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Introduction: Speech BCIs aim at reconstructing speech in real time fromongoing

cortical activity. Ideal BCIs would need to reconstruct speech audio signal frame

by frame on a millisecond-timescale. Such approaches require fast computation.

In this respect, linear decoder are good candidates and have been widely used in

motor BCIs. Yet, they have been very seldomly studied for speech reconstruction,

and never for reconstruction of articulatory movements from intracranial activity.

Here, we compared vanilla linear regression, ridge-regularized linear regressions,

and partial least squares regressions for o	ine decoding of overt speech from

cortical activity.

Methods: Two decoding paradigms were investigated: (1) direct decoding

of acoustic vocoder features of speech, and (2) indirect decoding of

vocoder features through an intermediate articulatory representation

chained with a real-time-compatible DNN-based articulatory-to-acoustic

synthesizer. Participant’s articulatory trajectories were estimated from an

electromagnetic-articulography dataset using dynamic time warping. The

accuracy of the decoders was evaluated by computing correlations between

original and reconstructed features.

Results: We found that similar performance was achieved by all linear methods

well above chance levels, albeit without reaching intelligibility. Direct and

indirect methods achieved comparable performance, with an advantage for direct

decoding.

Discussion: Future work will address the development of an improved neural

speech decoder compatible with fast frame-by-frame speech reconstruction

from ongoing activity at a millisecond timescale.

KEYWORDS

decoding, ECoG, brain-computer interface, linear methods, speech prostheses,

intracranial recordings, articulatory synthesis

1. Introduction

Recent advances of intracranial brain-computer interfaces (BCIs) have opened the

possibility for paralyzed people to communicate through devices such as cursors to spell

on a virtual keyboard (Serruya et al., 2002; Hochberg et al., 2006; Jarosiewicz et al., 2015;

Pandarinath et al., 2018) or by reconstructing imagined handwritten letters (Willett et al.,

2021). The increased efficiency of these systems allowed to reach performance close to

regular typing on a smartphone. Yet, such BCIs do not use speech-related cortical activity

to perform a communication task, and thus remain less intuitive to control than natural

speech. Moreover they largely require motor resources unrelated to speech, preventing from

simultaneously using a motor BCI. Speech BCIs effectively controlled by speech activity have
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been proposed to either classify discrete representations of speech

such as letters (Metzger et al., 2022) and words (Moses et al.,

2021), or to decode continuous features of speech such as formants

(Guenther et al., 2009) and detailed acoustic representations of

whole speech (Pasley et al., 2012; Martin et al., 2014; Angrick et al.,

2021).

Considering the clinical difficulty to implant electrodes for

the purpose of a dedicated speech BCI, many studies have

used data from patients implanted for other clinical purposes.

Offline decoding of discrete speech units has been explored

by classifying phonemes (Mugler et al., 2014; Herff et al.,

2015), vowels (Tankus et al., 2012; Ibayashi et al., 2018),

words (Kellis et al., 2010), or entire sentences (Moses et al.,

2019). Other studies focused on offline decoding of continuous

representations of speech which are language-agnostic, in contrast

with discrete representations. Spectrograms of perceived words

and sentences from a limited set have been reconstructed

from the auditory cortex by linear regression (Pasley et al.,

2012), and spectrograms of produced speech have been decoded

from electrocorticography (ECoG) recordings of temporal areas

(Herff et al., 2016). Other studies improved over spectrograms

by decoding vocoder features of speech including voicing, F0,

aperiodicity and spectral envelope (Akbari et al., 2019). Finally,

decoding a compact intermediate articulatory representation of

speech chained with an articulatory-to-acoustic synthesizer could

allow to control a speech BCI with fewer parameters (Bocquelet

et al., 2016a), as articulatory trajectories are also a language-

agnostic representation of speech that is encoded in the cortex

(Bouchard et al., 2013; Chartier et al., 2018; Conant et al., 2018).

Such an approach has been found to improve performance over

the direct decoding of vocoder features of speech, achieving high-

quality reconstruction of speech sentences (Anumanchipalli et al.,

2019). The method was however not compatible with real-time

reconstruction of continuous speech as sentences were processed

as whole.

A natural speech BCI would allow intuitive production

of arbitrary speech in real-time so that a conversation could

be carried smoothly. To control a speech synthesizer in real-

time, the BCI would require a neural decoder that could

be integrated in a closed-loop process computable within

milliseconds (Bocquelet et al., 2016c). Having the advantage

of fast computation, linear decoder are good candidates and

have already been widely used for motor BCIs (Hochberg

et al., 2006, 2012; Collinger et al., 2013; Wodlinger et al.,

2015). However, they have been tested only very seldom for

continuous decoding of produced speech from ongoing brain

activity (Martin et al., 2014). In particular, their capacity to decode

articulatory movements from intracranial activity has not yet been

explored and different linear methods have not been compared.

In this context, we evaluate here different linear decoders for

continuous speech decoding from Electrocorticography (ECoG)

activity. We investigate direct decoding of acoustic vocoder

features of speech as well as indirect decoding of vocoder features

through an intermediate articulatory representation chained

with a real-time-compatible Deep Neural Network-based (DNN)

articulatory-to-acoustic synthesizer (Bocquelet et al., 2014, 2016c;

Anumanchipalli et al., 2019).

2. Methods

2.1. Data

This work required synchronized recordings of audio,

articulatory trajectories and neural activity of speech. The chosen

methodologies were Electromagnetic Articulography (EMA)

for recording articulatory trajectories, and Electrocorticography

(ECoG) for brain activity. As simultaneous EMA and ECoG

recordings were not allowed by the regulatory constraints of the

experiment protocol, separate EMA and ECoG datasets were

considered.

