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ABSTRACT:

Automatic building footprint extraction from remote sensing imagery is a widely used method, with deep learning techniques
being particularly effective. However, deep learning approaches still require additional post-processing steps due to pixel-wise
predictions, that contribute to occluded and geometrically incorrectly segmented buildings. To address this issue, we propose an
end-to-end workflow that utilizes binary semantic segmentation, regularization, and vectorization. We implement and assess the
performance of four convolutional neural network architectures including U-Net, U-NetFormer, FT-UnetFormer, and DCSwin on
the MapAI Precision in Building Segmentation competition. To additionally improve the shape of the predicted buildings we apply
regularization on the predictions to assess whether regularization further improves the geometrical shape and improve the prediction
accuracy. We aim to produce accurate predictions with regularized boundaries that can prove useful in many cartographic and
engineering applications. The regularization and vectorization workflow is further developed into a working QGIS-plugin that can
be used to extend the functionality of QGIS. Our aim is to provide an end-to-end workflow for building segmentation, regularization
and vectorization.

1. INTRODUCTION

With increasing digitalization and automation, there is a need
to develop automatic methods to maintain and update public
information stored in spatial databases. Public, building re-
lated information is stored in the building register. The build-
ing register is the fundamental record for storing information
and other relevant data necessary for taxation, public planning
and emergency services. Up-to-date building footprint maps
are essential for many geospatial applications including disaster
management, population estimation, monitoring of urban and
impervious areas, 3D city modeling, detection of illegal con-
struction cases (Bakirman et al., 2022), updating topographical
databases on a country-wide level and assessing the damage
after natural disasters (Takhtkeshha et al., 2023). Although ma-
chine learning methods have achieved accurate results in the
past in building segmentation, current trends have moved to-
wards the utilization of deep learning for building footprint ex-
traction, that require minimal post-processing after segmenta-
tion has been performed. One of the ongoing challenges in
building footprint extraction is the accurate recreation of the
polygonal boundary of the building footprint either in 2D (Li et
al., 2021, Li et al., 2022) or in 3D space (Wang et al., 2021),
while at the same time extracting the vectorized building mask
as output to be directly used in various GIS software. In the
past different approaches have been developed for building ex-
traction from various data sources including satellite, aerial or
drone images and the use of LiDAR point clouds. Additionally
many different challenges and competitions for building seg-
mentation have been organized and publicly available building
datasets have been developed. The most popular ones include
the DeepGlobe (Demir et al., 2018), The Wuhan building data-
set (Ji et al., 2019), SpaceNet (Etten et al., 2019), CrowdAI
(Mohanty et al., 2020) and the most recent MapAI building seg-
mentation dataset (Jyhne et al., 2022). Having different build-
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ing segmentation competitions with open access to data aids
and encourages the development and improvement of methods
for accurate building segmentation. However there is still a de-
mand for developing better methods that can extract building
footprints in and end-to-end fashion, enabling the user to seg-
ment, regularize and vectorize the detected building footprints
to make the results applicable within the GIS domain.

Building footprint extraction from remote sensing imagery ap-
plying deep learning techniques can be achieved by using either
instance segmentation or semantic segmentation, also known
as pixel wise labeling (Neupane et al., 2021). Both of these
methods have shown great potential and have boosted the per-
formance of building footprint extraction but are lacking the
capability to delineate structured building footprints (Zorzi et
al., 2021). The extracted features also require further post-
processing labour which hinders the applicability and the prac-
tical use of the results.

The purpose of our research is to develop an end-to-end work-
flow for accurate segmentation of building footprints includ-
ing three major steps: (1) binary semantic segmentation with
a CNN, (2) applying building boundary regularization and (3)
vectorization. The dataset used for building segmentation is
the NORA MapAI: Precision in Building Segmentation data-
set (Jyhne et al., 2022). We have developed an implementa-
tion for building segmentation using open-source software lib-
raries including Python, PyTorch, the Geospatial Data Abstrac-
tion Library (GDAL), QGIS and QtDesigner. Our approach im-
plements the projectRegularization repository from (Zorzi and
Fraundorfer, 2019, Zorzi et al., 2021) on a semantic segmenta-
tion task. The novelty of our approach is applying the regulariz-
ation task on an entirely new building dataset, while adding our
own implementation for the vectorization part. In addition the
entire workflow has been developed in an end-to-end manner,
that can be applied on different datasets and sets of problems
for binary semantic segmentation. Our code can be further de-
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veloped and improved, users are able to train their own binary
semantic segmentation models. Furthermore projectRegulariz-
ation is developed into a QGIS plugin, that can regularize and
vectorize any building instance predicted with a CNN that is
stored either as a .tif or .png file.

