calcium and iron being the most studied

(Powell et al., 1999). Bifidobacterium was abundantly observed in

E1 subjects and was positively correlated with the carbohydrate

digestion/absorption pathway, which is an abundant metabolic

pathways in E1 (Pokusaeva et al., 2011).

In the Metabolism: Cofactors, Vitamins, and Amino Acid

Metabolism class, Eubacterium_g5, Blautia, and Anaerostipes,

enr iched in E2, were posi t ive ly corre lated with the

phenylpropanoid biosynthesis pathway enriched in E2. The

phenylpropanoid biosynthesis pathway is involved in the synthesis

of secondary metabolites and is known to have antibacterial,

antioxidant, anti-inflammatory, renal, and neuroprotective effects

(Neelam et al., 2020). Bifidobacterium, in particular, was positively

correlated with the retinol pathway. Retinol is vitamin A, and its main

skeletal effect is increased bone resorption (Conaway et al., 2013).

Lipoic acid (LA) is also an organic compound that plays an important

role in cellular metabolism and is often overlooked as an essential

cofactor for mitochondrial oxidative metabolism (Solmonson and

DeBerardinis, 2018).

In the Metabolism: Carbohydrate and Lipid metabolism class,

Eubacterium_g5 was positively correlated with starch and sucrose

metabolism. Lactobacillus was observed in abundance in E3 subjects

and was negatively correlated with most of the metabolic pathways,

especially in E1.
Frontiers in Cellular and Infection Microbiology 12
In the Organismal Systems and Cellular Processes class,

Lachnoanaerobaculum, Mogibacterium, and Atopobium, which

were abundant in O3, showed a positive correlation with

carbohydrate digestion/absorption pathways. Thirty percent of

starch digestion is completed in the oral cavity, with

Lachnoanaerobaculum, Mogibacterium, and Atopobium predicted

to be involved (Gutiérrez-Repiso et al., 2021). In particular,

Lachnoanaerobaculum grows using glucose, a digested starch, as its

sole carbon source (Moore et al., 2015). The bacteria were negatively

correlated with O1 and O2 concentrations. Neisseria enriched in O1

were positively correlated with most of the metabolic pathways

enriched in O1, especially in the insulin signaling pathway.

Previous studies have reported that Neisseria is correlated with

insulin levels (Gu et al., 2010; Morou-Bermúdez et al., 2022).

In the Metabolism: Cofactors, Vitamins, and Amino Acid

Metabolism class, Neisseria and Fusobacterium, enriched in O1,

showed a positive correlation, especially in histidine metabolism.

Histidine is a gluconeogenetic amino acid that is used to produce

histamine, and its metabolism has been reported to be enhanced in

patients with diabetic nephropathy, being associated with

Fusobacterium (Zhang et al., 2022). Neisseria, enriched in O2, was

positively correlated with most of the metabolic pathways enriched

in O1, especially in the insulin signaling pathway. Streptococcus,

enriched in O3, was positively correlated with the glycosphingolipid

biosynthetic ganglio and globo pathways among most metabolic

pathways enriched in O3. In a previous study, Streptococcus

restored ion transport in infected intestinal epithelial cells by

regulating the glycosphingolipid biosynthetic pathway (Resta‐

Lenert and Maruggi, 2009).

In the Metabolism: Carbohydrate and Lipid metabolism class,

Neisseria enriched in O1 was positively correlated with all metabolic

pathways abundant in O1. Previous studies have shown that

Neisseria encodes proteins for glucose and maltose transport and

breaks down carbohydrates via the pentose phosphate pathway to

form glyceraldehyde-3-P and pyruvate or fructose-6-P (Derkaoui

et al., 2016). Howardella was an O3-enriched organism that was

positively correlated with all metabolic pathways enriched in O3. In

a previous study, oral Howardella was highly abundant in tea

drinkers (Xiao et al., 2022).

First, Eubacterium_g11 is the most abundant genus in the

intestine of E2 individuals and is a normal intestinal flora.

