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Ovarian cancer is one of the most common reproductive system tumors. The
incidence of ovarian cancer in China is on the rise. Poly(ADP-ribose) polymerase
(PARP) inhibitor (PARPi) is a DNA repair enzyme associated with DNA damage
repair. PARPi takes PARP as a target to kill tumor cells, especially for tumors with
homologous recombination (HR) dysfunction. Currently, PARPi has been widely
used in clinical practice, mainly for themaintenance of advanced ovarian epithelial
cancer. The intrinsic or acquired drug resistance of PARPi has gradually become an
important clinical problem with the wide application of PARPi. This review
summarizes the mechanisms of PARPi resistance and the current progress on
PARPi-based combination strategies.
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1 Introduction

Ovarian cancer (OC) is one of the most common gynecological malignancies. OC has the
worst prognosis and the highest mortality. Over 19,000 new cases of OC and 12,000 deaths
were estimated in 2022 in the United States alone according to the American Cancer Society
(Siegel et al., 2022). OC is the seventh most common type of malignant tumor in women and
the eighth cause of mortality in them worldwide (Gaona-Luviano et al., 2020). Early-stage
patients have a better prognosis, but most patients are diagnosed at an advanced stage.
Epithelial OC accounts for about 80% in advanced-stage patients. Surgical debulking and
platinum-based chemotherapy (such as carboplatin and paclitaxel) are recognized first-line
treatment regimens. Yet, the long-term results of these treatments are not satisfactory.

DNA damage repair defects exist in all kinds of tumor cells. It is one of the mechanisms
of tumor initiation and tumor therapy. The protein encoded by the BRCA gene is involved in
the repair of DNA double-strand damage through the homologous recombination (HR)
pathway. Breast cancer 1/2 gene (BRCA1/2) and others involved in homologous
recombination repair (HRR) gene mutation or function can cause homologous
recombination deficiency (HRD), causing malignant transformation in cells (Chiappa
et al., 2021). Through the “synthetic lethality” mechanism, poly(ADP-ribose) polymerase
inhibitor (PARPi) blocks the repair of DNA single-strand breaks in tumor cells with HRD,
accumulating a large number of DNA double-strand breaks (DSBs), leading to the death of
tumor cells, and thus showing significant anti-tumor activity in patients with HRR
dysfunction (Kim et al., 2021). PARPi has emerged as a molecularly targeted therapeutic
strategy for OC. Studies have shown that PARPis can significantly improve the progression-
free survival (PFS) and overall survival (OS) of OC, especially in newly diagnosed and
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recurrent OC patients with BRCAmutations (Gong et al., 2020; Kim
et al., 2021; Spiegel et al., 2021). Thus, PARPis have been widely used
in BRCA-mutated (BRCAm) OC (Gong et al., 2020; Spiegel et al.,
2021). Currently, four different PARPis have been approved by the
US Food and Drug Administration (FDA) to treat OC, including
olaparib, niraparib, rucaparib, and talazoparib (Xu and Li, 2021).
PARPi has been shown to effectively increase PFS and OS in a broad
population. While the intrinsic or acquired drug resistance of PARPi
has gradually become an important clinical problem, this review
summarizes the mechanisms of PARPi resistance (Figure 1), the
current progress on combination strategies to overcome PARPi
resistance, and the evaluation of PARPi resistance.

2 Mechanisms of resistance to PARPi

2.1 Reactivation of HR

Restoration of HRR function is an important mechanism for the
PARPi resistance. It can be achieved through reversion mutations of
HRR-related genes, reverse methylation of BRCA genes, and
imbalance of HR and non-homologous terminal junction (NHEJ)
caused by the deletion of p53 binding protein 1 (53BP1) and related
effector molecules.

