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ABSTRACT: 

Colourful and ever-changing: Graffiti can be considered the urban chameleon skin. At the Donaukanal (Eng. Danube Channel), 

Vienna's central waterway and one of the largest and most active graffiti-scapes worldwide, this metaphor applies like hardly anywhere 

else. Every day a multitude of graffiti is destroyed by the creation of new works. Recently, efforts have been made to mitigate this 

constant loss of cultural heritage along the Donaukanal by systematically documenting the graffiti, mainly using photography and 

photogrammetry. However, keeping track of the newly added works is very time-consuming and often like finding needles in a 

haystack, considering the large extent and high volatility of the monitored area. Thus, an automated graffiti change detection would 

significantly reduce the effort and avoid overlooking graffiti.  

This contribution outlines the main challenges in image-based change detection for cultural heritage and proposes a hybrid graffiti 

change detection method. The investigated method exploits and combines an established pixel-based change detection algorithm, the 

Iteratively Multivariate Alteration Detection, with a novel descriptor-based method. The latter relies on image features, rather than 

pixels as analysis unit and can robustly filter false alarms from the high-performing but noise-prone pixel-based approach. Overall, the 

results indicate that the proposed method can largely automate image-based change detection of graffiti-scapes. It can uncover graffiti-

related changes and robustly distinguish them from other image differences such as shadows but tends to overlook small-scale graffiti, 

indicating the need for further fine-tuning.  

1. INTRODUCTION 

Graffiti are full of contrasts. Although short-lived, sometimes 
only for several hours, they are omnipresent and significantly 
shape the appearance of our urban environments. Their volatility 
and colourfulness justify drawing parallels to chameleons 
(Verhoeven et al., 2023), which primarily use their colour-
changing skin to communicate social signals (Ligon and 

McGraw, 2013). Just like the pigments of chameleons give 
insights into their behaviour, graffiti might act as a mirror and 
magnifying glass to human society. Despite some metaphorical 
similarities, one distinct difference between them stands out: 
unlike the colourful lizards, "contemporary" graffiti are hardly 
documented for scientific purposes. Properly documenting this 
highly fluctuating, extensive phenomenon requires significant 
resources, which are often hard to come by given that graffiti are 
often not considered cultural heritage but vandalism by the 

general public. Therefore, it is not surprising that documentation 
of graffiti has never received the academic attention some 
scholars demanded (Novak, 2014, Masimiliani, 2008). In 2021, 
project INDIGO (INventory and DIsseminate graffiti along the 
dOnaukanal), a two-year academic graffiti-centred research 
project, set out to change that.  

Launched in September 2021, project INDIGO aims to introduce 

more scientific rigour in graffiti research via the development of 
methods to optimise the systematic photographic documentation, 
monitoring and analysis of graffiti-scapes (Verhoeven et al., 
2022). Documentation implies recording every graffito’s 
geometrical, spectral, geographical and contentual aspects. 
INDIGO focuses on the graffiti along Vienna's Donaukanal 
(Eng. Danube Channel; Figure 1), a central waterway famous for 
its graffiti-covered walls, which constitute one of the largest 

uninterrupted graffiti-scapes in the world. Tools to colour-
calibrate the digital photographs (Molada-Tebar et al., submitted) 
and to automatically turn these into high-resolution and 

georeferenced graffiti orthophotos (Wild et al., 2022, 2023) have 
been developed alongside a graffiti-centric thesaurus which 
supports the categorisation and annotation of the inventoried 
graffiti photos (Schlegel et al., submitted). While the above 
developments enable graffiti analysis at a large-scale and in great 
detail, their full potential is not yet exploited because of a critical 
bottleneck: Many, primarily smaller, graffiti disappear before 
they are documented or even noticed. This high volatility is 

especially pronounced at Donaukanal's Wienerwände (Eng. 
Vienna walls), legal graffiti surfaces where often only a few 
hours to maximally a couple of days separate a graffito’s creation 
and coverage.  