Eubacterium rectale is an important butyrate-producing organism

in the gut, consuming starch and some substrates (Cockburn et al.,

2018). Starch and sucrose are decomposed and metabolized into

glucose, suggesting the possibility that the high FG of the E2 group in

this study is derived from active and rapid starch metabolism. Two of

the most frequently detected phenylpropanoid-derived compounds

in human stool samples are phenylacetic acid (PAA) and 4-

hydroxyphenylacetic acid (4-hydroxyPAA) (Russell et al., 2013).

These compounds are likely derived from microbial fermentation

of aromatic amino acids (AAAs) in the colon and a diet rich in plant

foods. In this study, Ruminoccoccus of E2 is an intestinal type that is

well observed in Koreans, and is consistent with previous studies in

that Koreans’ diets were rich in fermented foods. In addition, in this

study, E2 had the most ideal stool shape because the BSFS level was

closest to 4. Previous studies have reported that plasma GAG levels
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1173085
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Lee et al. 10.3389/fcimb.2023.1173085
show a strong positive correlation with plasma LDH (Vavetsi et al.,

2009). In this study, oral Eubacterium_g11 was involved in

Glycosaminoglycan metabolism and LDH level was also high,

which was consistent with the results of previous studies.

Actinomyces is a representative bacterium that resides in both the

mouth and intestine (Li et al., 2018). Actinomyces in the gut also

correlated with Starch and sucrose metabolism, which were active in

Eubacterium_g11. Previous studies have reported that Actinomyces is

positively correlated with the bacterial chemotaxis pathway, which is

related to fimbria- and pili-based motility for chemotaxis (Cisar et al.,

1979; Gibbons et al., 1988). Actinomyces oris inhabits the oral cavity

of humans of all ages, including infants as young as 2 months of age,

and their diversity increases with age (Sarkonen et al., 2000).

Atopobium is a normal microbiota that makes up part of the

microbiota of the gingival crevice, gastrointestinal tract, and vagina.

Although the Atopobium community dominates the fecal microbial

community of healthy humans, relatively little is known about the

composition of this bacterial population (Thorasin et al., 2015).

Atopobium has sometimes been found when proteins are used more

often than sugar as an energy source (Burton et al., 2004). In E2, the

level of FG was higher than in the other groups, which may be

related to the high protein energy source production of Atopobium.

Specifically, oral Atopobium is involved in lactate carbohydrate

metabolism, in which dehydrogenase (LDH), an enzyme widely

distributed in cells of various biological systems, catalyzes the

interconversion of lactate and pyruvate to NAD+ (Klein et al.,

2020). In this study, O3 showed the highest LDH within the normal

range compared to other groups, and considering that LDH is an

enzyme that catalyzes carbohydrate metabolism, this supports

previous studies.

Enterococcus is a bacterium that is predominantly present in the

intestine and oral cavity, especially in the intestine. Enterococcus can

regulate the intestinal mucosa through the metabolism of fecal

steroids by producing chain fatty acids and inducing host genes

(Augenlicht et al., 2002). Circulating steroids are metabolized and

broken down by bacteria (Chiang and Ismail, 2020). In this study,

we did not conduct a specialized test for steroids, but since the level

of cholesterol, a type of steroid, was the lowest in E2, it is expected to

be the result of active metabolism by bacteria including

Enterococcus. Enterococcus is a lactic acid-producing bacterium

that produces bacteriocin (enterocin) and is often considered a

probiotic. Carbohydrate fermentation by enterococci allows this

genus to thrive in a variety of environments (Ramsey et al., 2014). E.

faecalis OG1RF can also degrade inositol, a sugar-carbon source

that is not used by other strains. This supported our finding that the

metabolic pathways was positively correlated with Enterococcus.

In summary, we found 63 core microbiomes common to the gut

and oral cavity. Among them, Eubacterium_g11, Actinomyces,

Atopobium, and Enterococcus were positively correlated with the

gut and oral abundance. We observed that all subjects were divided

into groups based on enterotyping in the gut and orotyping in the

oral cavity. Metabolic predictive pathways were found to be

different depending on typing, and the abundance of 63 core

microbiomes was observed to be relatively different depending on

the type. Eubacterium_g11, Actinomyces, Atopobium, and

Enterococcus all belonged to E2 and O3.
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There are several limitations in this study. We suggested the

possibility that the same bacteria may be involved in different

metabolisms depending on the site inhabited. However,

correlations between the metabolic pathways of each site were not

observed. In future studies, it is necessary to observe the effects and

correlations between the metabolic pathways of different sites.