2.1.1 Reversion mutations of HRR-related genes
The reversion mutations of HRR-related genes include BRCA1,

BRCA2, RAD51C, RAD51D, and PALB2, which lead to the
reactivation of the HRR function (Castroviejo-Bermejo et al.,
2018; Nesic et al., 2021; Darabi et al., 2022). CCAAT/enhancer-
binding protein β (C/EBPβ) is a transcription factor and also a key
regulator of the HR pathway. C/EBPβ targeted and upregulated
multiple HR genes, inducing restoration of HR capacity and
mediating acquired PARPi resistance. PARPi responsiveness was
inversely correlated with the expression of C/EBPβ in HR-proficient
conditions, both in vitro and in vivo. High C/EBPβ expression
enhanced PARPi resistance. PARPi treatment in turn induced
C/EBPβ expression (Tan et al., 2021). Targeting C/EBPβ might
induce HR deficiency and overcome PARPi resistance accordingly.
Some mutations revert to the phenotype of the original wild-type
gene, known as reversion mutations, which are the most important
of the secondary mutations. Related mutations of BRCA genes
mainly include pathogenic site restoration mutation, deletion or
insertion of pathogenic site region leading to the reopening of gene
open reading frame, exon mutation leading to the generation of
splice variants, and primary mutation leading to drug resistance.
Many cases have shown that BRCA-related reversion mutations can
be observed after tumor progression by secondary test of circulating
tumor cell DNA (ctDNA) in patients, who are with tumor

FIGURE 1
Mechanisms of resistance to PARP inhibitors. (A) Mechanism of PARP inhibitors. (B) C/EBPβ directly targeted and upregulated multiple HR genes,
thereby inducing restoration of HR capacity and mediating acquired PARPi resistance. (C) Reverse methylation of BRCA genes leads to HRR function
recovery. (D) 53BP1 contributed to the imbalance of HR and non-homologous terminal junction (NHEJ). (E) Loss of function of PARP1. (F) Stability of the
replication fork and ultimately leading to PARPi resistance. (G) Overexpression of P-glycoprotein, encoded by the ABCB1 gene, leading to the
increase of intracellular drug expulsion.
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progression during PARPi treatment, compared with before
treatment initiation. Continuous collection of ctDNA can provide
clues about the significance of individualized treatment for
patients with tumor progression after PARPi treatment
(Tan et al., 2021). For example, patients with reversion
mutations in the BRCA gene in their secondary tests may be
insensitive to PARPi. It is also supported by clinical evidence
that reversion mutations in BRCA genes lead to PARPi
resistance (Lin et al., 2019).

2.1.2 Reverse methylation of BRCA genes
HRR function recovery can also be achieved by reversing

BRCA gene promoter methylation. Loss of promoter
methylation leads to increased expression of proteins related
to DNA damage repair. It improves the DNA damage repair
ability of drug-resistant cells and invalidates the effect of PARPi,
leading to drug resistance (Ter Brugge et al., 2016; Weigelt et al.,
2017).

2.1.3 Imbalance of HR and non-homologous
terminal junction (NHEJ)

53BP1 interacts with p53 to repair DNA damage and prevent the
occurrence of tumors. 53BP1 plays an important role in the balance

between HR and NHEJ. The study found that 53BP1 deletion
restored HRR activity in cells with BRCA1 gene mutation,
possibly because 53BP1 deletion promoted the processing of
terminal DNA to form single-stranded DNA and initiate HRR
(Nacson et al., 2018). In the setting of 53BP1 KO, hypomorphic
BRCA1 proteins are activated downstream of end resection, which
promotes RAD51 loading and PARPi resistance. While in BRCA2-
mutated cells, 53BP1 deletion does not cause PARPi resistance (Cruz
et al., 2018).

2.1.4 Loss of function of PARP1
The main targets of PARPi are polyadenosine diphosphate

ribose polymerase (PARP) 1 and PARP2. The function change
caused by mutations of these two targets will cause PARPi
resistance. Studies have found that the mutation of the PARP1
gene can affect the ability of PARP1 to bind DNA damage sites,
resulting in reduced capture ability of PARP and reduced
binding of PARPi, leading to drug resistance (Pettitt et al., 2018).
In addition to the point mutation of the PARP gene, other factors
such as the high expression of proto-oncogene c-Met mediate
PARP1 phosphorylation, resulting in increased enzyme activity of
PARP1 and reduced PARPi binding, leading to drug resistance of
PARPi (Pettitt et al., 2018).