Figure 1. INDIGO's research area along Vienna's Donaukanal. 
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To mitigate gaps in the documentation, project INDIGO has so 

far followed two systematic monitoring strategies. First, new 
graffiti are discovered by regularly walking or biking along 
INDIGO's research area, a route totalling ca. 11 km. This task 
solely relies on the photographer's memory. One could also 
consider detecting changes in the field by comparing previously 
acquired photos with the current graffiti cover via a mobile 
device. However, this approach has proven too time-consuming 
in practice (Verhoeven et al., submitted). A second method 

involves checking the social media entries of graffiti creators 
known to be active along the Donaukanal. Browsing their 
Instagram profiles allows for relatively efficient graffiti tracking. 
To optimise this social-media-based change detection, 
INDIGO’s own hashtag, "#indigodonaukanal", has been 
promoted among graffitists. However, its uptake has been rather 
disappointing as it is only used by a few graffiti creators. 
 
Once a new graffito is spotted, either online or onsite, its location 

gets marked in a mobile GIS system which guides the photo tours 
that take place at least once per week. While both methods are 
successfully applied in finding large graffiti, they fail when it 
comes to less striking creations like tags or political slogans, as 
they are shared less extensively via social media and are harder 
to memorise or see onsite. This leads to a documentation bias 
towards flashy and more sizeable works, counteracting the 
scientific approach that INDIGO envisions (Verhoeven et al., 

submitted). The current strategies also require significant human 
resources, besides being slow and tedious. Thus, it became clear 
that exhaustive documentation and digital safeguarding of the 
Donaukanal’s graffiti-scape would be impossible without an 
automated graffiti change detection approach.  
 
Many automated change detection techniques have emerged in 
recent years, mainly from satellite-based remote sensing and 

video surveillance (Radke et al., 2005). The latter was also the 
basis for existing graffiti change detection studies (Tombari et al., 
2008; Di Stefano, 2008; Angiati et al., 2005). Those three studies 
used footage from video surveillance systems to automatically 
detect and identify "vandals" during their act of "vandalism". The 
change detection was thus more focused on the graffiti creation 
act rather than the actual final graffito. Despite exhibiting 
accurate results, these video-based methods cannot be applied 

along the Donaukanal. Setting up video surveillance would be 
extremely costly, logistically challenging and highly 
questionable, if not illegal, from a privacy protection perspective.  
 
More feasible are short but frequent graffiti monitoring tours 
capturing the whole research area, for example, by mounting 
camera(s) on a bicycle or the biker's helmet. In that way, images 
covering the entire research area can be acquired in 
approximately one hour. After orienting these photos with an 

incremental Structure from Motion approach, creating sets of co-
registered images for the entire area of interest becomes possible. 
The execution of this photo acquisition strategy is not trivial and 
requires bespoke photographic, logistical and photogrammetric 
solutions. Despite their importance and relevance, these solutions 
will only be sketched in this contribution (Section 2.1). The 
primary focus of this study is the development of a graffiti-aware 
change detection algorithm. 

 
1.1 Challenges in image-based graffiti change detection 

Change detection was defined by Singh (1989, p. 1) as "the 
process of identifying differences in the state of an object or 

phenomenon by observing it at different times". Following this 
definition, let us consider the example in Figure 2: two co-

registered images of the same graffiti scene taken at different 

times (Figures 2a and 2b).  

 
Figure 2. a) and b): co-registered images from the same graffiti 
scene at the Donaukanal taken on 12-10-2022 and 12-11-2022, 

respectively.  
c): absolute differences in grey values between a) and b).  

d): manually generated, ideal change map where black denotes 

change.  
 