1.1 Deep learning methods for image segmentation

Deep learning methods for image segmentation can be divided
into: (1) semantic segmentation and the more sophisticated (2)
instance segmentation. Both methods can be multi-class or bin-
ary. In multi-class segmentation different classes of buildings
can be segmented, while in binary classification the goal is to
extract only the building class from the provided image.

Semantic segmentation is a computer vision task that involves
dividing an image into distinct regions and assigning a semantic
label to each pixel within those regions. In the case of build-
ing segmentation the goal is to distinguish between building
and background pixels. Several neural network architectures
can be applied for semantic segmentation, including different
variations of the U-Net, FCN and SegNet. Recently proposed
semantic segmentation architectures include the application of
advanced vision transformers for semantic segmentation. Geo-
Seg1 is one of the open-source semantic segmentation toolboxes
for various image segmentation tasks. The repository has 7 dif-
ferent models, that can be used for either multi-class or bin-
ary semantic segmentation tasks, including four vision trans-
formers: U-NetFormer, FT-U-NetFormer, DCSwin, BANet and
three regular CNN models: MANet, ABCNet, A2FPN.

The second method that can be applied for building footprint
extraction is instance segmentation, which takes a step further
in segmenting the building in the image by proposing a bound-
ing box around the detected building and giving each instance
of a building a class probability score (Šanca et al., 2021). In-
stance segmentation can be achieved through a wide variety
of methods, which include the region-based approaches such
as Mask R-CNN and its predecessors: R-CNN, Fast R-CNN
and Faster R-CNN. While the implementation of instance seg-
mentation can be more challenging and computationally heav-
ier, the approach can be more effective in densely populated
urban areas, where buildings may be close or overlapping (Zhao
et al., 2020).

Both instance and semantic segmentation is trained in a super-
vised manner using image and ground truth pairs. The resulting
segmentation mask is often highly irregular and is not applic-
able in cartographic applications before it has been vectorized.
In many cases, especially when the buildings are occluded by
vegetation, shadows, clouds or have different light conditions
the predicted segmentation maps can be far different from the
real building footprints and need further post-processing steps
to be practically applicable in many cartographic and other en-
gineering applications (Zorzi et al., 2021).

1.2 Building boundary regularization methods

Previous attempts at building segmentation used textures, lines,
shadows, or more sophisticated and empirically designed meth-
ods. However, most of them were not successful at automating
and improving the regularization technique of building bound-
aries. Boundary regularization is a technique used in various
computer vision applications to improve the accuracy of im-
age segmentation. Boundaries between different objects can be
1 https://github.com/WangLibo1995/GeoSeg

ambiguous, making it difficult for deep learning models to ac-
curately segment them. In addition, real-world remote sensing
images can be noisy, having shadows and different light condi-
tions. Furthermore there is a need for large amounts of training
data to achieve accurate segmentation maps with CNNs (Tang
et al., 2018). In machine learning, regularization is defined
as a method to reduce the generalization error during training
(Goodfellow et al., 2016). In the GIS domain regularization
or shape-refinement is understood as a normalization process
to improve the geometry of the building footprint in a post-
processing manner (Zhao et al., 2020). Applying regularization
for building segmentation maps constrains the building foot-
prints to be smoother, with clearly defined and straight edges.
This makes the building footprint more even if occluded and
visually more appealing. In recent studies regularization tech-
niques have been applied by (Zhao et al., 2018). They applied
boundary regularization with Mask R-CNN using Minimum
Description Length (MDL) optimization. A CNN-based seg-
mentation and empirical polygonal regularization on the Wuhan
building dataset using the MA-FCN CNN architecture prepro-
cessed by a boundary extraction algorithm was proposed by
(Wei et al., 2020). For the boundary extraction step the March-
ing Cubes algorithm and for the regularization the Douglas-
Peucker algorithm has been used. In their study coarse- and
fine adjustment techniques were applied to improve the geo-
metry of the building footprints. In order to achieve higher pre-
diction accuracy (Zhao et al., 2020) developed a new instance
segmentation workflow called Hybrid Task Cascade (HTC) as a
baseline model for building detection and segmentation. They
integrated the Convex hull and Douglas Peucker algorithms for
regularization, to obtain accurate building segmentation maps.
Their method was tested on the CrowdAI dataset. In contrary
Zorzi et al., (2021) approached the problem differently, they
trained an unsupervised GAN regularization network using ad-
versarial, potts and normalized cut losses to ingrain knowledge
about building boundaries into the neural network. Their im-
plementation was tested with instance segmentation, applying
the Mask R-CNN architecture for building segmentation and
comparing it with a R2U-Net semantic segmentation architec-
ture. Their implementation is publicly available as projectReg-
ularization2. Because their implementation has open access, is
straightforward to implement and can be used for both semantic-
and instance segmentation tasks we have chosen to test it and
incorporate it into our end-to-end workflow for the MapAI data-
set.