TABLE 1 Overview of clinical trials assessing treatments for ovarian cancer patients resistant to PARP inhibitors.

Category Study name or
identifier

Phase PARPi Combination Population Results Study
status

Replace other PARPis OReO/ENGOT-
Ov38 NCT03106987

IIIb Olaparib - Patients with epithelial
ovarian cancer previously
treated with a PARPi and

responding to repeat
platinum chemotherapy

PFS 5.3 months vs.
2.8 months (olaparib group

vs. placebo group)

Completed

Antiangiogenic
agents

NCT02354131 II Niraparib Bevacizumab Platinum-sensitive recurrent
ovarian cancer

PFS 11.9 months vs.
5.5 months (combination
group vs. nilaparib alone)

Completed

EVOLVE II Olaparib Cediranib Patients with high-grade
serous ovarian cancer who
relapsed or progressed after
PARPi maintenance therapy

16-week PFS rate 55%, 50%,
and 39%, respectively
(platinum-sensitive group,
platinum-resistant group,
and progression group after
standard chemotherapy)

Completed

Immune checkpoint
inhibitors (ICIs)

NCT02657889 I/II Nilaparib Pembrolizumab Patients with recurrent
ovarian cancer

ORR was 18% (90% CI,
11%–29%), with a disease
control rate of 65% (90% CI,
54%–75%), including three

(5%) with confirmed
complete responses, eight
(13%) with confirmed

partial responses, 28 (47%)
with stable disease, and 20
(33%) with progressive

disease

Completed

MEDIOLA
NCT02734004

I/II Olaparib Dulvalumab Patients with BRCA2-
mutated metastatic breast

and ovarian cancer

The 28-week disease control
rate (DCR) was 65.6%, and
the ORR was 71.9%, with

7 patients achieving
complete remission (CR)

Recruiting

Cell cycle checkpoint
inhibitors

NCT03057145 I Olaparib Prexasertib Advanced solid tumors Four of 18 BRCA1-mutant
patients who were P ARPi-
resistant achieved a partial

response

Completed
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2.2 Increased drug efflux

Overexpression of the drug efflux protein is also considered
to be one of the causes of PARPi resistance (Biegala et al., 2021).
One study of recurrent high-grade ovarian serous cancer found
that P-glycoprotein (P-gp) was overexpressed in about 56% of
recurrent patients. P-gp is also called multi-drug resistance
protein 1 (MRD1), encoded by the ABCB1 gene. Its
overexpression will lead to the increase of intracellular drug
expulsion and the decrease of uptake. Thus, the intracellular
drug concentration is reduced, and the result is PARPi resistant
(Incorvaia et al., 2017).

2.3 Poly(ADP-ribose) glycohydrolase (PARG)

Poly(ADP-ribose) glycohydrolase (PARG) reverses the
action of PARP enzymes by hydrolyzing PAR ribose bonds
following DNA damage. Similarly, the positive role of PARG
in DNA replication and repair leads to increased sensitivity of
PARG-deficient cells to DNA-damaging agents. PARG-deficient
cells presented reduced efficiency of double-strand break (DSB)
and single-strand break (SSB) repair (Biegala et al., 2021). It
suggests PARG could be a potential target in OC (Matanes et al.,
2021).