The human visual system allows for relatively quick and accurate 
identification of changes in the depicted graffiti cover, implicitly 
separating them from other differences in the image, such as 
shadows. However, this is a non-trivial task to be automated. The 
most obvious approach would probably be to subtract Figure 2b) 
from 2a) and classify changes between them based on the 

magnitude of the differences. The rationale is that the larger the 
difference, the larger the probability of a changed scene. While 
this method might produce appealing results in a laboratory 
setting with controlled illumination conditions and no 
environmental influences, it fails in real-world scenes. This is 
demonstrated in Figure 2c), where sunlit, mostly unchanged areas 
exhibit the largest differences while regions in the shade result in 
grey value encoded deviations close to zero. Thus, the main 

driver for pixel differences is not changed graffiti but the 
illumination conditions.  
 
Pixel differencing is, of course, by no means considered state-of-
the-art when it comes to image-based change detection. Still, it 
highlights that mapping radiometric differences in images is 
straightforward, whereas classifying them as relevant and 
irrelevant is the real challenge to image-based change detection 

(Bruzzone and Bovolo, 2013). Therefore, let us examine the 
reasons for the differences between the two co-registered images 
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in more detail. For this specific graffiti case, a possible (non-

exhaustive) list of reasons for differing (overlaying) pixel values 
is the following (Figure 3):  
 

• Weather-related: Different weather conditions imply 
different ambient light conditions causing the texture to vary 
daily and even appear dissimilar throughout the day. These 
differences can become especially large between sunny and 
cloudy moments when shadows pose a significant risk of 
being misinterpreted as new graffiti due to substantial 
radiometric differences with relatively sharp transitions. 
Moreover, shadows generated by moving vegetation can 

rapidly change on windy days. Wet walls caused by rain can 
also cause significant alterations between two images. 

• Acquisition-related: Different sensors and camera settings 
may produce significantly differing images. Besides 
camera-related differences, the camera platform plays a 
role. Varying incidence angles can result in spurious 
reflections and occlusions in the photos, and kinematic 
platforms such as bicycles are prone to cause image motion 
blur.  

• Co-registration-related: Even small alignment residuals can 
lead to significant image differences. This is mostly relevant 
for change detection at pixel-level. 

• Object-related: Lastly, changes can also be contentual. 
Although object-related changes should still be 
distinguished into relevant (i.e., graffiti-related) and 
irrelevant (i.e., non-graffiti-related) ones like by-passers, 

tackling this difference is not in the scope of this study.  

 
Figure 3. Sources and examples of differences between two 

overlapping pixels of a co-registered image. 
 
A graffiti-aware change detection framework should be robust 

against all sources of change which are greyed out in Figure 3. 
Therefore, this contribution introduces a hybrid change detection 
framework which is expected to enable an automated change 
monitoring of the graffiti-scape along the Donaukanal. 
 
The following sections briefly outline the image acquisition and 
necessary preprocessing, followed by an explanation of the 
proposed methodology. The performance of the developed 
change detection approach is analysed by applying it to various 

real-world examples gathered along the Donaukanal.  
 

2. METHODS 

The proposed framework exploits and combines two independent 

change detection methods (Figure 4): 
1. The well-established, pixel-based, Iteratively Reweighted 

Multivariate Alteration Detection (IR-MAD; Nielsen, 
2007) 

2. A new descriptor-based change detection algorithm 
 

The methods are expected to balance each other's drawbacks and 

provide robust and automatic identification of new graffiti in 
images. While accurate co-registration is not a strict requirement 
for the descriptor-based approach, the quality of the pixel-based 
IR-MAD is highly dependent on the co-registration accuracy 
achieved during the geometric preprocessing. Therefore the next 
section briefly sketches how nearly pixel-perfect co-registration 
is achieved in a highly automated way. 

 

 
Figure 4. Workflow diagram of the hybrid graffiti change 

detection approach. 
 
2.1 Image acquisition and preprocessing 

Before starting this change detection study, extensive expertise 
in photographing this large graffiti-scape was already present. In 
the Spring of 2021, the entire Donaukanal graffiti-scape was 
photographed with a Nikon D750 and Nikon Z7ii (see Verhoeven 
et al. 2022 for all details). A few months later, the first tests with 
GoPro HERO10 Black action cameras started. Two action 
cameras were mounted on a camera bar, one looking to the left 
and another to the right. This mount was fit to a typical action 

camera handgrip, which allowed the dual-camera construction to 
be handheld while biking along the graffiti-covered walls and 
bridges (Verhoeven et al., submitted). 
 
