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Background: Lung adenocarcinoma (LUAD), the most common histotype of

lung cancer, may have variable prognosis due to molecular variations. The

research strived to establish a prognostic model based on malignancy-related

risk score (MRRS) in LUAD.

Methods: We applied the single-cell RNA sequencing (scRNA-seq) data from

Tumor Immune Single Cell Hub database to recognize malignancy-related

geneset. Meanwhile, we extracted RNA-seq data from The Cancer Genome

Atlas database. The GSE68465 and GSE72094 datasets from the Gene Expression

Omnibus database were downloaded to validate the prognostic signature.

Random survival forest analysis screened MRRS with prognostic significance.

Multivariate Cox analysis was leveraged to establish the MRRS. Furthermore, the

biological functions, gene mutations, and immune landscape were investigated

to uncover the underlying mechanisms of the malignancy-related signature. In

addition, we used qRT-PCR to explore the expression profile of MRRS-

constructed genes in LUAD cells.

Results: The scRNA-seq analysis revealed the markers genes of malignant

celltype. The MRRS composed of 7 malignancy-related genes was constructed

for each patient, which was shown to be an independent prognostic factor. The

results of the GSE68465 and GSE72094 datasets validated MRRS’s prognostic

value. Further analysis demonstrated that MRRS was involved in oncogenic

pathways, genetic mutations, and immune functions. Moreover, the results of

qRT-PCR were consistent with bioinformatics analysis.

Conclusion: Our research recognized a novel malignancy-related signature for

predicting the prognosis of LUAD patients and highlighted a promising

prognostic and treatment marker for LUAD patients.
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1 Introduction

Lung cancer is a malignant tumor with the highest mortality

rate in the world (1). Lung adenocarcinoma (LUAD) is the most

common histotype of lung cancer, accounting for around 40% of all

lung malignancies with an increasing prevalence (2). Despite the

employment of novel therapies including targeted therapy and

immunotherapy, the prognosis for patients with LUAD was

dismal (3). Although patients may have comparable pathology,

anatomical location, and clinical staging, their survival outcomes

will likely vary because of molecular differences. Therefore, it is

necessary to exploit newly prognostic molecular biomarkers, which

will be of assistance in improving the prognosis of overall survival

(OS) as well as the therapy effectiveness for LUAD patients.

In recent years, next-generation sequencing has been widely used,

but conventional NGS does not detect cellular heterogeneity (4–6).

Single-cell RNA sequencing (scRNA-seq) can be used to detect the

genome, transcriptome, and other multi-omics of single cells. It is a

powerful approach to dissect cellular heterogeneity, which can

specifically obverse the changes in the tumor microenvironment

(TME) (7). It is known that tumor cells are surrounded by TME,

including a variety of immune cells, stromal cells, extracellular matrix

molecules, and various cytokines (8). As a key priority, tumor cells

play a vital role in the occurrence and development of tumors. In this

study, we extracted tumor cell subpopulations and identified tumor

cell marker genes through scRNA-seq.

In the research, we applied the scRNA-seq data from Tumor

Immune Single Cell Hub (TISCH) database to obtain a gene expression

map from the level of single cells in LUAD. Next, we extracted

transcriptome data and associated clinical information from TCGA

database (TCGA-LUAD) and Gene Expression Omnibus (GEO)

database. Subsequently, we used TCGA cohort as the training set

while the GSE68465 and GSE72094 cohorts as the validation sets. By

linking associated genes with clinical cases of LUAD, we focused on

investigating the effect of the malignancy-related signature on

foretelling the mortality of LUAD patients and exploring their

underlying mechanisms on tumor growth and progression.
2 Materials and methods

2.1 Dataset source and preprocessing

First, we downloaded the single cell RNA sequencing (scRNA-

seq) dataset (GSE117570) (9) of 4 LUAD patients from the TISCH

database1. RNA-sequencing (RNA-seq) and the matched clinical

characteristics of 460 LUAD patients were derived from the TCGA

database2. We downloaded two datasets (439 LUAD patients for

GSE68465 and 386 patients for GSE72094) of RNA expression data

and complete clinical data from the GEO database3 (10, 11). The
1 http://tisch.comp-genomics.org/