1.3 The MapAI dataset

The proposed end-to-end workflow has been tested and evalu-
ated on the MapAI: Precision in Building Segmentation com-
petition dataset. The competition was arranged by the Nor-
wegian Artificial Intelligence Research Consortium (NORA) in
collaboration with Center for Artificial Intelligence Research
at the University of Agder (CAIR), the Norwegian Mapping
Authority, AI:Hub, Norkart, and The Danish Agency for Data
Supply and Infrastructure. The dataset provides data sources
for segmentation of buildings using aerial images and LiDAR
data. The dataset is split into training, validation and two test
sets with image shapes of 500x500 and resolution of 0.25 m.
The training dataset consists of several different locations in
Denmark, while the test dataset consists of seven locations in
Norway, including urban areas: Bergen, Kristiansand, Oslo,
Stavanger, Tromsø and a rural area: Rana. The dataset includes

2 https://github.com/zorzi-s/projectRegularization
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a wide variety of buildings with different sizes, shapes and com-
plexities, this ensures a diverse dataset with different environ-
ments and building types (Jyhne et al., 2022).

There are two test sets divided into task 1 and task 2 to evaluate
the accuracy of the trained models. The test set for task 1 is used
for testing the segmentation approach using only aerial images
as data source, while the test set for task 2 is used to test the
combined approach using aerial and LiDAR images. In total
there are: 7000 instances of buildings in the training set, 1500
instances of buildings in the validation set, 1369 instances of
images in the task 1 test set, 978 instance of images in the task
2 test set. The dataset can be dowloaded from HuggingFace3.
Figure 1 shows an example from the the training dataset.

Figure 1. An aerial training sample from the MapAI dataset

2. METHODS

We provide an end-to-end workflow for building extraction, while
also improving the predicted building footprints by boundary
regularization. Our workflow consists of three steps, that are
merged together end-to-end:

1. First, we utilize four convolutional neural network archi-
tectures to train binary semantic segmentation models on
the MapAI dataset and make predictions on the test set 1.

2. Second, we apply projectRegularization proposed by (Zorzi
and Fraundorfer, 2019, Zorzi et al., 2021) to regularize the
predicted building footprints and improve their geometry.

3. In the final step we perform the vectorization process con-
verting the regularized building masks to polygons ready
to be used in any GIS-environment.

Steps (2) and (3) are implemented into our developed QGIS-
plugin. Our workflow was developed in Python, using the PyT-
orch library for the application and development of deep learn-
ing models. We used GDAL (Geospatial Data Abstraction Lib-
rary) to vectorize the predictions in step 3. QtDesigner and
QGIS have been used to develop and test the plugin. Each step
of our workflow is further described in the following subsec-
tions. The complete workflow for model training, prediction
and regularization is presented on figure 3.

2.1 Dataset preparation

The MapAI dataset was downloaded from Huggingface and
saved locally as a cached Parquet file, which can be accessed
with the PyTorch DataLoader library. Since the dataset con-
tains some mislabeled images in the training and validation sets

3 https://huggingface.co/datasets/sjyhne/mapai dataset

we have removed them according to previous work by (Kaliy-
ugarasan and Lundervolt, 2023). The names of the images from
the training and validation sets are stored inside two text files in
our repository. We provide simple bash scripts for their removal
from the original dataset.