2.4 Stabilization of the replication forks

In the special anti-tumor mechanism that replication forks
protect PARPi, sufficient fatal DNA damage must be formed to
start the apoptosis process. Thus, DNA damage, especially the
reduction of fatal DNA damage, is one of the important reasons
for PARPi drug resistance. In addition, the increased stability of
replication forks is one of the important reasons for the
reduction of DNA damage (Kharat et al., 2020). Most
typically, the deletion of Pax2 reduces the recruitment of
meiotic 11 (MRE11) to the stagnant replication fork. It avoids
degradation of the replication fork, maintains the stability of the
replication fork, and ultimately leads to PARPi resistance (He
et al., 2018).

2.5 Miscellaneous mechanisms

The Wnt signaling pathway is a group of signal transduction
pathways provoked by the binding of ligand proteins Wnt and
membrane protein receptors. When this pathway is abnormally
activated, β-catenin expression increases, promoting tumor
growth, invasion, and metastasis. This is associated with the
formation of platinum resistance and reduced olaparib and
rucaparib sensitivity. Pyrvinium pamoate, an inhibition of
Wnt signaling, can downregulate the expression of β-catenin
(Hu et al., 2021). The use of pyrvinium pamoate can overcome
PARPi-resistance. Yamamoto et al. (2019) found that the
excessive activation of the Wnt/β-catenin signaling pathway is
associated with PARP resistance in tumor cells (Yamamoto et al.,
2019).

3 Strategies to reverse resistance

3.1 Replace other PARPis

Different PARPis have different cell membrane penetration,
which affect the drug concentration in tissues. Compared with
olaparib, the apparent permeability (PAPP) of niraparib is
higher. Therefore, niraparib has higher cell membrane
penetrability. Niraparib in OC tissue and intracranial drug
concentration is higher (Sun et al., 2018). Correspondingly, the
percentages of the CSF/plasma concentration (AUC 1–4h) in animal
models administered with different doses of PARPi (pamiparib
10 mg/kg, niraparib 50 mg/kg, and olaparib 50 mg/kg) orally were
18%, 9%, and 2%, respectively. Thus, compared with other PARPi,
pamiparib has higher membrane permeability and can better
penetrate the blood–brain barrier (Xiong et al., 2020).
Pharmacological differences may partly explain why PARPi may
still be effective when replaced with another PARPi. The OReO/
ENGOT-Ov38 study, conducted in 2017, is a randomized, double-
blind, placebo-controlled multicenter phase IIIb clinical trial. It was
the first to assess tumor progression on or after PARPi maintenance
therapy. This study suggests that patients who respond to initial
maintenance therapy can still benefit significantly from restarting
the same PARPi maintenance therapy after a period of PARPi
resistance discontinuation (Tew et al., 2020).

Upregulation of p-glycoprotein expression is one of the potential
resistance mechanisms of PARPi. The selection of a kind of PARPi
with a non-p-glycoprotein substrate can avoid the reduction of
intracellular drug concentration caused by the drug pump, thus
reducing the occurrence of drug resistance. Pamiparib is the only
kind of PARPi with a non-p-glycoprotein substrate at present, which
has certain anti-drug resistance (Xiong et al., 2020). This may be
related to its unique drug structure and pharmacokinetics. At
present, further translational medicine and clinical research data
are needed to overcome PARPi resistance in tumor cells caused by
drug efflux.