2 https://portal.gdc.cancer.gov/

3 https://www.ncbi.nlm.nih.gov/geo/
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batch effect was adjusted through the “sva” R package. The

IMvigor210 cohort (12) of bladder cancer patients treated with

a n t i - PD - L 1 t h e r a p y w a s o b t a i n e d t h r o u g h t h e

“IMvigor210CoreBiologies” R package, and the GSE91061 dataset

(13) that accepted anti-PD-1 and anti-CTLA4 treatment was also

attained to predict the efficiency of immunotherapy. The basic

information of series was shown in Supplementary Table 1.
2.2 ScRNA-seq analysis

Quality control and normalization of scRNA-seq data were

processed with the “Seurat” R package. Cell clusters were derived

from the TISCH database. According to the documentation, the cell

type was annotated by the description provided by the original

study, the markers of malignant cells, and the “inferCNV” R

package. FindAllMarkers function was used to determine and

annotate gene markers for different cell clusters with thresholds

of p.adjust< 0.05 and log2 [Foldchange] > 0.3. We extracted the

marker genes of the malignant celltype for further study.
2.3 Generation of
malignancy-related signature

To establish the malignancy-related signature, we employed

TCGA cohort as the training set, while the GSE68465 and

GSE72094 datasets were the validation sets. Univariate Cox

analysis was performed to explore prognosis-associated genes (p<

0.001). Random survival forest (RSF) analysis was then conducted

using the “randomForestSRC” R package to further narrow down

the prognostic gene panel. In RSF analysis, variables were ranked by

minimal depth, of which a smaller value indicated greater

predictiveness. Next, multivariate Cox regression analysis was

used to establish the optimal malignancy-related signature based

on respective coefficients (b) and gene expression levels (Exp). This

formula was used to calculate each patient’s malignancy-related risk

score (MRRS). Subsequently, we divided the patients into high- and

low-risk groups based on the median MRRS. The Kaplan-Meier

approach was applied to determine the prognostic difference

between the two groups. We further evaluate the correlations

between the MRRS and clinical features including age, gender,

clinical stage, TN stages, and smoking status. Univariate and

multivariate Cox analyses were utilized to assess the prognostic

significance of MRRS. Meanwhile, we collected the GSE68465 and

GSE72094 cohorts to verify MRRS’s predictive efficacy.
2.4 Functional enrichment analysis

To investigate the underlying mechanism regarding MRRS,

differentially expressed genes were obtained between the high-

and low-risk cohorts. First, we performed Gene Ontology (GO)

enrichment and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analyses using the “clusterProfiler” R package.

GO and KEGG terms with p< 0.05 were visualized by the “circlize”
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R package. GSVA was employed to determine the differences

between the two cohorts on the oncogenic hallmark pathways

(h.all.v7.1.symbols) deposited in the MSigDB database (p.adjust<

0.001). Gene Set Enrichment Analysis (GSEA) was performed

between the two groups for the same hallmark pathways with the

“GSEA” R package (FDR< 0.25, NES > 1, and p.adjust< 0.05).

Kaplan-Meier method was employed to determine the prognostic

significance of the overlapping hallmark pathways of GSVA

and GSEA.
2.5 Somatic mutation analysis

The somatic mutations of LUAD patients were extracted from

TCGA database. The “maftools” R package explored the specific

somatic mutation variations in different MRRS groups. Next, we

investigated the mutually co-occurring or exclusive mutations,

tumor-causing genes, and enrichment of known oncogenic

pathways between the two cohorts. Tumor mutation burden

(TMB) reflecting total mutation counts for each LUAD patient

was computed and tested for correlation with MRRS. In addition,

we analyzed the predictive value of TMB and MRRS on the survival

outcomes in terms of the MRRS risk cohorts.
2.6 Immune landscape analysis and
treatment response prediction

We compared the high- and low-risk groups’ immune cell

abundance, immune function, and immune checkpoints. The

Tumor Immune Dysfunction and Exclusion (TIDE) algorithm4

(14) was applied to predict the potential immunotherapy

response based on the RNA expression profile of LUAD patients.