2.1.1. EMA data: BY2014
BY2014 (Bocquelet et al., 2016b) is a large articulatory-acoustic

corpus containing the recording of vocal tract movements and

simultaneous audio signals in one French male speaker reading

676 short sentences including isolated vowels and VCVs (vowel-

consonant-vowel sequences like “apa”, “iti”,...). EMA was recorded

with 9 3-dimensional sensors at 100 Hz positioned on lips corners,

upper and lower lips, tongue tip, back and dorsum, soft palate,

and jaw (actually front teeth). Head movements were removed

from the recordings so that articulatory trajectories are describing

movements relatively to the head. The corpus therefore consists of

27 articulatory features and the synchronized audio recording.

2.1.2. ECoG data: P5
This study is part of the Brainspeak clinical trial

(NCT02783391) approved by the French regulatory agency

(DMDPT-TECH/MM/2015-A00108-41) and the local ethical

committee (CPP-15-CHUG-12). It is based on electrophysiological

recordings obtained in P5, a female participant implanted for

7 days at Grenoble University Hospital as part of a presurgical

evaluation of her intractable epilepsy. P5 gave her informed

consent to participate in the study.

2.1.2.1. Recordings

Brain activity was recorded in the participant’s room at the

hospital. P5 was implanted with a 72-electrode array (PMT Corp.,

USA) covering a large portion of her left hemisphere as well as a

4-electrode strip (PMT Corp., USA) over the left ventral temporal

lobe. One electrode of the strip was used as the reference and one

as the ground. An additional 96-electrode microelectrode array

was also implanted in the participant’s cortex but was not used

in this work. The audio and brain signals were amplified and

synchronously recorded at 30 kHz.

2.1.2.2. Task

P5 was asked to read aloud a set of short French sentences from

BY2014 dataset (see Section 2.1.1). During the 4-day experiment,

P5 participated to both closed loop and open loop tasks. During

open loop experiments, P5 read sequences of vowels and short

sentences from BY2014 without any audio feedback. Depending

on the recording sessions, P5 produced each sentence following

multiple speaking conditions: first reading, then repeating the same

sentences, and lastly covertly repeating it again before saying “ok”
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when done. Both read and repeat conditions required to speak out

loud, but the written sentence was only displayed on the screen

during read condition. For the covert condition, P5 was asked

to imagine repeating the sentence once more, without actually

producing speech or moving the articulators, and without seeing

it on screen.

For this work, only open loop recordings of the three first

days of experiments were used, in overt conditions (read and

repeat). During day 1, P5 read and repeated 97 sentences including

4 repetitions of 4 vowel sequences (“a, i, ou”; “u, é, è”; “e,

o, an”; and “on, in”). During day 2, P5 read 141 sentences,

including 6 repetitions of 4 vowel sequences. During day 3, P5 read

and repeated 153 sentences, including 7 repetitions of 4 vowels

sequences. This amounts to a total of 391 read sentences and 250

repeated sentences, thus 641 sentences in total.

2.1.2.3. Annotation

All sentences were manually inspected one by one to

annotate the condition, transcription, phonetic transcription and

if necessary to discard failed attempts or trials with noisy

backgrounds. Sentences were automatically cut using a speech

envelope detection (see Section 2.2.2) so that only 500 ms of silence

remained before and after speech, although some manual adjusting

was necessary. The annotated speech conditions were read, repeat,

covert, and rest that labeled resting intervals in between trials.

2.2. Neural data processing

2.2.1. Preprocessing
Artifacts such as line noise were removed from neural signals

using common median reference. At each time step, the median

value of all channels was computed. The resulting signal was

subtracted from all channels to remove noise that was shared

between all electrodes, such as line noise or electromagnetic

interferences. Removing the median signal was found to be more

robust to outliers than removing the average signal.

Some ECoG recordings have been found to be contaminated by

acoustic signals (Roussel et al., 2020). P5 dataset was investigated

for acoustic contamination using a Matlab package available

on Zenodo (Roussel et al., 2021). It was found that none

of the recording sessions of P5 dataset used in this work

contained significant acoustic contamination. Moreover, given the

high-pitched voice of P5, any contamination would only affect

frequencies above 200 Hz, which is higher than the neural features

that were used for speech decoding (see Section 2.2.3).

2.2.2. Automatic speech detection
The audio envelope was extracted from the audio recordings

using the Hilbert transform. A smoothed envelope was then

computed by running a moving average with a 100 ms window

on the audio envelope. A threshold for speech detection was set

at 10% of the maximum smoothed envelope value. Any segment

of the smoothed envelope crossing the threshold for at least 50 ms

was considered to contain a vocalization. Finally, speech segments

that were under 100 ms from each other were merged into one.

2.2.3. Neural features
Spectrograms were computed from neural signals using a Fast

Fourier Transformwith amoving hammingwindow of 200ms, a 10

ms frame shift, and padding by symmetrizing the signal. The power

spectral density of each frequency bands was averaged over 10 Hz

bands from 0 to 200 Hz, resulting in 20 spectral features sampled at

100 Hz. Additionally, the raw signal filtered between 0.5 and 5 Hz

was used as an additional feature for each electrode. A total of 21

neural features were thus computed for each electrode signal of the

ECoG dataset.

2.2.4. Frontal and temporal electrodes
In a dedicated analysis, P5 neural features were split into frontal

and temporal categories. All features from electrodes placed above

the lateral sulcus were considered as frontal, while the remaining

features were considered as temporal (representation in Figure 5A).

With these categories, 28 electrodes were categorized as frontal, and

44 as temporal. The frontal electrodes covered the areas responsible

for speechmotor control, while the temporal electrodes covered the

auditory regions.