3.2 Anti-angiogenic agents

Studies have found that anti-angiogenic drugs can cause cell
hypoxia and induce the downregulation of the HRR signaling
pathway leading to HRD. It suggests that there may be some
clinical benefit from the combination of antiangiogenic drugs and
PARPi in patients with tumor progression after PARPi maintenance
therapy (Lin et al., 2018; Bizzaro et al., 2021). A phase II clinical trial
(NCT02354131) (Mirza et al., 2019) investigated the efficacy of
compared niraparib and bevacizumab versus niraparib alone in
platinum-sensitive recurrent OC. They found a significant
improvement in PFS in the combination group compared with
nilaparib alone (11.9 months vs. 5.5 months). Patients received
oral niraparib 300 mg alone once daily or with intravenous
bevacizumab 15 mg/kg once every 3 weeks until disease
progression. EVOLVE study (Lheureux et al., 2020), published in
2020, is a multicenter, open, single-arm phase II trial of retreatment
with cediranib combined with olaparib after PARPi resistance. A
total of 34 patients with high-grade serous OC who relapsed or
progressed after PARPi maintenance therapy were enrolled in the
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study. They were divided into a platinum-sensitive group, a
platinum-resistant group, and a progression group after standard
chemotherapy. Patients received olaparib tablets 300 mg twice daily
with cediranib 20 mg once daily until progression or unacceptable
toxicity. The study endpoint was a 16-week PFS rate, and 19% of the
patients had reversion mutations in BRCA1, BRCA2, and RAD51B
genes. In addition, 16% had CCNE1 gene amplification, 15% had
ABCB1 gene upregulation, and 7% had SLFN11 gene
downregulation. The 16-week PFS rates of the three groups were
55%, 50%, and 39%, respectively. The patients with HRR gene
reverse mutation and ABCB1 gene upregulation had a poor
prognosis. Subsequent treatments should be selected according to
the HRR status. So, secondary genetic testing for PARPi-resistant
patients is helpful for the selection of clinical treatment and the
adjustment of the use of PARPi. In PARPi-resistant patients, the
combination of antiangiogenic drugs and PARPi remains effective.
The possible mechanism is that the antiangiogenic drug cediranib
inhibits the expression of BRCA1/2 and RAD51 genes by
transcriptional inhibition and inducing hypoxia (Pham et al., 2021).

3.3 Immune checkpoint inhibitors (ICIs)

In preclinical and early-stage clinical studies, PARPi has been
found to enhance the response rate of immunotherapy by inhibiting
DNA repair and producing DNA damage, promoting neoantigen
release, increasing tumor mutation load, and enhancing
programmed cell death ligand 1 (PD L1) expression (Maiorano
et al., 2022). Whether the combination of PARPi and immune
checkpoint inhibitor (ICI) can produce synergistic effects
depends on two premises. One is the ability to increase DNA
damage and produce cytoplasmic DNA. If PARPi resistance is
caused by HRR function recovery, this premise is weakened. The
other is the multiple immunoregulatory effects of PARPi, including
T-lymphocyte differentiation, macrophage polarization, increased
susceptibility to natural killer cell-mediated death, and upregulation
of PD L1 (Chiappa et al., 2021). ICI can improve tumor sensitivity to
PARPi. PARPi can induce tumor response to ICI by exacerbating
DNA damage. Relevant clinical trials have been conducted and
obtained good results. The phase I/II clinical trial (NCT02657889)
(Konstantinopoulos et al., 2019) assessed the safety and efficacy of
nilaparib in combination with pembrolizumab in patients with
recurrent OC and determined the recommended phase II dose
(RP2D) for clinical trials. RP2D was 200 mg of oral niraparib
once daily and 200 mg of intravenous pembrolizumab on day
1 of each 21-day cycle. The MEDIOLA trial (NCT02734004)
(Domchek et al., 2020) evaluated the safety and activity of
olaparib in combination with dulvalumab in patients with
BRCA2-mutated metastatic breast and OC. It showed that,
among 32 patients with OC, the 28-week disease control rate
(DCR) was 65.6% and the ORR was 71.9%, with seven patients
achieving complete remission (CR). In the MEDIOLA trial, patients
received 300 mg olaparib in tablet form orally twice daily for 4 weeks
and thereafter a combination of olaparib 300 mg twice daily and
durvalumab 1.5 g via intravenous infusion every 4 weeks until
disease progression. In addition, PARPi combined with immune
checkpoint inhibitors may still be effective in restoring the efficacy of
HRR (Peyraud and Italiano, 2020).