The IMvigor210 and GSE91061 datasets were also used to

determine the correlation between the MRRS and potential

immunotherapy efficacy. Meanwhile, we investigated the

chemotherapy response of the two groups, and the “oncoPredict”

R package predicted the therapeutic effect of chemotherapeutic

drugs for each patient.
2.7 RNA extraction and quantitative
real-time PCR

Human LUAD cells (A549, H1299, SKLU1, and H1250) and

normal bronchial epithelial cells (16HBE) were obtained from

Procell Life Science and Technology (Wuhan, China). Total RNA

of the cells was isolated using TRIzol reagent (BioTeke, Beijing,

China). Subsequently, qRT-PCR was performed utilizing the

HiScript II Q RT SuperMix for qPCR (Bioer Technology,

Hangzhou, China). The 2−△△Ct method was used to calculate

the relative expression of each lnRNA. The differences in the

expression levels of LUAD cells and normal cells were assessed
4 http://tide.dfci.harvard.edu/

Frontiers in Oncology 03
using the unpaired t test. The primer sequences were showed in

Supplementary Table 2.
2.8 Statistical analysis

We conducted all statistical analyses in this research using R

software (version 4.2.2). All codes of the analysis was uploaded in

GitHub5. The unpaired Student’s t-test was used to assess the

differences between continuous variables. The chi-square test was

utilized to examine the relationship between categorical factors.

Statistical significance for most analyses was empirically set at a

two-tailed p< 0.05.
3 Results

3.1 ScRNA-seq analysis

Figure 1 depicted the flowchart for this research. ScRNA-seq

data of 4 LUAD patients were downloaded from the GSE117570

dataset. After data processing, standardization, and data filtering, a

total of 11,453 cells were obtained for subsequent analysis. After

unsupervised clustering of all cells, 22 clusters were obtained

(Figure 2A), which were visualized after dimensionality reduction

by UMAP. According to the annotation of the TISCH database, we

classified the cells into 9 cell types, including CD8 T cells, dendritic

cells, fibroblasts, gland mucous cells, malignant cells, mast cells,

myofibroblasts, pit mucous cells, and plasma cells (Figures 2B–D).

The differentially expressed genes of all cell types were displayed in

Figure 2E. Considering the key role of malignant cells in tumor

tissue, we extracted the markers genes of malignant cell type for

further study.
3.2 Construction of
malignancy-based model

The marker genes of malignant cells were incorporated into the

following study. In TCGA cohort, univariate Cox regression

analysis recognized 80 prognosis-associated genes (Figure 3A).

RSF analysis further identified 10 model-constructed candidates

based on the minimal depth method (Figures 3B, C). Seven vital

genes were ultimately chosen to form the MRRS using multivariate

Cox regression, namely LDHA, CAMTA1, MYLIP, GALNT3,

PERP , CD99 , and ABL2 . The formula was : MRRS =

o7
i=1(Expi*bi) (Table 1). Based on the median MRRS, the patients

were separated into high-risk and low-risk. The OS of the high-risk

group was significantly shorter than that of the low-risk group

(Figure 3D). Figure 3E showed these patients’ MRRS distribution,

survival status, and MRRS profile. Further analyses suggested that a

higher MRRS was correlated with worse clinical stage and TN stages

(Figure 4A). In addition, it was observed that MRRS and clinical
5 https://github.com/No-Potato/LUAD-MRRS

frontiersin.org

http://tide.dfci.harvard.edu/
https://github.com/No-Potato/LUAD-MRRS
https://doi.org/10.3389/fonc.2023.1198746
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2023.1198746
variables were closely associated with OS in the univariate Cox

regression. Further multivariate Cox analysis indicated that MRRS

was an independent prognostic factor (Figure 4B). ROC analysis

also confirmed the predictive efficacy of MRRS (AUC = 0.717,

Figure 4C). The outcomes of the GSE68465 and GSE72094 cohorts

also validated MRRS’s prognostic value (Figures 3F–I, 4). These

outcomes showed that MRRS was a high ly re l i ab le

prognostic indicator.
Frontiers in Oncology 04
3.3 Functional enrichment analysis