2.2.5. Context and delays
Actual speech production of the sound wave and its underlying

cognitive processes are typically not simultaneous. Indeed, the

motor control of articulators requires planning and therefore

happens before sound production, while the processing of auditory

and somatosensory feedback happens after sound production. In

order to take into account these cognitive processes for speech

decoding, two parameters were considered for neural decoding:

1. the time delay between the center of the time context window

of neural features and the decoded time of acoustic/articulatory

features of speech, and 2. the time context that consisted in

concatenating multiple consecutive frames of neural features to

decode one frame of acoustic/articulatory features of speech.

By convention, a time context of 110 ms corresponded to

concatenating frames of neural features x(t−50ms) . . . x(t+50ms),

and a time delay τ corresponded to synchronizing the neural

features x(t) with the acoustic features y(t + τ ).

2.3. Acoustic data processing

2.3.1. Preprocessing
Any DC offset was removed from audio sentences by

subtracting their mean value from the signal. Resulting signals were

then peak-normalized and their average volume was set to −20

dB using automatic gain control in Matlab. Lastly, P5 sentences

were resampled at 22,050 Hz to mach BY2014’s sampling rate using

Matlab’s resample function with the default anti-aliasing lowpass

filter.

2.3.2. Source-filter representation
A Mel cepstral and F0 analysis of speech was computed

from audio recordings using SPTK (Imai, 2003). This source
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filter representation was motivated by the possibility for real-

time synthesis of speech using a Mel Log Spectral Approximation

(MLSA) filter (Bocquelet et al., 2016c), and was also implemented

in SPTK.

2.3.2.1. Mel cepstrum

Mel cepstrums of order 24 were extracted from audio

recordings using SPTK. The signal analysis was performed with

Blackman windows of 400 samples in input and 1,024 in output

with quadratic normalization, a frame shift of 220 samples and a

frame length of 1,024. The ε parameter was set to 10−4 to avoid

errors in the periodogram computations. The all-pass constant α

was set to 0.455 to accurately estimate the Mel scale for a 22,050 Hz

sampling rate.

Due to the 220 sample frame shift, the resulting 25 Mel cepstral

coefficients were sampled at ~100.23 Hz. Each sentence was then

resampled to 100 Hz in order to accurately match articulatory and

neural features sampling rate. The resampling was performed by

shape-preserving piecewise cubic interpolation of the signal with

the “pchip” parameter of Matlab’s interp1 function.

2.3.2.2. F0

The F0 was extracted from P5 dataset using the SWIPE’

algorithm from SPTK. The parameters for signal windowing were

the exact same parameters used to extract Mel cepstral coefficients

described in Section 2.3.2.1. After visual inspection of the dataset’s

spectrograms, the F0 search algorithm was constrained to 80–300

Hz. The extracted F0 signals are set to the fundamental frequency

when the signal is voiced and 0 when it is unvoiced.

Like Mel cepstral coefficients, the extracted F0 was resampled

to 100 Hz to match articulatory and neural features. Due to the

discontinuities in the F0 that had to be preserved, resampling was

done with a nearest neighbor interpolation. F0 misdetections were

filtered out by removing any F0 segment shorter than 50 ms, after

visual inspection of the data.

2.3.3. Synthesis
Speech audio was synthesized fromMel cepstrum and F0 using

SPTK’s MLSA filter. The MLSA filter was excited by either a white

noise source for voiceless signals, or an impulse train with a period

changing according to the F0 for voiced signals. SPTK refers to

this period as pitch, and requires it as the parameter controlling

the generation of the excitation signal. A period of 0 defines by

convention that no F0 is detected, and that the excitation signal

should be white noise. Given a frame rate fs (22,050 Hz here), pitch

was therefore reconstructed from F0 with the formula:

pitch =











fs

f0
if f0 6= 0

0 if f0 = 0

(1)

Processing of the excitation signal and MLSA synthesis used

the same α parameter and frame period as for the Mel cepstral

analysis presented in Section 2.3.2.1. Output waveforms were peak-

normalized and limited to avoid clipping, and loudness was set to

−20 dB using automatic gain control.

FIGURE 1

Evaluation of speech decoding from neural activity. (A) First, the

optimal dynamic time warping alignment of BY2014 acoustic

features onto P5 acoustic features is computed. Then this alignment

is applied on articulatory trajectories of BY2014 to give an estimate

of P5’s articulatory trajectories. (B) Mel cepstral coe�cients are

decoded either 1. directly from neural activity or 2. from articulatory

trajectories (EMA) decoded from neural activity. Mel cepstral

coe�cients directly decoded from neural activity or predicted from

decoded articulatory trajectories with fine tuning are evaluated

against the participant’s original Mel cepstrum. Mel cepstral

coe�cients predicted from decoded articulatory trajectories

without fine tuning are evaluated against BY2014’s Mel cepstrum

aligned on the participant’s Mel cepstrum using DTW.

2.4. Articulatory data processing

2.4.1. Articulatory data
Articulatory trajectories recorded by 3D EMA contain a lot

of redundant information, as most of the trajectories can be

characterized in the midsagittal plane. Thus, each sensor was

projected on the midsagittal plane of the speaker using Principal

Component Analysis (PCA) and keeping only the first two

components. As the 2 lips corners mostly move along the latero-

medial axis, they were removed from the 9 original sensors of

BY2014. The resulting 14 articulatory features tracked the 2D

trajectories of the upper and lower lips; tongue tip, back and

dorsum; velum; and jaw.

In order to decode articulatory trajectories from P5’s neural

activity, those articulatory trajectories had to be inferred from

BY2014 using the method described in Section 2.4.2.