3.4 Cell cycle checkpoint inhibitors

WEE1 is a regulatory molecule of the G2/M phase of the cell
cycle checkpoint. When activated, WEE1 leads to G2/M cell cycle
arrest and CDK1 phosphorylation, thus preventing HRR. Preclinical
evidence suggests that this combination therapy has a synergistic
effect (Haynes et al., 2018). In 2021, ASCO reported a phase II study
evaluating Wee1 inhibitor (Adavosertib) monotherapy or a
combination of PARPi in PARPi-resistant OC. The results
showed that both the combination group and the monotherapy
group were effective in PARPi-resistant OC (ORR 29%vs.23%)
(Lheureux et al., 2021). As an activating protein of WEE1,
CHK1 is another target that can be combined with PARPi. A
phase I combination study of the CHK1 inhibitor prexasertib
and the PARP inhibitor olaparib in HGSOC showed that four of
18 patients with BRCA1-mutant, PARPi-resistant HGSOC,
achieved partial responses (Do et al., 2021). This study followed
a 3 + 3 design with a 7-day lead-in of olaparib alone, followed by 28-
day cycles with prexasertib administered on days 1 and 15 in
combination with an attenuated dose of olaparib on days
1–5 and 15–19. Another phase I trial of CHK1 inhibitors in
combination with PAPR inhibitors is also underway in OC with
BRCA mutations that have previously received PAPR inhibitors
(NCT03057145) (Smith et al., 2021). ATR is the upstream pathway
of CHK1, and ATR is present in PARPi-resistant BRCA mutant
cells. ASCO reported a study of PARPi combined with ATR
inhibitor (ceralasertib) in PARPi-resistant relapsed OC, which
showed clinical benefit (ORR 46%) (Shah et al., 2021).

4 Prediction of PARPI sensitivity

Cell-free DNA (cfDNA) is mainly released after cell necrosis, and
most of them are derived from normal cells. In cancer patients,
cfDNA is partially derived from tumor cells, and it also can be derived
from other cells in the tumor microenvironment. CfDNA from dying
tumor cells can metastasize to nearby cells and cells of distant organs
and induce DNA damage and inflammatory responses through
genomic integration (Hu et al., 2022). Weigelt et al. studied
cfDNA from 24 prospectively accrued BRCA1- or BRCA2-
germline mutant patients. They included 19 platinum-resistant/
refractory OC and five platinum and/or PARP inhibitor pre-
treated metastatic breast cancer patients. They found that diverse
and often polyclonal putative BRCA1 or BRCA2 reversion mutations
were identified in cfDNA from four OC patients (21%) and two breast
cancer patients (Weigelt et al., 2017). BRCA reversion mutations
detected can predict drug resistance to rucaparib in HGSOC patients.
This suggests cfDNA might be an effective way for evaluating and
monitoring resistance of olaparib (Lin et al., 2019; Hu et al., 2022).

5 Future directions

PARPi maintenance therapy is a crucial part of the whole
treatment management of OC. The emergence of PARPi has
brought great innovation in targeted therapy of OC. Like
chemotherapeutic drugs, drug resistance of PARPi is an
inevitable clinical challenge. The mechanisms of PARPi resistance
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are complex and diverse. Secondary testing of cfDNA and related
genes can help screen people who are likely to benefit again and
formulate re-maintenance treatment. Overcoming PARPi resistance
depends on the combination with other drugs (Table 1). In addition,
the appropriate dose and administration of each drug should be
determined to minimize adverse events while ensuring maximum
benefits and outcomes. However, most of the combination
treatment schemes are only in the early stage of clinical trials.
Further exploration and more clinical practice data are needed to
support the dose, toxicity, side effects, efficacy, and population
screening.

6 Conclusion

The selection of potential combination drugs is the key to
overcoming PARPi resistance. The most effective combination
regimen for PARPi-resistant patient populations remains unclear.
Predicting and assessing adaptive responses to genomic or
epigenetic changes may help rationally select combination
therapies and avoid acquired resistance. The ultimate clinical
goals are to improve the prognosis of OC, optimize the
combination therapy based on specific tumor molecular
mechanisms, and achieve the synergistic effect of drugs.
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