To investigate the underlying mechanism regarding MRRS, we

performed GO and KEGG analyses and the results revealed that

MRRS was related to receptor ligand activity, signaling receptor

activator activity, extracellular matrix organization, myeloid

leukocyte migration, cell cycle, chromosomal region, and mitotic

nuclear division (Figures 5A, B). The above GO and KEGG items
FIGURE 1

This study’s design and flowchart.
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suggested that MRRS may be involved in oncogenic pathways,

tumor mutations, and immune functions. Subsequently, 50

oncogenic hallmark pathways were included in GSVA, whose

outcomes indicated that 17 hallmark pathways were significantly

increased in high-risk patients while 4 pathways were decreased in

low-risk patients (Figure 5C). GSEA confirmed that 20 were

significantly upregulated in the high-risk cohort, while 2 were

upregulated in the low-risk cohort (Figure 5D). The pathways

obtained by intersection were analyzed by the Kaplan-Meier

method, and different OS probabilities were observed for several

well-known oncogenic pathways such as E2F_TARGETS,

HYPOXIA, G2M_CHECKPOINT, and MYC_TARGETS_V1

(Figure 5E). In summary, MRRS participated in multiple

biological functions, especially oncogenic pathways in LUAD.
Frontiers in Oncology 05
3.4 Somatic mutation analysis

Gene mutations landscape between the high- and low-risk

groups were shown in waterfall plots (Figures 6A, B). The genes

with the highest mutation frequencies in the high-risk cohort were

TTN, TP53, CSMD3, MUC16, and RYR2, while those in the low-

risk cohort were TP53, TTN, MUC16, LRP1B, and CSMD3.

Furthermore, the co-occurring or exclusive mutations across the

top 25 mutated genes between the two cohorts were also

exhibited, with no significant differences observed (Figure 6C).

The mutation enrichment of known oncogenic pathways showed

no significant difference between the high- and low-risk teams

(Figure 6D). Further analysis also confirmed the positive

correlation between TMB and MRRS, and higher TMB had a
B

C D

E

A

FIGURE 2

Sc-RNA seq analysis of LUAD. (A) The UMAP clustering map showed different clusters. (B) The UMAP clustering map showed different celltypes.
(C, D) The proportion and construction of different celltypes. (E) Marker genes of different celltypes.
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better OS (Figures 6E, F). Survival analysis suggested that low

TMB and high MRRS had the worst prognoses (Figure 6G). In

conclusion, comprehensive analyses disclosed the mutation

variations between high- and low-risk cohorts, and multiple

remarkable genes and pathways showed significant mutation

abnormalities between the cohorts.
3.5 Immune landscape analysis and
treatment response prediction

Immune landscape analysis revealed higher abundances of T

cells, B cells, and NK cells in the low-risk group compared to the
B C

D

E

F

G

H

I

A

FIGURE 3

The establishment of MRRS and verification of its prognostic efficiency. (A) Univariate Cox regression analysis recognized 80 prognosis-associated
genes. (B) Correlations between error rate and classification trees. (C) The relative importance of prognosis-associated genes. (D) The Kaplan-Meier
method unveiled a significantly worse OS of the high-risk cohort compared to the low-risk cohort. (E) The illustrations of all patient’s survival
conditions, risk variations, and MRRS distributions. (F–I) The outcomes of the GSE68465 and GSE72094 cohorts also validated MRRS’s prognostic
value.
TABLE 1 The prognostic significance of the 7-genes signature.

MRRS-related gene Coef

LDHA 0.444007897

CAMTA1 -0.159218411

MYLIP -0.337064301

GALNT3 0.128249103

PERP 0.111381641

CD99 0.15017571

ABL2 0.234266034
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high-risk group (Figure 7A). Most anti-tumor immune functions

such as HLA function and T cell co-stimulation were relatively

decreased in the high-risk team (Figure 7B). Besides, we also found

higher expressions of immunosuppressive receptors and inhibitory

ligands (PDCD1, PDCD1LG2, and LAG3) in high-risk patients

(Figure 7C). Meanwhile, the TIDE algorithm identified no

significant difference in immunotherapy response between the

high- and low-risk groups (Figure 7D). The predicted outcomes

of the IMvigor210 cohort and GSE91061 cohort also supported the

above conclusion (Figure 7E). Considering the poor response to

immunotherapy in LUAD, the chemotherapy response of LUAD

patients with different MRRSs was assessed by the “oncoPredict” R

package. Our findings indicated that high-risk patients had

significantly lower IC50 values in several chemotherapy molecules
Frontiers in Oncology 07
including Erlotinib, Gefitinib, SCH772984, and Docetaxel