2.4.2. Estimation of articulatory trajectories
In order to decode articulatory trajectories from P5’s

neural activity, a dataset of synchronized ECoG recordings and

articulatory trajectories of P5 were built from P5 recordings and

BY2014. As articulatory trajectories of P5 were not recorded,
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they were estimated from those of the BY2014 corpus by

aligning P5 and BY2014 audio recordings. Considering that

the sentences recorded by P5 were part of BY2014 dataset,

the optimal non-linear time distortion that maps an audio

recording of BY2014 on to its corresponding P5 audio recording

was computed using dynamic time warping (DTW; Sakoe and

Chiba, 1978). This optimal transformation was then applied

to the articulatory trajectories of BY2014 in order to estimate

articulatory trajectories for P5 (Figure 1A). The estimated

trajectories were therefore synchronized with P5’s audio and

ECoG recordings.

The Matlab DTW implementation we used required both

signals to have the same number of samples, which was not the

case as sentences of different speakers obviously have different

durations. Signals were therefore resampled to have the same

number of samples using Matlab’s interp1 function with “pchip”

method (Piecewise Cubic Hermite Interpolating Polynomial)

prior to running the DTW. In order to not introduce side

effects that would influence the DTW, signals were padded by

symmetrizing their sides before resampling. A simple euclidean

distance was used as a sample-wise metric for the dynamic

programming algorithm.

Even though P5 and BY2014 datasets contain the same

sentences, they were spoken by different speakers of different

genders. Moreover the EMA coils disturbed BY2014’s speech.

Thus, the tone, prosody, pitch and pronunciation of both speakers’

recordings were different. To obtain an optimal alignment, the

DTW was computed on the concatenated F0, Mel cepstral

coefficients, and a boolean distinguishing speech and silent

samples. Silence and speech were respectively labeled with 0 and

1 by an automatic speech detection algorithm based on audio

envelope (see Section 2.2.2). F0 was set to 0 when no voicing was

detected, which carries another boolean information about voicing.

As DTW can be sensitive to misdetections of speech and F0 caused

by background noise, both speech and voicing detections shorter

than 50 ms where filtered out by setting the speech and F0 to 0.

Formally, the resulting sample-wise distance between two sentences

S1, S2 can thus be written as:

d(S1(t), S2(t)) =

24
∑

m=0

(

c1m(t)− c2m(t)
)2

+
(

F01(t)− F02(t)
)2

+
(

speech1(t)− speech2(t)
)2

Where [(c1m)0≤m≤24, (c2m)0≤m≤24] are the Mel cepstral

coefficients of [S1, S2] normalized by the absolute maximum

value of the first Mel coefficient (representing the power of the

signal), and [F01, F02] are the F0 of [S1, S2] normalized by their

maximum value. The normalization of the features ensured that no

feature overly contributes to the Euclidean distance and therefore

to the alignment. Finally, a grid search was performed to test

multiple weighting of each features using Pearson correlations for

evaluation, showing best performance when using equal weights for

all 3 features.

2.5. Articulatory synthesis

In order to reconstruct speech from decoded articulatory

trajectories, a real-time-compatible articulatory-to-speech

synthesizer was designed to predict Mel features from articulatory

features.

A feedforward Deep Neural Network (DNN) was trained

on BY2014 to predict Mel cepstral coefficients from articulatory

trajectories. The DNN consisted of 3 hidden layers of 512 neurons

each with tanh activation and a mean squared error loss function,

parameters which were selected after a grid search. A sample ŷs
of Mel cepstrum was predicted from 10 past samples and 1 future

sample of articulatory trajectories [x
⊺

s−10, . . . , x
⊺

s , x
⊺

s+1]
⊺. This time

context was chosen after preliminary experiments including both

objective and perceptive evaluations. Previous work already showed

that adding a past time context to the network input was key to

improve overall performance (Bocquelet et al., 2016c). The future

time context further improved the overall decoding while adding a

latency of 10 ms, which should not cause issues for a real-time use

(Lee, 1950; Stuart et al., 2002).

Training was performed on a random split of 80% of BY2014,

leaving 10% for validation and 10% for evaluation of the grid search

parameters. The DNNwas trained using Adam optimizer, with 25%

dropout and batches of 32. In order to prevent overfitting, training

was automatically stopped using early stopping with a patience of

20 epochs.

2.6. Neural decoding of speech

A source-filter representation of speech based onMel cepstrum

and F0 was decoded from ECoG features by regression methods.

Two different paradigms were investigated to decode Mel cepstral

coefficients: (1) direct decoding of Mel cepstral coefficients using

linear methods, and (2) decoding of articulatory trajectories

using linear methods, followed by an articulatory-to-acoustic

neural network transforming these articulatory trajectories into

the corresponding Mel cepstral coefficients. In order to provide a

source signal for speech synthesis, the F0 was directly decoded in

both cases from ECoG features using linear methods.

2.6.1. Reduction of neural features
The number of neural features extracted from ECoG recordings

for a single time frame was very large (1,512). In order to train a

linear regression over neural data, the number of neural features

was thus further reduced by PCA or PLS (Partial Least Squares).

PCA was computed before concatenation of time context, whereas

PLS was computed after concatenation of time context.

2.6.2. Linear decoders
Linear regression methods were trained to predict speech

features from neural features. We evaluated a simple linear

regression, as well as ridge regressions and a Partial Least Squares

(PLS) regression. The 3 ridge regressions that were trained each

computed their regularization parameter in a different fashion:

(1) with the L-curve method, (2) with a cross-validation, and (3)
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also with a cross-validation but with a different regularization

parameter for each output feature.

2.6.3. Decoding paradigms
Two decoding paradigms were compared: (1) a direct decoding

of acoustic features of speech from neural features and (2) an

indirect decoding of acoustic features of speech from neural

features through and articulatory representation (see Figure 1B).

2.6.3.1. Direct decoding

Mel cepstral coefficients and F0 were directly predicted from

neural features by training multiple linear methods described in

Section 2.6.2. Prior to training regressions, input and target features

were preprocessed regardless of their the neural or acoustic nature.