2.2 Semantic segmentation with CNNs

The initial stage of our methodology involves identifying and
delineating the boundaries of buildings depicted from aerial im-
ages. We have decided to apply the basic U-Net neural net-
work architecture and three vision transformers including U-
Net-Former, FT-UNet-Former and DCSwin.

2.2.1 Model training. U-Net, proposed by (Ronneberger et
al., 2015) has been successfully applied in the past for vari-
ous image segmentation tasks both in the medical and remote
sensing domain. The following three architectures are vision
transformers (ViT). In a ViT the input image is divided into a
sequence of patches, which are flattened and fed into the trans-
former encoder network. The network consists of a stack of
self-attention layers, which enable the network to target dif-
ferent parts of the image when making predictions (Dosovit-
skiy et al., 2021). The key idea behind a vision transformer is
to use a multi-scale hierarchical approach for image segment-
ation, where low-level transformers process raw images and
high-level transformers operate on down-sampled images. This
approach enables to capture information on different scales and
preserve rich contextual information. In contrary, traditional
CNNs gradually decrease the spatial resolution of an image,
which leads to loss of detail (Liu et al., 2021). The second
neural network we have applied is the U-NetFormer (Petit et
al., 2021), which is a unified network consisting of two archi-
tectures: a 3D Swin Transformer based encoder network and
transformer based decoder network, that allows higher accur-
acy and lesser computational cost during training. The CNN ar-
chitecture integrates skip connections between the encoder and
decoder network. This enables the use of deep supervision, that
can help to mitigate the vanishing gradient problem, improve
the overall stability of the training process and enable more
accurate and efficient learning (Wang et al., 2022). The third
applied model is FT-Unet-Former, which is a fully transformer-
based network architecture, without any additional recurrent or
convolutional layers, meaning that the model only uses self-
attention and feed-forward layers to process the input sequence,
making it highly parallelizable and computationally efficient.
The final neural network that we applied is the DCSwin. It is
a hierarchical vision transformer using a shifted window ap-
proach proposed by (Liu et al., 2021).

We trained four binary semantic segmentation models on the
MapAI dataset using the hyperparameters listed in Table 1. The
training was performed locally with CUDA 11.7 on an NVIDIA
GeForce RTX 3070 graphics card with 8 GB of memory. The
trained models were saved as .pth PyTorch files. A .pth file
is a binary file that stores the weights and biases of a trained
PyTorch model. Predictions were performed on test set 1 on
1369 images.
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Hyperparameters used Value
Input image size 512 x 512

Batch size 2
Learning rate 0.0001

Optimizer Adam
Number of epochs 25

Weight decay 0.001
Decode channels [64, 128, 256]

Dropout rate 0.5

Table 1. Hyperparameters used during training

We used the Adam optimizer with Binary Cross Entropy Loss
with logits during training to measure the difference between
the predicted output and the ground truth. The loss function is
defined as:

L = − 1

N

N∑
i=1

[yi log(σ(zi)) + (1− yi) log(1− σ(zi))] (1)

where N is the batch size, yi is the ground truth image for
sample i, zi is the logit output of the model for sample i and
σ is the Sigmoid function.

2.3 Applying regularization on predictions

Once the predictions are generated using the trained models,
regularization is applied as a post-processing step to further im-
prove the geometry and the accuracy of the predicted building
masks. Since pixel-based classification leads to results with
rounded corners and occluded edges on the predictions, regu-
larization is a crucial step to further improve the predictions.
Implementing projectRegularization is straightforward, some
parts of the code needed to be changed in order to choose between
between the segmentation tasks. Since we have worked with
semantic segmentation architectures, we have chosen this op-
tion and changed the code accordingly. ProjectRegularization
is written in PyTorch and can use both .png and .tif images as
input. It applies a GAN (Generative Adversarial Network) com-
posed by two different neural networks. The (1) generator cre-
ates a regularized building footprint from the predicted building
mask and the (2) discriminator examines if the generated build-
ing footprint is real or fake. The generator and the discrimin-
ator work together in a competitive and collaborative manner
to produce the final output, which is the regularized building
footprint, with improved geometrical shape.