These initial tests provided much feedback on camera settings, 
biking speed, ideal biking route and potential post-processing 
issues. However, they mainly highlighted three significant issues: 
 

1. A dual GoPro setup is insufficient to guarantee a problem-
free exterior orientation of all the cameras via an SfM 
pipeline. When turning or biking along heavily vegetated 
areas, not enough robust tie points can be extracted, so those 
images usually fail to orient. Because the SfM-based 
orientation of cameras in an extended image network is very 
prone to drift in the estimated positions, these gaps in the 
oriented network also negatively influence the other 

cameras' estimated orientation. 
2. The GoPro has various photo and video modes, each with 

many tuneable settings. Although only the photo interval 
mode was used (at two photos per second), multiple settings 
combinations are still possible. Combined with the different 
weather conditions, these settings – of which a few 
combinations were tried – seem to impact the SfM result 
more than expected. In turn, they also influence the outcome 

of most change detection algorithms. A more systematic 
approach was needed to tackle both issues. 
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3. Biking with only one hand on the steering wheel while 

keeping an eye on the camera construction (to keep it 
steady) and simultaneously avoiding other bikers or walkers 
impacts overall traffic safety and the smoothness of photo 
acquisition negatively. 

 
That is why in September 2022, new tests started with an 
additional GoPro HERO11 Black, which was just released back 
then. The three action cameras were mounted to a biking helmet 

(POC Crane Mips; https://www.pocsports.com/products/crane-
mips) so that either side of the helmet holds a GoPro camera 
whose optical axis is circa 60° horizontally rotated from the front 
(thus sideward- but still forward-looking). A third camera is 
mounted on the rear helmet top and faces backwards. This setup 
allows better imaging of the biking surface and increases the 
range of observation angles for the graffiti-covered surfaces. 
Both outcomes are essential for tackling the image orientation 
problems in corners and vegetated areas mentioned above; they 

also substantially reduce occlusion zones, which is critical when 
a mesh needs to be extracted from the photos. Because the biker 
can hold the steering wheel with both hands and fully concentrate 
on other traffic, overall operation efficiency and safety have 
increased considerably. 
 
However, the number of photos has now grown by 50 %. When 
aiming for an 80 % to 85 % longitudinal overlap between 

successive images, all acquired by the same camera at an 
approximate 4.5 m camera-to-wall distance and a rate of two 
photos per second, the biking speed should be between 14.9 km/h 
to 11.2 km/h. The lower speed is preferred as it minimises motion 
blur and geometrical distortions caused by GoPro's electronic 
rolling shutter. However, one photo tour then lasts about 70 min, 
yielding approximately 8400 images per camera for a total of 
25 000 photographs. Even when one could likely halve the 

number of photos from the backwards-facing camera, orienting 
such a camera network would still take considerable time on 
high-end computer hardware. That is why – after checking that 
the helmet-based approach would work – testing the GoPro 
camera settings and acquiring the images for this study was done 
slightly differently to minimise processing times. 
 
The same three GoPro cameras were mounted inside a frame 

composed of standard camera rig components (Figure 5). The 
cameras were mounted as closely as possible, with the optical 
axes mutually parallel. Every time the weather allowed, photos 
were acquired from the INDIGO test zone, a ca. 250 m stretch 
along the Donaukanal that includes two bridges and a legal 
graffiti area (as part of the Wienerwand) between them. The 
permitted area covers a flat horizontal area directly next to the 
Donaukanal and a ramp leading towards the street parallel to the 
waterway. Graffiti activity is very high here, and several graffiti-

scape control points were determined during a total station survey 
at the start of the project (see Verhoeven et al. 2022). 
 