First, input and target features were z-scored using the mean

and standard deviation computed on the training set. Second, a

time delay was optionally applied between input and target data.

Third, a PCA decomposition was optionally performed to reduce

the number of neural features. Finally, various amounts of temporal

context were added to neural features by concatenating past and

future frames of neural activity to predict a single frame of acoustic

features, as described in Section 2.2.5.

Linear regressions, with or without regularization were

optionally combined with a PCA decomposition as described in

the previous paragraph, while PLS by design performed feature

reduction altogether with regression after any other preprocessing.

2.6.3.2. Indirect decoding

Using the same linear decoding methods, articulatory features

of speech were also decoded from neural activity. Mel cepstral

coefficients were then predicted from decoded articulatory

trajectories by an articulatory-to-acoustic neural network trained

on BY2014, as described in Section 2.5.

The articulatory-to-acoustic neural networks were trained

to predict BY2014’s Mel cepstral coefficients from BY2014’s

articulatory trajectories. Although P5 dataset’s articulatory

trajectories were estimated from BY2014, their temporal structure

was different. Neural models were therefore fine-tuned to better

fit the participant’s data: the network’s weights after training on

BY2014 were used as initialization weights for training the model to

predict the participant’s Mel cepstral coefficients from its decoded

articulatory trajectories. With the exception of the neural network

initialization using a pretrained model, the training method is

exactly the same as the one described in Section 2.5. With fine

tuning, the articulatory-to-acoustic neural model predicted the

participant’s Mel cepstrum instead of BY2014’s.

2.6.4. Evaluation framework
Decoding methods were evaluated by comparing the speech

features predicted from brain activity with the true features. The

decoding models were evaluated on all the data using a 10-fold

cross-validation.

2.6.4.1. Cross-validation

Every decoding method (linear and DNN) were evaluated on a

10-fold cross-validation. The set of 641 sentences was randomly

split in 10 folds that contained approximately the same number

of sentences. One fold constituted the testing set, the others

constituted the training set. Each fold was used for testing once

until the models were evaluated on all the corpus.

In the case of the indirect decoding paradigm, the articulatory-

to-acoustic DNN was fine-tuned inside the cross-validation

on the same training set and was evaluated on the test

set. For that, it required a complete dataset of decoded

articulatory trajectories, including training and testing sets.

Therefore articulatory trajectories were decoded on all 10 folds by

the linear decoder that was trained on the 9 training folds.

Mean and standard deviation of the training set were computed

in each fold and were used to z-score both the training set and the

testing set. PCA was also computed on the training set and then

applied to both training and testing sets in each fold.

2.6.4.2. Evaluation of predicted speech

Decoding methods were evaluated by comparing predicted

features with ground truth features using Pearson correlation and

mean squared error computed over entire sentences, leading to one

value per sentence.

Features predicted from direct decoding methods were

compared to the participant’s ground truth features. Mel cepstral

coefficients predicted from articulatory methods with fine tuning

were also compared with the participant’s Mel cepstral coefficients,

while Mel features predicted without fine tuning were compared

to BY2014’s Mel cepstral coefficients aligned on the participant’s

features by DTW (Figure 1B).

Chance levels were estimated by randomly shuffling neural

data samples and running the complete decoding and evaluation

pipeline in the exact same way.

2.6.4.3. Statistical evaluation

Statistical significance between Pearson correlations of decoded

features and their corresponding chance levels was computed

using a Bonferroni-corrected Wilcoxon signed-rank test. Pair-wise

statistical significance between Pearson correlations of decoded

features using different decoding conditions was computed using

a Quade-Conover test.

3. Results

The results presented here are all displayed using violin

plots, where each dot of the violin plots shows the Pearson

correlations of a single sentence for a given decoded feature with

the corresponding ground truth.

3.1. Comparing linear methods for direct
speech decoding

P5’s F0 and Mel cesptrum were decoded using a simple

linear regression, a PLS regression, and ridge regressions with 3

different ways to compute the λ factor: L-curve, cross-validation,

and cross-validation with individual λ per feature. The linear

and ridge regressions were trained on a PCA reduction of the

neural features down to 100 features with 0 ms of time delay

and 210 ms of time context (10 frames of past context and

Frontiers inHumanNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1124065
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Le Godais et al. 10.3389/fnhum.2023.1124065

FIGURE 2

Comparison of several linear methods for direct decoding of acoustic features of speech. (A) Pearson correlations of decoded F0 from linear

methods. Ridge and linear regressions were trained on the first 100 PCA components of neural activity and PLS regression was trained with 12

components. Ridge regressions were trained using 3 di�erent methods to compute the λ factor: L-curve (L), cross-validation (X), and cross-validation

with individual λ per features (Xm). (B) Pearson correlations of decoded F0 using a linear regression trained on varying PCA reductions of neural

activity. Statistical significance computed by Quade-Conover test [Quade test: p < 0.001, t(4,2516) = 834.8]. (C) Pearson correlations of decoded Mel

cepstrum from linear methods. Ridge and linear regressions were trained on the first 100 PCA components of neural activity and PLS regression was

trained with 12 components. Ridge regressions were trained using 3 di�erent methods to compute the λ factor: L-curve (L), cross-validation (X) and

cross-validation with individual λ per features (Xm). (D) Pearson correlations of decoded Mel cepstrum using a linear regression trained on varying

PCA reductions of neural activity. Statistical significance computed by Quade-Conover test [Quade test: p < 0.001, t(4,2516) = 837.4]. Conover

comparisons significance for (B, D): n.s: p ≥ 0.05 [(D): t(2516) = 0.5], *p = 0.013 [(B): t(2516) = 2.5], ***p < 0.001 [(B, D): t(2516) > 6.5].