(Figure 7F). Overal l , the immune landscape analyses

demonstrated that MRRS was associated with different immune

responses, and chemotherapy may be more effective than

immunotherapy for the high-risk patients.
3.6 Expression level of MRRS-constructed
genes in LUAD cells

In addition, we validated the expression levels of MRRS-

constructed genes (LDHA, CAMTA1, MYLIP, GALNT3, PERP,

CD99, and ABL2) between the LUAD cells (A549, H1299, SKLU1,

and H1250) and normal bronchial epithelial cells (16HBE) using
B

C D E

A

FIGURE 4

The prognostic value of MRRS and clinical variables. (A) Relationship between MRRS and clinical features. (B) Univariate and multivariate Cox
regression analyses of MRRS and clinical features in TCGA, GSE68465, and GSE91061 cohorts. (C–E) The ROC method revealed the prognostic
significance of MRRS in TCGA, GSE68465, and GSE72094 cohorts, respectively.
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qRT-PCR. As shown in Figure 8, the expression of LDHA,

GALNT3, PERP, and ABL2 was significantly upregulated in

LUAD cell lines, while MYLIP was significantly upregulated in

16HBE cells. However, the expression of CAMTA1 and CD99

showed no significant difference between the LUAD cells and

normal bronchial epithelial cells. Overall, the results of qRT-PCR

were consistent with bioinformatics analysis.
4 Discussion

Patients with lung cancer, with the highest fatality rate in the

world, had a dismal prognosis, with 5-year survival rates of less

than 20% (3). Patients with advanced LUAD now have new hope

thanks to the development and application of immunotherapy and

targeted therapies medications in recent years (15). However, due
Frontiers in Oncology 08
to molecular variances, patients with the same pathological type

and clinical stage may have varying prognoses. Therefore, to

predict the prognosis of LUAD patients, further molecular

indicators must be investigated. Increasing bioinformatic articles

get published recent years and achieved excellent efficacy (6, 16–

19). The scRNA-seq has good application potential in disease

research since it can obtain gene expression maps at the level of a

single cell and identify heterogeneous tissue samples in groups

(20–22). In our study, we amalgamated data from TCGA,

GSE68465, and GSE72094 cohorts to acquire MRRS. ROC

analysis verified the advantageous predictive efficacy of MRRS

with an AUC of 0.717. Multiple datasets were utilized to

investigate the biological functions of MRRS, which augmented

the reliability of the results.

Furthermore, GO and KEGG analyses demonstrated that

MRRS may be correlated with chromosomal region, mitotic
B

C D

E

A

FIGURE 5

Investigation of underlying mechanism regarding MRRS. (A) GO enrichment analysis of MRRS. (B) KEGG pathway analysis of MRRS. (C) Determination
of oncogenic hallmark pathways in terms of the MRRS risk cohorts utilizing GSVA. (D) The GSEA outcomes for the hallmark pathways between the
high- and low-risk patients. (E) Kaplan-Meier curve uncovered the OS in overlapping hallmark pathways between GSVA and GSEA.
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nuclear division, extracellular matrix organization, myeloid

leukocyte migration, cell cycle, and signaling receptor activator

activity. The findings of GSVA and GSEA implied that MRRS may

modify the tumor’s biological behavior by participating in multiple

oncogenic hallmark pathways. Signal pathways including E2F

TARGETS, HYPOXIA, G2M CHECKPOINT, and MYC

TARGETS V1 were found to be strongly correlated with patient

prognosis by Kaplan-Meier analysis. It has been reported that

upregulation of the E2F signaling promoted the proliferation and

progression of LUAD (23). The MYC pathway’s aberrant activation

can contribute to the progression of LUAD and its metastasis (24,

25). As a result, by regulating certain oncogenic pathways, MRRS

may have an impact on a patient’s prognosis.