The GoPro camera settings were changed for every photo 
acquisition to cover all possible camera settings-weather 
combinations (and study – at a later stage – their influence on the 
SfM and image change detection approach). Due to various 
reasons, only nine image acquisitions could be executed in 

November and December 2022, sufficient to cover circa 50 % of 
all possible combinations. More images will be acquired in May  
2023 to cover all possibilities. Once that is done, a follow-up 
paper will report on the influence of these camera settings on 
camera orientation and change detection. This paper does not 
consider the influence of these image acquistion parameters. 
 

 
Figure 5. The POC Crane Mips helmet onto which the three 

cameras can be mounted (left); Three GoPro cameras mounted 
inside a frame composed of standard camera rig components 

(right). 
 
Each of the nine epochs thus counts three GoPro subsets. Every 
subset consists of two photos per second, acquired with the three-
camera frame while walking at a usual 5 km/h pace. During the 
acquisition, the handheld frame was rotated 90° clock- and anti-
clockwise as well as 180°. Most photographs featured a camera 
axis perpendicular to the graffiti-covered walls, but the entire 

ramp was also acquired with oblique or inclined optical axes. 
Such variation in image rotation and scale strengthens the camera 
network (Luhmann et al., 2016), which is especially important 
for such an elongated scene predominantly consisting of 
relatively flat walls. 
 
All camera stations' interior and exterior orientations were 
estimated per epoch using an incremental SfM approach in 
Agisoft Metashape Professional 1.8.4 (Agisoft, 2022). A part of 

INDIGO's second total coverage photo survey, executed in 
October 2023, was used as the base image network. Once an 
epoch got oriented, three textures (one per GoPro subset) were 
generated for the mesh derived from the base image network. 
Given the scene's size, each texture atlas consisted of 5 tiles 
containing 4096 by 4096 pixels per tile. For every texture, the 
same UV parameterisation was used. 
 

At this stage, the Metashape project counted nine epochs, each 
with three textures. Since the exterior orientations of the three 
cameras are almost identical at any moment, intra-epoch textures 
only differ due to the different GoPro settings (and to a smaller 
extent due to dissimilar image blending by Metashape). These 
textures can be used to study the robustness of the change 
detection algorithm to differing sharpness and contrast levels. 
However, real changes in the graffiti-scape must be extracted 

from the inter-epoch textures, which vary due to weather-related, 
acquisition-related and graffiti-related differences. 
 
One could use the entire texture atlas to compute changes 
between intra- and inter-epoch textures. Still, such an approach 
is likely not scalable to extensive scenes like the whole 
Donaukanal, while the layout and seams of the texture patches 
might also negatively influence the change detection algorithm. 

That is why single synthetic photos are generated in Metashape. 
First, a camera path with more or less equally spaced camera 
positions is defined. Afterwards, a bespoke Python script renders 
a synthetic photo for each camera path station by observing one 
specific texture through those cameras. Assuming correctly 
estimated image orientations, those synthetic images should be 
nearly pixel-perfect co-registered. Without going further into 
detail, it was only possible to accomplish this by accounting for 
GoPro's electronic rolling shutter. 
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2.2 Iteratively Reweighted Multivariate Alteration 

Detection (IR-MAD) 

The acquired and preprocessed multi-temporal images are used 
as input to the Iteratively Reweighted Multivariate Alteration 
Detection (IR-MAD). Introduced by Nielsen in 2007, IR-MAD 

is an extension to the Multivariate Alteration Detection (MAD; 
Nielsen et al., 1998) and has been extensively used for change 
detection in multi-spectral remote sensing imagery. MAD 
allows for robust detection of uncorrelated information between 
the input images, which is a strong indicator for change. It is 
based on canonical correlation analysis (CCA). CCA finds 
linear combinations of the 6 (2×3) input bands, which maximise 
the correlation between each other (Hotelling, 1936). For bi-
temporal, multi-band images, the canonical correlations are 

subtracted from each other. The resulting differences (i.e. MAD 
components) highlight potential change regions in the image 
(Nielsen, 2007). By setting a threshold for these MAD 
components, the image can be distinguished in change/no 
change. The threshold is determined by applying k-means-

clustering (with k= 2), resulting in two clusters with minimal 
within-cluster variance. The great advantage of MAD is its 
invariance to linear scaling, making it insensitive to different 
illumination conditions and sensor settings. 