10 frames of future context). The PLS regression was trained

using 12 components and the same time delay and context.

Pearson correlations of decoded F0 achieved similar results for

all methods with median correlations of 0.63 ± 0.12 for all

regressions (Figure 2A). Pearson correlations of decoded Mel

cepstrum achieved similar results for all methods with median

correlations of 0.45 ± 0.09 for linear regression and 0.46 ± 0.09

for ridge and PLS regressions (Figure 2C).

The influence of the PCA reduction on linear decoding of P5’s

F0 and Mel cepstrum was evaluated by training linear regressions

with 0 ms of delay and 210 ms of time context on 10, 20, 50,

100, and 200 PCA components of P5’s neural features. Best median

Pearson correlations of decoded F0 (Figure 2B) was found for 200

PCA components (0.63±0.11), which was found to be significantly

higher than smaller numbers of components. Best median Pearson

correlations of decoded Mel cepstrum (Figure 2D) was found for

100 PCA components (0.45 ± 0.09) and 200 PCA components

(0.46 ± 0.09), which were found to be significantly higher than

smaller numbers of components.

3.2. Direct speech decoding using PLS
regression

We next detail the reconstruction accuracy of individual Mel

cepstral coefficients and F0 obtained with a PLS regression with 12

components, 210 ms of context, and no delay. Pearson correlations

of decoded Mel cepstral coefficients with their corresponding

ground truth were computed on each sentence, showing to be

significantly higher than chance (p << 0.001, z ∈ [15.0, 17.6],

for each Mel cepstral coefficient) using a Bonferroni-corrected

Wilcoxon signed-rank test (Figure 3A). Pearson correlations of

the decoded F0 and average Pearson correlations of the decoded

Mel cepstral coefficients were also significantly higher than chance

(Figure 3B).

We further evaluated the influence of delay and context on

decoding accuracy. Time delays of −200, −100, 0, 100, and 200

ms were introduced between neural features and Mel cepstrum

prior to decoding with a PLS regression with 12 components and

210 ms of time context (Figure 3C). Best decoding was found for
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FIGURE 3

Direct decoding of acoustic features of speech using PLS regression. (A) Pearson correlations of decoded Mel cepstral coe�cients (blue) and the

corresponding chance levels (red) using a PLS regression with 12 components, 210 ms of time context and 0 ms of time delay. (B) Average Pearson

correlations of decoded Mel cepstrum across coe�cients and Pearson correlations of decoded F0 using a PLS regression with 12 components, 210

ms of time context and 0 ms of time delay. (C) Pearson correlations of decoded Mel cepstrum with varying time delay using PLS regression with 12

components and 210 ms of time context. (D) Pearson correlations of decoded Mel cepstrum with varying time context using PLS regression with 12

components and 0 ms of time delay. (E) Pearson correlations of decoded Mel cepstrum using PLS regression with varying number of components,

210 ms of time context and 0 ms of time delay. Statistical significance with respect to chance levels computed with Bonferroni-corrected Wilcoxon

signed rank test for (A, B) (see values in Section 3.2). Statistical significance computed by Quade-Conover test for (C) [Quade test: p < 0.001,

t(4,2516) = 399.8], (D) [Quade test: p < 0.001, t(3,1887) = 1388.7] and (E) [Quade test: p < 0.001, t(7,4403) = 254.9]. Conover comparisons for (C–E): n.s:

p ≥ 0.05 [(E): t(4403) < 1.7], ***p < 0.001 [(C): t(2516) > 4.6, (D): t(1887) > 18.8, (E): t(4403) > 7.3]. Arrows indicate best accuracies.

−100 ms of delay (median = 0.47 ± 0.09), which corresponded

to decoding a frame of acoustic speech using neural features over

the last 200 ms. Time contexts of 0, 50, 110, and 210 ms were

evaluated for decoding of Mel cepstrum using a PLS regression

with 12 components and no delay (Figure 3D). The best median

Pearson correlation was found for the largest 210 ms context

(0.46 ± 0.09), which was found to be significantly higher than

smaller contexts.

Finally, PLS regressions with 3, 6, 12, 15, 18, 25, 50, and

100 components were compared for Mel cepstrum decoding

from neural features. All regressions used 0 ms of delay and

210 ms of time context. Best median Pearson correlation was

found for 12 components (0.46 ± 0.09), which was found to

perform significantly better decoding compared to 3, 6, 25, and

50 components (Figure 3E). However no statistical differences were

found between 12, 15, and 18 components.
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FIGURE 4

Indirect decoding of Mel cepstrum from brain activity through an articulatory representation using PLS regression. (A) Pearson correlations of

decoded EMA (blue) and their matching chance levels (red) using PLS regression with 12 components. (B) Pearson correlations of decoded EMA

using PLS regression with 12 components, 210 ms of time context and varying time delays. (C) Pearson correlations of decoded EMA using PLS

regression with 12 components, 0 ms of delay and varying time contexts. (D) Pearson correlations of decoded EMA using linear/ridge regressions

with PCA reduction (100 components) and PLS regressions with 12 components. Ridge regressions were trained using 3 di�erent methods to

compute the λ factor: L-curve (L), cross-validation (X) and cross-validation with individual λ per features (Xm). (E) Pearson correlations of decoded

Mel cepstrum (blue) and their matching chance levels (red) using either 1. direct decoding with PLS regression (direct), 2. indirect prediction from

decoded EMA with a articulatory-to-acoustic DNN without fine tuning or 3. indirect prediction with fine tuning. Statistical significance with respect to

chance levels on (A, E) computed with Bonferroni-corrected Wilcoxon signed-rank test (see values in Section 3.3). Statistical significance computed

by Quade-Conover test for (B) [Quade test: p < 0.001, t(4,2516) = 75.1], (C) [Quade test: p < 0.001, t(3,1887) = 369.2], and (E) [Quade test: p < 0.001,

t(2,1258) = 1033.1]. Conover comparisons for (B–E): n.s: p ≥ 0.05 [(B): t(2516) = 0.99], ***p < 0.001 [(B): t(2516) > 4, 8, (C): t(1887) > 8.8, (E): t(1258) > 29.9].