The genetic mutations between the high- and low-risk groups

were further investigated. TTN, TP53, CSMD3, MUC16, and RYR2

were the top five genes for mutation frequency in the high-risk

team, while TP53, TTN, MUC16, LRP1B, and CSMD3 were the top
Frontiers in Oncology 09
five genes in the low-risk team. LRP1B was reported as a tumor

suppressor gene in non-small-cell lung cancer (26). A recent study

showed that patients with cancer who had LRP1B mutations had

improved clinical outcomes when receiving immune checkpoint

inhibitors (27). Additionally, we discovered that MRRS and TMB

had a positive correlation and that their combination can more

accurately predict the prognosis of the patient. TMB has emerged as

a valuable biomarker for evaluating the efficacy of immunotherapy

in LUAD because it represents a mutagenesis process triggered by

intracellular and environmental factors (28, 29). Our research

identified mutation variations in the MRRS risk cohorts. MRRS

may take part in a variety of aberrant mutations involving oncologic

genes and pathways to modulate the growth and progression

of LUAD.

Immune landscape analysis revealed that the high-risk group

had substantially more immune cells and immune functions.

Consequently, an additional investigation discovered that the
B

C

D

E F G

A

FIGURE 6

Genetic mutations landscape in terms of the MRRS risk cohorts. (A, B) Waterfall plots of genetic mutations in high- and low-risk groups, respectively. (C)
The co-occurring or exclusive mutations across the top 25 mutated genes between the two cohorts. (D) The results of mutation enrichment of
remarkable oncogenic pathways. (E) The relationship of MRRS and TMB. (F, G) Kaplan-Meier curve revealed the OS in distinct TMB and MRRS groups.
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high-risk patients had a high expression of immunosuppressive

receptors and inhibitory ligands (PDCD1, PDCD1LG2, and LAG3).

Immune checkpoint inhibitors, as we all know, have recently

significantly improved the prognosis for patients with lung cancer

(30), but they are only beneficial in a small subset of patients with
Frontiers in Oncology 10
LUAD. The majority of LUAD patients were still receiving targeted

therapy and chemotherapy as their basic treatments. The results

revealed that the high-risk group responded better to erlotinib,

gefitinib, SCH772984, and docetaxel. Overall, the immune

landscape analysis showed that MRRS was involved in many
B

C D

E

F

A

FIGURE 7

Immune landscape and treatment response prediction. (A) Estimation of immune cell infiltration in high- and low-risk teams. (B) Explorations of
immunological responses in terms of the MRRS risk groups. (C) Correlations between MRRS and immune checkpoints. (D) TIDE algorithm identified the
difference in immunotherapy response between high- and low-risk groups. (E) The prediction of immunotherapy response using IMvigor210 and GSE72094
cohorts. (F) The prediction of chemotherapy response of LUAD patients with different MRRSs. *p< 0.05, **p< 0.01, ***p< 0.001, ns, not significant.
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immune responses and that, for high-risk patients, chemotherapy

may be more efficient than immunotherapy.

In our research, the LDHA, CAMTA1, MYLIP, GALNT3,

PERP, CD99, and ABL2 genes are vital ingredients of the MRRS.

Among them, LDHA showed a substantial correlation with the

prognosis of LUAD, which is consistent with earlier researches

(31, 32). According to a recent study, phosphorylation and

activation of LDHA can promote tumor invasion and

metastasis (33). By regulation of LncRNA SGMS1-AS1 and

miR-106a-5p38, MYLIP, a potential tumor suppressor gene in

LUAD, may prevent the proliferation, invasion, and migration of

LUAD cells (34). GALNT3 was developed to prevent lung

cancer by preventing self-renewal and the development of a

favorable tumor microenvironment (35). Previous studies

showed that the knockdown of ABL2 dramatically reduced the

brain metastases of LUAD cells (36, 37). According to the above

findings, possible treatments targeting these essential genes may

exist in the future.

Our study still had significant shortcomings, though. Since this

research was retrospective, additional treatment and relapse records

as well as prospective clinical investigations are needed to verify our

findings. These essential genes will require additional experimental

validation, and additional in vivo or in vitro experiments are needed

to investigate the specific mechanisms of the genes.
5 Conclusion

In conclusion, we developed a novel malignancy-related

signature, termed MRRS, which demonstrated a strong predictive

capacity for OS in LUAD patients. Our findings shed light on the
Frontiers in Oncology 11
underlying mechanisms of LUAD progression and suggest that

MRRS may serve as a promising prognostic and therapeutic marker

for LUAD patients.
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