 
In addition to ordinary MAD, IR-MAD iteratively assigns 
weights to pixels based on the magnitude of change detected 
during the previous iteration (i.e. pixels with minor change are 
assigned high weights and vice versa), making the change 
detection more robust (Nielsen, 2007). The iteration is terminated 
when the maximum difference in the canonical correlation falls 

below a threshold 𝜀. Tests have shown that a threshold of 𝜀 = 0.1 
is appropriate for the investigated graffiti use case. Larger values 

for 𝜀 tend to trigger a higher number of false alarms (i.e. false 
positives), while smaller values often lead to undetected changes 

(i.e. false negatives) and significantly increase the runtime. This 
study uses the IR-MAD implementation from 
ChenHongruixuan's ChangeDetectionRepository on GitHub 
(https://github.com/ChenHongruixuan/ChangeDetectionReposit
ory). 
 
Running IR-MAD on the images shown in Figures 2a and 2b 
yields the change map depicted in Figure 6. Changes in the 

graffiti cover are well highlighted, confirming the overall 
applicability of IR-MAD for the investigated use case. Despite 
the result's visually pleasing appearance, relying only on IR-
MAD for the graffiti change detection will not suffice as the 
resulting change map is relatively noisy and contains several, 
albeit small, false positives. Especially at edges, change is often 
falsely detected (e.g. between the sandstone bricks or at the 
transition of different graffito layers). This susceptibility to noisy 

results is a well-known drawback of pixel-based approaches and 
is mainly related to unavoidable inaccuracies in image co-
registration and strong changes in illumination between the two 
acquisitions (Tewkesbury et al., 2015; Figure 7). Tests have also 
shown that IR-MAD often fails in entirely changed/unchanged 
scenes (Figure 9b). This behaviour is explicable with the k-
means-clustering approach which expects two classes and fails 
when only one is present. Therefore, an independent method 
which can largely compensate for the shortcomings of IR-MAD 

is introduced in the next section. 
 

 
Figure 6. Results from MAD using the images from Figures 2a) 

and b) as input. Black denotes change.  

 
2.3 Descriptor-based change detection 

In his highly influential work from 1999, David G. Lowe writes, 
"Object recognition in cluttered real-world scenes requires local 

image features that are (…) partially invariant to illumination, 
3D projective transforms, and common object variations.". 
Replacing "object" with "change" yields a statement very similar 
to the aims of this study. In particular, illumination invariance is 
an important feature in the context of this study. Thus, it seems 
logical that the key result from Lowe's work, the Scale Invariant 
Feature Transform (SIFT), is a promising starting point for 
image-based graffiti change detection. Specifically, the idea is to 
transform both images into a collection of local features (not 

restricted to SIFT features), each represented by a descriptor 
vector. Similar descriptors at similar positions in the co-
registered images indicate no change around these points and 
vice versa. This principle has been tested in different variants for 
detecting changes in satellite imagery obtained from optical 
sensors (Seo et al., 2022; Liu et al., 2019) and Synthetic Aperture 
Radar (Wang et al., 2016; Pham et al., 2016), where its 
applicability was confirmed but mainly restricted to feature-rich 

areas like cities. The concept's transferability to conventional 
(terrestrial) images and applications has not been examined as far 
as the authors are aware. 
 
The descriptor-based approach implemented for this study 
includes three main steps (Figure 7):  
1. Detection of distinctive features and computation of 

descriptor vectors in both images using well-established 

feature detectors and descriptors (Figure 7a). 
2. Matching of features based on their vicinity in feature and 

object space (Figure 7b). 
3. Rasterisation of the matched feature points Figure 7b) and 

binary classification in changed/unchanged pixels based on 
the density of the matched feature points (Figures 7c and 
7d).  