Arrows indicate best accuracies.

3.3. Indirect speech decoding using PLS
regression

Articulatory features of each P5 sentences were decoded from

neural features using a PLS regression with 12 components, 210

ms of context (10 frames of past context and 10 frames of

future context), and no delay. Pearson correlations of decoded

articulatory features with their corresponding ground truth were

computed on each sentence, showing to be significantly higher

than chance (p < 0.001, z ∈ [6.5, 21.7], for each articulatory
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features) using a Bonferroni-corrected Wilcoxon signed rank

test (Figure 4A).

Time delays of−200,−100, 0, 100, and 200ms were introduced

between neural and articulatory features prior to decoding with a

PLS regression with 12 components and 210 ms of time context

(Figure 4B). Average Pearson correlations of decoded sentences

across articulatory features were found to be significantly higher for

−100 and 0 ms delays. Best overall median correlation was found

for−100ms of delay (0.25±0.11), which corresponded to decoding

a frame of acoustic speech using the last 200 to 0 ms of neural

features.

Time contexts of 0, 50, 110, and 210 ms were evaluated for

decoding of articulatory features using a PLS regression with 12

components and no context (Figure 4C). The best median Pearson

correlation was found for the largest 210 ms context (0.25 ± 0.12),

which was significantly higher than smaller contexts.

The decoding accuracy of articulatory features was compared

across the 5 linear methods with 0 ms of time delay and 210 ms

of time context: a simple linear regression, ridge regressions with 3

different ways to compute the λ factor: L-curve, cross-validation,

and cross-validation with individual λ per feature, and finally a

PLS regression with 12 components. Linear and ridge regressions

were trained on a PCA reduction of the neural features down to

100 features. Pearson correlations of decoded articulatory features

achieved similar results for all methods with median correlations

up to 0.26 ± 0.11 for the ridge regressions with cross-validation,

0.26 ± 0.11 for the linear regression and 0.25 ± 0.12 for the PLS

regression (Figure 4D).

Finally, direct and indirect decoding of P5’s Mel cepstrum

were compared. A PLS regression with 12 components, 0 ms

of time delay and 210 ms of time context was trained to

decode Mel cepstrum and articulatory features from P5’s neural

features. The articulatory-to-acoustic DNN trained on BY2014

(see Section 2.5) predicted the Mel cepstrum from decoded

articulatory trajectories. Both indirect decoding of Mel cepstrum

with and without fine tuning of the DNN were compared. Mel

cepstral coefficients were decoded well above chance level with

both direct and indirect methods (Figure 4E, Bonferroni-corrected

signed rank test: p << 0.001; z = {21.7, 19.6, 21.7} for

direct decoding, indirect decoding without finetuning, and indirect

decoding with finetuning, respectively). Pearson correlations of

directly and indirectly decoded Mel cepstrums were all found to

be statistically different. Best Pearson correlations were achieved

by direct decoding (median = 0.46 ± 0.09), followed by

indirect decoding with fine tuning of the DNN (median =

0.40 ± 0.11), while worst correlations were achieved by indirect

decoding of the DNN without fine tuning (median = 0.08 ±

0.06).

3.4. Influence of frontal and temporal
electrodes on speech decoding

Decoding from frontal, temporal, and all electrodes (Figure 5A)

was compared using a PLS regression with 12 components, 0 ms

of delay and 210 ms of time context. Statistical significance was

computed using a Quade-Conover test.

Pearson correlations of decoded articulatory trajectories

(Figure 5B) from frontal electrodes (median = 0.24 ± 0.12) were

significantly higher than from temporal electrodes (median =

0.20±0.12). Highest correlations were reported using all electrodes

(median = 0.25±0.12), although not significantly higher than with

frontal electrodes.

Pearson correlations of directly decoded Mel cepstrums

(Figure 5C) from temporal electrodes (median = 0.41 ± 0.09)

were significantly higher than from frontal electrodes (median =

0.40± 0.11). Decoding using all electrodes (median = 0.46± 0.09)

achieved significantly higher correlations than using only frontal or

temporal electrodes.

Pearson correlations of indirectly decoded Mel cepstrums

(Figure 5D) from temporal electrodes using a fine-tuned DNN

(median = 0.38± 0.11) were significantly higher than from frontal

electrodes (median = 0.36 ± 0.12). Decoding correlations using

all electrodes (median = 0.40± 0.11) achieved significantly higher

correlations than using only frontal or temporal electrodes.

4. Discussion

We evaluated different linear methods for predicting speech

from ECoG cortical activity. Our findings showed a similar

performance for all linear models, vastly better than chance. In

particular, PLS regression, which was previously used for motor

BCIs (Chao et al., 2010; Eliseyev et al., 2012), was evaluated for the

first time for speech decoding from cortical activity. Our findings

are consistent and extend a previous study aiming at decoding

spectrograms from ECoG activity (Martin et al., 2014). The more

compact latent space used by the PLS regression makes it a good

candidate for a speech BCI compared to a linear regression using

PCA, as it should reduce overfitting and offer lower dimensional

controls for the user.