Individual characteristics are expected to be a factor that can

potentially affect research results in typing, so this study limited it

to only a specific gender and age group, which has the limitation

that it cannot represent all Koreans. Intestinal microorganisms have

a high diversity due to large individual differences, and in particular,

intestinal microorganisms of men and women vary depending on

various factors such as sex hormones (Kim, 2022). Even women of

the same gender can increase individual differences and lead to

differences in intestinal microorganisms due to estrogen and

menstruation (Westerhof and Wurm, 2018). While most studies

target patients with specific diseases, the current study was unique

in not doing so. Moreover, while studies on enterotyping of the gut

microbiome have been conducted frequently, to the best of our

knowledge, there has not been any study on orotyping of the oral

microbiome. Our current study could be a basic preliminary study

that is applicable to specific healthy people.

The microbial community in the human body is dynamic,

depending on the health status, and more research focusing on

these dynamics would be required in the future. This will be an

important step towards a comprehensive understanding of the

ecology of any microbial community. To the best of our knowledge,

this study was the first to predict the differential metabolism of the

core microbiome based on the types of the human gut microbiome

and oral microbiome. Based on our results, the concept of enterotypes

can be applied not only to human gut microbiota and oral microbiota,

but also to microbiome samples from other body sites. Collapsing the

human body’s highly multidimensional microbiome into a few

categories can help characterize the microbiomes better and address

health issues more deeply.
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Caliński, T., and Harabasz, J. (1974). A dendrite method for cluster analysis.
Commun. Statistics-theory Methods 3, 1–27. doi: 10.1080/03610927408827101

Chen, H., and Jiang, W. (2014). Application of high-throughput sequencing in
understanding human oral microbiome related with health and disease. Front.
Microbiol. 5. doi: 10.3389/fmicb.2014.00508

Cheng, M., and Ning, K. (2019). Stereotypes about enterotype: the old and new ideas.
Genomics Proteomics Bioinf. 17 (1), 4–12. doi: 10.1016/j.gpb.2018.02.004

Cisar, J. O., Kolenbrander, P. E., and McIntire, F. C. (1979). Specificity of
coaggregation reactions between human oral streptococci and strains of actinomyces
viscosus or actinomyces naeslundii. Infection Immun. 24 (3), 742–752. doi: 10.1128/
iai.24.3.742-752.1979
Cockburn, D. W., Suh, C., Medina, K. P., Duvall, R. M., Wawrzak, Z., Henrissat, B.,
et al. (2018). Novel carbohydrate binding modules in the surface anchored a-amylase
of eubacterium rectale provide a molecular rationale for the range of starches used by
this organism in the human gut. Mol. Microbiol. 107 (2), 249–264. doi: 10.1111/
mmi.13881

Conaway, H. H., Henning, P., and Lerner, U. H. (2013). Vitamin a metabolism,
action, and role in skeletal homeostasis. Endocrine Rev. 34 (6), 766–797. doi: 10.1210/
er.2012-1071

Costa, M. M., Benoit, N., Saby, F., Pradines, B., Granjeaud, S., and Almeras, L.
(2021). Optimization and standardization of human saliva collection for MALDI-
TOF MS. Diagnostics (Basel Switzerland) 11 (8), 1304. doi: 10.3390/
diagnostics11081304

Crielaard, W., Zaura, E., Schuller, A. A., Huse, S. M., Montijn, R. C., and Keijser, B. J.
(2011). Exploring the oral microbiota of children at various developmental stages of
their dentition in the relation to their oral health. BMC Med. Genomics 4, 22.
doi: 10.1186/1755-8794-4-22

D Ainsworth, T., Krause, L., Bridge, T., Torda, G., Raina, J. B., Zakrzewski, M., et al.
(2015). The coral core microbiome identifies rare bacterial taxa as ubiquitous
endosymbionts. ISME J. 9 (10), 2261–2274. doi: 10.1038/ismej.2015.39

Derkaoui, M., Antunes, A., Nait Abdallah, J., Poncet, S., Mazé, A., Ma Pham, Q. M.,
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