 

2.3.1 Feature point detection and description: First, feature 
points, are detected in the input images. Those points are usually 
found at edges, corners or blobs (Figure 7a; Tareen and Saleem, 
2018). This is beneficial as graffiti are often characterised by 
sharp transitions between the graffito-specific layers. In a 
subsequent step, the detected feature points are described on the 
basis of the unique patterns in their neighbouring pixels. This 
process is called feature description and results in a descriptor 
vector of fixed length for each detected interest point.  

 
In this study, the respective OpenCV (Bradski, 2000) 
implementations of the following four well-established detectors 
and descriptors are used: SIFT (Lowe, 1999), SURF (Bay et al., 
2006), AKAZE (Alcantarilla et al, 2013) and BRISK 
(Leutenegger et al., 2011). The rationale behind using several 
feature detectors and descriptors is that their different properties 
and sensitivities can provide partly independent and 

complementary information (Tareen and Saleem, 2018), thereby 
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increasing the method’s reliability. Every detector used the same-

named algorithm for the feature description (i.e. feature points 
detected by SIFT were also described using SIFT).  

Figure 7. a) Detected feature points of all used detectors (SIFT, 
SURF, AKAZE, BRISK) for Figure 2a).  

b) Matched and filtered feature points between the images 
depicted in Figure 2a) and 2b) 

c) Bi-linear interpolated density map of the rasterised matched 
feature points 

d) Descriptor-based change map. Black denotes change. 
 

2.3.2 Feature matching: For matching the detected features 
in the two images, FLANN-based matching was applied to the 
set of detected feature points. FLANN stands for Fast Library for 
Approximate Nearest Neighbours. It consists of algorithms 
optimised for finding the nearest neighbours in high-dimensional 
data. For each detected feature point in image A, FLANN 
efficiently finds the feature point in image B for which the 
Euclidean distance of the corresponding descriptor vectors is 

minimal. This approach usually leads to a significant number of 
false matches as many features are only found in one image or 
arise from background clutter and are thus not sufficiently 
distinctive (Lowe, 2004).  
 
To robustly filter false matches, we exploit the nearly pixel-
perfect co-registration of the images by only considering matched 
points which are sufficiently close in object space. Specifically, 

we set a threshold of 20 px, approximately corresponding to a 
real-world distance of ca. 3 cm. Matched features which are 
farther apart are considered falsely matched (Figure 7b).  
 

For image pairs with less accurate co-registration between the 

input images, one could increase the maximally allowed distance 
between matched features and, in return, additionally perform a 
Lowe Ratio Test (Lowe, 2004), which allows for filtering 
matches with non-discriminative, and thus likely falsely matched 
descriptor vectors. However, this was not necessary for the 
examples used in this study.  
 
2.3.3 Rasterisation and thresholding: The matched and 

filtered feature points (which are collectively called tie points) 
are translated into changed/unchanged regions. Therefore, the 
image is divided into 400×400 px raster cells (Figure 7b). This 
raster size was empirically determined to be an appropriate 
compromise between achievable granularity and accuracy. Each 
cell is assigned the number of tie points within the boundaries of 
the respective cell. An increasing number of tie points indicates 
a decreasing likelihood for change. Bilinear interpolation was 
applied to achieve smoother transitions between the grid cells 

(Figure 7c). The resulting raster image holds information on the 
spatial distribution of (dis)similar features. 
 
Thresholding transforms the density map of tie points into a 
binary change map (Figure 7d). A threshold of ten tie points 
points per raster cell was empirically determined to be an 
appropriate compromise between sensitivity and robustness of 
the results. 

 
2.4 Derivation of final change map and postprocessing 

Finally, the change map is computed by intersecting the IR-MAD 
(Map A) with the descriptor-based change map (Map B):  

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑀𝑎𝑝 =  𝑀𝑎𝑝 𝐴 ∩  𝑀𝑎𝑝 𝐵,    (1) 
 
Only pixels classified as ‘changed’ in both maps will be 
considered as change in the final map. The result is filtered by 
applying morphological opening with kernel sizes of 15×15 px 
for the erosion and dilation operations. The resulting final change 
map for the introduced example map can be seen in Figure 8. 