In order to run the decoding models, the dimensionality of

the neural data should first be reduced. We investigated both PCA

and PLS reductions. Our results showed that PCA-based linear

decoding of acoustic features of speech improved with the number

of PCA components, with a maximum at 100 components for the

Mel cepstrum and 200 components for the F0. We did not test

more features, as the 256-GB memory of our computing server was

maxed out. In these experiments, the PCA was computed before

concatenating frames for time context, as a preliminary experiment

showed that computing PCA after temporal context decreased

decoding correlations. On the other hand, feature reduction using

PLS showed best correlation for 12–18 components. This cannot be

directly compared with the PCA results, as the PLS reduction was

computed after concatenating frames for time context. However, in

order to assess the best feature representation for decoding, the PLS

reduction showed a much more compact representation for similar

decoding performance, with 12 components appearing as a good

number for designing a speech BCI. This result can be paralleled

with previous work reporting intelligible speech reconstruction

from 10 to 12 articulatory trajectories (Bocquelet et al., 2014).

We investigated the influence of the time context window of

neural activity used for decoding acoustic and articulatory features

of speech. Our findings showed that increasing the size of this

window improved decoding, up to 210ms.While further increasing
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FIGURE 5

Comparison of frontal and temporal electrodes for decoding of speech from P5 dataset. (A) Map of frontal (blue) and temporal (red) electrodes of P5

dataset. (B) Pearson correlations of articulatory trajectories decoded by a PLS regression with 12 components from either frontal, temporal, or all

electrodes (median correlations r = 0.24, r = 0.20, r = 0.25 for frontal, temporal, and all electrodes, respectively). (C) Pearson correlations of Mel

cepstral coe�cients decoded by a PLS regression with 12 components from either frontal, temporal, or all electrodes (median correlations r = 0.39,

r = 0.40, r = 0.45 for frontal, temporal, and all electrodes, respectively). (D) Pearson correlations of Mel cepstral coe�cients predicted from decoded

articulatory trajectories using an articulatory-to-acoustic DNN from either frontal, temporal, or all electrodes (median correlations r = 0.38, r = 0.38,

r = 0.41 for frontal, temporal, and all electrodes respectively). Statistical significance computed using Quade-Conover. Quade tests: p < 0.001

[t(2,1258) > 30.5]. Conover comparisons for (B–D): n.s: p ≥ 0.05 [(B): t(1258) = 0.8], ***p < 0.001 [(B–D): t(1258) > 3.6]. Arrows indicate best accuracies.

the time window might still improve decoding, we could not test

it on the whole dataset as it was maxing out the RAM of our

computing server. However, on prior experiments on a smaller

subset of our dataset, we found that increasing time context up to

310 ms actually decreased decoding correlations compared to 210

ms context. By evaluating the optimal time delay between neural

activity and speech, we found that best decoding was achieved by

using neural activity from the past 210 ms. This result tends to

show that speech was actually decoded from neural activity related

to speech intent more than auditory and sensory feedback. On a

practical side, decoding speech from that optimal time window

would be real-time compatible for a closed-loop speech BCI.

Cortical activity related to speech articulators is mainly found

in frontal areas, while activity related to acoustic processing is

predominantly found in temporal areas. Although the differences

were small, we found that decoding acoustic features of speech

from neural activity performed significantly better using temporal

electrodes than frontal electrodes, and that decoding articulatory

trajectories from neural activity performed significantly better

using frontal electrodes than temporal electrodes. For both acoustic

and articulatory speech features however, using all electrodes for

speech decoding performed significantly better than using only

frontal or temporal electrodes. Therefore, frontal and temporal

electrodes contain at least some non-overlapping information

about the representation of produced speech, which further

supports the current understanding of cortical mechanisms of

speech as distributed cortical processes across frontal and temporal

regions (Hickok and Poeppel, 2007; Tourville and Guenther, 2011).

A speech BCI might benefit from considering cortical signals

distributed over multiple areas.

Finally, we compared two decoding paradigms: (1) direct

decoding of acoustic features of speech using linear methods,

and (2) indirect decoding of acoustic features of speech by

first decoding articulatory trajectories from cortical activity using

linear methods and feeding them to a DNN-based articulatory-

to-acoustic synthesizer. We found that fine tuning the pretrained

articulatory-to-acoustic DNN on the participant data was essential

to get a good performance of indirect decoding. Yet, direct

decoding performed better than indirect decoding in opposition

with previous work using neural networks (Anumanchipalli et al.,

2019). This discrepancy could possibly be due to a difference

in the quality of the reconstruction of articulatory trajectories

from ECoG, with a superiority of DNN-based decoder (achieving

correlations around 0.65) as compared to the linear decoders
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used in the present study (achieving correlations around 0.25 as

shown in Figure 4D). However such difference was not observed

for direct Mel cepstrum reconstruction (with correlations of 0.55

with DNNs and 0.45 with linear methods) as supported by

recent near real-time speech decoding studies (Anumanchipalli

et al., 2019; Makin et al., 2020; Moses et al., 2021). Another

possible reason for the better direct decoding could be a

suboptimal estimation of the articulatory trajectories using DTW.

While we checked that DTW provided coherent resynthesis

after alignment of BY2014 with P5 corpus, an acoustic-to-

articulatory inversion method using DNN trained on multiple

datasets could be more robust for indirect speech reconstruction

(Anumanchipalli et al., 2019).

The direct and indirect decoding methods used in this study

as well as the data processing are all compatible with real-

time use for a natural speech BCI, including speech synthesis

from the Mel cepstral coefficients and F0, which would allow

continuous and arbitrary speech reconstruction from speech-

related cortical activity with a minimal latency. However, we did

not achieve intelligibility using linear methods (two examples are

provided in Supplementary material: audio 1 contains a set of

decoded French vowels “/a/ /i/ /u/” and audio 2 contains the

decoded French sentence “C’est désormais chose faite”). We believe

that real-time compatible neural networks may improve speech

decoding from cortical activity. In order to remain compatible

with a natural speech BCI, those would have to be designed

to predict acoustic features of speech frame by frame with a

millisecond-scale latency.
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