The steps to calculate the GAN objective function are summar-
ized from (Zorzi and Fraundorfer, 2019, Zorzi et al., 2021):

The regularization learning process - L(G,R,D)

1. The generator G(x, y) learns the mapping function from
the segmented building footprints - X and the ideal build-
ing footprints from the training set - Y .

2. The intensity images Z are exploited from the dataset.

3. Regularization is performed G : (X,Z) → Y .

4. The regularized building footprints are produced by the en-
coder EG and the residual decoder F .

5. The discriminator D estimates whether the regularized im-
ages are ideal.

The final and full objective function to jointly train the gener-
ator path G and the reconstruction path R is a linear combina-
tion between the adversarial, regularized and the reconstruction
losses, expressed as:

L(G,R,D) = αLGAN (G,R,D)+

βLrecG(G) + γLrecR(R)+

δLPotts(G) + ϵLrecncut(G)

(2)

The above are created by connecting the encoders ER and EG

to the residual decoder F for each iteration. The final, regular-
ized building mask is generated after EG, ER and F are jointly
updated.

2.4 Performing the vectorization with GDAL

The vectorization part is straightforward. First the regularized
image as .tif or .png is read using GDAL drivers and opened.
Next the raster band is acquired from the image and the appro-
priate driver to be used for the vector file needs to be defined.
GDAL supports a vast amount of vector drivers4. We choose
GeoPackage, mostly because it is an open, standards-based,
platform-independent, and portable format. After the vector
driver is defined the pixel values from the image are saved as
a column in the attribute table, and the vectorized geometry of
the building footprint is saved as a polygon. Since the predicted
and the regularized building masks have only two pixel values,
where pixel values 255 represent the buildings and pixel val-
ues 0 represent the non-building information, they need to be
removed after the vectorization. To vectorize the image, the
GDAL Polygonize function was used. In the final step the Ex-
tract by Attribute tool was used to keep the buidling polygons
with pixel values 255. Figure 2 shows the vectorization process.

Figure 2. Performed vectorization with GDAL.

3. RESULTS AND DISCUSSION

3.1 Evaluation metrics

The performance of our developed workflow applying projectReg-
ularization is evaluated based on the metrics proposed in the
MapAI: Precision in Building Segmentation challenge (Jyhne
et al., 2022). Intersection-over-Union (IoU) or the Jaccard in-
dex, is the ratio of the intersection area of the predicted and
ground truth mask to their union:

IoU =
Intersection

Union
=

|G ∩ P |
|G|+ |P | − |G ∩ P | (3)

where G is the ground truth mask and P is the prediction. Bound-
ary Intersection-over-Union (BIoU) calculates the IoU of the
boundary of the prediction and ground-truth:

BIoU =
Area(|Gd ∩G|) ∩ (|PD ∩ P |)
Area(|Gd ∩G|) ∪ (|PD ∩ P |) (4)

4 https://gdal.org/drivers/vector/index.html
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Figure 3. Our end-to-end workflow for building segmentation and regularization.

where G and Gd denote the ground-truth and the edge of the
ground truth with thickness d. Similarly to G, P and Pd the pre-
dicted mask and the edge of the predicted mask with thickness
d. To evaluate the submissions for the MapAI competition, the
final score is a combination of Intersection-over-Union (IoU)
and Boundary Intersection-over-Union as noted below.

S =
BIoU + IoU

2
(5)

We provide the metrics for the predictions using our trained
models and for the regularizations separately in order to com-
pare the difference and assess whether regularization improves
the predicted building footprints or not.

Model IoU BIoU S

U-Net 37.93 34.44 36.19
U-Net-Former 39.48 35.15 37.32

FT-U-Net-Former 39.95 37.66 38.81
DCSwin 45.19 40.74 42.96

Table 2. Predictions without regularization.

Model IoU BIoU S

U-Net 38.87 35.05 36.96
U-Net-Former 40.07 35.50 37.78

FT-U-Net-Former 40.17 37.80 38.98
DCSwin 45.64 41.04 43.34

Table 3. Predictions with regularization.