 
Figure 8. Final post-processed change map of the images 

depicted in Figure 2a) and 2b) 
 

3. RESULTS 

The proposed methodology was tested on 15 synthetic image 
pairs of INDIGO’s test zone. While this number of tests is not 
sufficient to draw significant quantitative conclusions on the 
method's performance, it allows gaining first insights on possible 

advantages/disadvantages of the introduced hybrid change 
detection. The main results from this experiment are summarised 
below.  
 
 
First, the proposed method leads to a very low number of false 
positives. Our tests consistently identified completely unchanged 
graffiti scenes as such (Figure 9b). This is mainly due to the high 

robustness of the descriptor-based method, which finds 
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corresponding features even for image pairs where one or more 

of the potential pitfalls shown in Figure 3 are present. However, 
the high robustness of the descriptor-based methods comes at the 
cost of reduced sensitivity and spatial granularity, meaning that 
smaller graffiti, such as tags and stickers, are less likely to be 
detected. On the other hand, the IR-MAD detects nearly all new 
graffiti, even small tags, at the same time being noisy and 
resulting in a significant number of false alarms. By combining 
both methods, the IR-MAD noise is filtered, and the descriptor-

based methods’ low granularity can be partly surpassed, and 
change can be better condensed and highlighted. However, if the 
prime interest is not the exact nature of the change but only 
whether or not contentual change occurred between two photo 
acquisitions, solely the descriptor-based change method would 
suffice.  

 
 

Figure 9. Two examples of a scene with (a1-a5) and without 
(b1-b5) graffiti-related changes. The first two rows show the co-

registered input images. The third and fourth rows depict the 
IR-MAD and descriptor-based change maps. The respective 

final change maps are shown in the last row. 
 

Considering the processing times, an average change detection 
on a 6000×4000 px image pair takes ca. 60 seconds as a single-
threaded process. Approximately 40 seconds are needed to 
compute the IR-MAD change map, while the feature extraction, 
matching, rasterisation and classification are finished in ca. 20 
seconds.  
 

4. CONCLUSIONS 

This paper presented a graffiti change detection method that 
detects new graffiti in two images taken at different times. The 
proposed method can largely distinguish between content-related 
changes and content-unrelated radiometric changes, such as 

shadows or differences in colour representation.  
 
The proposed method should be understood as a starting point for 
subsequent research to develop an automated, image-based 
workflow for detecting graffiti-scape-related changes. Future 
improvements are envisioned in all parts of the current workflow. 
In particular, further research is needed to optimise photo 

acquisition and preprocessing. Other image preprocessing 

techniques, such as histogram equalisation or white balance 
correction, could further improve the accuracy and should be 
explored.  
 
Although the current hybrid change detection method has proven 
to work reliably and efficiently, systematic testing with synthetic 
images that represent all possible combinations of camera 
settings and weather conditions, including the quantitative 

comparison with manually generated change maps, is needed to 
validate its applicability at a larger scale. In addition, some 
critical architectural decisions, such as the choice of different 
parameters (e.g., maximum tie point density or the raster cell 
size), need to be further investigated and possibly adapted. Also, 
it might be beneficial to find an alternative to the current 
rasterisation step because it decreases the achievable spatial 
granularity of the method. One could, for example, detect change 
by finding patterns of dissimilar feature points using advanced 

clustering algorithms like Density-Based Spatial Clustering 
(DBSCAN), thereby surpassing the rigid rasterisation approach. 
 
Despite several possible improvements, this first proof-of-
concept indicates the general applicability of the method and 
provides the basis for continued research on this topic. Hopefully, 
one day, such change detection approaches can facilitate largely 
automated monitoring and documentation of temporal change in 

cultural heritage in general and extensive graffiti-scapes in 
particular.  
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