Our lowest performing model was the simple U-Net achiev-
ing a 37.93 IoU without and 38.87 IoU with regularization.
Its extended transformer architectures U-Net-Former and FT-
Unet-Former performed better. FT-Unet-Former was slightly
better than U-Net-Former, achieving 39.95 IoU without regu-
larization and 40.17 IoU with regularization. The reason for its
improved performance is the fully-transformer based architec-
ture. The best performing model as expected was the DCSwin
model achieving 45.19 IoU without regularization and 45.64
IoU with regularization. The reason for its improved perform-
ance is the shifted window approach for hierarchical feature
representation. The Swin Transformer divides the input im-
age into smaller patches and processes them hierarchically in a
series of stages, each of these stages operate at different spatial
resolution and are better at feature extraction, which improves
the final segmentation accuracy. The results show, that applying

regularization slightly improved the performance of our models
by a small margin, on average around 0.5 % depending on the
test image. We applied regularization on a wide variety of pre-
dictions. In cases where the prediction is of poor quality, the
regularization will be the same. In contrary, the tested regular-
ization method can help to improve the geometry of the build-
ings, but cannot be used to significantly improve the prediction
accuracy. Although we did not use data augmentation tech-
niques to further improve our results, we can conclude that data
augmentation is a necessary step to improve the prediction ac-
curacy, especially on the test images for Tromsø, where many
of the buildings have shadows and are low-contrast images. The
next step would be to apply transfer learning to further improve
our results and perform the combined aerial-LiDAR segmenta-
tion task.

3.2 Developed QGIS plugin

Our developed QGIS plugin, that can be used to regularize any
binary semantic segmentation image is presented on figure 4.
The user can choose between two options: (1) regularization
option, which will regularize and further improve the prediction
and the (2) vectorization option, that enables the user to vector-
ize any predicted or already regularized building footprint from
a raster format to a vector format. The graphical user inter-
face for the developed plugin is simple. On the top, the user
provides the path for the raster file, that will be regularized or
vectorized. The loaded raster is shown in the middle. The two
checkboxes can be used to choose which process will be ex-
ecuted. The Restore Defaults resets the plugin interface and
removes any stored data. Additional instructions on how to use
the plugin can be found by clicking the Help button. Both Reg-
ularize building footprint and Vectorize building footprint op-
tions automatically save the generated file. The regularization
option will save the file in the same folder where the original
raster file for regularization is located. It adds the prefix reg-
and uses the same image type as the original. After the reg-
ularization, the checkbox automatically changes to the option
Vectorize building footprint, which can be used to save the reg-
ularized image or even just the prediction as a vector file. If the
user runs the plugin once more the regularization raster is auto-
matically converted into a polygon and is automatically saved
as a GeoPackage in the corresponding folder. The development
of our proposed plugin can be followed online, accessing its
GitHub repository5. We encourage everyone to test the plugin,
provide feedback, new ideas, suggest improvements and con-
tribute to further development.

5 https://github.com/s1m0nS/QGIS-Regularize-Building-Footprints
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Figure 4. Visual comparison of predictions and regularizatons for our trained models.

Figure 5. The GUI of our developed QGIS plugin and the options available to the user.
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4. CONCLUSION

The main purpose of our study was to develop an end-to-end
workflow for building footprint segmentation, apply regular-
ization and vectorization on the results in order to provide a
GIS-ready solution. We conclude that projectRegularization
additionally improves the segmentation accuracy by an aver-
age value of 0.55 IoU, 0.35 in BIoU and 0.44 in S metric.
Regularization not only improves the predictions, but also im-
proves the geometrical shape of the building footprints. Fur-
thermore the vectorization part contributed to the practical as-
pect of combining deep learning models and open-source GIS
software. Our QGIS-plugin can be used to regularize buildings
from predictions and convert them to vector files, which can
be help in areas where practical application is of outmost im-
portance. Our workflow is accessible online on GitHub: https:
//github.com/s1m0nS/mapAI-regularization and tested. We
provide Jupyter Notebooks for easier work management with
explanations. The development of our QGIS-plugin can be fol-
lowed on GitHub: https://github.com/s1m0nS/QGIS-Regular
ize-Building-Footprints. We encourage everyone to try out our
QGIS plugin and provide feedback, or contribute to the code
repository.
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